Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*
Dai, Shaojun; Chen, Sixue
2012-01-01
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375
Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P
2010-09-01
Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
Molecular motors and their functions in plants
NASA Technical Reports Server (NTRS)
Reddy, A. S.
2001-01-01
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Measuring the elasticity of plant cells with atomic force microscopy.
Braybrook, Siobhan A
2015-01-01
The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.
Navigating the plant cell: intracellular transport logistics in the green kingdom
Geitmann, Anja; Nebenführ, Andreas
2015-01-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952
Hamann, Thorsten
2015-04-01
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pogorelko, Gennady V; Reem, Nathan T; Young, Zachary T; Chambers, Lauran; Zabotina, Olga A
2016-01-01
Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Ortigosa, Susana; Valenstein, Justin S.; Lin, Victor S.-Y.
2012-09-11
The synthesis and characterization of a gold nanoparticle functionalized mesoporous silica nanoparticle (Au-MSN) platform for codelivery of proteins and plasmid DNA to plant tissues using a biolistic particle delivery system is reported. The in vitro uptake and release profiles of fluorescently labeled bovine serum albumin (BSA) and enhanced green fluorescent protein (eGFP) are investigated. As a proof-of-concept demonstration, Au-MSN with large average pore diameters (10 nm) are shown to deliver and subsequently release proteins and plasmid DNA to the same cell after passing through the plant cell wall upon bombardment. Release of fluorescent eGFP indicates the delivery of active, non-denaturedmore » proteins to plant cells. This advance represents the first example of biolistic-mediated codelivery of proteins and plasmid DNA to plant cells via gold-functionalized MSN and provides a powerful tool for both fundamental and applied research of plant sciences.« less
On the track of transfer cell formation by specialized plant-parasitic nematodes.
Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice
2014-01-01
Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.
RIP-ET: A riparian evapotranspiration package for MODFLOW-2005
Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori
2012-01-01
A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting transpiration. The fractional cover within a cell has two components: (1) the polygonal fraction of active habitat (excluding area of bare ground, dead trees, or brush) in a cell, and (2) fraction of plant type area or bare ground area in a polygon. RIP-ET determines the transpiration rate for each plant functional group and evaporation from bare ground/open water in a cell, the total ET in the cell, and the total ET rate over the region of simulation.
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu
2017-01-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. PMID:28053005
Lachenbruch, Barbara; McCulloh, Katherine A
2014-12-01
This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Coll, N S; Smidler, A; Puigvert, M; Popa, C; Valls, M; Dangl, J L
2014-01-01
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants. PMID:24786830
The roles of peptide hormones during plant root development.
Yamada, Masashi; Sawa, Shinichiro
2013-02-01
Peptide hormones are a key mechanism that plants use for cell-cell interactions; these interactions function to coordinate development, growth, and environmental responses among different cells. Peptide signals are produced by one cell and received by receptors in neighboring cells. It has previously been reported that peptide hormones regulate various aspects of plant development. The mechanism of action of peptides in the shoot is well known. However, the function of peptides in the root has been relatively uncharacterized. Recent studies have discovered important roles for peptide hormones in the development of the root meristem, lateral roots, and nodules. In this review, we focus on current findings regarding the function of peptide hormones in root development. Copyright © 2012 Elsevier Ltd. All rights reserved.
Macho, Alberto P
2016-04-01
Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina
2017-12-25
The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho
2017-01-01
Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; ...
2016-10-06
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E
2016-11-07
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Why plants make puzzle cells, and how their shape emerges.
Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S
2018-02-27
The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.
Why plants make puzzle cells, and how their shape emerges
Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne HK; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw
2018-01-01
The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. PMID:29482719
Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.
Egan, Martin J; Talbot, Nicholas J
2008-08-01
This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
Navigating the plant cell: intracellular transport logistics in the green kingdom.
Geitmann, Anja; Nebenführ, Andreas
2015-10-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
[The role of the serotonin system in the stress response of various cells
NASA Technical Reports Server (NTRS)
Belzhelarskaia, S. N.; Satton, F. F.; Sutton, F. (Principal Investigator)
2003-01-01
The recombinant mouse brain serotonin receptor (5HT1c) was used to study the response of plant cells and oocytes to a stress signal activated by the serotonin-serotonin receptor interaction and associated Ca2+ flow. Based on plant expression vectors, recombinant constructs were obtained to direct production of 5HT1c fused with the green fluorescent protein in plant cells. The mRNAs for hybrid proteins were synthesized in an in vitro transcription system. The expression and function of the hybrid protein and the function of the associated ion channels were electrophysiologically studied in Xenopus laevis oocytes injected with the hybrid mRNA. The hybrid protein was functional and changed the operation of the Ca2+ channel in oocytes. To study the expression of the hybrid constructs in plant cells, the in vitro transcription product was inoculated in tobacco leaves, which then fluoresced.
From structure to function - a family portrait of plant subtilases.
Schaller, Andreas; Stintzi, Annick; Rivas, Susana; Serrano, Irene; Chichkova, Nina V; Vartapetian, Andrey B; Martínez, Dana; Guiamét, Juan J; Sueldo, Daniela J; van der Hoorn, Renier A L; Ramírez, Vicente; Vera, Pablo
2018-05-01
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Zuo, Jianru [New York, NY; Chua, Nam-Hai [Scarsdale, NY
2007-06-12
Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu; Zhao, Huabin; Zhu, Yu-Xian
2017-03-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Response of γδ T cells to plant-derived tannins
Holderness, Jeff; Hedges, Jodi F.; Daughenbaugh, Katie; Kimmel, Emily; Graff, Jill; Freedman, Brett; Jutila, Mark A.
2008-01-01
Many pharmaceutical drugs are isolated from plants used in traditional medicines. Through screening plant extracts, both traditional medicines and compound libraries, new pharmaceutical drugs continue to be identified. Currently, two plant-derived agonists for γδ T cells are described. These plant-derived agonists impart innate effector functions upon distinct γδ T cell subsets. Plant tannins represent one class of γδ T cell agonist and preferentially activate the mucosal population. Mucosal γδ T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in γδ T cells, leading to cytokine production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine γδ T cells. Procyanidin-induced responses described in this review likely account for the expansion of mucosal γδ T cells seen in mice and rats fed soluble extracts of tannins. Procyanidins may represent a novel approach for treatment of tissue damage, chronic infection, and autoimmune therpies. PMID:19166386
2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Benning
2011-02-04
This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less
An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis
Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM
2014-01-01
Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953
Quentin, Michaëel; Abad, Pierre; Favery, Bruno
2013-01-01
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Li, Shanwei; Sun, Tiantian; Ren, Haiyun
2015-01-01
In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis. PMID:25964792
The plant secretory pathway seen through the lens of the cell wall.
van de Meene, A M L; Doblin, M S; Bacic, Antony
2017-01-01
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Single-Cell Genomic Analysis in Plants
Hu, Haifei; Scheben, Armin; Edwards, David
2018-01-01
Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790
Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses
Ward, John M.; Mäser, Pascal; Schroeder, Julian I.
2016-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100
Plant ion channels: gene families, physiology, and functional genomics analyses.
Ward, John M; Mäser, Pascal; Schroeder, Julian I
2009-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.
Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar
2012-09-01
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.
Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth
2013-09-01
Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.
The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions[OPEN
Tavormina, Patrizia; De Coninck, Barbara; Nikonorova, Natalia; De Smet, Ive; Cammue, Bruno P.A.
2015-01-01
Peptides fulfill a plethora of functions in plant growth, development, and stress responses. They act as key components of cell-to-cell communication, interfere with signaling and response pathways, or display antimicrobial activity. Strikingly, both the diversity and amount of plant peptides have been largely underestimated. Most characterized plant peptides to date acting as small signaling peptides or antimicrobial peptides are derived from nonfunctional precursor proteins. However, evidence is emerging on peptides derived from a functional protein, directly translated from small open reading frames (without the involvement of a precursor) or even encoded by primary transcripts of microRNAs. These novel types of peptides further add to the complexity of the plant peptidome, even though their number is still limited and functional characterization as well as translational evidence are often controversial. Here, we provide a comprehensive overview of the reported types of plant peptides, including their described functional and structural properties. We propose a novel, unifying peptide classification system to emphasize the enormous diversity in peptide synthesis and consequent complexity of the still expanding knowledge on the plant peptidome. PMID:26276833
Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao
2017-04-01
Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana
Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.
2017-01-01
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422
Effector biology of plant-associated organisms: concepts and perspectives.
Win, J; Chaparro-Garcia, A; Belhaj, K; Saunders, D G O; Yoshida, K; Dong, S; Schornack, S; Zipfel, C; Robatzek, S; Hogenhout, S A; Kamoun, S
2012-01-01
Every plant is closely associated with a variety of living organisms. Therefore, deciphering how plants interact with mutualistic and parasitic organisms is essential for a comprehensive understanding of the biology of plants. The field of plant-biotic interactions has recently coalesced around an integrated model. Major classes of molecular players both from plants and their associated organisms have been revealed. These include cell surface and intracellular immune receptors of plants as well as apoplastic and host-cell-translocated (cytoplasmic) effectors of the invading organism. This article focuses on effectors, molecules secreted by plant-associated organisms that alter plant processes. Effectors have emerged as a central class of molecules in our integrated view of plant-microbe interactions. Their study has significantly contributed to advancing our knowledge of plant hormones, plant development, plant receptors, and epigenetics. Many pathogen effectors are extraordinary examples of biological innovation; they include some of the most remarkable proteins known to function inside plant cells. Here, we review some of the key concepts that have emerged from the study of the effectors of plant-associated organisms. In particular, we focus on how effectors function in plant tissues and discuss future perspectives in the field of effector biology.
Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; ...
2016-10-04
Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima
Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less
Uemura, Tomohiro; Kim, Hyeran; Saito, Chieko; Ebine, Kazuo; Ueda, Takashi; Schulze-Lefert, Paul; Nakano, Akihiko
2012-01-01
In all eukaryotic cells, a membrane-trafficking system connects the post-Golgi organelles, such as the trans-Golgi network (TGN), endosomes, vacuoles, and the plasma membrane. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. Unlike its roles in animal and yeast cells, the TGN has also been reported to function like early endosomal compartments in plant cells. However, the physiological roles of the TGN functions in plants are not understood. Here, we report a study of the SYP4 group (SYP41, SYP42, and SYP43), which represents the plant orthologs of the Tlg2/syntaxin16 Qa-SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) that localizes on the TGN in yeast and animal cells. The SYP4 group regulates the secretory and vacuolar transport pathways in the post-Golgi network and maintains the morphology of the Golgi apparatus and TGN. Consistent with a secretory role, SYP4 proteins are required for extracellular resistance responses to a fungal pathogen. We also reveal a plant cell-specific higher-order role of the SYP4 group in the protection of chloroplasts from salicylic acid-dependent biotic stress. PMID:22307646
Han, Sang Wook; Hwang, Byung Kook
2017-02-01
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Plant peptide hormone signalling.
Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi
2015-01-01
The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.
Aquaporin structure-function relationships: water flow through plant living cells.
Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye
2008-04-01
Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.
Jaouannet, Maëlle; Rosso, Marie-Noëlle
2013-09-01
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.
Control of plant stem cell function by conserved interacting transcriptional regulators
Zhou, Yun; Liu, Xing; Engstrom, Eric M.; Nimchuk, Zachary L.; Pruneda-Paz, Jose L.; Tarr, Paul T.; Yan, An; Kay, Steve A.; Meyerowitz, Elliot M.
2014-01-01
SUMMARY Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center (QC), defines QC identity and functions interchangeably with WUS in control of shoot and root stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centers on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development. PMID:25363783
An Arabidopsis gene regulatory network for secondary cell wall synthesis
Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...
2014-12-24
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less
Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M
2016-04-29
Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.
Plant Systems Biology at the Single-Cell Level.
Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John
2017-11-01
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly
2016-01-19
Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. The science of virology began with the discovery of Tobacco mosaic virus (TMV). Since then, TMV has served as an experimental and conceptual model for studies of viruses and dissection of virus-host interactions. Indeed, the TMV cell-to-cell-movement protein (MP) has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through the plant intercellular connections termed plasmodesmata. However, one of the most fundamental and key functional features of TMV MP, its putative plasmodesmal localization signal (PLS), has not been identified. Here, we fill this gap in our knowledge and identify the TMV MP PLS. Copyright © 2016 Yuan et al.
Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A.; Bar-On, Benny
2017-01-01
Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns (Asplenium nidus and Platycerium bifurcatum) and angiosperms (Arabidopsis thaliana and Commelina erecta) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata (Sorghum bicolor and Triticum aestivum). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. PMID:28158449
Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter; ...
2018-02-20
Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter
Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less
Bassil, Elias; Hu, Hening; Brown, Patrick H.
2004-01-01
The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants. PMID:15466241
Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory.
Chevalier, Christian; Bourdon, Matthieu; Pirrello, Julien; Cheniclet, Catherine; Gévaudant, Frédéric; Frangne, Nathalie
2014-06-01
The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc
2016-01-01
The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development.
Behind the lines–actions of bacterial type III effector proteins in plant cells
Büttner, Daniela
2016-01-01
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715
NASA Technical Reports Server (NTRS)
Braam, J.; McIntire, L. V. (Principal Investigator)
1999-01-01
The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.
The role of mitochondria in plant development and stress tolerance
USDA-ARS?s Scientific Manuscript database
Proper cellular function requires orchestrated communication among cellular compartments and the ability of the cell to sense and respond to its environment. Plant cells contain three distinct compartments that house DNA. The nucleus contains the nuclear genome, which provides a majority of a cell's...
Structure-informed insights for NLR functioning in plant immunity.
Sukarta, Octavina C A; Slootweg, Erik J; Goverse, Aska
2016-08-01
To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reassessing apoptosis in plants.
Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas
2017-10-01
Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.
Characterizing visible and invisible cell wall mutant phenotypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpita, Nicholas C.; McCann, Maureen C.
2015-04-06
About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basismore » of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.« less
Blocking negative effects of senescence in human skin fibroblasts with a plant extract.
Lämmermann, Ingo; Terlecki-Zaniewicz, Lucia; Weinmüllner, Regina; Schosserer, Markus; Dellago, Hanna; de Matos Branco, André Dargen; Autheried, Dominik; Sevcnikar, Benjamin; Kleissl, Lisa; Berlin, Irina; Morizot, Frédérique; Lejeune, Francois; Fuzzati, Nicola; Forestier, Sandra; Toribio, Alix; Tromeur, Anaïs; Weinberg, Lionel; Higareda Almaraz, Juan Carlos; Scheideler, Marcel; Rietveld, Marion; El Ghalbzouri, Abdoel; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes
2018-01-01
There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris , which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugger, W.M.; Bartnicki-Garcia, S.
Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)
Structure and functions of the chaperone-like p97/CDC48 in plants.
Bègue, Hervé; Jeandroz, Sylvain; Blanchard, Cécile; Wendehenne, David; Rosnoblet, Claire
2017-01-01
The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Cell-phone based assistance for waterworks/sewage plant maintenance.
Kawada, T; Nakamichi, K; Hisano, N; Kitamura, M; Miyahara, K
2006-01-01
Cell-phones are now incorporating the functions necessary for them to be used as mobile IT devices. In this paper, we present our results of the evaluation of cell-phones as the mobile IT device to assist workers in industrial plants. We use waterworks and sewage plants as examples. By employing techniques to squeeze the SCADA screen on CRT into a small cell-phone LCD, we have made it easier for a plant's field workers to access the information needed for effective maintenance, regardless of location. An idea to link SCADA information and the plant facility information on the cell-phone is also presented. Should an accident or emergency situation arise, these cell-phone-based IT systems can efficiently deliver the latest plant information, thus the worker out in the field can respond to and resolve the emergency.
The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles.
Murillo, I; Cavallarin, L; San Segundo, B
1997-01-01
Pathogenesis-related (PR) proteins are plant proteins induced in response to infection by pathogens. In this study, an antibody raised against the maize PRms protein was used to localize the protein in fungal-infected maize radicles. The PRms protein was found to be localized at the contact areas between parenchyma cells of the differentiating protoxylem elements. By using immunoelectron microscopy, we found that these immunoreactive regions correspond to plasmodesmal regions. This was also true for the parenchyma cells filling the central pith of the vascular cylinder, although PRms mRNA accumulation was not detected in these cells. These findings suggest that for one cell type, the parenchyma cells of the central pith, the protein is imported rather than synthesized. The localization of the PRms protein indicates the possible existence of mechanisms for sorting of plant proteins to plasmodesmata and suggests that this protein may have a specialized function in the plant defense response. These findings are discussed with respect to the structure and function of plasmodesmata in cell-to-cell communication processes in higher plants. PMID:9061947
BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives.
Hückelhoven, R
2004-05-01
BAX Inhibitor-1 (BI-1) was originally described as testis enhanced gene transcript in mammals. Functional screening in yeast for human proteins that can inhibit the cell death provoking function of BAX, a proapoptotic Bcl-2 family member, led to functional characterisation and renaming of BI-1. The identification of functional homologues of BI-1 in plants and yeast widened the understanding of BI-1 function as an ancient suppressor of programmed cell death. BI-1 is one of the few cell death suppressors conserved in animals and plants. Computer predictions and experimental data together suggest that BI-1 is a membrane spanning protein with 6 to 7 transmembrane domains and a cytoplasmic C-terminus sticking in the endoplasmatic reticulum and nuclear envelope. Proteins similar to BI-1 are present in other eukaryotes, bacteria, and even viruses encode BI-1 like proteins. BI-1 is involved in development, response to biotic and abiotic stress and probably represents an indispensable cell protectant. BI-1 appears to suppress cell death induced by mitochondrial dysfunction, reactive oxygen species or elevated cytosolic Ca(2+) levels. This review focuses on the present understanding about BI-1 and suggests potential directions for further analyses of this increasingly noticed protein.
Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.
Shinohara, Hidefumi; Matsubayashi, Yoshikatsu
2017-01-01
Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.
Plasmodesmata: channels for intercellular signaling during plant growth and development.
Sevilem, Iris; Yadav, Shri Ram; Helariutta, Ykä
2015-01-01
Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.
Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.
Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L
2017-04-01
The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.
Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R
2015-01-01
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.
Anderson, Janice L; Ellis, Jane P; Jones, Alan M
2014-01-01
This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings. © 2014 J. L. Anderson et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Eduard Strasburger (1844-1912): founder of modern plant cell biology.
Volkmann, Dieter; Baluška, František; Menzel, Diedrik
2012-10-01
Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.
Functional diversification of the kinesin-14 family in land plants.
Gicking, Allison M; Swentowsky, Kyle W; Dawe, R Kelly; Qiu, Weihong
2018-05-12
In most eukaryotes, cytoplasmic dynein serves as the primary cytoskeletal motor for minus-end-directed processes along microtubules. However, land plants lack dynein, having instead a large number of kinesin-14s, which suggests that kinesin-14s may have evolved to fill the cellular niche left by dynein. In addition, land plants do not have centrosomes, but contain specialized microtubule-based structures called phragmoplasts that facilitate the formation of new cell walls following cell division. This Review aims to compile the evidence for functional diversification of kinesin-14s in land plants. Known functions include spindle morphogenesis, microtubule-based trafficking, nuclear migration, chloroplast distribution, and phragmoplast expansion. Plant kinesin-14s have also evolved direct roles in chromosome segregation in maize and novel biochemical features such as actin transport and processive motility in the homodimeric state. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Life and Death of a Plant Cell.
Kabbage, Mehdi; Kessens, Ryan; Bartholomay, Lyric C; Williams, Brett
2017-04-28
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Apoplastic interactions between plants and plant root intruders.
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Mechanism and evolution of calcium transport across the plant plasma membrane
USDA-ARS?s Scientific Manuscript database
Calcium is an essential plant nutrient, thus the influx of Ca(2+) into plant cells is a critical process. In addition, the efflux of Ca(2+) out of a cell is important to prevent toxicity resulting from Ca(2+) excess, and to modulate levels of cytosolic Ca(2+) required for signaling functions. Bioc...
USDA-ARS?s Scientific Manuscript database
Fat Storage-Inducing Transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopi...
Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan
2009-06-01
Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.
Fluxes through plant metabolic networks: measurements, predictions, insights and challenges.
Kruger, Nicholas J; Ratcliffe, R George
2015-01-01
Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.
Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)
Somerville, Chris [Univ. of California, Berkeley, CA (United States)
2018-05-23
Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.
Laser-mediated perforation of plant cells
NASA Astrophysics Data System (ADS)
Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan
2007-07-01
The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.
Apoplastic interactions between plants and plant root intruders
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle
2015-12-08
Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5more » in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure–function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.« less
Biological effects due to weak magnetic field on plants
NASA Astrophysics Data System (ADS)
Belyavskaya, N. A.
2004-01-01
Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.
Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred
2016-01-01
Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. © 2015 Wiley Periodicals, Inc.
Plant and algal cell walls: diversity and functionality
Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.
2014-01-01
Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research. PMID:25453142
Plant and algal cell walls: diversity and functionality.
Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S
2014-10-01
Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.
Uniform structure of eukaryotic plasma membrane: lateral domains in plants.
Malínská, Kateŕina; Zažímalová, Eva
2011-03-01
Current models of the plasma membrane (PM) organization focus on the lateral heterogeneity of the membrane and its relation to the cell function. Increasing evidence in mammals and yeast supports the direct relationship between PM lateral microdomains and specific cell processes and functions (nutrient transport, signaling, protein and lipid sorting, endocytosis, pathogen entry etc.). However, for the present the functional significance of an enrichment of specific proteins and possibly lipids in plant PM domains as well as the underlying molecular mechanism driving the lateral PM segregation remain unaddressed. Here we summarize recent findings on the plant PM organization and its role in signaling pathways, with the special emphasis on auxin transport.
Effects of rare earth elements and REE-binding proteins on physiological responses in plants.
Liu, Dongwu; Wang, Xue; Chen, Zhiwei
2012-02-01
Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.
Plant derived edible nanoparticles as a new therapeutic approach against diseases
Zhang, Mingzhen; Viennois, Emilie; Xu, Changlong; Merlin, Didier
2016-01-01
ABSTRACT In plant cells, nanoparticles containing miRNA, bioactive lipids and proteins serve as extracellular messengers to mediate cell-cell communication in a manner similar to the exosomes secreted by mammalian cells. Notably, such nanoparticles are edible. Moreover, given the proper origin and cargo, plant derived edible nanoparticles could function in interspecies communication and may serve as natural therapeutics against a variety of diseases. In addition, nanoparticles made of plant-derived lipids may be used to efficiently deliver specific drugs. Plant derived edible nanoparticles could be more easily scaled up for mass production, compared to synthetic nanoparticles. In this review, we discuss recent significant developments pertaining to plant derived edible nanoparticles and provide insight into the use of plants as a bio-renewable, sustainable, diversified platform for the production of therapeutic nanoparticles. PMID:27358751
Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar
2017-04-01
Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
Xiao, Chaowen; Somerville, Chris; Anderson, Charles T
2014-03-01
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.
Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T
2015-09-01
The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Membrane nanodomains in plants: capturing form, function, and movement.
Tapken, Wiebke; Murphy, Angus S
2015-03-01
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Organelle-localized potassium transport systems in plants.
Hamamoto, Shin; Uozumi, Nobuyuki
2014-05-15
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.
Plant cell wall proteomics: the leadership of Arabidopsis thaliana
Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth
2013-01-01
Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247
A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom[C][W][OPEN
Tulin, Frej; Cross, Frederick R.
2014-01-01
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage. PMID:25336509
Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions
ERIC Educational Resources Information Center
Brown, Mary H.; Schwartz, Renee S.
2009-01-01
The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…
Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M
2010-07-23
Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.
Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa.
Samal, Areejit; Craig, James P; Coradetti, Samuel T; Benz, J Philipp; Eddy, James A; Price, Nathan D; Glass, N Louise
2017-01-01
Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa . To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa . Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence.
Leng, Yujia; Yang, Yaolong; Ren, Deyong; Huang, Lichao; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Li, Xueyong; Zhu, Li; Hu, Jiang; Zhang, Guangheng; Gao, Zhenyu; Guo, Longbiao; Kong, Zhaosheng; Lin, Yongjun; Qian, Qian; Zeng, Dali
2017-06-01
To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 ( del1 ). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent
2017-01-01
To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; ...
2016-04-15
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
Characterizing visible and invisible cell wall mutant phenotypes.
Carpita, Nicholas C; McCann, Maureen C
2015-07-01
About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Johnston, Amal J.; Kirioukhova, Olga; Barrell, Philippa J.; Rutten, Twan; Moore, James M.; Baskar, Ramamurthy; Grossniklaus, Ueli; Gruissem, Wilhelm
2010-01-01
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development. PMID:20585548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Chris
Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmentalmore » and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.« less
Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E
2017-01-01
Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.
Ikeda, Miho; Ohme-Takagi, Masaru
2014-01-01
In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Blevins, D G; Lukaszewski, K M
1994-01-01
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877
Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.
Uemura, Tomohiro
2016-10-01
Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics
Printz, Bruno; Lutts, Stanley; Hausman, Jean-Francois; Sergeant, Kjell
2016-01-01
In plants, copper (Cu) acts as essential cofactor of numerous proteins. While the definitive number of these so-called cuproproteins is unknown, they perform central functions in plant cells. As micronutrient, a minimal amount of Cu is needed to ensure cellular functions. However, Cu excess may exert in contrast detrimental effects on plant primary production and even survival. Therefore it is essential for a plant to have a strictly controlled Cu homeostasis, an equilibrium that is both tissue and developmentally influenced. In the current review an overview is presented on the different stages of Cu transport from the soil into the plant and throughout the different plant tissues. Special emphasis is on the Cu-dependent responses mediated by the SPL7 transcription factor, and the crosstalk between this transcriptional regulation and microRNA-mediated suppression of translation of seemingly non-essential cuproproteins. Since Cu is an essential player in electron transport, we also review the recent insights into the molecular mechanisms controlling chloroplastic and mitochondrial Cu transport and homeostasis. We finally highlight the involvement of numerous Cu-proteins and Cu-dependent activities in the properties of one of the major Cu-accumulation sites in plants: the cell wall. PMID:27200069
Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System1
Castelblanque, Lourdes; Balaguer, Begoña; Rodríguez, Juan José; Orozco, Marianela; Vera, Pablo
2016-01-01
Laticifer cells are specialized plant cells that synthesize and accumulate latex. Studies on laticifers have lagged behind in recent years, and data regarding the functional role of laticifers and their fitness benefit still remain elusive. Laticifer differentiation and its impact on plant growth and development also remain to be investigated. Here, cellular, molecular, and genetic tools were developed to examine the distribution, differentiation, ontogeny, and other characteristic features, as well as the potential developmental role of laticifer cells in the latex-bearing plant Euphorbia lathyris. The organization of the laticiferous system within the E. lathyris plant body is reported, emerging as a single elongated and branched coenocytic cell, constituting the largest cell type existing in plants. We also report the ontogeny and organization of laticifer cells in the embryo and the identification of a laticifer-associated gene expression pattern. Moreover, the identification of laticifer- and latex-deficient mutants (pil mutants) allowed for the identification of distinct loci regulating laticifer differentiation, growth, and metabolic activity. Additionally, pil mutants revealed that laticifer cells appear nonessential for plant growth and development, thus pointing toward their importance, instead, for specific ecophysiological adaptations of latex-bearing plants in natural environments. PMID:27468995
Control of root growth and development by reactive oxygen species.
Tsukagoshi, Hironaka
2016-02-01
Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Towards programmable plant genetic circuits.
Medford, June I; Prasad, Ashok
2016-07-01
Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B
2012-05-01
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.
Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen; Meagher, Richard B.
2012-01-01
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin’s competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals. PMID:22589468
Root Border Cells and Their Role in Plant Defense.
Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo
2016-08-04
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Le, Phi-Yen; Jeon, Hyung-Woo; Kim, Min-Ha; Park, Eung-Jun; Lee, Hyoshin; Hwang, Indeok; Han, Kyung-Hwan; Ko, Jae-Heung
2018-04-05
Anisotropic cell elongation depends on cell wall relaxation and cellulose microfibril arrangement. The aim of this study was to characterize the molecular function of AtDICE1 encoding a novel transmembrane protein involved in anisotropic cell elongation in Arabidopsis. Phenotypic characterizations of transgenic Arabidopsis plants mis-regulating AtDICE1 expression with different pharmacological treatments were made, and biochemical, cell biological and transcriptome analyses were performed. Upregulation of AtDICE1 in Arabidopsis (35S::AtDICE1) resulted in severe dwarfism, probably caused by defects in anisotropic cell elongation. Epidermal cell swelling was evident in all tissues, and abnormal secondary wall thickenings were observed in pith cells of stems. These phenotypes were reproduced not only by inducible expression of AtDICE1 but also by overexpression of its poplar homologue in Arabidopsis. RNA interference suppression lines of AtDICE1 resulted in no observable phenotypic changes. Interestingly, wild-type plants treated with isoxaben, a cellulose biosynthesis inhibitor, phenocopied the 35S::AtDICE1 plants, suggesting that cellulose biosynthesis was compromised in the 35S::AtDICE1 plants. Indeed, disturbed cortical microtubule arrangements in 35S::AtDICE1/GFP-TuA6 plants were observed, and the cellulose content was significantly reduced in 35S::AtDICE1 plants. A promoter::GUS analysis showed that AtDICE1 is mainly expressed in vascular tissue, and transient expression of GFP:AtDICE1 in tobacco suggests that AtDICE1 is probably localized in the endoplasmic reticulum (ER). In addition, the external N-terminal conserved domain of AtDICE1 was found to be necessary for AtDICE1 function. Whole transcriptome analyses of 35S::AtDICE1 revealed that many genes involved in cell wall modification and stress/defence responses were mis-regulated. AtDICE1, a novel ER-localized transmembrane protein, may contribute to anisotropic cell elongation in the formation of vascular tissue by affecting cellulose biosynthesis.
Functional characterization of CLE peptides from a plant-parasitic nematode Globodera rostochiensis
USDA-ARS?s Scientific Manuscript database
Plant CLAVATA3/ESR (CLE) proteins are a large family of secreted peptide ligands that play important roles in plant growth and development. Recent evidence suggests that plant-parasitic cyst nematodes secrete ligand mimics of plant CLE peptides to modify selected host root cells into multinucleate f...
Visualizing chemical functionality in plant cell walls
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
2017-11-30
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls.
Zeng, Yining; Himmel, Michael E; Ding, Shi-You
2017-01-01
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.
Biological effects due to weak magnetic fields on plants
NASA Astrophysics Data System (ADS)
Belyavskaya, N.
In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to WMF show the Ca2 + oversaturation both in all organelles and in a hyaloplasm of the cells unlike the control ones. The data presented suggest that prolonged plant exposures to WMF may cause different biological effects at the cellular, tissue and organ level. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2 + homeostasis. The understanding of the fundamental mechanisms and sites of interactions between WMF and biological systems are complex and still deserve strong efforts, particular addressed to basic principles of coupling between field energy and biomolecules.
High-Throughput Cryopreservation of Plant Cell Cultures for Functional Genomics
Ogawa, Yoichi; Sakurai, Nozomu; Oikawa, Akira; Kai, Kosuke; Morishita, Yoshihiko; Mori, Kumiko; Moriya, Kanami; Fujii, Fumiko; Aoki, Koh; Suzuki, Hideyuki; Ohta, Daisaku; Saito, Kazuki; Shibata, Daisuke
2012-01-01
Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell–LSP solution mixtures was kept at −30°C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics. PMID:22437846
Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S
2014-12-01
The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.
Cell longevity and sustained primary growth in palm stems.
Tomlinson, P Barry; Huggett, Brett A
2012-12-01
Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.
Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects
Nguema-Ona, Eric; Coimbra, Sílvia; Vicré-Gibouin, Maïté; Mollet, Jean-Claude; Driouich, Azeddine
2012-01-01
Background Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. Scope In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes. PMID:22786747
Lechner, Esther; Xie, Daoxin; Grava, Sandrine; Pigaglio, Emmanuelle; Planchais, Severine; Murray, James A H; Parmentier, Yves; Mutterer, Jerome; Dubreucq, Bertrand; Shen, Wen-Hui; Genschik, Pascal
2002-12-20
Recently in yeast and animal cells, one particular class of ubiquitin ligase (E3), called the SCF, was demonstrated to regulate diverse processes including cell cycle and development. In plants SCF-dependent proteolysis is also involved in different developmental and hormonal regulations. To further investigate the function of SCF, we characterized at the molecular level the Arabidopsis RING-H2 finger protein AtRbx1. We demonstrated that the plant gene is able to functionally complement a yeast knockout mutant strain and showed that AtRbx1 protein interacts physically with at least two members of the Arabidopsis cullin family (AtCul1 and AtCul4). AtRbx1 also associates with AtCul1 and the Arabidopsis SKP1-related proteins in planta, indicating that it is part of plant SCF complexes. AtRbx1 mRNAs accumulate in various tissues of the plant, but at higher levels in tissues containing actively dividing cells. Finally to study the function of the gene in planta, we either overexpressed AtRbx1 or reduced its expression by a dsRNA strategy. Down-regulation of AtRbx1 impaired seedling growth and development, indicating that the gene is essential in plants. Furthermore, the AtRbx1-silenced plants showed a reduced level of AtCul1 protein, but accumulated higher level of cyclin D3.
Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System.
Castelblanque, Lourdes; Balaguer, Begoña; Martí, Cristina; Rodríguez, Juan José; Orozco, Marianela; Vera, Pablo
2016-10-01
Laticifer cells are specialized plant cells that synthesize and accumulate latex. Studies on laticifers have lagged behind in recent years, and data regarding the functional role of laticifers and their fitness benefit still remain elusive. Laticifer differentiation and its impact on plant growth and development also remain to be investigated. Here, cellular, molecular, and genetic tools were developed to examine the distribution, differentiation, ontogeny, and other characteristic features, as well as the potential developmental role of laticifer cells in the latex-bearing plant Euphorbia lathyris. The organization of the laticiferous system within the E. lathyris plant body is reported, emerging as a single elongated and branched coenocytic cell, constituting the largest cell type existing in plants. We also report the ontogeny and organization of laticifer cells in the embryo and the identification of a laticifer-associated gene expression pattern. Moreover, the identification of laticifer- and latex-deficient mutants (pil mutants) allowed for the identification of distinct loci regulating laticifer differentiation, growth, and metabolic activity. Additionally, pil mutants revealed that laticifer cells appear nonessential for plant growth and development, thus pointing toward their importance, instead, for specific ecophysiological adaptations of latex-bearing plants in natural environments. © 2016 American Society of Plant Biologists. All Rights Reserved.
Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation
Korkina, Liudmila G.; Mayer, Wolfgang; de Luca, Chiara
2017-01-01
Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics. PMID:28498360
A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
Dodsworth, Steven
2009-12-01
At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.
LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi
Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth
2013-01-01
Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa–HvLFGe and AtLFG1–AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant–powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant–powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation. PMID:23888068
Zhang, Yonghong; Zheng, Lanlan; Hong, Jing Han; Gong, Ximing; Zhou, Chun; Pérez-Pérez, José Manuel; Xu, Jian
2016-05-01
TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1β), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Rajput, Nasir Ahmed; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Zhang, Qimeng; Ru, Yanyan; Sun, Peng; Dou, Daolong
2015-12-01
The Crinkler (CRN) effector family is produced by oomycete pathogens and may manipulate host physiological and biochemical events inside host cells. Here, PsCRN161 was identified from Phytophthora sojae based on its broad and strong cell death suppression activities. The effector protein contains two predicted nuclear localization signals and localized to nuclei of plant cells, indicating that it may target plant nuclei to modify host cell physiology and function. The chimeric gene GFP:PsCRN161 driven by the Cauliflower mosaic virus (CaMV) 35S promoter was introduced into Nicotiana benthamiana. The four independent PsCRN161-transgenic lines exhibited increased resistance to two oomycete pathogens (P. parasitica and P. capsici) and showed enhanced tolerance to salinity and drought stresses. Digital gene expression profiling analysis showed that defense-related genes, including ABC transporters, Cyt P450 and receptor-like kinases (RLKs), were significantly up-regulated in PsCRN161-transgenic plants compared with GFP (green fluorescent protein) lines, implying that PsCRN161 expression may protect plants from biotic and abiotic stresses by up-regulation of many defense-related genes. The results reveal previously unknown functions of the oomycete effectors, suggesting that the pathogen effectors could be directly used as functional genes for plant molecular breeding for enhancement of tolerance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Asano, Kenji; Miyao, Akio; Hirochika, Hirohiko; Kitano, Hidemi; Matsuoka, Makoto; Ashikari, Motoyuki
2010-01-01
Plant height is one of the most important traits in crop improvement. Therefore revealing the mechanism of plant elongation and controlling plant height in accordance with breeding object is important. In this study we analyzed a novel dwarf mutant, ssd1, of which phenotype is different from typical GA- or BR-related dwarf phenotype. ssd1 exhibits pleiotropic defects in elongation of various organs such as stems, roots, leaves, and flowers. ssd1 also shows abnormal cell files and shapes, which suggests defects of normal cell division in the mutant. Map-based cloning and complementation test demonstrated that the dwarf phenotype in ssd1 mutant was caused by insertion of retrotransposon in a gene, which encodes plant-specific protein with unknown biochemical function. A BLAST search revealed that SSD1-like genes exist in diverse plant species, including monocots and dicots, but not fern and moss. Our results demonstrate that SSD1 controls plant elongation by controlling cell division in higher plants.
Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S
2011-02-01
Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.
The activation and suppression of plant innate immunity by parasitic nematodes.
Goverse, Aska; Smant, Geert
2014-01-01
Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.
CLE signaling systems during plant development and nematode infection.
Kiyohara, Syunsuke; Sawa, Shinichiro
2012-12-01
Plants contain numerous CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR) (CLE) genes encoding small secreted peptide hormones that function in a variety of developmental and physiological processes. The first known Arabidopsis CLE gene was originally discovered through the analysis of clv3 mutants, which exhibit fasciated stems and an increased number of floral organs. In total, 32 CLE genes have been identified in Arabidopsis. Amongst these are CLV3 and CLE40, which repress the expression of homeobox-containing genes WUSCHEL (WUS) and WUSCHEL-related homeobox 5 (WOX5) to control shoot apical meristem (SAM) and root columella initial cell activity, respectively. Interestingly, the CLE signaling pathway appears to be conserved amongst plants. In this review, we discuss the latest research uncovering the diverse functions and activities of CLE peptides in plants; especially during shoot, root and vascular development. In addition, we discuss the important role of CLE peptides during infection by phytoparasitic nematodes. Understanding the molecular properties of CLE peptides and their modes of action will provide further insight into plant cell-cell communication, which could also be applied to manipulate plant-nematode interactions.
Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; Nguyen, Thuy N; Gidda, Satinder K; Watt, Samantha C; Yurchenko, Olga; Park, Sunjung; Sturtevant, Drew; Mullen, Robert T; Dyer, John M; Chapman, Kent D
2017-07-01
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Zhao, Yichen; Qi, Zhi; Berkowitz, Gerald A
2013-10-01
Brassinosteroids (BRs) are hormones that control many aspects of plant growth and development, acting at the cell level to promote division and expansion. BR regulation of plant and plant cell function occurs through altered expression of many genes. Transcriptional reprogramming downstream from cell perception of this hormone is currently known to be mediated by a phosphorylation/dephosphorylation ("phosphorelay") cascade that alters the stability of two master transcription regulators. Here, we provide evidence that BR perception by their receptor also causes an elevation in cytosolic Ca(2+), initiating a Ca(2+) signaling cascade in Arabidopsis (Arabidopsis thaliana) cell cytosol. BR-dependent increases in the expression of some genes (INDOLE-3-ACETIC ACID-INDUCIBLE1 and PHYTOCHROME B ACTIVATION-TAGGED SUPPRESSOR1) were impaired in wild-type plants by a Ca(2+) channel blocker and also in the defense-no-death (dnd1) mutant, which lacks a functional cyclic GMP-activated cell membrane Ca(2+)-conducting channel. Alternatively, mutations that impair the BR phosphorelay cascade did not much affect the BR-dependent expression of these genes. Similar effects of the Ca(2+) channel blocker and dnd1 mutation were observed on a BR plant growth phenotype, deetiolation of the seedling hypocotyl. Further evidence presented in this report suggests that a BR-dependent elevation in cyclic GMP may be involved in the Ca(2+) signaling cascade initiated by this hormone. The work presented here leads to a new model of the molecular steps that mediate some of the cell responses to this plant hormone.
USDA-ARS?s Scientific Manuscript database
Plant cells possess a number of membrane bound organelles that play important roles in compartmentalizing a large number of biochemical pathways and physiological functions that have potentially harmful intermediates or by-products. The plasma membrane is particularly important as it holds the enti...
Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A
2018-05-24
We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.
A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence1[OPEN
Leng, Yujia; Yang, Yaolong; Ren, Deyong; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Zhu, Li; Hu, Jiang; Gao, Zhenyu; Guo, Longbiao; Lin, Yongjun
2017-01-01
To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. PMID:28455404
Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A
2017-06-01
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.
Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.
Park, Chang-Jin; Seo, Young-Su
2015-12-01
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Protein Delivery into Plant Cells: Toward In vivo Structural Biology
Cedeño, Cesyen; Pauwels, Kris; Tompa, Peter
2017-01-01
Understanding the biologically relevant structural and functional behavior of proteins inside living plant cells is only possible through the combination of structural biology and cell biology. The state-of-the-art structural biology techniques are typically applied to molecules that are isolated from their native context. Although most experimental conditions can be easily controlled while dealing with an isolated, purified protein, a serious shortcoming of such in vitro work is that we cannot mimic the extremely complex intracellular environment in which the protein exists and functions. Therefore, it is highly desirable to investigate proteins in their natural habitat, i.e., within live cells. This is the major ambition of in-cell NMR, which aims to approach structure-function relationship under true in vivo conditions following delivery of labeled proteins into cells under physiological conditions. With a multidisciplinary approach that includes recombinant protein production, confocal fluorescence microscopy, nuclear magnetic resonance (NMR) spectroscopy and different intracellular protein delivery strategies, we explore the possibility to develop in-cell NMR studies in living plant cells. While we provide a comprehensive framework to set-up in-cell NMR, we identified the efficient intracellular introduction of isotope-labeled proteins as the major bottleneck. Based on experiments with the paradigmatic intrinsically disordered proteins (IDPs) Early Response to Dehydration protein 10 and 14, we also established the subcellular localization of ERD14 under abiotic stress. PMID:28469623
Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P
2015-07-10
Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
A functional cutin matrix is required for plant protection against water loss
Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-01-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635
A functional cutin matrix is required for plant protection against water loss.
Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-09-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.
Nitric oxide functions as a signal in plant disease resistance.
Delledonne, M; Xia, Y; Dixon, R A; Lamb, C
1998-08-06
Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan
2013-10-22
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.
Cell-to-cell movement of plastids in plants.
Thyssen, Gregory; Svab, Zora; Maliga, Pal
2012-02-14
Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.
Plants and fungi in the era of heterogeneous plasma membranes.
Opekarová, M; Malinsky, J; Tanner, W
2010-09-01
Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.
Formation and structure of food bodies in Cordia nodosa (Boraginaceae).
Solano, Pascal-Jean; Belin-Depoux, Monique; Dejean, Alain
2005-07-01
Cordia nodosa Lamark (Boraginaceae) is a myrmecophyte (i.e., plants housing ants in hollow structures) that provisions associated ants with food bodies (FBs) produced 24 h a day. Distributed over all the young parts of the plants, they induce ants to forage continually and so to protect the plants. Metabolites are stored in the inner cells of C. nodosa FBs as they form. In addition the peripheral cells have an extrafloral nectary-like function and secrete a substance that covers the FBs. The amalgam of these two functions, distinct in other known cases, is discussed taking into account the origin of FBs and extrafloral nectaries.
2013-01-01
Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212
The endoplasmic reticulum in plant immunity and cell death
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants. PMID:22936941
The endoplasmic reticulum in plant immunity and cell death.
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.
Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells
NASA Technical Reports Server (NTRS)
Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)
1999-01-01
Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.
Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; ...
2017-01-18
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yingqi; McClinchie, Elizabeth; Price, Ann
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less
Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?
Carneiro, Renê Gonçalves da Silva; Pacheco, Priscilla; Isaias, Rosy Mary dos Santos
2015-01-01
Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum - N. cattleianum, and P. myrtoides - N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities. PMID:26053863
Plasmodesmal regulation during plant-pathogen interactions.
Cheval, Cecilia; Faulkner, Christine
2018-01-01
Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N; Alonso, Jose M; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K; Cosgrove, Daniel J; Anderson, Charles T; Roberts, Alison W; Haigler, Candace H
2016-05-01
Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Isogai, M; Saitou, Y; Takahashi, N; Itabashi, T; Terada, M; Satoh, H; Yoshikawa, N
2003-03-01
To understand why transgenic Nicotiana occidentalis plants expressing a functional movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) show specific resistance to Grapevine berry inner necrosis virus (GINV), the MPs of ACLSV (50KP) and GINV (39KP) were fused to green, yellow, or cyan fluorescent proteins (GFP, YFP, or CFP). These fusion proteins were transiently expressed in leaf cells of both transgenic (50KP) and nontransgenic (NT) plants, and the intracellular and intercellular trafficking and tubule-inducing activity of these proteins were compared. The results indicate that in epidermal cells and protoplasts from 50KP plant leaves, the trafficking and tubule-inducing activities of GINV-39KP were specifically blocked while those of ACLSV-50KP and Apple stem grooving virus MP (36KP) were not affected. Additionally, when 39KP-YFP and 50KP-CFP were coexpressed in the leaf epidermis of NT plants, the fluorescence of both proteins was confined to single cells, indicating that 50KP-CFP interferes with the cell-to-cell trafficking of 39KP-YFP and vice versa. Mutational analyses of 50KP showed that the deletion mutants that retained the activities described above still blocked cell-to-cell trafficking of 39KP, but the dysfunctional 50KP mutants could no longer impede cell-to-cell movement of 39KP. Transgenic plants expressing the functional 50KP deletion mutants showed specific resistance against GINV. In contrast, transgenic plants expressing the dysfunctional 50KP mutants did not show any resistance to the virus. From these results, we conclude that the specific resistance of 50KP plants to GINV is due to the ability of the 50KP to block intracellular and intercellular trafficking of GINV 39KP.
Mechanics of the Adhesive Properties of Ivy Nanoparticles
2013-11-21
macromolecule with multiple physiological functions in the growth of plants, such as signaling, cell wall plasticizer, guiding pollen tube growth, and many...others. The AGPs on the stigma surface were believed to act as an adhesive base for pollens , indicating the adhesion function that AGPs play in plants
Involvement of thiol-based mechanisms in plant development.
Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal
2015-08-01
Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Li; Lilley, Catherine J.; Imren, Mustafa; Knox, J. Paul; Urwin, Peter E.
2017-01-01
Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function. PMID:28680436
The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.
Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica
2013-05-01
Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.
Importance of symplasmic communication in cell differentiation
Marzec, Marek; Kurczynska, Ewa
2014-01-01
Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959
Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku
2017-01-01
One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T.; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M. Rob G.; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I.; Kollist, Hannes; Brosché, Mikael
2016-01-01
Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management. PMID:27923039
Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.
Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei
2018-02-21
Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.
Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine
2015-01-01
The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.
Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin
2017-01-01
Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390
Twin plants from supernumerary egg cells in Arabidopsis.
Kong, Jixiang; Lau, Steffen; Jürgens, Gerd
2015-01-19
Sexual reproduction of flowering plants is distinguished by double fertilization—the two sperm cells delivered by a pollen tube fuse with the two gametic cells of the female gametophyte, the egg and the central cell—inside the ovule to give rise to the embryo and the nutritive endosperm, respectively. The pollen tube is attracted by nongametic synergid cells, and how these two cells of the female gametophyte are specified is currently unclear. Here, we show that ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a protein associated with the endoplasmic reticulum, is required for synergid cell fate during Arabidopsis female gametophyte development. Loss of AMP1 function leads to supernumerary egg cells at the expense of synergids, enabling the generation of dizygotic twins. However, if twin embryos are formed, endosperm formation is prevented, eventually resulting in ovule abortion. The latter can be overcome by the delivery of supernumerary sperm cells in tetraspore (tes) pollen, enabling the formation of twin plants. Thus, both primary and supernumerary egg cells are fully functional in amp1 mutant plants. Sporophytic AMP1 expression is sufficient to prevent cell-fate change of synergids, indicating that one or more AMP1-dependent mobile signals from outside the female gametophyte can contribute to its patterning, in addition to the previously reported lateral inhibition between gametophytic cells. Our results provide insight into the mechanism of synergid fate specification and emphasize the importance of specifying only one egg cell within the female gametophyte to ensure central-cell fertilization by the second sperm cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.
Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam
2016-12-05
To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.
Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko
2009-03-31
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.
Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS
Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko
2009-01-01
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development. PMID:19279211
Gürlebeck, Doreen; Szurek, Boris; Bonas, Ulla
2005-04-01
The effector protein AvrBs3 from the bacterial phytopathogen Xanthomonas campestris pv. vesicatoria is translocated into the plant cell where it specifically induces hypertrophy symptoms or the hypersensitive reaction. Activity of AvrBs3 depends on nuclear localization signals (NLSs) and an acidic activation domain, suggesting a role in regulation of plant transcription. Here, we show that AvrBs3 dimerizes in the plant cell prior to its nuclear import. AvrBs3 deletion derivatives were tested in the yeast two-hybrid system revealing that the repeat region, which confers specific recognition in resistant plants and is crucial for virulence function, is also essential for the self-interaction. GST pull-down assays showed that the AvrBs3-AvrBs3 interaction occurs independent of plant proteins. Coexpression of two different inactive mutant AvrBs3 derivatives in Bs3-resistant pepper plants resulted in 'trans-complementation', i.e., the induction of a hypersensitive reaction. This clearly indicates that AvrBs3-dimerization occurs in planta. Interestingly, 'trans-complementation' was not observed in susceptible plants suggesting that wild-type homodimers are needed for the AvrBs3 virulence function in plants. Furthermore, a green fluorescent protein (GFP) fusion of AvrBs3 deleted in the NLSs (AvrBs3DeltaNLS-GFP), normally localized in the cytoplasm, was imported into the nucleus upon coexpression with wild-type AvrBs3 in Nicotiana benthamiana. Thus, AvrBs3 dimerization takes place in the cytoplasm of the plant cell prior to nuclear import. Given the fact that dimerization is a common feature of transcriptional regulators, our data are consistent with the idea that AvrBs3 manipulates expression of plant genes involved in the establishment of compatible and incompatible interactions.
Fransz, Paul F; de Jong, J Hans
2002-12-01
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Plant Cell Adaptive Responses to Microgravity
NASA Astrophysics Data System (ADS)
Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr
Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-CII and PsHSP18.1-CI, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha
Jones, Victor A. S.
2017-01-01
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248
The role of endoxyloglucan transferase in the organization of plant cell walls.
Nishitani, K
1997-01-01
The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.
Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.
Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue
2017-01-01
Climate change as a result of increasing atmospheric CO 2 affects plant growth and productivity. CO 2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO 2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO 2 ) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO 2 responses.
Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells
Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue
2017-01-01
Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230
The Arabidopsis EIN2 restricts organ growth by retarding cell expansion
Feng, Guanping; Liu, Gang; Xiao, Jianhua
2015-01-01
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475
Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn
2016-01-01
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156
Regulatory Peptides in Plants.
Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I
2017-02-01
Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.
Positive and negative roles for soybean MPK6 in regulating defense responses.
Liu, Jian-Zhong; Braun, Edward; Qiu, Wen-Li; Shi, Ya-Fei; Marcelino-Guimarães, Francismar C; Navarre, Duroy; Hill, John H; Whitham, Steven A
2014-08-01
It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.
Xiao, Chaowen; Barnes, William J; Zamil, M Shafayet; Yi, Hojae; Puri, Virendra M; Anderson, Charles T
2017-03-01
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2 AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2 AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1 AT plants, PGX2 AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Elucidating the functional role of endoreduplication in tomato fruit development
Chevalier, Christian; Nafati, Mehdi; Mathieu-Rivet, Elodie; Bourdon, Matthieu; Frangne, Nathalie; Cheniclet, Catherine; Renaudin, Jean-Pierre; Gévaudant, Frédéric; Hernould, Michel
2011-01-01
Background Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. Scope Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. Conclusions The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits. PMID:21199834
Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D
2018-02-09
The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001). HOMA-IR index fell significantly ( p < 0.001) in the intervention group (treatment effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.
The cell biology of lignification in higher plants
Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard
2015-01-01
Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140
A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.
Daum, Gabor; Medzihradszky, Anna; Suzaki, Takuya; Lohmann, Jan U
2014-10-07
Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.
Plant Hexokinases are Multifaceted Proteins.
Aguilera-Alvarado, G Paulina; Sánchez-Nieto, Sobeida
2017-07-01
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...
2016-03-01
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M
2013-01-01
While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619
USDA-ARS?s Scientific Manuscript database
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...
Schultink, Alex; Cheng, Kun; Park, Yong Bum; Cosgrove, Daniel J.; Pauly, Markus
2013-01-01
Xyloglucan (XyG) is the dominant hemicellulose present in the primary cell walls of dicotyledonous plants. Unlike Arabidopsis (Arabidopsis thaliana) XyG, which contains galactosyl and fucosyl substituents, tomato (Solanum lycopersicum) XyG contains arabinofuranosyl residues. To investigate the biological function of these differing substituents, we used a functional complementation approach. Candidate glycosyltransferases were identified from tomato by using comparative genomics with known XyG galactosyltransferase genes from Arabidopsis. These candidate genes were expressed in an Arabidopsis mutant lacking XyG galactosylation, and two of them resulted in the production of arabinosylated XyG, a structure not previously found in this plant species. These genes may therefore encode XyG arabinofuranosyltransferases. Moreover, the addition of arabinofuranosyl residues to the XyG of this Arabidopsis mutant rescued a growth and cell wall biomechanics phenotype, demonstrating that the function of XyG in plant growth, development, and mechanics has considerable flexibility in terms of the specific residues in the side chains. These experiments also highlight the potential of reengineering the sugar substituents on plant wall polysaccharides without compromising growth or viability. PMID:23893172
Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G; O'Neill, Malcolm A; Bar-Peled, Maor
2016-10-07
Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Smith, James; Yang, Yiwen; Levy, Shahar; Adelusi, Oluwatoyin Oluwayemi; Hahn, Michael G.; O'Neill, Malcolm A.; Bar-Peled, Maor
2016-01-01
Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans. PMID:27551039
Accommodation of powdery mildew fungi in intact plant cells.
Eichmann, Ruth; Hückelhoven, Ralph
2008-01-01
Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.
USDA-ARS?s Scientific Manuscript database
Phytoplasmas are unculturable, cell wall-less bacteria that parasitize plants and insects. This transkingdom life cycle requires rapid responses to vastly different environments including transitions from plant phloem sieve elements to various insect tissues and alterations of diverse plant hosts. ...
Ruberti, Cristina; Lai, YaShiuan; Brandizzi, Federica
2018-01-01
The unfolded protein response (UPR) is an ancient signaling pathway that commits to life-or-death outcomes in response to proteotoxic stress in the endoplasmic reticulum (ER). In plants, the membrane-tethered transcription factor bZIP28 and the ribonuclease-kinase IRE1 along with its splicing target, bZIP60, govern the two cytoprotective UPR signaling pathways known to date. The conserved ER membrane-associated BAX inhibitor 1 (BI1) modulates ER stress-induced programmed cell death through yet-unknown mechanisms. Despite the significance of the UPR for cell homeostasis, in plants the regulatory circuitry underlying ER stress resolution is still largely unmapped. To gain insights into the coordination of plant UPR strategies, we analyzed the functional relationship of the UPR modulators through the analysis of single and higher order mutants of IRE1, bZIP60, bZIP28 and BI1 in experimental conditions causing either temporary or chronic ER stress. We established a functional duality of bZIP28 and bZIP60, as they exert partially independent tissue-specific roles in recovery from ER stress, but redundantly actuate survival strategies in chronic ER stress. We also discovered that BI1 attenuates the pro-survival function of bZIP28 in ER stress resolution and, differently to animal cells, it does not temper the ribonuclease activity of inositol-requiring enzyme 1 (IRE1) under temporary ER stress. Together these findings reveal a functional independence of bZIP28 and bZIP60 in plant UPR, and identify an antagonizing role of BI1 in the pro-adaptive signaling mediated by bZIP28, bringing to light the distinctive complexity of the unfolded protein response (UPR) in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Unexplored Potentials of Epigenetic Mechanisms of Plants and Animals—Theoretical Considerations
Seffer, Istvan; Nemeth, Zoltan; Hoffmann, Gyula; Matics, Robert; Seffer, A Gergely; Koller, Akos
2013-01-01
Morphological and functional changes of cells are important for adapting to environmental changes and associated with continuous regulation of gene expressions. Genes are regulated–in part–by epigenetic mechanisms resulting in alternating patterns of gene expressions throughout life. Epigenetic changes responding to the environmental and intercellular signals can turn on/off specific genes, but do not modify the DNA sequence. Most epigenetic mechanisms are evolutionary conserved in eukaryotic organisms, and several homologs of epigenetic factors are present in plants and animals. Moreover, in vitro studies suggest that the plant cytoplasm is able to induce a nuclear reassembly of the animal cell, whereas others suggest that the ooplasm is able to induce condensation of plant chromatin. Here, we provide an overview of the main epigenetic mechanisms regulating gene expression and discuss fundamental epigenetic mechanisms and factors functioning in both plants and animals. Finally, we hypothesize that animal genome can be reprogrammed by epigenetic factors from the plant protoplast. PMID:25512705
Integration of two RAB5 groups during endosomal transport in plants
Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko
2018-01-01
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929
USDA-ARS?s Scientific Manuscript database
Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...
Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph
2015-06-24
Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Dragwidge, Jonathan Michael; Ford, Brett Andrew; Ashnest, Joanne Rachel; Das, Partha; Gendall, Anthony Richard
2018-05-16
In Arabidopsis thaliana, the endosomal localised Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism of how these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects to the perception, accumulation, and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin mediated plant development by maintaining PIN abundance at the plasma membrane, and provides new insight into the regulation of plant development by endosomal NHX antiporters.
Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.
Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R
2017-05-01
Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Communication between filamentous pathogens and plants at the biotrophic interface.
Yi, Mihwa; Valent, Barbara
2013-01-01
Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.
Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V
1997-12-01
Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.
The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
Merchant, Sabeeha S.; Prochnik, Simon E.; Vallon, Olivier; Harris, Elizabeth H.; Karpowicz, Steven J.; Witman, George B.; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K.; Maréchal-Drouard, Laurence; Marshall, Wallace F.; Qu, Liang-Hu; Nelson, David R.; Sanderfoot, Anton A.; Spalding, Martin H.; Kapitonov, Vladimir V.; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M.; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T.; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Ferris, Patrick; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A.; Lemaire, Stéphane D.; Lobanov, Alexey V.; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V.; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M.; Niyogi, Krishna; Novoselov, Sergey V.; Paulsen, Ian T.; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C.; Minagawa, Jun; Page, M. Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M.; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L.; Gladyshev, Vadim N.; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T.; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y. Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Grossman, Arthur R.
2010-01-01
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292
Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji
2016-04-12
The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.
Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants.
Nebenführ, Andreas; Dixit, Ram
2018-04-29
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
25 Years of Cell Cycle Research: What's Ahead?
Gutierrez, Crisanto
2016-10-01
We have reached 25 years since the first molecular approaches to plant cell cycle. Fortunately, we have witnessed an enormous advance in this field that has benefited from using complementary approaches including molecular, cellular, genetic and genomic resources. These studies have also branched and demonstrated the functional relevance of cell cycle regulators for virtually every aspect of plant life. The question is - where are we heading? I review here the latest developments in the field and briefly elaborate on how new technological advances should contribute to novel approaches that will benefit the plant cell cycle field. Understanding how the cell division cycle is integrated at the organismal level is perhaps one of the major challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of NDR1 in pathogen perception and plant defense signaling.
Knepper, Caleb; Savory, Elizabeth A; Day, Brad
2011-08-01
The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress.
Mang, Hyunggon; Feng, Baomin; Hu, Zhangjian; Boisson-Dernier, Aurélien; Franck, Christina M; Meng, Xiangzong; Huang, Yanyan; Zhou, Jinggeng; Xu, Guangyuan; Wang, Taotao; Shan, Libo; He, Ping
2017-12-01
Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction. © 2017 American Society of Plant Biologists. All rights reserved.
McGregor, Nicholas; Yin, Victor; Tung, Ching-Chieh; Van Petegem, Filip; Brumer, Harry
2016-01-01
SUMMARY The xyloglucan endo-transglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodelling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endo-glycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endo-glucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endo-tranglycosylase (XET), and a xyloglucan endo-hydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species. PMID:27859885
Zhu, Yun; Kawaguchi, Kayoko; Kiyama, Ryoiti
2017-01-01
Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81) with that of estrogen (17β-estradiol or E2). Significant correlations were observed among lignans (R values: 0.77 to 0.97), and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1) secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level. PMID:28152041
Mechanisms of stomatal development: an evolutionary view
2012-01-01
Plant development has a significant postembryonic phase that is guided heavily by interactions between the plant and the outside environment. This interplay is particularly evident in the development, pattern and function of stomata, epidermal pores on the aerial surfaces of land plants. Stomata have been found in fossils dating from more than 400 million years ago. Strikingly, the morphology of the individual stomatal complex is largely unchanged, but the sizes, numbers and arrangements of stomata and their surrounding cells have diversified tremendously. In many plants, stomata arise from specialized and transient stem-cell like compartments on the leaf. Studies in the flowering plant Arabidopsis thaliana have established a basic molecular framework for the acquisition of cell fate and generation of cell polarity in these compartments, as well as describing some of the key signals and receptors required to produce stomata in organized patterns and in environmentally optimized numbers. Here we present parallel analyses of stomatal developmental pathways at morphological and molecular levels and describe the innovations made by particular clades of plants. PMID:22691547
Pectin: cell biology and prospects for functional analysis.
Willats, W G; McCartney, L; Mackie, W; Knox, J P
2001-09-01
Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.
Regulation of potassium transport and signaling in plants.
Wang, Yi; Wu, Wei-Hua
2017-10-01
As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress
NASA Astrophysics Data System (ADS)
Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek
Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by the alterations in the composition of wall proteins and polysaccharides. With respect to the cytoskeleton, in cells exposed to short-term osmotic stress significant rearrange-ments were observed. Surprisingly, the analyses of microfilaments and microtubules in adapted and in non-adapted, normal BY-2 cells, revealed no significant changes. It seems that upon prolonged exposure to osmotic stress conditions selective and adaptive alterations in wall com-position were occurring. Walls of cells grown in the presence of ionic agents were homogenous, while longitudinal walls and cross-walls in cells adapted to nonionic agents were significantly different. This might affect the anchorage of the cytoskeleton in the walls and modify the func-tioning of the whole WMC continuum. In this way, cell's mechanical balance restoration will be ensured and, in consequence, cells will be able to resist osmotic pressure and divide under severe stress conditions. In plants, cross-walls within cell files of axial organs exhibit specific properties that allow them to act as domains of contact and intense intercellular communica-tion, and the sites of the anchorage of cytoskeleton. As a further consequence, also cell-to-cell interactions would be affected. MM and RJ are students of biotechnology at Adam Mickiewicz University. The data coming from the authors' lab come from research supported by the DAAD scholarship to AK, and Alexander von Humboldt Research Fellowship and Polish Ministry of Science and Higher Edu-cation grants PBZ-KBN-110/P04/2004, N N303 294434, N N301 164435, and N N303 360735 to PW.
Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.
Yip, Hoichong Karen; Floyd, Sandra K; Sakakibara, Keiko; Bowman, John L
2016-11-01
Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants. We demonstrate that in the moss Physcomitrella patens, C3HDZ genes are expressed in transitory meristems in both the gametophytic and sporophytic generations, but not in the persistent shoot meristem of the gametyphyte. Loss-of-function of P. patens C3HDZ was engineered using ectopic expression of miR166, an endogenous regulator of C3HDZ gene activity. Loss of C3HDZ gene function impaired the function of gametophytic transitory meristematic activity but did not compromise the functioning of the persistent shoot apical meristem during the gametophyte generation. These results argue against a wholesale co-option of meristematic gene regulatory networks from the gametophyte to the sporophyte during land plant evolution, instead suggesting that persistent meristems with a single apical cell in P. patens and persistent complex meristems in flowering plants are regulated by different genetic programs. Copyright © 2016 Elsevier Inc. All rights reserved.
Taurino, Marco; Abelenda, Jose A; Río-Alvarez, Isabel; Navarro, Cristina; Vicedo, Begonya; Farmaki, Theodora; Jiménez, Pedro; García-Agustín, Pilar; López-Solanilla, Emilia; Prat, Salomé; Rojo, Enrique; Sánchez-Serrano, José J; Sanmartín, Maite
2014-02-01
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Structure and Function of Wood
Alex C. Wiedenhoeft
2012-01-01
Wood is a complex biological structure, a composite of many cell types and chemistries acting together to serve the needs of living plant. Attempting to understand wood inthe context of wood technology, we have often overlooked the basic fact that wood evolved over the course of millions of years to serve three main functions in plants-conduction of water from the...
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534
Patel, Shalaka; Rose, Annkatrin; Meulia, Tea; Dixit, Ram; Cyr, Richard J.; Meier, Iris
2004-01-01
The nuclear envelope (NE) acts as a selective barrier to macromolecule trafficking between the nucleus and the cytoplasm and undergoes a complex reorganization during mitosis. Different eukaryotic kingdoms show specializations in NE function and composition. In contrast with vertebrates, the protein composition of the NE and the function of NE proteins are barely understood in plants. MFP1 attachment factor 1 (MAF1) is a plant-specific NE-associated protein first identified in tomato (Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana MAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after callus induction from differentiated root segments reprograms their NE association. Based on green fluorescent protein fusions and immunogold labeling data, the proteins are associated with the outer NE and the nuclear pores in interphase cells and with the immature cell plate during cytokinesis. RNA interference–based suppression of the Arabidopsis WPP family causes shorter primary roots, a reduced number of lateral roots, and reduced mitotic activity of the root meristem. Together, these data demonstrate the existence of regulated NE targeting in plants and identify a class of plant-specific NE proteins involved in mitotic activity. PMID:15548735
McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen
2016-11-11
Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
Grasso, S; Harrison, S M; Monahan, F J; Brayden, D; Brunton, N P
2018-03-01
This study evaluated the effect of a plant sterol-enriched turkey product on cholesterol bio-accessibility during in vitro digestion and cholesterol uptake by Caco-2 monolayers. Turkey products, one plant sterol-enriched (PS) and one plant sterol-free (C), were produced in an industrial pilot plant. Before simulated digestion, matrices were spiked with cholesterol (1:5 weight ratio of cholesterol to plant sterol). Plant sterols were included at a concentration equivalent to the minimum daily intake recommended by the European Food Safety Authority (EFSA) for cholesterol lowering. After simulated digestion, the percentage of cholesterol micellarization and uptake by Caco-2 cells in the presence of PS meat were measured. Compared to C meat, PS meat significantly inhibited cholesterol micellarization on average by 24% and Caco-2 cell accumulation by 10%. This study suggests that plant sterols in meat can reduce cholesterol uptake by intestinal epithelia and it encourages efforts to make new PS-based functional foods.
The plant microbiome explored: implications for experimental botany
Berg, Gabriele; Rybakova, Daria; Grube, Martin; Köberl, Martina
2017-01-01
The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies. PMID:26547794
The role of mitochondria in plant development and stress tolerance.
Liberatore, Katie L; Dukowic-Schulze, Stefanie; Miller, Marisa E; Chen, Changbin; Kianian, Shahryar F
2016-11-01
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research. Published by Elsevier Inc.
Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress
Considine, Michael J.; María Sandalio, Luisa; Helen Foyer, Christine
2015-01-01
Background and Aims Reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), play crucial roles in the signal transduction pathways that regulate plant growth, development and defence responses, providing a nexus of reduction/oxidation (redox) control that impacts on nearly every aspect of plant biology. Here we summarize current knowledge and concepts that lay the foundations of a new vision for ROS/RNS functions – particularly through signalling hubs – for the next decade. Scope Plants have mastered the art of redox control using ROS and RNS as secondary messengers to regulate a diverse range of protein functions through redox-based, post-translational modifications that act as regulators of molecular master-switches. Much current focus concerns the impact of this regulation on local and systemic signalling pathways, as well as understanding how such reactive molecules can be effectively used in the control of plant growth and stress responses. Conclusions The spectre of oxidative stress still overshadows much of our current philosophy and understanding of ROS and RNS functions. While many questions remain to be addressed – for example regarding inter-organellar regulation and communication, the control of hypoxia and how ROS/RNS signalling is used in plant cells, not only to trigger acclimation responses but also to create molecular memories of stress – it is clear that ROS and RNS function as vital signals of living cells. PMID:26649372
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha.
Jones, Victor A S; Dolan, Liam
2017-04-15
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. Mp WIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced Mp WIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. © 2017. Published by The Company of Biologists Ltd.
Vryzas, Zisis
2016-01-01
Systemic pesticides (SPs) are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological, and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic, and trans-membrane transport of SPs in accordance with the intercommunication dictated by plant–microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism, and action of SPs are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides. PMID:28018306
The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses
Kalinina, Natalia O.; Makarova, Svetlana; Makhotenko, Antonida; Love, Andrew J.; Taliansky, Michael
2018-01-01
The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses. PMID:29479362
Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants.
Dolja, V V; Haldeman, R; Robertson, N L; Dougherty, W G; Carrington, J C
1994-01-01
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport. Images PMID:7511101
Production of human vitronectin in Nicotiana benthamiana using the INPACT hyperexpression platform.
Dugdale, Benjamin; Kato, Maiko; Deo, Pradeep; Plan, Manuel; Harrison, Mark; Lloyd, Robyn; Walsh, Terry; Harding, Robert; Dale, James
2018-02-01
Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 μg/cm 2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V
2008-01-01
Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.
Chapter Four - Shoot apical meristem form and function. In:
USDA-ARS?s Scientific Manuscript database
The shoot apical meristem (SAM) generates above-ground aerial organs throughout the lifespan of higher plants. In order to fulfill this function, the meristem must maintain a balance between the self-renewal of a reservoir of central stem cells and organ initiation from peripheral cells. The activit...
Padmanabhan, Meenu S; Dinesh-Kumar, Savithramma P
2014-01-01
Plant innate immune response against viruses utilizes intracellular Nucleotide Binding domain Leucine Rich Repeat (NLR) class of receptors. NLRs recognize different viral proteins termed elicitors and initiate diverse signaling processes that induce programmed cell death (PCD) in infected cells and restrict virus spread. In this review we describe the recent advances made in the study of plant NLRs that detect viruses. We describe some of the physical and functional interactions these NLRs undertake. We elaborate on the intra-molecular and homotypic association of NLRs that function in self-regulation and activation. Nuclear role for some viral NLRs is discussed as well as the emerging importance of the RNAi pathway in regulating the NLR family. PMID:24906192
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas
2016-07-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.
Henry, S; Dievart, A; Divol, F; Pauluzzi, G; Meynard, D; Swarup, R; Wu, S; Gallagher, K L; Périn, C
2017-05-01
The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-01-01
Coronatine (1), a small-molecular virulence factor produced by plant-pathogenic bacteria, promotes bacterial infection by inducing the opening of stomatal pores, the major route of bacterial entry into the plant, via the jasmonate-mediated COI1-JAZ signaling pathway. However, this pathway is also important for multiple plant functions, including defense against wounding by herbivorous insects. Thus, suppression of the COI1-JAZ signaling pathway to block bacterial infection would concomitantly impair plant defense against herbivorous wounding. Here, we report additional, COI1-JAZ-independent, action of 1 in Arabidopsis thaliana guard cells. First, we found that a stereoisomer of 1 regulates the movement of Arabidopsis guard cells without affecting COI1-JAZ signaling. Second, we found using alkyne-tagged Raman imaging (ATRI) that 1 is localized to the endoplasmic reticulum (ER) of living guard cells of Arabidopsis. The use of arc6 mutant lacking chloroplast formation was pivotal to circumvent the issue of autofluorescence during ATRI. These findings indicate that 1 has an ER-related action on Arabidopsis stomata that bypasses the COI1-JAZ signaling module. It may be possible to suppress the action of 1 on stomata without impairing plant defense responses against herbivores. PMID:28573209
Li, Bin-Bin; Wang, Xiang; Tai, Li; Ma, Tian-Tian; Shalmani, Abdullah; Liu, Wen-Ting; Li, Wen-Qiang; Chen, Kun-Ming
2018-01-01
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants. PMID:29662499
HnRNP-like proteins as post-transcriptional regulators.
Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling
2014-10-01
Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G
2012-01-01
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
DREAMs make plant cells to cycle or to become quiescent.
Magyar, Zoltán; Bögre, László; Ito, Masaki
2016-12-01
Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death
Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P
2010-01-01
Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858
Rui, Yue; Anderson, Charles T.
2016-01-04
Here, stomatal guard cells are pairs of specialized epidermal cells that control water and CO 2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis ( Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measuredmore » the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3 je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface.« less
Rui, Yue; Anderson, Charles T.
2016-01-01
Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799
Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu
2017-05-05
N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.
Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu
2017-01-01
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. PMID:28475148
Organization of transport from endoplasmic reticulum to Golgi in higher plants.
Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R
2000-01-01
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.
Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong
2015-02-01
Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.
Plant water relations as affected by heavy metal stress: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, J.; Poschenrieder, C.
1990-01-01
Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plantsmore » which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.« less
Ha, Jang Ho; Jang, Hyun A; Moon, Ki-Beom; Baek, Kwang Hyun; Choi, Gyung Ja; Choi, Doil; Cho, Hye Sun; Kwon, Suk Yun; Jeon, Jae-Heung; Oh, Sang-Keun; Kim, Hyun-Soon
2017-11-01
We previously isolated Nicotiana benthamiana matrix metalloprotease 1 (NMMP1) from tobacco leaves. The NMMP1 gene encodes a highly conserved, Zn-containing catalytic protease domain that functions as a factor in the plant's defense against bacterial pathogens. Expression of NMMP1 was strongly induced during interactions between tobacco and one of its pathogens, Phytophthora infestans. To elucidate the role of the NMMP1 in defense of N. benthamiana against fungal pathogens, we performed gain-of-function and loss-of-function studies. NMMP1-overexpressing plants had stronger resistance responses against P. infestans infections than control plants, while silencing of NMMP1 resulted in greater susceptibility of the plants to the pathogen. This greater susceptibility correlated with fewer NMMP1 transcripts than the non-silenced control. We also examined cell death as a measure of disease. The amount of cell death induced by the necrosis-inducing P. infestans protein 1, PiNPP1, was dependent on NMMP1 in N. benthamiana. Potato plants overexpressing NMMP1 also had enhanced disease resistance against P. infestans. RT-PCR analysis of these transgenic potato plants revealed constitutive up-regulation of the potato defense gene NbPR5. NMMP1-overexpressing potato plants were taller and produced heavier tubers than control plants. We suggest a role for NMMP1in pathogen defense and development. Copyright © 2017 Elsevier GmbH. All rights reserved.
Trafficking arms: oomycete effectors enter host plant cells.
Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L
2006-01-01
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.
Structural Studies of Complex Carbohydrates of Plant Cell Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.
Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell wallsmore » and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.« less
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-08-10
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.
2014-01-01
Background Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. Results Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. Conclusions Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution. PMID:24666997
Todaka, Daisuke; Nakashima, Kazuo; Maruyama, Kyonoshin; Kidokoro, Satoshi; Osakabe, Yuriko; Ito, Yusuke; Matsukura, Satoko; Fujita, Yasunari; Yoshiwara, Kyouko; Ohme-Takagi, Masaru; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The mechanisms for plant growth restriction during stress conditions remains unclear. Here, we demonstrate that a phytochrome-interacting factor-like protein, OsPIL1/OsPIL13, acts as a key regulator of reduced internode elongation in rice under drought conditions. The level of OsPIL1 mRNA in rice seedlings grown under nonstressed conditions with light/dark cycles oscillated in a circadian manner with peaks in the middle of the light period. Under drought stress conditions, OsPIL1 expression was inhibited during the light period. We found that OsPIL1 was highly expressed in the node portions of the stem using promoter-glucuronidase analysis. Overexpression of OsPIL1 in transgenic rice plants promoted internode elongation. In contrast, transgenic rice plants with a chimeric repressor resulted in short internode sections. Alteration of internode cell size was observed in OsPIL1 transgenic plants, indicating that differences in cell size cause the change in internode length. Oligoarray analysis revealed OsPIL1 downstream genes, which were enriched for cell wall-related genes responsible for cell elongation. These data suggest that OsPIL1 functions as a key regulatory factor of reduced plant height via cell wall-related genes in response to drought stress. This regulatory system may be important for morphological stress adaptation in rice under drought conditions. PMID:22984180
Amino acids--a life between metabolism and signaling.
Häusler, Rainer E; Ludewig, Frank; Krueger, Stephan
2014-12-01
Amino acids serve as constituents of proteins, precursors for anabolism, and, in some cases, as signaling molecules in mammalians and plants. This review is focused on new insights, or speculations, on signaling functions of serine, γ-aminobutyric acid (GABA) and phenylalanine-derived phenylpropanoids. Serine acts as signal in brain tissue and mammalian cancer cells. In plants, de novo serine biosynthesis is also highly active in fast growing tissues such as meristems, suggesting a similar role of serine as in mammalians. GABA functions as inhibitory neurotransmitter in the brain. In plants, GABA is also abundant and seems to be involved in sexual reproduction, cell elongation, patterning and cell identity. The aromatic amino acids phenylalanine, tyrosine, and tryptophan are precursors for the production of secondary plant products. Besides their pharmaceutical value, lignans, neolignans and hydroxycinnamic acid amides (HCAA) deriving from phenylpropanoid metabolism and, in the case of HCAA, also from arginine have been shown to fulfill signaling functions or are involved in the response to biotic and abiotic stress. Although some basics on phenylpropanoid-derived signaling have been described, little is known on recognition- or signal transduction mechanisms. In general, mutant- and transgenic approaches will be helpful to elucidate the mechanistic basis of metabolite signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Atmospheric cold plasma jet for plant disease treatment
NASA Astrophysics Data System (ADS)
Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze
2014-01-01
This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of <2 mm can completely recover from the fungus-infected state. The plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.
Expression of eukaryotic polypeptides in chloroplasts
Mayfield, Stephen P.
2013-06-04
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-01-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999
Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen
2016-01-01
Small, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells. SsSSVP1∆SP could induce significant plant cell death and targeted silencing of SsSSVP1 resulted in a significant reduction in virulence. Through yeast two-hybrid (Y2H), coimmunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that SsSSVP1∆SP interacted with QCR8, a subunit of the cytochrome b-c1 complex of mitochondrial respiratory chain in plants. Double site-directed mutagenesis of two cysteine residues (C38 and C44) in SsSSVP1∆SP had significant effects on its homo-dimer formation, SsSSVP1∆SP-QCR8 interaction and plant cell death induction, indicating that partial cysteine residues surely play crucial roles in maintaining the structure and function of SsSSVP1. Co-localization and BiFC assays showed that SsSSVP1∆SP might hijack QCR8 to cytoplasm before QCR8 targeting into mitochondria, thereby disturbing its subcellular localization in plant cells. Furthermore, virus induced gene silencing (VIGS) of QCR8 in tobacco caused plant abnormal development and cell death, indicating the cell death induced by SsSSVP1∆SP might be caused by the SsSSVP1∆SP-QCR8 interaction, which had disturbed the QCR8 subcellular localization and hence disabled its biological functions. These results suggest that SsSSVP1 is a potential effector which may manipulate plant energy metabolism to facilitate the infection of S. sclerotiorum. Our findings indicate novel roles of small secreted proteins in the interactions between host-non-specific necrotrophic fungi and plants, and highlight the significance to illuminate the pathogenic mechanisms of this type of interaction. PMID:26828434
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
1999-06-01
subunits are expressed ubiquitously and appear to be encoded by small and quite homogeneous gene families. In plants , however, A and C subunit gene...1996). In both plants and animals, different B subunit isoforms are encoded by two or more unrelated gene families, some of which are expressed in a...PP2A functions in whole plants and in mammalian tissue culture cells. This genetic system may also prove useful for analyzing interactions between
[Modes of action of agrochemicals against plant pathogenic organisms].
Leroux, Pierre
2003-01-01
The chemical control of plant pathogens concerns mainly fungal diseases of crops. Most of the available fungicides act directly on essential fungal functions such as respiration, sterol biosynthesis or cell division. Consequently, these compounds can exhibit undesirable toxicological and environmental effects and sometimes select fungal resistant strains. Plant activators are expected to provide sustainable disease management in several crops because the development of resistance is not expected. Considering the future, the discovery of novel antifungal molecules will reap advantage from throughput screening methodologies and functional genomics.
Chew, William; Hrmova, Maria; Lopato, Sergiy
2013-04-12
Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species.
Chew, William; Hrmova, Maria; Lopato, Sergiy
2013-01-01
Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species. PMID:23584027
Exploring the functional significance of sterol glycosyltransferase enzymes.
Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha
2018-01-01
Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando
2016-01-01
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando
2016-01-19
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.
Structure and function of wood
Alex Wiedenhoeft
2010-01-01
Wood is a complex biological structure, a composite of many chemistries and cell types acting together to serve the needs of a living plant. Attempting to understand wood in the context of wood technology, we have often overlooked the key and basic fact that wood evolved over the course of millions of years to serve three main functions in plantsâ conduction of water...
Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings
Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.
2016-01-01
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response. PMID:27064322
Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.
Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R
2016-01-01
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.
Nanjo, T; Kobayashi, M; Yoshiba, Y; Sanada, Y; Wada, K; Tsukaya, H; Kakubari, Y; Yamaguchi-Shinozaki, K; Shinozaki, K
1999-04-01
Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.
A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves.
Roussel, Marc R; Slingerland, Martin J
2012-09-01
We present here a model intended to capture the biochemistry of vein formation in plant leaves. The model consists of three modules. Two of these modules, those describing auxin signaling and transport in plant cells, are biochemically detailed. We couple these modules to a simple model for PIN (auxin efflux carrier) protein localization based on an extracellular auxin sensor. We study the single-cell responses of this combined model in order to verify proper functioning of the modeled biochemical network. We then assemble a multicellular model from the single-cell building blocks. We find that the model can, under some conditions, generate files of polarized cells, but not true veins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.
1999-05-01
Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.
Field Guide to Plant Model Systems
Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.
2016-01-01
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. PMID:27716506
The plant microbiome explored: implications for experimental botany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Gabriele; Rybakova, Daria; Grube, Martin
The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbesmore » usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are coevolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.« less
Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin
2015-03-24
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.
Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter
2010-01-01
The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches. PMID:20209049
Ascorbate as a Biosynthetic Precursor in Plants
Debolt, Seth; Melino, Vanessa; Ford, Christopher M.
2007-01-01
Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753
Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.
Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly
2013-01-01
Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.
Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.
Yeats, Trevor H; Bacic, Antony; Johnson, Kim L
2018-04-18
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.
Gavrin, Aleksandr; Kaiser, Brent N.; Geiger, Dietmar; Tyerman, Stephen D.; Wen, Zhengyu; Bisseling, Ton; Fedorova, Elena E.
2014-01-01
In legume–rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria. PMID:25217511
Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control.
Zhang, Qian-Qian; Li, Ying; Fu, Zhao-Ying; Liu, Xun-Biao; Yuan, Kai; Fang, Ying; Liu, Yan; Li, Gang; Zhang, Xian-Sheng; Chong, Kang; Ge, Lei
2018-05-12
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Douché, Thibaut; San Clemente, Hélène; Burlat, Vincent; Roujol, David; Valot, Benoît; Zivy, Michel; Pont-Lezica, Rafael; Jamet, Elisabeth
2013-08-01
Polysaccharides make up about 75% of plant cell walls and can be broken down to produce sugar substrates (saccharification) from which a whole range of products can be obtained, including bioethanol. Cell walls also contain 5-10% of proteins, which could be used to tailor them for agroindustrial uses. Here we present cell wall proteomics data of Brachypodium distachyon, a model plant for temperate grasses. Leaves and culms were analyzed during active growth and at mature stage. Altogether, 559 proteins were identified by LC-MS/MS and bioinformatics, among which 314 have predicted signal peptides. Sixty-three proteins were shared by two organs at two developmental stages where they could play housekeeping functions. Differences were observed between organs and stages of development, especially at the level of glycoside hydrolases and oxidoreductases. Differences were also found between the known cell wall proteomes of B. distachyon, Oryza sativa, and the Arabidopsis thaliana dicot. Three glycoside hydrolases could be immunolocalized in cell walls using polyclonal antibodies against proteotypic peptides. Organ-specific expression consistent with proteomics results could be observed as well as cell-specific localization. Moreover, the high number of proteins of unknown function in B. distachyon cell wall proteomes opens new fields of research for monocot cell walls. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shaping intercellular channels of plasmodesmata: the structure-to-function missing link.
Nicolas, William J; Grison, Magali S; Bayer, Emmanuelle M
2017-12-18
Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Alméras, Tancrède; Gril, Joseph
2007-11-01
Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.
Chen, Li-Qing; Cheung, Lily S; Feng, Liang; Tanner, Widmar; Frommer, Wolf B
2015-01-01
Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.
Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.
Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu
2018-01-01
MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.
Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity
NASA Technical Reports Server (NTRS)
Cosgrove, D.
1985-01-01
The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.
Gravity: one of the driving forces for evolution.
Volkmann, D; Baluska, F
2006-12-01
Mechanical load is 10(3) larger for land-living than for water-living organisms. As a consequence, antigravitational material in form of compound materials like lignified cell walls in plants and mineralised bones in animals occurs in land-living organisms preferentially. Besides cellulose, pectic substances of plant cell walls seem to function as antigravitational material in early phases of plant evolution and development. A testable hypothesis including vesicular recycling processes into the tensegrity concept is proposed for both sensing of gravitational force and responding by production of antigravitational material at the cellular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Huanan; Song, Zhihong; Nikolau, Basil J.
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viablemore » and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.« less
Vaz, Janet F; Sharma, Prabhat Kumar
2010-07-01
Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting.
ATM-Mediated Transcriptional and Developmental Responses to γ-rays in Arabidopsis
Renou, Jean-Pierre; Pichon, Olivier; Fochesato, Sylvain; Ortet, Philippe; Montané, Marie-Hélène
2007-01-01
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed. PMID:17487278
ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis.
Ricaud, Lilian; Proux, Caroline; Renou, Jean-Pierre; Pichon, Olivier; Fochesato, Sylvain; Ortet, Philippe; Montané, Marie-Hélène
2007-05-09
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Michael G.
The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plantmore » cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.« less
Functional roles of flavonoids in photoprotection: new evidence, lessons from the past.
Agati, Giovanni; Brunetti, Cecilia; Di Ferdinando, Martina; Ferrini, Francesco; Pollastri, Susanna; Tattini, Massimiliano
2013-11-01
We discuss on the relative significance of different functional roles potentially served by flavonoids in photoprotection, with special emphasis to their ability to scavenge reactive oxygen species (ROS) and control the development of individual organs and whole plant. We propose a model in which chloroplast-located flavonoids scavenge H2O2 and singlet oxygen generated under excess light-stress, thus avoiding programmed cell death. We also draw a picture in which vacuolar flavonoids in conjunction with peroxidases and ascorbic acid constitute a secondary antioxidant system aimed at detoxifying H2O2, which may diffuse out of the chloroplast at considerable rates and enter the vacuole following excess light stress-induced depletion of ascorbate peroxidase. We hypothesize for flavonols key roles as developmental regulators in early and current-day land-plants, based on their ability to modulate auxin movement and auxin catabolism. We show that antioxidant flavonoids display the greatest capacity to regulate key steps of cell growth and differentiation in eukaryotes. These regulatory functions of flavonoids, which are shared by plants and animals, are fully accomplished in the nM concentration range, as likely occurred in early land plants. We therefore conclude that functions of flavonoids as antioxidants and/or developmental regulators flavonoids are of great value in photoprotection. We also suggest that UV-B screening was just one of the multiple functions served by flavonoids when early land-plants faced an abrupt increase in sunlight irradiance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
In Vivo Delivery of Nanoparticles into Plant Leaves.
Wu, Honghong; Santana, Israel; Dansie, Joshua; Giraldo, Juan P
2017-12-14
Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Hirano, Naoko; Marukawa, Yuka; Abe, Jun; Hashiba, Sayuri; Ichikawa, Machiko; Tanabe, Yoichi; Ito, Motomi; Nishii, Ichiro; Tsuchikane, Yuki; Sekimoto, Hiroyuki
2015-07-01
Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jeffrey F.
The long-range goal of the research is to understand the structure and biological functions of different P-type ATPases (ion pumps) in plant cells, and to use that knowledge to enhance the production of bioenergy from plants, or plant-research inspired technologies. Ptype ATPases include ion pumps that specifically transport H +, Ca 2+, Zn 2+, Cu 2+, K +, or Na +, as well as at least one unusual subfamily that appears to function as lipid flippases, flipping specific lipids from one side of a membrane bilayer to the other. As a group, P-type ATPases are thought to consume more thanmore » 1/3 of the cellular ATP in typical eukaryotic cells. Recent research in the Harper lab focused on understanding the biochemical and biological functions of P-type ATPases that flip lipids. These flippases belong to the P4 subfamily of P-type ATPases. The activity of lipid flippases is thought to induce membrane curvature and/or create an asymmetry in which certain lipid head groups are preferential exposed to one surface or the other. In Arabidopsis thaliana there are 12 members of this family referred to as Aminophospholipid ATPase (ALA) 1 to ALA12. Using genetic knockouts, the Harper lab has established that this unusual subfamily of P-type ATPases are critical for plants to cope with even modest changes in temperature (e.g., down to 15°C, or up to 30°C). In addition, members of one subclade are critical for cell expansion, and loss of function mutants result in severe dwarfism. Other members of this same sub-clade are critical for pollen tube growth, and loss of function mutants are sterile under conditions of hot days and cold nights. While the cellular processes that depend on lipid flippases are still unclear, the genetic analysis of loss of function mutants clearly show they are of fundamental importance to plant growth and response to the environment.« less
Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.
de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A
2004-08-15
A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.
Cabañero, Francisco J; Martínez-Ballesta, M Carmen; Teruel, José A; Carvajal, Micaela
2006-02-01
This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.
Zhu, Wenjun; Ronen, Mordechi; Gur, Yonatan; Minz-Dub, Anna; Masrati, Gal; Ben-Tal, Nir; Savidor, Alon; Sharon, Itai; Eizner, Elad; Valerius, Oliver; Braus, Gerhard H; Bowler, Kyle; Bar-Peled, Maor; Sharon, Amir
2017-09-01
In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens. © 2017 American Society of Plant Biologists. All Rights Reserved.
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-01-01
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants. PMID:20706207
Parrotta, Luigi; Guerriero, Gea; Sergeant, Kjell; Cai, Giampiero; Hausman, Jean-Francois
2015-01-01
Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering. PMID:25814996
Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian
2015-04-07
Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen P.
2006-10-17
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen
2000-01-01
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
Hervé, Christine; Dabos, Patrick; Bardet, Claude; Jauneau, Alain; Auriac, Marie Christine; Ramboer, Agnès; Lacout, Fabrice; Tremousaygue, Dominique
2009-03-01
AtTCP20 is a transcription factor belonging to the Arabidopsis (Arabidopsis thaliana) TCP-P subfamily, characterized by its capacity to bind to site II motifs (TGGGCY). Our aim was to understand the role of AtTCP20 in plant development. The expression pattern of a translational fusion of Prom(TCP20):CDS20GUSGFP suggested a function for AtTCP20 in several plant organs and stages of development. The role of AtTCP20 was challenged in planta by inducing expression of AtTCP20 proteins fused with either a transcriptional activator domain (VP16) or a repressor domain (EAR). Expression of both modified proteins led to severe developmental phenotypes. In-depth analysis suggested that AtTCP20 may participate in the regulation of cell expansion, cell division, and cell differentiation. Gene expression profiling in roots and hypocotyls revealed that 252 genes were down-regulated in both organs after induction of the AtTCP20EAR repressor gene. Site II motifs (TGGGCY) were underrepresented in their promoters. Conversely, GG(A/T)CCC sequences related to binding sites identified for TCP proteins in rice (Oryza sativa) were overrepresented, and a TCP20 fusion protein was shown to bind to these sequences in vitro. Gene ontology indicated that many targeted genes were involved in cell wall biogenesis and modification during expansion and also encoded numerous transcription factors controlling plant development. Our results are consistent with the previous proposal that AtTCP20 is involved in cell division and growth coordination. Moreover, they further suggest that AtTCP20 also contributes to cell expansion control and indicate a different involvement of this protein in plant morphogenesis depending on the organ and the developmental stage.
Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng
2018-05-01
PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.
Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana
Kunz, Sabine; Pesquet, Edouard; Kleczkowski, Leszek A.
2014-01-01
Background Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. Conclusions Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism. PMID:24950222
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Alex; Banta, Larry; Tucker, David
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less
New Insights Into âPlant Memoriesâ
Sanbonmatsu, Karissa
2018-01-16
A special stretch of ribonucleic acid (RNA) called COOLAIR is revealing its inner structure and function to scientists, displaying a striking resemblance to an RNA molecular machine, territory previously understood to be limited to the cellsâ protein factory (the âribosomeâ) and not a skill set given to mere strings of RNA. âWe are uncovering the nuts and bolts of plant memories,â said Karissa Sanbonmatsu of Los Alamos National Laboratory, lead author on a new article this week in the journal Cell Reports. In the past 5 years or so, material in the cell known as âjunk DNAâ had actually turned out not to be junk at all. Instead, it was shown to produce RNA molecules that play key roles in the development of organs in the embryo, as well as affecting cancer, brain function and plant biology.
Dettmer, Jan; Ursache, Robertas; Campilho, Ana; Miyashima, Shunsuke; Belevich, Ilya; O'Regan, Seana; Mullendore, Daniel Leroy; Yadav, Shri Ram; Lanz, Christa; Beverina, Luca; Papagni, Antonio; Schneeberger, Korbinian; Weigel, Detlef; Stierhof, York-Dieter; Moritz, Thomas; Knoblauch, Michael; Jokitalo, Eija; Helariutta, Ykä
2014-07-10
Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.
Callose biosynthesis regulates symplastic trafficking during root development.
Vatén, Anne; Dettmer, Jan; Wu, Shuang; Stierhof, York-Dieter; Miyashima, Shunsuke; Yadav, Shri Ram; Roberts, Christina J; Campilho, Ana; Bulone, Vincent; Lichtenberger, Raffael; Lehesranta, Satu; Mähönen, Ari Pekka; Kim, Jae-Yean; Jokitalo, Eija; Sauer, Norbert; Scheres, Ben; Nakajima, Keiji; Carlsbecker, Annelie; Gallagher, Kimberly L; Helariutta, Ykä
2011-12-13
Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of callose (β-1,3-glucan) at the PD, a decrease in PD aperture, defects in root development, and reduced intercellular trafficking. Enhancement of CALS3 expression during phloem development suppressed loss-of-function mutations in the phloem abundant callose synthase, CALS7 indicating that CALS3 is a bona fide callose synthase. CALS3 alleles allowed us to spatially and temporally control the PD aperture between plant tissues. Using this tool, we are able to show that movement of the transcription factor SHORT-ROOT and microRNA165 between the stele and the endodermis is PD dependent. Taken together, we conclude that regulated callose biosynthesis at PD is essential for cell signaling. Copyright © 2011 Elsevier Inc. All rights reserved.
Perception of the plant immune signal salicylic acid
Yan, Shunping; Dong, Xinnian
2014-01-01
Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293
Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development.
Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke
2015-11-01
TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. © 2015 American Society of Plant Biologists. All Rights Reserved.
Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes
Dasgupta, Ranjit; Garcia, Bradley H.; Goodman, Robert M.
2001-01-01
Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants. PMID:11296259
Plant microRNAs as novel immunomodulatory agents
Cavalieri, Duccio; Rizzetto, Lisa; Tocci, Noemi; Rivero, Damariz; Asquini, Elisa; Si-Ammour, Azeddine; Bonechi, Elena; Ballerini, Clara; Viola, Roberto
2016-01-01
An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation. This immuno-modulatory effect appears associated with binding of plant miRNA on TLR3 with ensuing impairment of TRIF signaling. Similarly, in vivo, plant small RNAs reduce the onset of severity of Experimental Autoimmune Encephalomyelities by limiting dendritic cell migration and dampening Th1 and Th17 responses in a Treg-independent manner. Our results indicate a potential for therapeutic use of plant miRNAs in the prevention of chronic-inflammation related diseases. PMID:27167363
The Use of Modelling for Improving Pupils' Learning about Cells.
ERIC Educational Resources Information Center
Tregidgo, David; Ratcliffe, Mary
2000-01-01
Outlines the use of modeling in science teaching. Describes a study in which two parallel groups of year seven pupils modeled concepts of cell structure and function as they produced two- or three-dimensional representations of plant and animal cells. (Author/CCM)
TMBP200, a XMAP215 homologue of tobacco BY-2 cells, has an essential role in plant mitosis.
Yasuhara, Hiroki; Oe, Yuki
2011-07-01
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-03-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Anderson, Ryan G; Casady, Megan S; Fee, Rachel A; Vaughan, Martha M; Deb, Devdutta; Fedkenheuer, Kevin; Huffaker, Alisa; Schmelz, Eric A; Tyler, Brett M; McDowell, John M
2012-12-01
Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli
2010-03-23
The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas
2016-01-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555
Hedrich, Rainer
2012-10-01
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Only in dying, life: programmed cell death during plant development.
Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K
2015-02-01
Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G. T.; Toth, Ian K.; Holden, Nicola J.
2014-01-01
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR–GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells. PMID:25320086
Schaeffer, Scott M; Christian, Ryan; Castro-Velasquez, Nohely; Hyden, Brennan; Lynch-Holm, Valerie; Dhingra, Amit
2017-10-01
Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems.
The plant microbiome explored: implications for experimental botany.
Berg, Gabriele; Rybakova, Daria; Grube, Martin; Köberl, Martina
2016-02-01
The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W
2015-10-13
Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.
Functions of tocopherols in the cells of plants and other photosynthetic organisms.
Mokrosnop, V M
2014-01-01
Tocopherol synthesis has only been observed in photosynthetic organisms (plants, algae and some cyanobacteria). Tocopherol is synthesized in the inner membrane of chloroplasts and distributed between chloroplast membranes, thylakoids and plastoglobules. Physiological significance of tocopherols for human and animal is well-studied, but relatively little is known about their function in plant organisms. Among the best characterized functions oftocopherols in cells is their ability to scavenge and quench reactive oxygen species and fat-soluble by-products of oxidative stress. There are the data on the participation of different mechanisms of α-tocopherol action in protecting photosystem II (PS II) from photoinhibition both by deactivation of singlet oxygen produced by PSII and by reduction of proton permeability of thylakoid membranes, leading to acidification of lumen under high light conditions and activation of violaxanthin de-epoxidase. Additional biological activity of tocopherols, independent of its antioxidant functions have been demonstrated. Basic mechanisms for these effects are connected with the modulation of signal transduction pathways by specific tocopherols and, in some instances, by transcriptional activation of gene expression.
Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes
NASA Technical Reports Server (NTRS)
Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)
1997-01-01
Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.
Paque, Sébastien; Mouille, Grégory; Grandont, Laurie; Alabadí, David; Gaertner, Cyril; Goyallon, Arnaud; Muller, Philippe; Primard-Brisset, Catherine; Sormani, Rodnay; Blázquez, Miguel A.; Perrot-Rechenmann, Catherine
2014-01-01
Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion. PMID:24424095
A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants
Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon
2016-01-01
Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096
Exocyst and autophagy-related membrane trafficking in plants.
Pecenková, Tamara; Markovic, Vedrana; Sabol, Peter; Kulich, Ivan; Žárský, Viktor
2017-12-18
Endomembrane traffic in eukaryotic cells functions partially as a means of communication; delivery of membrane in one direction has to be balanced with a reduction at the other end. This effect is typically the case during the defence against pathogens. To combat pathogens, cellular growth and differentiation are suppressed, while endomembrane traffic is poised towards limiting the pathogen attack. The octameric exocyst vesicle-tethering complex was originally discovered as a factor facilitating vesicle-targeting and vesicle-plasma membrane (PM) fusion during exocytosis prior to and possibly during SNARE complex formation. Interestingly, it was recently implicated both in animals and plants in autophagy membrane traffic. In animal cells, the exocyst is integrated into the mTOR-regulated energy metabolism stress/starvation pathway, participating in the formation and especially initiation of an autophagosome. In plants, the first functional link was to autophagy-related anthocyanin import to the vacuole and to starvation. In this concise review, we summarize the current knowledge of exocyst functions in autophagy and defence in plants that might involve unconventional secretion and compare it with animal conditions. Formation of different exocyst complexes during undisturbed cell growth, as opposed to periods of cellular stress reactions involving autophagy, might contribute to the coordination of endomembrane trafficking pathways. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Regulation and functional diversification of root hairs.
Cui, Songkui; Suzaki, Takuya; Tominaga-Wada, Rumi; Yoshida, Satoko
2017-10-13
Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Field Guide to Plant Model Systems.
Chang, Caren; Bowman, John L; Meyerowitz, Elliot M
2016-10-06
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.
Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.
Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E
2016-10-01
Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Diversity, classification and function of the plant protein kinase superfamily
Lehti-Shiu, Melissa D.; Shiu, Shin-Han
2012-01-01
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912
Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J. W. A.; Geitmann, Anja
2013-01-01
Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452
Sénéchal, Fabien; Habrylo, Olivier; Hocq, Ludivine; Domon, Jean-Marc; Marcelo, Paulo; Lefebvre, Valérie; Pelloux, Jérôme; Mercadante, Davide
2017-12-29
Pectin methylesterases (PMEs) catalyze the demethylesterification of pectin, one of the main polysaccharides in the plant cell wall, and are of critical importance in plant development. PME activity generates highly negatively charged pectin and mutates the physiochemical properties of the plant cell wall such that remodeling of the plant cell can occur. PMEs are therefore tightly regulated by proteinaceous inhibitors (PMEIs), some of which become active upon changes in cellular pH. Nevertheless, a detailed picture of how this pH-dependent inhibition of PME occurs at the molecular level is missing. Herein, using an interdisciplinary approach that included homology modeling, MD simulations, and biophysical and biochemical characterizations, we investigated the molecular basis of PME3 inhibition by PMEI7 in Arabidopsis thaliana Our complementary approach uncovered how changes in the protonation of amino acids at the complex interface shift the network of interacting residues between intermolecular and intramolecular. These shifts ultimately regulate the stability of the PME3-PMEI7 complex and the inhibition of the PME as a function of the pH. These findings suggest a general model of how pH-dependent proteinaceous inhibitors function. Moreover, they enhance our understanding of how PMEs may be regulated by pH and provide new insights into how this regulation may control the physical properties and structure of the plant cell wall. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Choi, Hyong Woo; Kim, Young Jin; Lee, Sung Chul; Hong, Jeum Kyu; Hwang, Byung Kook
2007-11-01
Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.
Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.
Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi
2016-01-01
Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.
Homogalacturonan-modifying enzymes: structure, expression, and roles in plants
Sénéchal, Fabien; Wattier, Christopher; Rustérucci, Christine; Pelloux, Jérôme
2014-01-01
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses. PMID:25056773
Wang, Jue; Qiu, Rubiao; Yuan, Lianjing; Meng, Fei; Tang, Qian
2015-05-01
Generally speaking, zingiberaceae plants with sweet fragrance are commonly seen as perennial herbs that contains numerous well-known crude drugs and fragrant plants like Amomum villosum, Amomumtsao-ko, Ginger, Alpinia katsumadai and Radix curcumae, which are widely used in daily life. This paper analyzed chemical components of Alpinia katsumadai of zingiberaceae and applied several laminar analysis to further develop its active ingredients, aiming to make sure its function on tumor assistance. Actually, cardamomin contained in Alpinia katsumadai has been recorded to act notably in myeloma resistance, which was verified by cholecystokinin-octopeptide (CCK-8) in this paper. Cardamom in is proved to have multiple anti-myeloma effects, including myeloma cell activity and proliferation control, cell cycle retardant and apoptosis induction, which indicates its value in the field of medical pharmacy.
O-Acetylation of Plant Cell Wall Polysaccharides
Gille, Sascha; Pauly, Markus
2011-01-01
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638
Vercruysse, Jasmien; Van Daele, Twiggy; De Milde, Liesbeth; Benhamed, Moussa; Inzé, Dirk
2017-01-01
In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development. PMID:28420746
NASA Astrophysics Data System (ADS)
Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.
MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN
Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze
2016-01-01
A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504
Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.
Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu
2018-02-23
Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.
Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Alfano, James R; Collmer, Alan
2004-01-01
Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.
Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
Smith, Rebecca A; Schuetz, Mathias; Karlen, Steven D; Bird, David; Tokunaga, Naohito; Sato, Yasushi; Mansfield, Shawn D; Ralph, John; Samuels, A Lacey
2017-06-01
Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis ( Arabidopsis thaliana ) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important. © 2017 American Society of Plant Biologists. All Rights Reserved.
Reimann, Ronny; Kost, Benedikt; Dettmer, Jan
2017-01-01
Tetraspanins are small transmembrane proteins that laterally associate with each other and cluster with numerous partner proteins as well as lipids. These interactions result in the formation of a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs), which influence numerous cellular processes such as cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis, motility as well as interaction with pathogens and cancer development. The majority of information available about tetraspanins is based on studies using animal models or cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate that tetraspanins have important functions in plant development, reproduction and stress responses. Here we provide a brief summary of the current state of tetraspanin research in plants. PMID:28458676
Hybrid proline-rich proteins: novel players in plant cell elongation?
Dvořáková, Lenka; Srba, Miroslav; Opatrny, Zdenek; Fischer, Lukas
2012-01-01
Background and Aims Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. Methods To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. Key Results In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. Conclusions Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion. PMID:22028464
Hiwatashi, Yuji; Sato, Yoshikatsu; Doonan, John H
2014-03-01
Microtubules (MTs) play a crucial role in the anisotropic deposition of cell wall material, thereby affecting the direction of growth. A wide range of tip-growing cells display highly polarized cell growth, and MTs have been implicated in regulating directionality and expansion. However, the molecular machinery underlying MT dynamics in tip-growing plant cells remains unclear. Here, we show that highly dynamic MT bundles form cyclically in the polarized expansion zone of the moss Physcomitrella patens caulonemal cells through the coalescence of growing MT plus ends. Furthermore, the plant-specific kinesins (KINID1) that are is essential for the proper MT organization at cytokinesis also regulate the turnover of the tip MT bundles as well as the directionality and rate of cell growth. The plus ends of MTs grow toward the expansion zone, and KINID1 is necessary for the stability of a single coherent focus of MTs in the center of the zone, whose formation coincides with the accumulation of KINID1. We propose that KINID-dependent MT bundling is essential for the correct directionality of growth as well as for promoting growth per se. Our findings indicate that two localized cell wall deposition processes, tip growth and cytokinesis, previously believed to be functionally and evolutionarily distinct, share common and plant-specific MT regulatory components.
Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A
2011-01-01
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.
Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua
2018-08-30
The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.
Passage of Trojan peptoids into plant cells.
Eggenberger, Kai; Birtalan, Esther; Schröder, Tina; Bräse, Stefan; Nick, Peter
2009-10-12
Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However, most of the research has been done by using mammalian cell cultures as model organisms and the actual cellular mechanism of membrane passage has not been elucidated. Plant cells, which are encased in a cellulosic cell wall and differ in membrane composition, represent an alternative experimental system to address this issue, but so far, have attracted only little attention for both peptide- and peptoid-based carrier systems. Moreover, efficient delivery of nonproteinaceous bioactive macromolecules into living plant cells could complement genetic engineering in biotechnological applications, such as metabolic engineering and molecular farming. In the present study, we investigated carrier peptoids with or without guanidinium side chains with regard to their uptake into plant cells, the cellular mechanism of uptake, and intracellular localization. We can show that in contrast to polyamine peptoids (polylysine-like) fluorescently labeled polyguanidine peptoids (polyarginine-like) enter rapidly into tobacco BY-2 cells without affecting the viability of these cells. A quantitative comparison of this uptake with endocytosis of fluorescently labeled dextranes indicates that the main uptake of the guanidinium peptoids occurs between 30-60 min after the start of incubation and clearly precedes endocytosis. Dual visualization with the endosomal marker FM4-64 shows that the intracellular guanidinium peptoid is distinct from endocytotic vesicles. Once the polyguanidine peptoids have entered the cell, they associate with actin filaments and microtubules. By pharmacological manipulation of the cytoskeleton we tested whether the association with the cytoskeleton is necessary for uptake, and observed that the actin inhibitor latrunculin B as well as the microtubule inhibitor oryzalin impaired uptake and intracellular spread of the guanidinium carrier to a certain extent. These findings are discussed with respect to the potential mechanisms of uptake and with respect to the potential of Trojan peptoids as tools for metabolic engineering in plant biotechnology.
NASA Astrophysics Data System (ADS)
Matía, Isabel; van Loon, Jack W. A.; Carnero-Díaz, Eugénie; Marco, Roberto; Medina, Francisco Javier
2009-01-01
The study of the modifications induced by altered gravity in functions of plant cells is a valuable tool for the objective of the survival of terrestrial organisms in conditions different from those of the Earth. We have used the system "cell proliferation-ribosome biogenesis", two inter-related essential cellular processes, with the purpose of studying these modifications. Arabidopsis seedlings belonging to a transformed line containing the reporter gene GUS under the control of the promoter of the cyclin gene CYCB1, a cell cycle regulator, were grown in a Random Positioning Machine, a device known to accurately simulate microgravity. Samples were taken at 2, 4 and 8 days after germination and subjected to biometrical analysis and cellular morphometrical, ultrastructural and immunocytochemical studies in order to know the rates of cell proliferation and ribosome biogenesis, plus the estimation of the expression of the cyclin gene, as an indication of the state of cell cycle regulation. Our results show that cells divide more in simulated microgravity in a Random Positioning Machine than in control gravity, but the cell cycle appears significantly altered as early as 2 days after germination. Furthermore, higher proliferation is not accompanied by an increase in ribosome synthesis, as is the rule on Earth, but the functional markers of this process appear depleted in simulated microgravity-grown samples. Therefore, the alteration of the gravitational environmental conditions results in a considerable stress for plant cells, including those not specialized in gravity perception.
Eggenberger, Kai; Mink, Christian; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter
2011-01-03
The delivery of externally applied macromolecules or nanoparticles into living cells still represents a critically limiting step before the full capabilities of chemical engineering can be explored. Molecular transporters such as cell-penetrating peptides, peptoids, and other mimetics can be used to carry cargo across the cellular membrane, but it is still difficult to find suitable sequences that operate efficiently for any particular type of cell. Here we report that BP100 (KKLFKKILKYL-amide), originally designed as an antimicrobial peptide against plant pathogens, can be employed as a fast and efficient cell-penetrating agent to transport fluorescent test cargoes into the cytosol of walled plant cells. The uptake of BP100 proceeds slightly more slowly than the endocytosis of fluorescent dextranes, but BP100 accumulates more efficiently and to much higher levels (by an order of magnitude). The entry of BP100 can be efficiently blocked by latrunculin B; this suggests that actin filaments are essential to the uptake mechanism. To test whether this novel transporter can also be used to deliver functional cargoes, we designed a fusion construct of BP100 with the actin-binding Lifeact peptide (MGVADLIKKFESISKEE). We demonstrated that the short BP100 could transport the attached 17-residue sequence quickly and efficiently into tobacco cells. The Lifeact construct retained its functionality as it successfully labeled the actin bundles that tether the nucleus in the cell center.
USDA-ARS?s Scientific Manuscript database
All fungal plant pathogens produce effectors to manipulate the plant immune system to colonize and gain nutrients from the plant cell. Much is known about how fungal pathogens classified as biotrophs use effectors to interact with their hosts and how the host responds, however, less is known about ...
Ahuja, Ishita; Borgen, Birgit Hafeld; Hansen, Magnor; Honne, Bjørn Ivar; Müller, Caroline; Rohloff, Jens; Rossiter, John Trevor; Bones, Atle Magnar
2011-01-01
Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate–myrosinase system or the ‘mustard oil bomb’. The ‘mustard oil bomb’ which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as ‘myrosin cells’ and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed. PMID:21778185
Cloning and functional expression of a plant voltage-dependent chloride channel.
Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C
1996-01-01
Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442
Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae.
Kinnaert, Christine; Daugaard, Mathilde; Nami, Faranak; Clausen, Mads H
2017-09-13
Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately, structurally defined oligosaccharides can be used as models for the glycans, to study processes such as cell wall biosynthesis, polysaccharide deposition, protein-carbohydrate interactions, and cell-cell adhesion. Synthetic chemists have focused on preparing such model compounds, as they can be produced in good quantities and with high purity. This Review contains an overview of those plant and algal polysaccharides that have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin, and arabinogalactans, as well as glycans unique to algae. Representative synthetic routes within each class are discussed in detail, and the progress in carbohydrate chemistry over recent decades is highlighted.
Blomme, Jonas; Van Aken, Olivier; Van Leene, Jelle; Jégu, Teddy; De Rycke, Riet; De Bruyne, Michiel; Vercruysse, Jasmien; Nolf, Jonah; Van Daele, Twiggy; De Milde, Liesbeth; Vermeersch, Mattias; des Francs-Small, Catherine Colas; De Jaeger, Geert; Benhamed, Moussa; Millar, A Harvey; Inzé, Dirk; Gonzalez, Nathalie
2017-05-01
In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development. © 2017 American Society of Plant Biologists. All rights reserved.
Stomatal movements in laurophyllous plants
NASA Astrophysics Data System (ADS)
Pautov, A. A.; Bauer, S. M.; Ivanova, O. V.; Sapach, Y. O.; Krylova, E. G.
2018-05-01
Stomata are the structural elements of plant epidermis which control transpiration and gas exchange. Each stoma consists of two guard cells divided by the stomatal aperture. These cells are capable of reversible deformations determining the width of aperture. It is known that these deformations depend on the value of turgor pressure in the guard cells and on the structure of their walls. In this work, the influence of the outer tangential wall geometry of the guard cells on stomatal movements is estimated by means of the finite element method in the ANSYS software. The application of modelling has shown that cuticular outgrowths on the tangential walls influence the degree and pattern of guard cell deformations. The outgrowths prevent wide opening of the stomatal aperture and cause its sinking deep into leaf epidermis. The functional significance of such stomatal movements is discussed. It is deduced that the discovered phenomenon had great importance to the survival of laurophyllous plants in conditions of aridization.
Mobile microRNAs hit the target.
Gursanscky, Nial R; Searle, Iain R; Carroll, Bernard J
2011-11-01
MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants. © 2011 John Wiley & Sons A/S.
Turning the Table: Plants Consume Microbes as a Source of Nutrients
Paungfoo-Lonhienne, Chanyarat; Rentsch, Doris; Robatzek, Silke; Webb, Richard I.; Sagulenko, Evgeny; Näsholm, Torgny
2010-01-01
Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles. PMID:20689833
Genetic ablation of root cap cells in Arabidopsis
NASA Technical Reports Server (NTRS)
Tsugeki, R.; Fedoroff, N. V.
1999-01-01
The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.
Cell wall evolution and diversity
Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.
2012-01-01
Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271
Proust, Hélène; Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Prescott, Helen; Kelly, Steve; Ishizaki, Kimitsune; Kohchi, Takayuki; Dolan, Liam
2016-01-11
The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6-9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10-12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mathew, Sindhu; Abraham, T Emilia
2004-01-01
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.
Plant Enhancers: A Call for Discovery.
Weber, Blaise; Zicola, Johan; Oka, Rurika; Stam, Maike
2016-11-01
Higher eukaryotes typically contain many different cell types, displaying different cellular functions that are influenced by biotic and abiotic cues. The different functions are characterized by specific gene expression patterns mediated by regulatory sequences such as transcriptional enhancers. Recent genome-wide approaches have identified thousands of enhancers in animals, reviving interest in enhancers in gene regulation. Although the regulatory roles of plant enhancers are as crucial as those in animals, genome-wide approaches have only very recently been applied to plants. Here we review characteristics of enhancers at the DNA and chromatin level in plants and other species, their similarities and differences, and techniques widely used for genome-wide discovery of enhancers in animal systems that can be implemented in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cotton fibers represent the largest single cell in the plant kingdom, and they have been used as a model to study cell function, differentiation, maturation, and cell death. The cotton fiber transcriptome can be clustered into two genomic regions: conserved and recombination hotspots. Genetic link...
Genomic landscape of fiber genes in fibered and non-fibered cottons
USDA-ARS?s Scientific Manuscript database
Cotton fiber is the largest single cell in the plant kingdom. It is the best model to study cell function, differentiation, maturation, and cell death. Cotton fiber transcriptome can be clustered into two types of regions: conservative areas and recombination hotspots. This study was to investig...
GAL4 transactivation-based assay for the detection of selective intercellular protein movement.
Kumar, Dhinesh; Chen, Huan; Rim, Yeonggil; Kim, Jae-Yean
2015-01-01
Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.
Plant TOR signaling components
John, Florian; Roffler, Stefan; Wicker, Thomas; Ringli, Christoph
2011-01-01
Cell growth is a process that needs to be tightly regulated. Cells must be able to sense environmental factors like nutrient abundance, the energy level or stress signals and coordinate growth accordingly. The Target Of Rapamycin (TOR) pathway is a major controller of growth-related processes in all eukaryotes. If environmental conditions are favorable, the TOR pathway promotes cell and organ growth and restrains catabolic processes like autophagy. Rapamycin is a specific inhibitor of the TOR kinase and acts as a potent inhibitor of TOR signaling. As a consequence, interfering with TOR signaling has a strong impact on plant development. This review summarizes the progress in the understanding of the biological significance and the functional analysis of the TOR pathway in plants. PMID:22057328
Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong
2015-01-01
Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.
Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming
2016-01-28
WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Pyke, K; Zubko, M K; Day, A
2000-10-01
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.
de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice
2015-11-01
Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Corpas, Francisco J; Barroso, Juan B; Carreras, Alfonso; Valderrama, Raquel; Palma, José M; León, Ana M; Sandalio, Luisa M; del Río, Luis A
2006-07-01
Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from L-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types.
Zhou, Bangjun; Zeng, Lirong
2018-01-01
Plants have evolved a sophisticated innate immune system to contend with potential infection by various pathogens. Understanding and manipulation of key molecular mechanisms that plants use to defend against various pathogens are critical for developing novel strategies in plant disease control. In plants, resistance to attempted pathogen infection is often associated with hypersensitive response (HR), a form of rapid programmed cell death (PCD) at the site of attempted pathogen invasion. In this chapter, we describe a method for rapid identification of genes that are essential for plant innate immunity. It combines virus-induced gene silencing (VIGS), a tool that is suitable for studying gene function in high-throughput, with the utilization of immunity-associated PCD, particularly HR-linked PCD as the readout of changes in plant innate immunity. The chapter covers from the design of gene fragment for VIGS, the agroinfiltration of the Nicotiana benthamian plants, to the use of immunity-associated PCD induced by twelve elicitors as the indicator of activation of plant immunity.
Quantification of plant cell coupling with live-cell microscopy.
Liesche, Johannes; Schulz, Alexander
2015-01-01
Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule's capacity to pass a specific cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells.The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection of three-dimensional (3D) time series. These contain all necessary functional and anatomical data to measure cell coupling in complex tissues noninvasively.
Khew, Choy-Yuen; Teo, Chin-Jit; Chan, Wai-Sun; Wong, Hann-Ling; Namasivayam, Parameswari; Ho, Chai-Ling
2015-06-15
Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells. Copyright © 2015 Elsevier GmbH. All rights reserved.
Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning
2015-01-01
In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8–14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station. PMID:27135317
Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning
2015-01-20
In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8-14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station.
A reference map of the Arabidopsis thaliana mature pollen proteome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noir, Sandra; Braeutigam, Anne; Colby, Thomas
The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of themore » identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.« less
USDA-ARS?s Scientific Manuscript database
Basal endosperm transfer cells (BETCs) constitute one of the four cell types in an endosperm with a major role in solute acquisition and transport functions from the mother plant. The BETCs with their wall-in-growth (WIG) feature that greatly increase plasma membrane area of each cell are critical f...
A System for Modelling Cell–Cell Interactions during Plant Morphogenesis
Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim
2008-01-01
Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524
NASA Astrophysics Data System (ADS)
Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf
2002-04-01
Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.
Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi
USDA-ARS?s Scientific Manuscript database
In some plant pathogenic fungi, turgor pressure accumulation in appressoria produces a mechanical force enabling the direct penetration of hyphae through the plant cell epidermis. Melanin has been reported to function as an impermeable barrier to osmolytes, which allow appressoria to accumulate high...
Polyamines: Biomolecules with diverse functions in plant and human health and disease
USDA-ARS?s Scientific Manuscript database
The literature abounds with solid evidence that affirms the ubiquitous presence of biogenic amines - polyamines, particularly spermidine and spermine, in all living cells together with their indispensable roles in many biochemical and physiological processes beneficial to plants as well as human hea...
Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang
2003-01-01
Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519
Boutant, Emmanuel; Fitterer, Chantal; Ritzenthaler, Christophe; Heinlein, Manfred
2009-10-01
Cell-to-cell movement of Tobacco mosaic virus (TMV) involves the interaction of virus-encoded 30-kDa movement protein (MP) with microtubules. In cells behind the infection front that accumulate high levels of MP, this activity is reflected by the formation of stabilized MP/microtubule complexes. The ability of MP to bind along and stabilize microtubules is conserved upon expression in mammalian cells. In mammalian cells, the protein also leads to inhibition of mitosis and cell division through a microtubule-independent process correlated with the loss of centrosomal gamma-tubulin and of centrosomal microtubule-nucleation activity. Since MP has the capacity to interact with plant factors involved in microtubule nucleation and dynamics, we used inducible expression in BY-2 cells to test whether MP expression inhibits mitosis and cell division also in plants. We demonstrate that MP:GFP associates with all plant microtubule arrays and, unlike in mammalian cells, does not interfere with mitosis. Thus, MP function and the interaction of MP with factors of the cytoskeleton do not entail an inhibition of mitosis in plants. We also report that the protein targets primary plasmodesmata in BY-2 cells immediately upon or during cytokinesis and that the accumulation of MP in plasmodesmata occurs in the presence of inhibitors of the cytoskeleton and the secretory pathway.
Organization and function of the actin cytoskeleton in developing root cells.
Blancaflor, Elison B; Wang, Yuh-Shuh; Motes, Christy M
2006-01-01
The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.
Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J
2014-12-05
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
[Structural and functional organization of centromeres in plant chromosomes].
Silkova, O G; Loginova, D B
2014-12-01
The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.
Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology
Balduzzi, Mathilde; Binder, Brad M.; Bucksch, Alexander; Chang, Cynthia; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Pradal, Christophe; Sparks, Erin E.
2017-01-01
An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications. PMID:28217137
Teper, Doron; Salomon, Dor; Sunitha, Sukumaran; Kim, Jung-Gun; Mudgett, Mary Beth; Sessa, Guido
2014-01-01
Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Pompa, Andrea; De Marchis, Francesca; Pallotta, Maria Teresa; Benitez-Alfonso, Yoselin; Jones, Alexandra; Schipper, Kerstin; Moreau, Kevin; Žárský, Viktor; Di Sansebastiano, Gian Pietro; Bellucci, Michele
2017-01-01
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes. PMID:28346345
Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie
2017-01-01
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis , presumably by perception of unknown ligand(s).
Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie
2017-01-01
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277
A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors
Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther
2015-01-01
The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589
Yoshioka, Miki; Fukazawa, Aya; Nishizawa, Naoko K.
2017-01-01
Reactive oxygen species (ROS) produced by the NADPH oxidase, respiratory burst oxidase homolog (RBOH), trigger signal transduction in diverse biological processes in plants. However, the functions of RBOH homologs in rice (Oryza sativa) and other gramineous plants are poorly understood. Ethylene induces the formation of lysigenous aerenchyma, which consists of internal gas spaces created by programmed cell death of cortical cells, in roots of gramineous plants under oxygen-deficient conditions. Here, we report that, in rice, one RBOH isoform (RBOHH) has a role in ethylene-induced aerenchyma formation in roots. Induction of RBOHH expression under oxygen-deficient conditions was greater in cortical cells than in cells of other root tissues. In addition, genes encoding group I calcium-dependent protein kinases (CDPK5 and CDPK13) were strongly expressed in root cortical cells. Coexpression of RBOHH with CDPK5 or CDPK13 induced ROS production in Nicotiana benthamiana leaves. Inhibitors of RBOH activity or cytosolic calcium influx suppressed ethylene-induced aerenchyma formation. Moreover, knockout of RBOHH by CRISPR/Cas9 reduced ROS accumulation and inducible aerenchyma formation in rice roots. These results suggest that RBOHH-mediated ROS production, which is stimulated by CDPK5 and/or CDPK13, is essential for ethylene-induced aerenchyma formation in rice roots under oxygen-deficient conditions. PMID:28351990
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk
2017-05-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Mapping local and global variability in plant trait distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc
2017-12-01
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusingmore » on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m) and phosphorus (P m), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.« less
Mapping local and global variability in plant trait distributions.
Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian; Reich, Peter B
2017-12-19
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Nitric Oxide (NO) Measurements in Stomatal Guard Cells.
Agurla, Srinivas; Gayatri, Gunja; Raghavendra, Agepati S
2016-01-01
The quantitative measurement of nitric oxide (NO) in plant cells acquired great importance, in view of the multifaceted function and involvement of NO as a signal in various plant processes. Monitoring of NO in guard cells is quite simple because of the large size of guard cells and ease of observing the detached epidermis under microscope. Stomatal guard cells therefore provide an excellent model system to study the components of signal transduction. The levels and functions of NO in relation to stomatal closure can be monitored, with the help of an inverted fluorescence or confocal microscope. We can measure the NO in guard cells by using flouroprobes like 4,5-diamino fluorescein diacetate (DAF-2DA). This fluorescent dye, DAF-2DA, is cell permeable and after entry into the cell, the diacetate group is removed by the cellular esterases. The resulting DAF-2 form is membrane impermeable and reacts with NO to generate the highly fluorescent triazole (DAF-2T), with excitation and emission wavelengths of 488 and 530 nm, respectively. If time-course measurements are needed, the epidermis can be adhered to a cover-glass or glass slide and left in a small petri dishes. Fluorescence can then be monitored at required time intervals; with a precaution that excitation is done minimally, only when a fluorescent image is acquired. The present method description is for the epidermis of Arabidopsis thaliana and Pisum sativum and should work with most of the other dicotyledonous plants.
Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling
2015-01-01
Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.
Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review.
Asadi-Samani, Majid; Bagheri, Nader; Rafieian-Kopaei, Mahmoud; Shirzad, Hedayatollah
2017-08-01
Searching for new natural drugs that are capable of targeting Th1 and Th17 may lead to development of more effective treatments for inflammatory and autoimmune diseases. Most of the natural drugs can be derived from plants that are used in traditional medicine and folk medicine. The aim of this systematic review is to identify and introduce plants or plant derivatives that are effective on inflammatory diseases by inhibiting Th1 and Th17 responses. To achieve this purpose, the search terms herb, herbal medicine, herbal drug, medicinal plant, phytochemical, traditional Chinese medicine, Ayurvedic medicine, natural compound, inflammation, inflammatory diseases, Th1, Th17, T helper 1 or T helper 17 were used separately in Title/Keywords/Abstract in Web of Science and PubMed databases. In articles investigating the effect of the medicinal plants and their derivatives in inhibiting Th1 and Th17 cells, the effects of eight extracts of the medicinal plants, 21 plant-based compounds and some of their derivatives, and eight drugs derived from the medicinal plants' compounds in inhibiting Th1 and Th17 cells were reviewed. The results showed that medicinal plants and their derivates are able to suppress Th17 and Th1 T cell functions as well as cytokine secretion and differentiation. The results can be used to produce herbal drugs that suppress Th, especially Th17, responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mann, Krin S; Johnson, Karyn N; Dietzgen, Ralf G
2015-02-01
RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
The Secretory System of Arabidopsis
Bassham, Diane C.; Brandizzi, Federica; Otegui, Marisa S.; Sanderfoot, Anton A.
2008-01-01
Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role—a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system. PMID:22303241
Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles
Kurepa, Jasmina; Nakabayashi, Ryo; Paunesku, Tatjana; Suzuki, Makoto; Saito, Kazuki; Woloschak, Gayle E.; Smalle, Jan A.
2013-01-01
Summary Surface functionalization of nanoparticles has become an important tool for the in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate and enrich bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules carrying enediol and especially catechol groups. We show that these nanoparticles can enter plant cells, conjugate enediol and catechol group-rich flavonoids in situ, and exit plant cells as flavonoid-nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, the quercetin-based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and offers a new avenue for the use of nanomaterials for the coupled isolation and testing of bioactive properties of plant-made compounds. PMID:24147867
Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko
2001-01-01
Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567
Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong
2013-04-01
Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses.
Janicka, Małgorzata; Wdowikowska, Anna; Kłobus, Grażyna
2018-01-01
Plasma membrane (PM) H + -ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented. Such great diversity of physiological functions linked to the activity of one enzyme requires a suitable and complex regulation of H + -ATPase. This regulation comprises the transcriptional as well as post-transcriptional levels. Herein, we describe the techniques that can be useful for the analysis of the plasma membrane proton pump modifications at genetic and protein levels under environmental factors.
Krtková, Jana; Zimmermann, Aleksandra; Schwarzerová, Kateřina; Nick, Peter
2012-09-15
Microtubules (MTs) are essential for many processes in plant cells. MT-associated proteins (MAPs) influence MT polymerization dynamics and enable them to perform their functions. The molecular chaperone Hsp90 has been shown to associate with MTs in animal and plant cells. However, the role of Hsp90-MT binding in plants has not yet been investigated. Here, we show that Hsp90 associates with cortical MTs in tobacco cells and decorates MTs in the phragmoplast. Further, we show that tobacco Hsp90_MT binds directly to polymerized MTs in vitro. The inhibition of Hsp90 by geldanamycin (GDA) severely impairs MT re-assembly after cold-induced de-polymerization. Our results indicate that the plant Hsp90 interaction with MTs plays a key role in cellular events, where MT re-organization is needed. Copyright © 2012 Elsevier GmbH. All rights reserved.
Hewezi, Tarek
2015-10-01
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.
Boron in plants: deficiency and toxicity.
Camacho-Cristóbal, Juan J; Rexach, Jesús; González-Fontes, Agustín
2008-10-01
Boron (B) is an essential nutrient for normal growth of higher plants, and B availability in soil and irrigation water is an important determinant of agricultural production. To date, a primordial function of B is undoubtedly its structural role in the cell wall; however, there is increasing evidence for a possible role of B in other processes such as the maintenance of plasma membrane function and several metabolic pathways. In recent years, the knowledge of the molecular basis of B deficiency and toxicity responses in plants has advanced greatly. The aim of this review is to provide an update on recent findings related to these topics, which can contribute to a better understanding of the role of B in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, T.
A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.
Honys, David
2017-01-01
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants. PMID:29131847
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke
2017-01-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173
Huang, Yanhua; Cui, Xin; Cen, Huifang; Wang, Kehua; Zhang, Yunwei
2018-04-10
Intracellular Na + (K + )/H + antiporters (NHXs) have pivotal functions in regulating plant growth, development, and resistance to a range of stresses. To gain insight into the molecular events underlying their actions in switchgrass (Panicum virgatum L.), we analyzed transcriptomic changes between PvNHX1-overexpression transgenic lines and wild-type (WT) plants using RNA sequencing (RNA-seq) technology. The comparison of transcriptomic data from the WT and transgenic plants revealed a large number of differentially expressed genes (DEGs) in the latter. Gene ontology (GO) and KEGG pathway analyses showed that these DEGs were associated with a wide range of functions, and participated in many biological processes. For example, we found that PvNHX1 had an important role in plant growth through its regulation of photosynthetic activity and cell expansion. In addition, PvNHX1 regulated K + homeostasis, cell expansion and pollen development, indicating that it has unique and specific roles in flower development. We also found that transgenic switchgrass exhibited a higher level of transcription of defense-related genes, especially those involved in disease resistance. We showed that PvNHX1 had an important role in plant growth and development through its regulation of photosynthetic activity, cell expansion, K + homeostasis, and pollen development. Additionally, PvNHX1 overexpression activated a complex signal transduction network in response to various biotic and abiotic stresses. In relation to plant growth, development, and defense responses, PvNHX1 also had a vital regulatory role in the formation of a series of plant hormones and transcription factors (TFs). The reliability of the RNA-seq data was confirmed by quantitative real-time PCR. Our data provide a valuable foundation for further research into the molecular mechanisms and physiological roles of NHXs in plants.
Susaki, Daichi; Takeuchi, Hidenori; Tsutsui, Hiroki; Kurihara, Daisuke; Higashiyama, Tetsuya
2015-05-01
The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
New Insights Into “Plant Memories”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanbonmatsu, Karissa
A special stretch of ribonucleic acid (RNA) called COOLAIR is revealing its inner structure and function to scientists, displaying a striking resemblance to an RNA molecular machine, territory previously understood to be limited to the cells’ protein factory (the ‘ribosome’) and not a skill set given to mere strings of RNA. “We are uncovering the nuts and bolts of plant memories,” said Karissa Sanbonmatsu of Los Alamos National Laboratory, lead author on a new article this week in the journal Cell Reports. In the past 5 years or so, material in the cell known as “junk DNA” had actually turnedmore » out not to be junk at all. Instead, it was shown to produce RNA molecules that play key roles in the development of organs in the embryo, as well as affecting cancer, brain function and plant biology.« less
Methanol May Function as a Cross-Kingdom Signal
Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.
2012-01-01
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation. PMID:22563443
Wang, Zhen; Wang, Xiaomin; Xie, Bo; Hong, Zonglie; Yang, Qingchuan
2018-06-01
In mammals, nucleostemin (NS), a nucleolar GTPase, is involved in stem cell proliferation, embryogenesis and ribosome biogenesis. Arabidopsis NUCLEOSTEMIN-LIKE 1 (NSN1) has previously been shown to be essential for plant growth and development. However, the role of NSN1 in cell proliferation is largely unknown. Using nsn1, a loss-of-function mutant of Arabidopsis NSN1, we investigated the function of NSN1 in plant cell proliferation and cell cycle regulation. Morphologically, nsn1 exhibited developmental defects in both leaves and roots, producing severely reduced vegetative organs with a much smaller number of cells than those in the wild type. Dynamic analysis of leaf and root growth revealed a lower cell proliferation rate and slower cell division in nsn1. Consistently, the transcriptional levels of key cell cycle genes, including those regulating the transition of G1-S and G2-M, were reduced drastically in nsn1. The introduction of CYCLIN B1::GUS into nsn1 resulted in confined expression of GUS in both the leaf primordia and root meristem, indicating that cell proliferation was hampered by the mutation of NSN1. Upon subjection to treatment with bleomycin and methyl methanesulfonate (MMS), nsn1 plants exhibited hypersensitivity to the genotoxic agents. In the nucleus, NSN1 interacted with nucleosome assembly protein1 (AtNAP1;1), a highly conserved histone chaperone functioning in cell proliferation. Notably, the N-terminal conserved domains of Arabidopsis NSN1 were critical for the physical interaction. As a conserved homolog of mammalian nucleostemin, Arabidopsis NSN1 plays pivotal roles in embryogenesis and ribosome biogenesis. In this study, NSN1 was found to function as a positive regulator in cell cycle progression. The interaction between NSN1 and histone chaperone AtNAP1;1, and the high resemblance in sensitivity to genotoxics between nsn1 and atnap1;1 imply the indispensability of the two nuclear proteins for cell cycle regulation. This work provides an insight into the delicate control of cell proliferation through the cooperation of a GTP-binding protein with a nucleosome assembly/disassembly protein in Arabidopsis.
Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Cabrera-Ponce, José L.; Hinojosa-Moya, Jesús; Ruiz-Salas, Jorge L.; Galván-Gordillo, Santiago V.; Guevara-González, Ramón G.; Ruiz-Medrano, Roberto
2015-01-01
The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species. PMID:26191065
[LEAFY, a master regulator of flower development].
Vachon, Gilles; Tichtinsky, Gabrielle; Parcy, François
2012-01-01
Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants. © Société de Biologie, 2012.
Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes
Bridges, Dave; Fraser, Marie E; Moorhead, Greg BG
2005-01-01
Background Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules. Results Our analysis found that several ion channels and a class of thioesterases constitute the possible cyclic nucleotide binding proteins in plants. Contrary to some reports, we found no biochemical or bioinformatic evidence for a plant cyclic nucleotide regulated protein kinase, suggesting that cyclic nucleotide functions in plants have evolved differently than in mammals. Conclusion This paper provides a molecular framework for the discussion of cyclic nucleotide function in plants, and resolves a longstanding debate about the presence of a cyclic nucleotide dependent kinase in plants. PMID:15644130
Erwinia amylovora effector protein Eop1 suppresses PAMP-triggered immunity in Malus
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora (Ea) utilizes a type three secretion system (T3SS) to deliver effector proteins into plant host cells. Several Ea effectors have been identified based on their sequence similarity to plant and animal bacterial pathogen effectors; however, the function of the majority of Ea effecto...
Martín, I; Jiménez, T; Hernández-Nistal, J; Dopico, B; Labrador, E
2011-09-01
We report localisation of the chickpea βI-Gal, a member of the chickpea β-galactosidase family, which contains at least four members. After generation of specific antibodies, the distribution and cellular immunolocalisation of the protein in different organs and developmental stages of the plant was studied. βI-Gal protein is much longer than the other chickpea β-galactosidases because of the presence of a lectin-like domain in the carboxyl terminus of the protein. Western blot experiments indicated that the active βI-Gal retains this lectin-like domain for its function in the plant. The βI-Gal protein was mainly detected in cell walls of elongating organs, such as seedling epicotyls and stem internodes. An immunolocation study indicated a very good correlation between the presence of this βΙ-galactosidase and cells whose walls are thickening, not only in aged epicotyls and mature internodes in the final phase of elongation, but mostly in cells with a support function, such as collenchyma cells, xylem and phloem fibres and a layer of sclerenchyma cells surrounding the vascular cylinder (perivascular fibres). These results could suggest a function for the βI-Gal in modification of cell wall polymers, leading to thicker walls than the primary cell walls. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kwon, Soon Il; Cho, Hong Joo; Kim, Sung Ryul; Park, Ohkmae K.
2013-01-01
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD. PMID:23404918
Reconstructing relative genome size of vascular plants through geological time.
Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A
2014-01-01
The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
A Plasmodesmal Glycosyltransferase-Like Protein
Zalepa-King, Lisa; Citovsky, Vitaly
2013-01-01
Plasmodesmata (Pd) are plant intercellular connections that represent cytoplasmic conduits for a wide spectrum of cellular transport cargoes, from ions to house-keeping proteins to transcription factors and RNA silencing signals; furthermore, Pd are also utilized by most plant viruses for their spread between host cells. Despite this central role of Pd in the plant life cycle, their structural and functional composition remains poorly characterized. In this study, we used a known Pd-associated calreticulin protein AtCRT1 as bait to isolate other Pd associated proteins in Arabidopsis thaliana. These experiments identified a beta-1,6-N-acetylglucosaminyl transferase-like enzyme (AtGnTL). Subcellular localization studies using confocal microscopy observed AtGnTL at Pd within living plant cells and demonstrated colocalization with a Pd callose-binding protein (AtPDCB1). That AtGnTL is resident in Pd was consistent with its localization within the plant cell wall following plasmolysis. Initial characterization of an Arabidopsis T-DNA insertional mutant in the AtGnTL gene revealed defects in seed germination and delayed plant growth. PMID:23469135
Kamisaka, Seiichiro
2003-08-01
Organisms borne in the primitive sea about 30 million years ago had evolved in water without a large influence of gravity on earth. About 4 million years ago, the first terrestrial organisms, plants appeared on the land from the sea. The terrestrial plants have adapted to and evolved on the land environment so that they can extend their roots downward in soil and their shoots upward against 1 g gravity. At least two functions that were acquired during the process of evolution helped the terrestrial plants to adapt to gravity environment on earth. One is gravitropism. The other is the reinforcement of the cell wall, particularly the secondary cell wall. In the present feature articles, the molecular mechanism of the adaptation of terrestrial plants to gravity environment on earth will be reviewed, paying special attention to the mechanism of the genetic control of the signaling of gravity stimulus in gravitropism, automorphogenesis, genes involved in auxin transport, gravity effect on cell wall properties and gravimorphogenesis in terrestrial plants.
Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan
2015-11-01
Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.
Rawat, Anamika; Brejšková, Lucie; Hála, Michal; Cvrčková, Fatima; Žárský, Viktor
2017-10-01
The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.
Rodríguez-Celma, Jorge; Ceballos-Laita, Laura; Grusak, Michael A; Abadía, Javier; López-Millán, Ana-Flor
2016-08-01
The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Secondary metabolites in plant innate immunity: conserved function of divergent chemicals.
Piasecka, Anna; Jedrzejczak-Rey, Nicolas; Bednarek, Paweł
2015-05-01
Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Local gene silencing in plants via synthetic dsRNA and carrier peptide.
Numata, Keiji; Ohtani, Misato; Yoshizumi, Takeshi; Demura, Taku; Kodama, Yutaka
2014-10-01
Quick and facile transient RNA interference (RNAi) is one of the most valuable plant biotechnologies for analysing plant gene functions. To establish a novel double-strand RNA (dsRNA) delivery system for plants, we developed an ionic complex of synthetic dsRNA with a carrier peptide in which a cell-penetrating peptide is fused with a polycation sequence as a gene carrier. The dsRNA-peptide complex is 100-300 nm in diameter and positively charged. Infiltration of the complex into intact leaf cells of Arabidopsis thaliana successfully induced rapid and efficient down-regulation of exogenous and endogenous genes such as yellow fluorescent protein and chalcone synthase. The present method realizes quick and local gene silencing in specific tissues and/or organs in plants. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Nitric oxide signalling via cytoskeleton in plants.
Yemets, Alla I; Krasylenko, Yuliya A; Lytvyn, Dmytro I; Sheremet, Yarina A; Blume, Yaroslav B
2011-11-01
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Angus Stuart
2014-09-23
Efforts to manipulate production of plant secondary cell walls to improve the quality of biofuel feedstocks are currently limited by an inability to regulate the transport of small molecule components out of the cell. Plant ABCB p-glycoproteins are a small family of plasma membrane organic molecule transporters that have become primary targets for this effort, as they can potentially be harnessed to control the export of aromatic compounds and organic acids. However, unlike promiscuous mammalian ABCBs that function in multidrug resistance, all plant ABCB proteins characterized to date exhibit relatively narrow substrate specificity. Although ABCBs exhibit a highly conserved architecture,more » efforts to modify ABCB activity have been hampered by a lack of structural information largely because an eukaryotic ABCB protein crystal structure has yet to be obtained. Structure/ function analyses have been further impeded by the lack of a common heterologous expression system that can be used to characterize recombinant ABCB proteins, as many cannot be functionally expressed in S. cereviseae or other systems where proteins with analogous function can be readily knocked out. Using experimentally-determined plant ABCB substrate affinities and the crystal structure of the bacterial Sav1866 “half” ABC transporter, we have developed sequence/structure models for ABCBs that provide a testable context for mutational analysis of plant ABCB transporters. We have also developed a flexible heterologous expression system in Schizosaccharomyces pombe in which all endogenous ABC transporters have been knocked out. The effectiveness of this system for transport studies has been demonstrated by the successful functional expression all of the known PIN, AUX/LAX and ABCB auxin transporters. Our central hypothesis is that the domains of the ABCB proteins that we have identified as substrate docking sites and regulators of transport directionality can be altered or swapped to alter the transport characteristics of the proteins. We propose to combine computer modelling, mutational analyses, and complementation of well characterized Arabidopsis abcb4,14,and 19 mutants to elucidate ABCB function. The long term objective of this project is to enhance ABCB transport of cell wall components, to manipulate the direction of ABCB substrate transport, and, ultimately, to produce “designer” ABC transporters that can be used to modify plant feedstock quality.« less
Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won
2011-08-01
Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.
Lacey, Randy F; Binder, Brad M
2016-08-01
Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. © 2016 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhongchi Liu
2004-10-01
Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to themore » molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age, massive programmed cell death, and the release of transcriptional gene silencing. Our data suggests that plants can initiate programmed cell death to eliminate damaged cells despite the absence of p53 in plant genome.« less
Bauer, Georg; Speck, Thomas
2012-01-01
Background and Aims The functions of plant latex have been discussed for a long time. Today, many studies support a defence mechanism as being its main function. A role as a self-healing mechanism was never attributed to the coagulation of latex. In this study we quantified the contribution of the coagulation of Ficus benjamina (weeping fig) latex to a restoration of the mechanical properties of the bark after external lesions. Methods Tensile tests of F. benjamina bark were conducted either immediately after injury or at various latency times after injury. Key Results A significant increase in the tensile strength of bark samples until 30 min after injury was found, and this effect could be attributed to the coagulation of plant latex alone. The tensile strength remains nearly constant until several hours or days after injury. Then, very probably due to other mechanisms such as cell growth and cell proliferation, the tensile strength begins to increase slightly again. Conclusions The coagulation of latex seals lesions and serves as a quick and effective pre-step of subsequent, more effective, long-lasting self-healing mechanisms such as cell growth and proliferation. Thus, a fast self-healing effect can be included in the list of functions of plant latex. PMID:22207613
Bauer, Georg; Speck, Thomas
2012-03-01
The functions of plant latex have been discussed for a long time. Today, many studies support a defence mechanism as being its main function. A role as a self-healing mechanism was never attributed to the coagulation of latex. In this study we quantified the contribution of the coagulation of Ficus benjamina (weeping fig) latex to a restoration of the mechanical properties of the bark after external lesions. Tensile tests of F. benjamina bark were conducted either immediately after injury or at various latency times after injury. A significant increase in the tensile strength of bark samples until 30 min after injury was found, and this effect could be attributed to the coagulation of plant latex alone. The tensile strength remains nearly constant until several hours or days after injury. Then, very probably due to other mechanisms such as cell growth and cell proliferation, the tensile strength begins to increase slightly again. The coagulation of latex seals lesions and serves as a quick and effective pre-step of subsequent, more effective, long-lasting self-healing mechanisms such as cell growth and proliferation. Thus, a fast self-healing effect can be included in the list of functions of plant latex.
Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.
Mikami, Masafumi; Toki, Seiichi; Endo, Masaki
2015-10-01
Frequency of CRISPR/Cas9-mediated targeted mutagenesis varies depending on Cas9 expression level and culture period of rice callus. Recent reports have demonstrated that the CRISPR/Cas9 system can function as a sequence-specific nuclease in various plant species. Induction of mutation in proliferating tissue during embryogenesis or in germline cells is a practical means of generating heritable mutations. In the case of plant species in which cultured cells are used for transformation, non-chimeric plants can be obtained when regeneration occurs from mutated cells. Since plantlets are regenerated from both mutated and non-mutated cells in a random manner, any increment in the proportion of mutated cells in Cas9- and guide RNA (gRNA)-expressing cells will help increase the number of plants containing heritable mutations. In this study, we examined factors affecting mutation frequency in rice calli. Following sequential transformation of rice calli with Cas9- and gRNA- expression constructs, the mutation frequency in independent Cas9 transgenic lines was analyzed. A positive correlation between Cas9 expression level and mutation frequency was found. This positive relationship was observed regardless of whether the transgene or an endogenous gene was used as the target for CRISPR/Cas9-mediated mutagenesis. Furthermore, we found that extending the culture period increased the proportion of mutated cells as well as the variety of mutations obtained. Because mutated and non-mutated cells might proliferate equally, these results suggest that a prolonged tissue culture period increases the chance of inducing de novo mutations in non-mutated cells. This fundamental knowledge will help improve systems for obtaining non-chimeric regenerated plants in many plant species.
Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions
Corpas, Francisco J.; Barroso, Juan B.
2015-01-01
The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants. PMID:27135326
Xu, Guoyong; Li, Sizhun; Xie, Ke; Zhang, Qiang; Wang, Yan; Tang, Yang; Liu, Dong; Hong, Yiguo; He, Chenyang; Liu, Yule
2012-10-01
The hypersensitive response (HR), a form of programmed cell death (PCD), is a tightly regulated innate immune response in plants that is hypothesized to restrict pathogen growth and disease development. Although considerable efforts have been made to understand HR PCD, it remains unknown whether the retrograde pathway from the Golgi to the endoplasmic reticulum (ER) is involved. Here we provide direct genetic evidence that two Nicotiana benthamiana homologs, ERD2a and ERD2b, function as ER luminal protein receptors and participate in HR PCD. Virus-induced gene silencing (VIGS) of ERD2a and/or ERD2b caused escape of ER-resident proteins from the ER, and resulted in plants that were more sensitive to ER stress. Silencing of ERD2b delayed HR PCD induced by the non-host pathogens Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato DC3000. However, both silencing of ERD2a and co-silencing of ERD2a and ERD2b exacerbated HR PCD. Individual and combined suppression of ERD2a and ERD2b exaggerated R gene-mediated cell death. Nevertheless, silencing of ERD2a and/or ERD2b had no detectable effects on bacterial growth. Furthermore, VIGS of several putative ligands of ERD2a/2b, including the ER quality control (ERQC) component genes BiP, CRT3 and UGGT, had different effects on HR PCD induced by different pathogens. This indicates that immunity-related cell death pathways are separate with respect to the genetic requirements for these ERQC components. These results suggest that ERD2a and ERD2b function as ER luminal protein receptors to ensure ERQC and alleviate ER stress, thus affecting HR PCD during the plant innate immune response. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Immunity: plants as effective mediators.
Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul
2014-01-01
In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.
2013-01-01
Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495
Van der Does, Dieuwertje; Boutrot, Freddy; Vernhettes, Samantha; Tintor, Nico; Veerabagu, Manikandan; Miedes, Eva; Segonzac, Cécile; Hardtke, Christian S.; Molina, Antonio; Höfte, Herman; Hamann, Thorsten
2017-01-01
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues. PMID:28604776
Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie
2016-04-01
To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TORII, Keiko U.
2012-05-01
Higher plants constitute the central resource for renewable lignocellulose biomass that can supplement for the world's depleting stores of fossil fuels. As such, understanding the molecular and genetic mechanisms of plant organ growth will provide key knowledge and genetic resources that enables manipulation of plant biomass feedstock for better growth and productivity. The goal of this proposal is to understand how cell proliferation and growth are coordinated during aboveground organ morphogenesis, and how cell-cell signaling mediated by a family of receptor kinases coordinates plant organogenesis. The well-established model plant Arabidopsis thaliana is used for our research to facilitate rapid progress.more » Specifically, we focus on how ERECTA-family leucine-rich repeat receptor kinases (LRR-RLKs) interact in a synergistic manner to promote organogenesis and pattern formation in Arabidopsis. This project was highly successful, resulted in fourteen publications including nine peer-reviewed original research articles. One provisional US patent has been filed through this DOE funding. We have addressed the critical roles for a family of receptor kinases in coordinating proliferation and differentiation of plants, and we successfully elucidated the downstream targets of this signaling pathway in specifying stomatal patterning.« less
Airaki, Morad; Sánchez-Moreno, Lourdes; Leterrier, Marina; Barroso, Juan B; Palma, José M; Corpas, Francisco J
2011-11-01
Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-11-18
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. M. Kathryn Barton
2011-11-29
The shoot apical meristems of land plants are small mounds of hundreds of cells located at the tips of branches. It is from these small clusters of cells that essentially all above ground plant biomass and therefore much of our energy supply originates. Several key genes have been discovered that are necessary for cells in the shoot apical meristem to take on stem cell properties. The goal of this project is to understand how the synthesis and accumulation of the mRNAs and proteins encoded by these genes is controlled. A thorough understanding of the molecules that control the growth ofmore » shoot apical meristems in plants will help us to manipulate food, fiber and biofuel crops to better feed, clothe and provide energy for humans.« less
PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.
Barkla, Bronwyn J.; Pantoja, Omar
1996-06-01
The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.
Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep
2015-11-01
Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.
2017-01-01
Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
Lee, Joohyun; Bae, Hyunju; Jeong, Jeeyon; Lee, Jae-Yun; Yang, Young-Yell; Hwang, Inhwan; Martinoia, Enrico; Lee, Youngsook
2003-01-01
Large parts of agricultural soil are contaminated with lead (Pb) and cadmium (Cd). Although most environments are not heavily contaminated, the low levels observed nonetheless pose a high risk of heavy metal accumulation in the food chain. Therefore, approaches to develop plants with reduced heavy metal uptake are important. Recently, many transgenic plants with increased heavy metal resistance and uptake of heavy metals were developed for the purpose of phytoremediation. However, to reduce heavy metal in the food chain, plants that transfer less heavy metals to the shoot are required. We tested whether an Escherichia coli gene, ZntA, which encodes a Pb(II)/Cd(II)/Zn(II) pump, could be useful for developing plants with reduced heavy metal content. Yeast cells transformed with this gene had improved resistance to Pb(II) and Cd(II). In Arabidopsis plants transformed with ZntA, ZntA was localized at the plasma membrane and improved the resistance of the plants to Pb(II) and Cd(II). The shoots of the transgenic plants had decreased Pb and Cd content. Moreover, the transgenic protoplasts showed lower accumulation of Cd and faster release of preloaded Cd than wild-type protoplasts. These results show that a bacterial transporter gene, ZntA, can be functionally expressed in plant cells, and that that it may be useful for the development of crop plants that are safe from heavy metal contamination. PMID:14512517
The intriguing plant nuclear lamina.
Ciska, Malgorzata; Moreno Díaz de la Espina, Susana
2014-01-01
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie
2014-01-01
The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.
Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil
2013-01-01
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830
Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann
2016-01-01
Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531
Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven
2015-01-01
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.
Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.
Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje
2011-11-01
Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.
Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura
2017-12-08
Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.
USDA-ARS?s Scientific Manuscript database
Pectin, a complex polysaccharide, is a major component of non-lignified cell walls of dicotyledonous and some monocotyledonous plants. Its food-related technological functions are numerous and mirror many of its biological functions. As a naturally occurring component of raw or processed foods and a...