Science.gov

Sample records for plant cell nuclei

  1. Plant Nuclei Move to Escape Ultraviolet-Induced DNA Damage and Cell Death.

    PubMed

    Iwabuchi, Kosei; Hidema, Jun; Tamura, Kentaro; Takagi, Shingo; Hara-Nishimura, Ikuko

    2016-02-01

    A striking feature of plant nuclei is their light-dependent movement. In Arabidopsis (Arabidopsis thaliana) leaf mesophyll cells, the nuclei move to the side walls of cells within 1 to 3 h after blue-light reception, although the reason is unknown. Here, we show that the nuclear movement is a rapid and effective strategy to avoid ultraviolet B (UVB)-induced damages. Mesophyll nuclei were positioned on the cell bottom in the dark, but sudden exposure of these cells to UVB caused severe DNA damage and cell death. The damage was remarkably reduced in both blue-light-treated leaves and mutant leaves defective in the actin cytoskeleton. Intriguingly, in plants grown under high-light conditions, the mesophyll nuclei remained on the side walls even in the dark. These results suggest that plants have two strategies for reducing UVB exposure: rapid nuclear movement against acute exposure and nuclear anchoring against chronic exposure.

  2. AY-WB phytoplasma secretes a protein that targets plant cell nuclei.

    PubMed

    Bai, Xiaodong; Correa, Valdir R; Toruño, Tania Y; Ammar, El-Desouky; Kamoun, Sophien; Hogenhout, Saskia A

    2009-01-01

    The fully sequenced genome of aster yellows phytoplasma strain witches' broom (AY-WB; Candidatus Phytoplasma asteris) was mined for the presence of genes encoding secreted proteins based on the presence of N-terminal signal peptides (SP). We identified 56 secreted AY-WB proteins (SAP). These SAP are candidate effector proteins potentially involved in interaction with plant and insect cell components. One of these SAP, SAP11, contains an N-terminal SP sequence and a eukaryotic bipartite nuclear localization signal (NLS). Transcripts for SAP11 were detected in AY-WB-infected plants. Yellow fluorescence protein (YFP)-tagged SAP11 accumulated in Nicotiana benthamiana cell nuclei, whereas the nuclear targeting of YFP-tagged SAP11 mutants with disrupted NLS was inhibited. The nuclear transport of YFP-SAP11 was also inhibited in N. benthamiana plants in which the expression of importin alpha was knocked down using virus-induced gene silencing (VIGS). Furthermore, SAP11 was detected by immunocytology in nuclei of young sink tissues of China aster plants infected with AY-WB. In summary, this work shows that AY-WB phytoplasma produces a protein that targets the nuclei of plant host cells; this protein is a potential phytoplasma effector that may alter plant cell physiology.

  3. Isolation of Plant Nuclei at Defined Cell Cycle Stages Using EdU Labeling and Flow Cytometry.

    PubMed

    Wear, Emily E; Concia, Lorenzo; Brooks, Ashley M; Markham, Emily A; Lee, Tae-Jin; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda

    2016-01-01

    5-Ethynyl-2'-deoxyuridine (EdU) is a nucleoside analog of thymidine that can be rapidly incorporated into replicating DNA in vivo and, subsequently, detected by using "click" chemistry to couple its terminal alkyne group to fluorescent azides such as Alexa Fluor 488. Recently, EdU incorporation followed by coupling with a fluorophore has been used to visualize newly synthesized DNA in a wide range of plant species. One particularly useful application is in flow cytometry, where two-parameter sorting can be employed to analyze different phases of the cell cycle, as defined both by total DNA content and the amount of EdU pulse-labeled DNA. This approach allows analysis of the cell cycle without the need for synchronous cell populations, which can be difficult to obtain in many plant systems. The approach presented here, which was developed for fixed, EdU-labeled nuclei, can be used to prepare analytical profiles as well as to make highly purified preparations of G1, S, or G2/M phase nuclei for molecular or biochemical analysis. We present protocols for EdU pulse labeling, tissue fixation and harvesting, nuclei preparation, and flow sorting. Although developed for Arabidopsis suspension cells and maize root tips, these protocols should be modifiable to many other plant systems.

  4. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.

  5. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease

    PubMed Central

    Griffis, Anna H. N.; Groves, Norman R.; Zhou, Xiao; Meier, Iris

    2014-01-01

    While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant–microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon. PMID:24772115

  6. Plant nuclei can contain extensive grooves and invaginations

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Carter, C. N.; Rink, J. C.; Scott, A. C.; Wyatt, S. E.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.

  7. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein.

    PubMed

    Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio

    2015-09-01

    Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.

  8. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  9. Size-Invariant Detection of Cell Nuclei in Microscopy Images.

    PubMed

    Ram, Sundaresh; Rodriguez, Jeffrey J

    2016-07-01

    Accurate detection of individual cell nuclei in microscopy images is an essential and fundamental task for many biological studies. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. Manual detection of individual cell nuclei by visual inspection is time consuming, and prone to induce subjective bias. This makes automatic detection of cell nuclei essential for large-scale, objective studies of cell cultures. Blur, clutter, bleed-through, imaging noise and touching and partially overlapping nuclei with varying sizes and shapes make automated detection of individual cell nuclei a challenging task using image analysis. In this paper we propose a new automated method for fast and robust detection of individual cell nuclei based on their radial symmetric nature in fluorescence in-situ hybridization (FISH) images obtained via confocal microscopy. The main contributions are two-fold. 1) This work presents a more accurate cell nucleus detection system using the fast radial symmetry transform (FRST). 2) The proposed cell nucleus detection system is robust against most occlusions and variations in size and moderate shape deformations. We evaluate the performance of the proposed algorithm using precision/recall rates, Fβ-score and root-mean-squared distance (RMSD) and show that our algorithm provides improved detection accuracy compared to existing algorithms.

  10. Characterization of brain cell nuclei with decondensed chromatin.

    PubMed

    Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti M; Albert, Alexandria L; Meagher, Richard B

    2015-07-01

    Although multipotent cell types have enlarged nuclei with decondensed chromatin, this property has not been exploited to enhance the characterization of neural progenitor cell (NPC) populations in the brain. We found that mouse brain cell nuclei that expressed exceptionally high levels of the pan neuronal marker NeuN/FOX3 (NeuN-High) had decondensed chromatin relative to most NeuN-Low or NeuN-Neg (negative) nuclei. Purified NeuN-High nuclei expressed significantly higher levels of transcripts encoding markers of neurogenesis, neuroplasticity, and learning and memory (ARC, BDNF, ERG1, HOMER1, NFL/NEF1, SYT1), subunits of chromatin modifying machinery (SIRT1, HDAC1, HDAC2, HDAC11, KAT2B, KAT3A, KAT3B, KAT5, DMNT1, DNMT3A, Gadd45a, Gadd45b) and markers of NPC and cell cycle activity (BRN2, FOXG1, KLF4, c-MYC, OCT4, PCNA, SHH, SOX2) relative to neuronal NeuN-Low or to mostly non-neuronal NeuN-Neg nuclei. NeuN-High nuclei expressed higher levels of HDAC1, 2, 4, and 5 proteins. The cortex, hippocampus, hypothalamus, thalamus, and nucleus accumbens contained high percentages of large decondensed NeuN-High nuclei, while the cerebellum, and pons contained very few. NeuN-High nuclei have the properties consistent with their being derived from extremely active neurons with elevated rates of chromatin modification and/or NPC-like cells with multilineage developmental potential. The further analysis of decondensed neural cell nuclei should provide novel insights into neurobiology and neurodegenerative disease.

  11. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei.

    PubMed

    Park, Kyunghyuk; Frost, Jennifer M; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2016-10-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75-90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction.

  12. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

    PubMed Central

    Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2016-01-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573

  13. Vertical uniformity of cells and nuclei in epithelial monolayers.

    PubMed

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  14. Vertical uniformity of cells and nuclei in epithelial monolayers

    PubMed Central

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B.; Lele, Tanmay P.

    2016-01-01

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers. PMID:26795751

  15. Spatial organization and correlations of cell nuclei in brain tumors.

    PubMed

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  16. [Selective localization of neptunium-237 in nuclei of mammalian cells].

    PubMed

    Galle, P; Boulahdour, H; Metivier, H

    1992-01-01

    After injection in the rat of soluble neptunium salt, the distribution of this element was studied at the subcellular level by electron microscopy and electron probe microanalysis. Abnormal structures have been observed by electron microscopy in the nuclei of hepatocytes, and the same structures have also been observed in the nuclei of the proximal tubules cells of the kidney. These structures are formed of clusters of very small and dense particles, several nanometers in diameter. The clusters are localized in the central part of the nuclei and they are separate from nucleoli and heterochromatin. Electron probe X-ray analysis of this cluster have shown that they contain neptunium associated with phosphorus. In the cell containing neptunium inclusions, other non specific lesions are also observed (nuclear pycnosis, mitochondrial depletion).

  17. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  18. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  19. Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo.

    PubMed

    Canto, Cathrin B; Witter, Laurens; De Zeeuw, Chris I

    2016-01-01

    Cerebellar nuclei neurons integrate sensorimotor information and form the final output of the cerebellum, projecting to premotor brainstem targets. This implies that, in contrast to specialized neurons and interneurons in cortical regions, neurons within the nuclei encode and integrate complex information that is most likely reflected in a large variation of intrinsic membrane properties and integrative capacities of individual neurons. Yet, whether this large variation in properties is reflected in a heterogeneous physiological cell population of cerebellar nuclei neurons with well or poorly defined cell types remains to be determined. Indeed, the cell electrophysiological properties of cerebellar nuclei neurons have been identified in vitro in young rodents, but whether these properties are similar to the in vivo adult situation has not been shown. In this comprehensive study we present and compare the in vivo properties of 144 cerebellar nuclei neurons in adult ketamine-xylazine anesthetized mice. We found regularly firing (N = 88) and spontaneously bursting (N = 56) neurons. Membrane-resistance, capacitance, spike half-width and firing frequency all widely varied as a continuum, ranging from 9.63 to 3352.1 MΩ, from 6.7 to 772.57 pF, from 0.178 to 1.98 ms, and from 0 to 176.6 Hz, respectively. At the same time, several of these parameters were correlated with each other. Capacitance decreased with membrane resistance (R2 = 0.12, P<0.001), intensity of rebound spiking increased with membrane resistance (for 100 ms duration R2 = 0.1503, P = 0.0011), membrane resistance decreased with membrane time constant (R2 = 0.045, P = 0.031) and increased with spike half-width (R2 = 0.023, P<0.001), while capacitance increased with firing frequency (R2 = 0.29, P<0.001). However, classes of neuron subtypes could not be identified using merely k-clustering of their intrinsic firing properties and/or integrative properties following activation of their Purkinje cell input

  20. Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo

    PubMed Central

    De Zeeuw, Chris I.

    2016-01-01

    Cerebellar nuclei neurons integrate sensorimotor information and form the final output of the cerebellum, projecting to premotor brainstem targets. This implies that, in contrast to specialized neurons and interneurons in cortical regions, neurons within the nuclei encode and integrate complex information that is most likely reflected in a large variation of intrinsic membrane properties and integrative capacities of individual neurons. Yet, whether this large variation in properties is reflected in a heterogeneous physiological cell population of cerebellar nuclei neurons with well or poorly defined cell types remains to be determined. Indeed, the cell electrophysiological properties of cerebellar nuclei neurons have been identified in vitro in young rodents, but whether these properties are similar to the in vivo adult situation has not been shown. In this comprehensive study we present and compare the in vivo properties of 144 cerebellar nuclei neurons in adult ketamine-xylazine anesthetized mice. We found regularly firing (N = 88) and spontaneously bursting (N = 56) neurons. Membrane-resistance, capacitance, spike half-width and firing frequency all widely varied as a continuum, ranging from 9.63 to 3352.1 MΩ, from 6.7 to 772.57 pF, from 0.178 to 1.98 ms, and from 0 to 176.6 Hz, respectively. At the same time, several of these parameters were correlated with each other. Capacitance decreased with membrane resistance (R2 = 0.12, P<0.001), intensity of rebound spiking increased with membrane resistance (for 100 ms duration R2 = 0.1503, P = 0.0011), membrane resistance decreased with membrane time constant (R2 = 0.045, P = 0.031) and increased with spike half-width (R2 = 0.023, P<0.001), while capacitance increased with firing frequency (R2 = 0.29, P<0.001). However, classes of neuron subtypes could not be identified using merely k-clustering of their intrinsic firing properties and/or integrative properties following activation of their Purkinje cell input

  1. Rapid Isolation of Nuclei from Cells In Vitro.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    This protocol presents a rapid, efficient, and practical (REAP) method to separate nuclei from cultured cells in vitro with as little damage and contamination as possible. The REAP procedure is performed at low temperature and takes <2 min, which minimizes protein degradation, protein modification, and diffusion of soluble proteins out of the nuclear compartment while maintaining the integrity of protein complexes. A mild detergent, NP-40, is used together with mild mechanical shearing to disrupt the plasma membrane, leaving the nuclear membrane intact. The REAP method can be used with various cell lines grown in vitro and requires minimal optimization. The isolated nuclei are suitable for numerous downstream applications (e.g., western blotting, 2D gel electrophoresis, and immunoprecipitation). If desired, aliquots of whole-cell lysate and the cytoplasmic fraction can be saved for comparison.

  2. Auxetic nuclei in embryonic stem cells exiting pluripotency.

    PubMed

    Pagliara, Stefano; Franze, Kristian; McClain, Crystal R; Wylde, George W; Fisher, Cynthia L; Franklin, Robin J M; Kabla, Alexandre J; Keyser, Ulrich F; Chalut, Kevin J

    2014-06-01

    Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.

  3. [Dialogues between cell nuclei and mitochondria].

    PubMed

    Szewczyk, Maciej; Stępień, Piotr P

    2016-01-01

    Mitochondria are not only ATP producing organelles, but they play pivotal roles in apoptosis, neurodegeneration, cancer and aging. Mammalian mitochondrial genome is a small DNA molecule of about 16.5 kb, encoding less than 20 polypeptides and a set of ribosomal RNAs and tRNAs. In order to ensure proper cell functioning a continous communication between cell nucleus and mitochondria must be maintained. This review presents novel developments in the field of nucleo-mitochondrial communications. We discuss the import of regulatory cytosolic miRNAs into mitochondria, export of RNA from mitochondria, the existence of novel 3 polypeptides encoded by the mitochondrial genome and the transfer of mitochondrial DNA to nuclear genomes. Mechanisms of these processes and their significance for cellular homeostasis are poorly known and present an important challenge for molecular biology.

  4. Cyanide-induced death of cells in plant leaves.

    PubMed

    Vasil'ev, L A; Vorobyov, A A; Dzyubinskaya, E V; Nesov, A V; Shestak, A A; Samuilov, V D

    2007-05-01

    Destruction of guard cell nuclei in epidermis isolated from leaves of pea, maize, sunflower, and haricot bean, as well as destruction of cell nuclei in leaves of the aquatic plants waterweed and eelgrass were induced by cyanide. Destruction of nuclei was strengthened by illumination, prevented by the antioxidant alpha-tocopherol and an electron acceptor N,N,N ,N -tetramethyl-p-phenylenediamine, and removed by quinacrine. Photosynthetic O2 evolution by the leaf slices of a C3 plant (pea), or a C4 plant (maize) was inhibited by CN- inactivating ribulose-1,5-bisphosphate carboxylase, and was renewed by subsequent addition of the electron acceptor p-benzoquinone.

  5. Protocols for nuclei isolation and nuclear protein extraction from the resurrection plant Xerophyta viscosa for proteomic studies.

    PubMed

    Abdalla, Kamal Omer; Thomson, Jennifer Ann; Rafudeen, Muhammad Suhail

    2009-01-15

    The plant nucleus is an important subcellular organelle but the isolation of pure and enriched nuclei from plants and subsequent extraction of nuclear proteins for proteomic studies is challenging. Here, we present protocols for nuclei isolation and nuclear protein extraction from the resurrection plant, Xerophyta viscosa, and show optimization and modification of the most critical steps.

  6. Preparing Cellular DNA from Nuclei or Whole Cells.

    PubMed

    Nilsen, Timothy W

    2015-09-01

    It is often desirable to have cellular DNA on hand. DNA is stable and can be maintained intact for many years. This protocol describes the preparation of DNA from nuclei after the cytoplasmic extract has been removed. The resulting DNA is suitable for polymerase chain reactions and Southern blots to determine copy number and sites of integration of plasmids in stable cell lines. Quantitation of DNA may not be exact because RNA is not completely removed. The method can also be used on whole cells, but there will be more RNA contamination.

  7. Vascular endothelial cells minimize the total force on their nuclei.

    PubMed Central

    Hazel, A L; Pedley, T J

    2000-01-01

    The vascular endothelium is a cellular monolayer that lines the arterial walls. It plays a vital role in the initiation and development of atherosclerosis, an occlusive arterial disease responsible for 50% of deaths in the Western world. The focal nature of the disease suggests that hemodynamic forces are an important factor in its pathogenesis. This has led to the investigation of the effects of mechanical forces on the endothelial cells themselves. It has been found that endothelial cells do respond to stresses induced by the flowing blood; in particular, they elongate and align with an imposed flow direction. In this paper, we calculate the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus, by a uniform shear flow. It is found that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the hump is aligned with the flow. Furthermore, for a hump of fixed volume, there is a specific aspect ratio combination that results in the least total force upon the hump, (0.38:2.2:1.0; height:length:width). This is approximately the same as the average aspect ratio taken up by the cell nuclei in vivo (0.27:2.23:1.0). It is possible, therefore, that the cells respond to the flow in such a way as to minimize the total force on their nuclei. PMID:10620272

  8. Separation of nuclei representing different phases of the growth cycle from unsynchronized mammalian cell cultures.

    PubMed

    McBride, O W; Peterson, E A

    1970-10-01

    Nuclei have been isolated from unsynchronized cultures of Chinese hamster fibroblasts after varying intervals of growth following the incorporation of thymidine (-3)H for 20 min. These nuclei were fractionated by unit gravity sedimentation in a stabilizing density gradient of sucrose, and fractions were analyzed for the concentration of nuclei, DNA, and radioactivity. A more rapidly sedimenting population of nuclei in the G(2) phase of the cell cycle was separated from a group of nuclei in the G(1) phase, and nuclei in progressive stages of DNA synthesis (S phase) were distributed between these two regions. The fractionation of intact cells by sedimentation according to their position in the cell cycle was found to be less satisfactory than the corresponding separation of nuclei. This probably results from the continuous accumulation of mass within individual cells throughout the entire cell cycle, whereas most of the mass of a nucleus is replicated during a relatively narrow interval of the total cell cycle.

  9. Whole-mount confocal imaging of nuclei in giant feeding cells induced by root-knot nematodes in Arabidopsis.

    PubMed

    Vieira, Paulo; Engler, Gilbert; de Almeida Engler, Janice

    2012-07-01

    • Excellent visualization of nuclei was obtained here using a whole-mount procedure adapted to provide high-resolution images of large, irregularly shaped nuclei. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with the dye propidium iodide. • The method developed for standard confocal imaging was applied to large multicellular root swellings, named galls, induced in plant hosts by the root-knot nematode Meloidogyne incognita. • Here, we performed a functional analysis, and examined the nuclear structure in giant feeding cells overexpressing the cell cycle inhibitor Kip-related protein 4 (KRP4). Ectopic KRP4 expression in galls led to aberrant nuclear structure, disturbing giant cell expansion and nematode reproduction. In vivo live-cell imaging of GFP-KRP4 demonstrated that this protein co-localizes to chromosomes from prophase to late anaphase during cell cycle progression. • The data presented here suggest the involvement of KRP4 during mitotic progression in plant cells. The detailed results obtained using confocal analysis also demonstrate the potential utility of a rapid, easy-to-use clearing method for the analysis of the nuclei of certain Arabidopsis mutants and other complex plant nuclei.

  10. Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [(3)H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.

  11. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  12. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei.

    PubMed

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V

    2012-05-01

    In order to image noninvasively cell nuclei in vivo without staining, we have developed ultraviolet photoacoustic microscopy (UV-PAM), in which ultraviolet light excites nucleic acids in cell nuclei to produce photoacoustic waves. Equipped with a tunable laser system, the UV-PAM was applied to in vivo imaging of cell nuclei in small animals. We found that 250 nm was the optimal wavelength for in vivo photoacoustic imaging of cell nuclei. The optimal wavelength enables UV-PAM to image cell nuclei using as little as 2 nJ laser pulse energy. Besides the optimal wavelength, application of a wavelength between 245 and 275 nm can produce in vivo images of cell nuclei with specific, positive, and high optical contrast.

  13. A novel dictionary based computer vision method for the detection of cell nuclei.

    PubMed

    De Vylder, Jonas; Aelterman, Jan; Lepez, Trees; Vandewoestyne, Mado; Douterloigne, Koen; Deforce, Dieter; Philips, Wilfried

    2013-01-01

    Cell nuclei detection in fluorescent microscopic images is an important and time consuming task in a wide range of biological applications. Blur, clutter, bleed through and partial occlusion of nuclei make individual nuclei detection a challenging task for automated image analysis. This paper proposes a novel and robust detection method based on the active contour framework. Improvement over conventional approaches is achieved by exploiting prior knowledge of the nucleus shape in order to better detect individual nuclei. This prior knowledge is defined using a dictionary based approach which can be formulated as the optimization of a convex energy function. The proposed method shows accurate detection results for dense clusters of nuclei, for example, an F-measure (a measure for detection accuracy) of 0.96 for the detection of cell nuclei in peripheral blood mononuclear cells, compared to an F-measure of 0.90 achieved by state-of-the-art nuclei detection methods.

  14. Registration of serial sections of mouse liver cell nuclei.

    PubMed

    Baheerathan, S; Albregtsen, F; Danielsen, H E

    1998-10-01

    Image registration of biological tissue is essential for 3D reconstruction, which is important for visualizing and quantifying the 3D relationships between internal structures of an object. The biological role of DNA organization, which is an extremely complex 3D architecture within the cell nucleus, has come into focus since it has become clear that the chromatin structure in itself functions as a regulator of DNA. Thus, 3D reconstruction of cell nuclei based on consecutive series of high-resolution ultrathin slices may provide new information about the chromatin structure and its organizational changes during carcinogenesis. This work focuses mainly on the problem of registering successive serial transmission electron micrographs of ultrathin sections of mouse liver cell nuclei to analyse the 3D chromatin structure. A five-step semiautomatic interactive registration method is proposed. The first two steps of the procedure correct the rotation and translation components by using the phase correlation. The third, fourth and fifth steps correct the global distortion, employing a point mapping method based on different ways of selecting the control points. In step three, the control points were automatically computed by phase correlating corresponding subimages of the reference and sensed image. A semiautomatic method is used in the fourth step to select the control points, i.e. an automated method for computing the centre of mass of manually identified anatomical structures in neighbouring slices. For the sections which could not be properly corrected by the four steps, a final step is introduced, where control points are manually selected in the reference and sensed images. An algorithm is proposed to examine the spatial distribution of selected control points. Four sets of serial sections of mouse liver cell nuclei, each with approximately 100 sections, are registered by the proposed method and also registered manually for the comparison of registration accuracy

  15. Development of a stained cell nuclei counting system

    NASA Astrophysics Data System (ADS)

    Timilsina, Niranjan; Moffatt, Christopher; Okada, Kazunori

    2011-03-01

    This paper presents a novel cell counting system which exploits the Fast Radial Symmetry Transformation (FRST) algorithm [1]. The driving force behind our system is a research on neurogenesis in the intact nervous system of Manduca Sexta or the Tobacco Hornworm, which was being studied to assess the impact of age, food and environment on neurogenesis. The varying thickness of the intact nervous system in this species often yields images with inhomogeneous background and inconsistencies such as varying illumination, variable contrast, and irregular cell size. For automated counting, such inhomogeneity and inconsistencies must be addressed, which no existing work has done successfully. Thus, our goal is to devise a new cell counting algorithm for the images with non-uniform background. Our solution adapts FRST: a computer vision algorithm which is designed to detect points of interest on circular regions such as human eyes. This algorithm enhances the occurrences of the stained-cell nuclei in 2D digital images and negates the problems caused by their inhomogeneity. Besides FRST, our algorithm employs standard image processing methods, such as mathematical morphology and connected component analysis. We have evaluated the developed cell counting system with fourteen digital images of Tobacco Hornworm's nervous system collected for this study with ground-truth cell counts by biology experts. Experimental results show that our system has a minimum error of 1.41% and mean error of 16.68% which is at least forty-four percent better than the algorithm without FRST.

  16. Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.

    PubMed

    Li, Gang; Guo, Lei

    2012-01-01

    Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.

  17. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Yokoyama, Takeshi; Abe, Hiroaki; Fujii, Tsuguru; Suzuki, Masataka G

    2013-01-01

    In Bombyx mori, polar body nuclei are observed until 9 h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe). The heterozygous pe/+ (pe) females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/+ (pe) ) of the mother. Because the polar body nuclei had + (pe) genes in the white eggs laid by a pe/+ (pe) female, polar body nuclei participate in development and differentiate into functional cell (serosal cells). Analyses of serosal cells pigmentation indicated that ~30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26% of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25). Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  18. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    PubMed Central

    Sakai, Hiroki; Yokoyama, Takeshi; Abe, Hiroaki; Fujii, Tsuguru; Suzuki, Masataka G.

    2013-01-01

    In Bombyx mori, polar body nuclei are observed until 9 h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe). The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/+pe) of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/+pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells). Analyses of serosal cells pigmentation indicated that ~30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26% of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25). Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos. PMID:24027530

  19. Cell and nuclei separation from tissue and from various phases of the cell cycle. Final report

    SciTech Connect

    Pipkin, J.

    1982-05-01

    The Cell Biology laboratory has developed practical methods for routine electrostatic separation of nuclei. Specially designed collection chambers facilitate the capture of sufficient numbers of cells and/or nuclei from precise areas of the cell cycle for biochemical analysis. These analyses include: one- and two-dimensional gel electrophoresis, isoelectric focusing, amino acid analysis and capillary isotachophoretic techniques that are used to demonstrate nuclear regulatory protein synthesis during the in vivo cell cycle after administration of various compounds. Separation of nuclei into homogeneous populations simplifies the detection of biochemical events that transpire in both cycling and non-cycling tissue into more discrete stages for analysis, thus uncluttering the more complex overall picture seen so commonly in generalized proliferating tissue.

  20. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  1. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.

    PubMed Central

    Spiker, S; Murray, M G; Thompson, W F

    1983-01-01

    We have investigated the DNase I sensitivity of transcriptionally active DNA sequences in intact nuclei and isolated chromatin from embryos of wheat (Triticum aestivum L.). Nuclei or isolated chromatin was incubated with DNase I, and the extent of DNA digestion was monitored as percentage acid solubility. The resistant DNA and DNA from sham-digested controls were used to drive reassociation reactions with cDNA populations corresponding to either total poly(A)+RNA from unimbibed wheat embryos or polysomal poly(A)+RNA from embryos that had imbibed for 3 hr. Sequences complementary to either probe were depleted in DNase I-resistant DNA from nuclei and from chromatin isolated under low-ionic-strength conditions. This indicates that transcriptionally active sequences are preferentially DNase I sensitive in plants. In chromatin isolated at higher ionic strength, cDNA complementary sequences were not preferentially depleted by DNase I treatment. Therefore, the chromatin structure that confers preferential DNase I sensitivity to transcriptionally active genes appears to be lost when the higher-ionic-strength method of preparation is used. Treatment of wheat nuclei with DNase I causes the release of four prominent nonhistone chromosomal proteins that comigrate with wheat high mobility group proteins on NaDodSO4 gels. Images PMID:6219388

  2. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    PubMed

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  3. Computer aided classification of cell nuclei in the gastrointestinal tract by volume and principal axis

    NASA Astrophysics Data System (ADS)

    Sagstetter, Ann M.; Camp, Jon J.; Lurken, Matthew S.; Szurszewski, Joseph H.; Farrugia, Gianrico; Gibbons, Simon J.; Robb, Richard A.

    2007-03-01

    Normal function of the gastrointestinal tract involves the coordinated activity of several cell types Human disorders of motor function of the gastrointestinal tract are often associated with changes in the number of these cells. For example, in diabetic patients, abnormalities in gastrointestinal transit are associated with changes in nerves and interstitial cells of Cajal (ICC), two key cells that generate and regulate motility. ICC are cells of mesenchymal origin that function as pacemakers and amplify neuronal signals in the gastrointestinal tract. Quantifying the changes in number of specific cell types in tissues from patients with motility disorders is challenging and requires immunolabeling for specific antigens. The shape of nuclei differs between the cell types in the wall of the gastrointestinal tract. Therefore the objective of this study was to determine whether cell nuclei can be classified by analyzing the 3D morphology of the nuclei. Furthermore, the orientation of the long axis of nuclei changes within and between the muscle layers. These features can be used to classify and differentially label the nuclei in confocal volume images of the tissue by computing the principal axis of the coordinates of the set of voxels forming each nucleus and thereby to identify cells by their nuclear morphology. Using this approach, we were able to separate and quantify nuclei in the smooth muscle layers of the tissue. Therefore we conclude that computer-aided classification of cell nuclei can be used to identify changes in the cell types expressed in gastrointestinal smooth muscle.

  4. Phenotypic characteristics of hybrid cells generated by transferring neuronal nuclei into bone marrow stromal cell cytoplasts.

    PubMed

    Zhou, Zhujuan; Xu, Yan; Zhong, Qi; Zheng, Jian

    2012-02-10

    Bone marrow stromal cells (BMSCs) are promising donor cells for transplantation therapies for a variety of diseases. However, there still lack efficient ways to induce directional differentiation of BMSCs to promote their practical use in transplantation therapy. In this study, we constructed hybrid cells by transferring neuronal nuclei into BMSC cytoplasts and investigated the proliferative capacity and phenotypic characteristics of the hybrid cells. The neuronal nuclei were labeled with Hoechst 33342 before the transfer process, and the cell membrane antigen CD71 was used as a marker of BMSC cytoplasts. The BMSC cytoplasts and neuronal karyoplasts were separated by Ficoll density gradient ultracentrifugation. The hybrid cells were generated by the polyethylene glycol-mediated fusion of BMSC cytoplasts with neuronal karyoplasts. The hybrid cells exhibited Hoechst 33342 staining in their nuclei and CD71 staining on their cytomembranes, which confirmed the success of cell fusion. The hybrid cells were positive for BrdU immunostaining. Viability analysis of the cultured hybrid cells by the MTT assay demonstrated their proliferative ability. Immunocytochemical staining revealed the expression of the neuron-specific markers NeuN and MAP2 in the third passage hybrid cells, which indicated their neuronal phenotypic characteristics. The results demonstrated that the hybrid cells produced by fusing neuronal karyoplasts with BMSC cytoplasts had proliferative capability and expressed the neuron-specific markers. Further study is required to investigate the phenotype of the hybrid cells both structurally and functionally.

  5. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2006-08-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.

  6. A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development.

    PubMed

    Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda

    2014-06-01

    The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation.

  7. Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Schmitt, Michael; Romeike, Bernd F M; Dietzek, Benjamin; Popp, Jürgen

    2012-11-01

    Nonlinear optical (NLO) imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or two photon excited fluorescence (TPEF) show great potential for biomedical imaging. In order to facilitate the diagnostic process based on NLO imaging, there is need for an automated calculation of quantitative values such as cell density, nucleus-to-cytoplasm ratio, average nuclear size. Extraction of these parameters is helpful for the histological assessment in general and specifically e.g. for the determination of tumor grades. This requires an accurate image segmentation and detection of locations and boundaries of cells and nuclei. Here we present an image processing approach for the detection of nuclei and cells in co-registered TPEF and CARS images. The algorithm developed utilizes the gray-scale information for the detection of the nuclei locations and the gradient information for the delineation of the nuclear and cellular boundaries. The approach reported is capable for an automated segmentation of cells and nuclei in multimodal TPEF-CARS images of human brain tumor samples. The results are important for the development of NLO microscopy into a clinically relevant diagnostic tool.

  8. Cell type-specific affinity purification of nuclei for chromatin profiling in whole animals.

    PubMed

    Steiner, Florian A; Henikoff, Steven

    2015-01-01

    Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.

  9. A robust procedure for distinctively visualizing zebrafish retinal cell nuclei under bright field light microscopy.

    PubMed

    Fu, Jinling; Fang, Wei; Zou, Jian; Sun, Ming; Lathrop, Kira; Su, Guanfang; Wei, Xiangyun

    2013-03-01

    To simultaneously visualize individual cell nuclei and tissue morphologies of the zebrafish retina under bright field light microscopy, it is necessary to establish a procedure that specifically and sensitively stains the cell nuclei in thin tissue sections. This necessity arises from the high nuclear density of the retina and the highly decondensed chromatin of the cone photoreceptors, which significantly reduces their nuclear signals and makes nuclei difficult to distinguish from possible high cytoplasmic background staining. Here we optimized a procedure that integrates JB4 plastic embedding and Feulgen reaction for visualizing zebrafish retinal cell nuclei under bright field light microscopy. This method produced highly specific nuclear staining with minimal cytoplasmic background, allowing us to distinguish individual retinal nuclei despite their tight packaging. The nuclear staining is also sensitive enough to distinguish the euchromatin from heterochromatin in the zebrafish cone nuclei. In addition, this method could be combined with in situ hybridization to simultaneously visualize the cell nuclei and mRNA expression patterns. With its superb specificity and sensitivity, this method may be extended to quantify cell density and analyze global chromatin organization throughout the retina or other tissues.

  10. Detecting and segmenting cell nuclei in two-dimensional microscopy images

    PubMed Central

    Liu, Chi; Shang, Fei; Ozolek, John A.; Rohde, Gustavo K.

    2016-01-01

    Introduction: Cell nuclei are important indicators of cellular processes and diseases. Segmentation is an essential stage in systems for quantitative analysis of nuclei extracted from microscopy images. Given the wide variety of nuclei appearance in different organs and staining procedures, a plethora of methods have been described in the literature to improve the segmentation accuracy and robustness. Materials and Methods: In this paper, we propose an unsupervised method for cell nuclei detection and segmentation in two-dimensional microscopy images. The nuclei in the image are detected automatically using a matching-based method. Next, edge maps are generated at multiple image blurring levels followed by edge selection performed in polar space. The nuclei contours are refined iteratively in the constructed edge pyramid. The validation study was conducted over two cell nuclei datasets with manual labeling, including 25 hematoxylin and eosin-stained liver histopathology images and 35 Papanicolaou-stained thyroid images. Results: The nuclei detection accuracy was measured by miss rate, and the segmentation accuracy was evaluated by two types of error metrics. Overall, the nuclei detection efficiency of the proposed method is similar to the supervised template matching method. In comparison to four existing state-of-the-art segmentation methods, the proposed method performed the best with average segmentation error 10.34% and 0.33 measured by area error rate and normalized sum of distances (×10). Conclusion: Quantitative analysis showed that the method is automatic and accurate when segmenting cell nuclei from microscopy images with noisy background and has the potential to be used in clinic settings. PMID:28066682

  11. Phosphoprotein phosphatase of bovine spleen cell nuclei: physicochemical properties

    SciTech Connect

    Rezyapkin, V.I.; Leonova, L.E.; Komkova, A.I.

    1986-01-10

    The physicochemical properties of phosphoprotein phosphatase (EC 1.3.1.16) from bovine spleen cell nuclei were studied. The enzyme possesses broad substrate specificity and catalyzes the dephosphorylation of phosphocasein, ATP, ADP, and p-nitrophenyl phosphate (pNPP). K/sub m/ for ATP, ADP, and pNPP are equal to 0.44, 0.43, and 1.25 mM, respectively. M/sub r/ of the enzyme, according to the data of gel filtraction of Sephadex G-75 and electrophoresis in polyacrylamide gel of various concentrations is approx. 33,000. In electrophoresis in the presence of SDS, two protein bands with M/sub r/ 12,000 and 18,000 are detected. In the enzyme molecule, acid amino acid residues predominate; two free SH groups and two disulfide bridges are detected. Phosphoprotein phosphatase is a glycoprotein, containing approx. 22% carbonhydrates. The protein possesses a supplementary absorption maximum at 560 nm. Ammonium molybdate is a competitive inhibitor with K/sub i/ 0.37 ..mu..M, while sodium fluoride is a noncompetitive inhibitor with K/sub i/ 1.3 mM. Incubation in the presence of 2 mM phenylmethylsulfonyl fluoride for 25 h leads to a loss of approx. 46% of the enzymatic activity. Ammonium molybdate, sodium fluoride, and PMSF are reversible inhibitors. Modifications of the SH groups, NH/sub 2/ groups, and histidine leads to a decrease in the enzymatic activity. Incubation of phosphoprotein phosphatase with (..gamma..-/sup 32/P)ATP leads to the incorporation of 0.33 mole /sup 33/P per mole of the enzyme. The mechanism of hydrolysis of the phosphodiester bond, catalyzed by the enzyme, is discussed.

  12. Phosphatidic acid metabolism in rat liver cell nuclei.

    PubMed

    Gaveglio, Virginia L; Pasquaré, Susana J; Giusto, Norma M

    2013-04-02

    The aim of the present research was to analyze the pathways for phosphatidic acid metabolism in purified nuclei from liver. Lipid phosphate phosphatase, diacylglycerol lipase, monoacylglycerol lipase and PA-phospholipase type A activities were detected. The presence of lysophosphatidic acid significantly reduced DAG production while sphingosine 1-phoshate and ceramide 1-phosphate reduced MAG formation from PA. Using different enzymatic modulators (detergents and ions) an increase in the PA metabolism by phospholipase type A was observed. Our findings evidence an active PA metabolism in purified liver nuclei which generates important lipid second messengers, and which could thus be involved in nuclear processes such as gene transcription.

  13. Observation of DNA and protein distributions in mammalian cell nuclei using STXM

    NASA Astrophysics Data System (ADS)

    Ohigashi, Takuji; Ito, Atsushi; Shinohara, Kunio; Tone, Shigenobu; Kado, Masataka; Inagaki, Yuichi; Wang, Yu-Fu; Kosugi, Nobuhiro

    2016-01-01

    A whole A549 cell and isolated nuclei of HeLa S3 cells in the apoptotic process were investigated by using a scanning transmission X-ray microscope (STXM) in the UVSOR Synchrotron (Okazaki, Japan). Near edge X-ray absorption fine structures (NEXAFS) of DNA and histone in the N K-edge region were measured as reference and their distribution in the nuclei was determined by using these reference spectra. The four stages of the apoptosis were successfully distinguished.

  14. Foci of Entotic Nuclei in Different Grades of Noninherited Renal Cell Cancers.

    PubMed

    Kong, Yuke; Liang, Yaojun; Wang, Jianqin

    2015-02-01

    We report here an intriguing pattern in nuclear appearance of renal clear cell cancer. In low grade clear cell cancer, detailed examination showed that in many cells, two or more nuclei were within the confines of a single cell membrane. This likely resulted from a cell being contained within its neighboring cell. Consequently, this resulted in appearance of multicellularity. This appearance of the nuclei were not associated with mitotic figures, suggesting that these did not result from nuclear fission. Additionally, the cells containing this nuclei did not show any evidence of cytokinesis including equatorial tapering, suggesting that the process may have resulted from cytokinesis failure. In some sections of higher grade clear cell cancer, these appearance were higher, though we did not observe any frank syncytium formation. On careful observation, there were isolated events of fusion of nuclei within a single cell in different grades of renal cell cancers. There occurrence was more frequent in higher grades of clear cell renal cancer and metastatic clear cell carcinoma. These features were also demonstrable in multiple fields of lower grades of clear cell carcinoma. This phenomenon of entosis may contribute to aneuploidy and tumor progression to dysplastic stages and genomic instability in renal cancers. Future studies are aimed at delineating the cell-cell boundaries and the mechanism contributing to this observation, either from peripheral cell engulfing or failure of cytosolic division for cell separation.

  15. HIV-1 matrix protein p17 resides in cell nuclei in association with genomic RNA.

    PubMed

    Bukrinskaya, A G; Vorkunova, G K; Tentsov YYu

    1992-10-01

    We have shown previously that HIV-1 matrix protein p17 is transported to the nucleus of Jurkat-tat and H9 cells soon after infection. As shown in this combination, gag polyprotein p55 synthesized 48 h after cell infection is cleaved in cytosol rapidly after its synthesis, and nascent p17 enters the nuclei and gradually accumulates there. Uncleaved p55 molecules and intermediate precursors are rapidly transported to the membranes and are also found in nuclei. Mature gag proteins are seen in membranes only after prolonged period of labelling or chase (4 or more hours later). To determine whether the nascent p17 is associated with viral genomic RNA in the nuclei, the cells were fractionated, the viral complexes were immunoprecipitated by monoclonal antibodies (MAbs) against gag proteins, and RNA was extracted and analyzed by slot and blot hybridization. MAb against p17 precipitated all the viral RNA from the nuclei including full-size genomic RNA and essential parts from membranes while MAb against p24 did not precipitate any viral RNA from the nuclei. These data suggest that matrix protein is linked to genomic RNA in the nuclei and raise the possibility that p17 may transfer viral nucleocapsids from the nuclei to plasma membranes, the site of virus assembly.

  16. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  17. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  18. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    PubMed

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  19. Volume Transitions of Isolated Cell Nuclei Induced by Rapid Temperature Increase.

    PubMed

    Chan, Chii J; Li, Wenhong; Cojoc, Gheorghe; Guck, Jochen

    2017-03-28

    Understanding the physical mechanisms governing nuclear mechanics is important as it can impact gene expression and development. However, how cell nuclei respond to external cues such as heat is not well understood. Here, we studied the material properties of isolated nuclei in suspension using an optical stretcher. We demonstrate that isolated nuclei regulate their volume in a highly temperature-sensitive manner. At constant temperature, isolated nuclei behaved like passive, elastic and incompressible objects, whose volume depended on the pH and ionic conditions. When the temperature was increased suddenly by even a few degrees Kelvin, nuclei displayed a repeatable and reversible temperature-induced volume transition, whose sign depended on the valency of the solvent. Such phenomenon is not observed for nuclei subjected to slow heating. The transition temperature could be shifted by adiabatic changes of the ambient temperature, and the magnitude of temperature-induced volume transition could be modulated by modifying the chromatin compaction state and remodeling processes. Our findings reveal that the cell nucleus can be viewed as a highly charged polymer gel with intriguing thermoresponsive properties, which might play a role in nuclear volume regulation and thermosensing in living cells.

  20. In vitro assays predictive of telomerase inhibitory effect of G-quadruplex ligands in cell nuclei.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-03-13

    G-quadruplex-binding and telomerase-inhibiting capacities of G-quadruplex ligands were examined under a cell nuclei-mimicking condition including excess double-stranded DNA (λ DNA) and molecular crowding cosolute (PEG 200). Under the cell nuclei-mimicking condition, a cationic porphyrin (TMPyP4) did not bind to the G-quadruplex despite the high affinity (Ka = 3.6 × 10(6) M(-1)) under a diluted condition without λ DNA and PEG 200. Correspondingly, TMPyP4 inhibited telomerase activity under the diluted condition (IC50 = 1.6 μM) but not under the cell nuclei-mimicking condition. In contrast, the Ka and IC50 values of an anionic copper phthalocyanine (Cu-APC) under the diluted (2.8 × 10(4) M(-1) and 0.86 μM) and the cell nuclei-mimicking (2.8 × 10(4) M(-1) and 2.1 μM) conditions were similar. In accordance with these results, 10 μM TMPyP4 did not affect the proliferation of HeLa cells, while Cu-APC efficiently inhibited the proliferation (IC50 = 1.4 μM). These results show that the cell nuclei-mimicking condition is effective to predict capacities of G-quadruplex ligands in the cell. In addition, the antiproliferative effect of Cu-APC on normal cells was smaller than that on HeLa cells, indicating that the cell nuclei-mimicking condition is also useful to predict side effects of ligands.

  1. Lysis gradient centrifugation: a flexible method for the isolation of nuclei from primary cells.

    PubMed

    Katholnig, Karl; Poglitsch, Marko; Hengstschläger, Markus; Weichhart, Thomas

    2015-01-01

    The isolation of nuclei from eukaryotic cells is essential for studying the composition and the dynamic changes of the nuclear proteome to gain insight into the mechanisms of gene expression and cell signalling. Primary cells are particularly challenging for standard nuclear isolation protocols due to low protein content, sample degradation, or nuclear clumping. Here, we describe a rapid and flexible protocol for the isolation of clean and intact nuclei, which results in the recovery of 90-95 % highly pure nuclei. The method, called lysis gradient centrifugation (LGC), is based on an iso-osmolar discontinuous iodixanol-based density gradient including a detergent-containing lysis layer. A single low g-force centrifugation step enables mild cell lysis and prevents extensive contact of the nuclei with the cytoplasmic environment. This fast method shows high reproducibility due to the relatively little cell manipulation required by the investigator. Further advantages are the low amount of starting material required, easy parallel processing of multiple samples, and isolation of nuclei and cytoplasm at the same time from the same sample.

  2. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation

    PubMed Central

    Thilly, William G; Gostjeva, Elena V; Koledova, Vera V; Zukerberg, Lawrence R; Chung, Daniel; Fomina, Janna N; Darroudi, Firouz; Stollar, B David

    2014-01-01

    Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development. PMID:24418910

  3. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation.

    PubMed

    Thilly, William G; Gostjeva, Elena V; Koledova, Vera V; Zukerberg, Lawrence R; Chung, Daniel; Fomina, Janna N; Darroudi, Firouz; Stollar, B David

    2014-01-01

    Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development.

  4. Rapid 3-D delineation of cell nuclei for high-content screening platforms.

    PubMed

    Gertych, Arkadiusz; Ma, Zhaoxuan; Tajbakhsh, Jian; Velásquez-Vacca, Adriana; Knudsen, Beatrice S

    2016-02-01

    High-resolution three-dimensional (3-D) microscopy combined with multiplexing of fluorescent labels allows high-content analysis of large numbers of cell nuclei. The full automation of 3-D screening platforms necessitates image processing algorithms that can accurately and robustly delineate nuclei in images with little to no human intervention. Imaging-based high-content screening was originally developed as a powerful tool for drug discovery. However, cell confluency, complexity of nuclear staining as well as poor contrast between nuclei and background result in slow and unreliable 3-D image processing and therefore negatively affect the performance of studying a drug response. Here, we propose a new method, 3D-RSD, to delineate nuclei by means of 3-D radial symmetries and test it on high-resolution image data of human cancer cells treated by drugs. The nuclei detection performance was evaluated by means of manually generated ground truth from 2351 nuclei (27 confocal stacks). When compared to three other nuclei segmentation methods, 3D-RSD possessed a better true positive rate of 83.3% and F-score of 0.895±0.045 (p-value=0.047). Altogether, 3D-RSD is a method with a very good overall segmentation performance. Furthermore, implementation of radial symmetries offers good processing speed, and makes 3D-RSD less sensitive to staining patterns. In particular, the 3D-RSD method performs well in cell lines, which are often used in imaging-based HCS platforms and are afflicted by nuclear crowding and overlaps that hinder feature extraction.

  5. Rapid 3-D delineation of cell nuclei for high-content screening platforms

    PubMed Central

    Gertych, Arkadiusz; Ma, Zhaoxuan; Tajbakhsh, Jian; Velásquez-Vacca, Adriana; Knudsen, Beatrice S.

    2015-01-01

    High-resolution three-dimensional (3-D) microscopy combined with multiplexing of fluorescent labels allows high-content analysis of large numbers of cell nuclei. The full automation of 3-D screening platforms necessitates image processing algorithms that can accurately and robustly delineate nuclei in images with little to no human intervention. Imaging-based high-content screening was originally developed as a powerful tool for drug discovery. However, cell confluency, complexity of nuclear staining as well as poor contrast between nuclei and background result in slow and unreliable 3-D image processing and therefore negatively affect the performance of studying a drug response. Here, we propose a new method, 3D-RSD, to delineate nuclei by means of 3-D radial symmetries and test it on high-resolution image data of human cancer cells treated by drugs. The nuclei detection performance was evaluated by means of manually generated ground truth from 2351 nuclei (27 confocal stacks). When compared to three other nuclei segmentation methods, 3D-RSD possessed a better true positive rate of 83.3% and F-score of 0.895+/-0.045 (p- value=0.047). Altogether, 3D-RSD is a method with a very good overall segmentation performance. Furthermore, implementation of radial symmetries offers good processing speed, and makes 3D-RSD less sensitive to staining patterns. In particular the 3D-RSG method performs well in cell lines, which are often used in imaging-based HCS platforms and are afflicted by nuclear crowding and overlaps that hinder feature extraction. PMID:25982066

  6. Comparative analysis of the nucleosome structure of cell nuclei by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Isaev-Ivanov, V. V.; Lebedev, D. V.; Lauter, H.; Pantina, R. A.; Kuklin, A. I.; Islamov, A. Kh.; Filatov, M. V.

    2010-05-01

    The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.

  7. Properties of a novel extracellular cell-free ice nuclei from ice-nucleating Pseudomonas antarctica IN-74.

    PubMed

    Muryoi, Naomi; Kawahara, Hidehisa; Obata, Hitoshi

    2003-09-01

    Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 microm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.

  8. Finding splitting lines for touching cell nuclei with a shortest path algorithm.

    PubMed

    Bai, Xiangzhi; Wang, Peng; Sun, Changming; Zhang, Yu; Zhou, Fugen; Meng, Cai

    2015-08-01

    A shortest path-based algorithm is proposed in this paper to find splitting lines for touching cell nuclei. First, an initial splitting line is obtained through the distance transform of a marker image and the watershed algorithm. The initial splitting line is then separated into different line segments as necessary, and the endpoint positions of these line segments are adjusted to the concave points on the contour. Finally, a shortest path algorithm is used to find the accurate splitting line between the starting-point and the end-point, and the final split can be achieved by the contour of the touching cell nuclei and the splitting lines. Comparisons of experimental results show that the proposed algorithm is effective for segmentation of different types of touching cell nuclei.

  9. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons

    PubMed Central

    Zhang, Fan; Pomerantz, Jason H.; Sen, George; Palermo, Adam T.; Blau, Helen M.

    2007-01-01

    DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types. PMID:17360535

  10. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells.

    PubMed

    Bone, Courtney R; Chang, Yu-Tai; Cain, Natalie E; Murphy, Shaun P; Starr, Daniel A

    2016-11-15

    Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.

  11. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei.

    PubMed

    Fu, Bo; Liu, Di; Ma, Hong; Guo, Zhen-Hua; Wang, Liang; Li, Zhong-Qiu; Peng, Fu-Gang; Bai, Jing

    2016-02-01

    Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.

  12. Fatty acids and cholesterol in the liver cell nuclei of hibernating Yakutian ground squirrels.

    PubMed

    Kolomiytseva, I K; Lakhina, A A; Markevich, L N; Fesenko, E E

    2016-09-01

    The content of neutral lipids in tissue homogenates and liver cell nuclei of hibernating Yakutian ground squirrels was studied. In homogenates, hibernation increases the content of fatty acids and reduces the content of glycerides and cholesterol. When studying the liver cell nuclei of torpid winter ground squirrels, we detected a twofold increase in the content of fatty acids, cholesterol, and monoglycerides as compared to the "summer" ground squirrels. In the active "winter" ground squirrels, as compared to the torpid winter ones, the content of cholesterol did not change, whereas the content of fatty acids, monoglycerides, and diglycerides decreased but remained higher than in the "summer" ground squirrels.

  13. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  14. Glioma grading using cell nuclei morphologic features in digital pathology images

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  15. Glioma Grading Using Cell Nuclei Morphologic Features in Digital Pathology Images

    PubMed Central

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-01-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients’ images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold cross-validation confirms the efficacy of the proposed method. PMID:27942094

  16. [Alpha-lipoic acid triggers elimination of cells with abnormal nuclei in human carcinoma epidermoid cell line].

    PubMed

    Kisurina-Evgen'eva, O P; Onishchenko, G E

    2010-01-01

    The skin is usually exposed to adverse environmental conditions that may cause pathological cell proliferation and cellular transformations leading to the formation of malignant cells. Antioxidants may affect these processes and induce the elimination of transformed cell. The purpose of this work was to investigate the effect of alfa-lipoic acid on human carcinoma epidermoid cell line A431. Our results showed that alfa-lipoic acid induced inhibition of cell proliferation or stimulated apoptotic cell death. Cells with abnormal nuclei were eliminated by apoptosis. Electron microscopy showed that survived cells had typical for control cells shape and organization of the nuclei, organization of the cytoplasm and organelles. Thus, alfa-lipoic acid not only triggered apoptosis of carcinoma cells, but it may also activate the mechanism of elimination of cells with abnormal chromosome number.

  17. Fluorescence-activated sorting of fixed nuclei: a general method for studying nuclei from specific cell populations that preserves post-translational modifications.

    PubMed

    Marion-Poll, Lucile; Montalban, Enrica; Munier, Annie; Hervé, Denis; Girault, Jean-Antoine

    2014-04-01

    Long-lasting brain alterations that underlie learning and memory are triggered by synaptic activity. How activity can exert long-lasting effects on neurons is a major question in neuroscience. Signalling pathways from cytoplasm to nucleus and the resulting changes in transcription and epigenetic modifications are particularly relevant in this context. However, a major difficulty in their study comes from the cellular heterogeneity of brain tissue. A promising approach is to directly purify identified nuclei. Using mouse striatum we have developed a rapid and efficient method for isolating cell type-specific nuclei from fixed adult brain (fluorescence-activated sorting of fixed nuclei; FAST-FIN). Animals are quickly perfused with a formaldehyde fixative that stops enzymatic reactions and maintains the tissue in the state it was at the time of death, including nuclear localisation of soluble proteins such as GFP and differences in nuclear size between cell types. Tissue is subsequently dissociated with a Dounce homogeniser and nuclei prepared by centrifugation in an iodixanol density gradient. The purified fixed nuclei can then be immunostained with specific antibodies and analysed or sorted by flow cytometry. Simple criteria allow distinction of neurons and non-neuronal cells. Immunolabelling and transgenic mice that express fluorescent proteins can be used to identify specific cell populations, and the nuclei from these populations can be efficiently isolated, even rare cell types such as parvalbumin-expressing interneurons. FAST-FIN allows the preservation and study of dynamic and labile post-translational protein modifications. It should be applicable to other tissues and species, and allow study of DNA and its modifications.

  18. Identification of feline panleukopenia virus proteins expressed in Purkinje cell nuclei of cats with cerebellar hypoplasia.

    PubMed

    Poncelet, Luc; Héraud, Céline; Springinsfeld, Marie; Ando, Kunie; Kabova, Anna; Beineke, Andreas; Peeters, Dominique; Op De Beeck, Anne; Brion, Jean-Pierre

    2013-06-01

    Parvoviruses depend on initiation of host cell division for their replication. Undefined parvoviral proteins have been detected in Purkinje cells of the cerebellum after experimental feline panleukopenia virus (FPV) infection of neonatal kittens and in naturally occurring cases of feline cerebellar hypoplasia. In this study, a parvoviral protein in the nucleus of Purkinje cells of kittens with cerebellar hypoplasia was shown by immunoprecipitation to be the FPV viral capsid protein VP2. In PCR-confirmed, FPV-associated feline cerebellar hypoplasia, expression of the FPV VP2 protein was demonstrated by immunohistochemistry in Purkinje cell nuclei in 4/10 cases and expression of the FPV non-structural protein NS1 was demonstrated in Purkinje cell nuclei in 5/10 cases. Increased nuclear ERK1 expression was observed in several Purkinje cells in 1/10 kittens. No expression of the G1 and S mitotic phase marker proliferating cell nuclear antigen (PCNA) was evident in Purkinje cell nuclei. These results support the hypothesis that FPV is able to proceed far into its replication cycle in post-mitotic Purkinje cells.

  19. Fluorescent Magnesium Nanocomplex in Protein Scaffold for Cell Nuclei Imaging Application

    SciTech Connect

    Pandya, Alok; Tripathi, Apritam; Purohit, Rahul; Singh, Sanjay; Nandasiri, Manjula I.; Karakoti, Ajay S.; Singh, Surinder P.; Shanker, Rishi

    2015-10-27

    Here in, we report a facile strategy for the synthesis of water-soluble ultra-fine blue emitting fluorescent Magnesium nanoparticles-protein complex (MgNC). This MgNC is demonstrated to exhibit excellent photo stability and biocompatibility. It was also observed that MgNC stain cell nuclei with high specifcity.

  20. Mathematical model of the chromatin structure of the nuclei of blood cells

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.

    2017-01-01

    This paper describes the model of images of the nuclei of blood cells for research informative texture features in the diagnostics of acute leukemias on the basis of computer microscopy. The proposed model allows to simulate the structure of chromatin and factors distorting the signal in the formation of image.

  1. Microtubule dynamics in plant cells.

    PubMed

    Buschmann, Henrik; Sambade, Adrian; Pesquet, Edouard; Calder, Grant; Lloyd, Clive W

    2010-01-01

    This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.

  2. A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells.

    PubMed

    Li, Chunyan; Yu, Mengxiao; Sun, Yun; Wu, Yongquan; Huang, Chunhui; Li, Fuyou

    2011-07-27

    A nonemissive cyclometalated iridium(III) solvent complex, without conjugation with a cell-penetrating molecular transporter, [Ir(ppy)(2)(DMSO)(2)](+)PF(6)(-) (LIr1), has been developed as a first reaction-based fluorescence-turn-on agent for the nuclei of living cells. LIr1 can rapidly and selectively light-up the nuclei of living cells over fixed cells, giving rise to a significant luminescence enhancement (200-fold), and shows very low cytotoxicity at the imaging concentration (incubation time <10 min, LIr1 concentration 10 μM). More importantly, in contrast to the reported nuclear stains that are based on luminescence enhancement through interaction with nucleic acids, complex LIr1 as a nuclear stain has a reaction-based mode of action, which relies on its rapid reaction with histidine/histidine-containing proteins. Cellular uptake of LIr1 has been investigated in detail under different conditions, such as at various temperatures, with hypertonic treatment, and in the presence of metabolic and endocytic inhibitors. The results have indicated that LIr1 permeates the outer and nuclear membranes of living cells through an energy-dependent entry pathway within a few minutes. As determined by an inductively coupled plasma atomic emission spectroscopy (ICP-AEC), LIr1 is accumulated in the nuclei of living cells and converted into an intensely emissive adduct. Such novel reaction-based nuclear staining for visualizing exclusively the nuclei of living cells with a significant luminescence enhancement may extend the arsenal of currently available fluorescent stains for specific staining of cellular compartments.

  3. Estrogen- and progestin-receptor complexes and their interaction with rat liver cell nuclei during ontogenesis

    SciTech Connect

    Konoplya, E.F.; Luksha, G.L.; Savateev, S.K.; Naumov, A.D.

    1986-11-10

    Steroid-receptor complexes (SRC) of estrogens and progestins have been isolated from the rat liver and purified 1500-2000-fold. Both in the state of the initial cytosol and purified 2000-fold, the SRC were characterized by gel filtration on Sephadex G-100 and by DEAE-cellulose chromatography. The purified SRC from the rat liver were used for binding to isolated liver cell nuclei from rats of different ages (1.5 months, 6 months, 12 months, 24 months). The maximum binding of SRC of progestins and estrogens from the rat liver is observed with homologous nuclei of 1.5-month-old rats. With age the binding of SRC by the nuclei decreases progressively and reaches a minimum by 24 months. The detected differences in the binding of SRC by the nuclei of cells of animals of different ages, in their opinion, may lie at the basis of changes in the functioning of the organism under the influence of hormones at different stages of ontogenesis.

  4. Occurrence of amitotic division of trophoblast cell nuclei in blastocysts of the western spotted skunk (Spilogale putorius latifrons).

    PubMed

    Isakova, Galina K; Mead, Rodney A

    2004-01-01

    A cytogenetic examination of spreaded cells of diapausing and early activated blastocysts obtained from 7 female western spotted skunks was performed. Mitosis was not observed in 1626 cells obtained from 9 diapausing blastocysts; however, 12 (1.5%) figures of diploid mitosis were seen in 851 cells from 5 early activated embryos. Diameter of the cell nuclei varied from 4 to 29 microm during diapause, and from 5 to 40 microm in activated blastocyst, and the heterogeneity in nuclear size was significantly different between diapausing and activated embryos (P<0.01). About 80% of nuclei from diapausing blastocysts measured 9 to 16 microm, whereas a similar percentage of nuclei from activated blastocysts ranged from 15 to 27 microm. Many enlarged nuclei exhibited morphological features characteristic of mammalian polytene (i.e. endopolyploid with polytenic organization of chromosomes) trophoblast cells. The number of silver stained nucleoli in all the nuclei did not exceed 2, which corresponds to the number of nucleolus organizers in the diploid karyotype in this species of skunk and suggests the polytene organization of chromosomes in enlarged nuclei. About 10% of large interphase nuclei were observed to undergo amitosis, i.e. direct division by constriction. The resulting nuclear fragments in diapausing blastocysts usually had normal morphology and active nucleoli. In activated embryos, nearly 15% of amitotically divided nuclei appeared to be dividing into fragments of unequal size, one of which had normal cell nuclear morphology and extremely large silver positive nucleoli, and the other fragment exhibited signs of cell death. We interpret these data as indicating that 1) amitotic division of trophoblast endopolyploid cell nuclei in the skunk blastocysts may generate new trophoblast cells which contribute to increased cell number during both diapause and activation stages, and 2) activation of blastocysts after diapause is related to the production of trophoblast

  5. Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.

    PubMed

    Rojas-Moraleda, Rodrigo; Xiong, Wei; Halama, Niels; Breitkopf-Heinlein, Katja; Dooley, Steven; Salinas, Luis; Heermann, Dieter W; Valous, Nektarios A

    2017-03-06

    The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n(2)) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n(1+ɛ)) for ε < 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the

  6. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  7. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  8. DNA-dependent targeting of cell nuclei by a lupus autoantibody

    PubMed Central

    Weisbart, Richard H.; Chan, Grace; Jordaan, Gwen; Noble, Philip W.; Liu, Yanfeng; Glazer, Peter M.; Nishimura, Robert N.; Hansen, James E.

    2015-01-01

    A nuclear-penetrating lupus anti-DNA autoantibody, 3E10, has been found to inhibit DNA repair and selectively kill certain cancer cells that are highly vulnerable to DNA damage. In addition, a 3E10 single chain variable fragment (scFv) has been developed for use as a delivery vehicle to carry therapeutic cargo proteins into cell nuclei. A greater understanding of the mechanism by which 3E10 penetrates cell nuclei is needed to help determine the scope of its potential therapeutic applications. Here we show that the presence of extracellular DNA significantly enhances the nuclear uptake of 3E10 scFv. In addition, we find that 3E10 scFv preferentially localizes into tumor cell nuclei in vivo, likely due to increased DNA in the local environment released from ischemic and necrotic regions of tumor. These data provide insight into the mechanism of nuclear penetration by 3E10 and demonstrate the potential for use of 3E10 in therapeutic approaches to diseases ranging from malignancy to ischemic conditions such as stroke. PMID:26156563

  9. DNA-dependent targeting of cell nuclei by a lupus autoantibody.

    PubMed

    Weisbart, Richard H; Chan, Grace; Jordaan, Gwen; Noble, Philip W; Liu, Yanfeng; Glazer, Peter M; Nishimura, Robert N; Hansen, James E

    2015-07-09

    A nuclear-penetrating lupus anti-DNA autoantibody, 3E10, has been found to inhibit DNA repair and selectively kill certain cancer cells that are highly vulnerable to DNA damage. In addition, a 3E10 single chain variable fragment (scFv) has been developed for use as a delivery vehicle to carry therapeutic cargo proteins into cell nuclei. A greater understanding of the mechanism by which 3E10 penetrates cell nuclei is needed to help determine the scope of its potential therapeutic applications. Here we show that the presence of extracellular DNA significantly enhances the nuclear uptake of 3E10 scFv. In addition, we find that 3E10 scFv preferentially localizes into tumor cell nuclei in vivo, likely due to increased DNA in the local environment released from ischemic and necrotic regions of tumor. These data provide insight into the mechanism of nuclear penetration by 3E10 and demonstrate the potential for use of 3E10 in therapeutic approaches to diseases ranging from malignancy to ischemic conditions such as stroke.

  10. Plant cells as pharmaceutical factories.

    PubMed

    Rischer, Heiko; Häkkinen, Suvi T; Ritala, Anneli; Seppänen-Laakso, Tuulikki; Miralpeix, Bruna; Capell, Teresa; Christou, Paul; Oksman-Caldentey, Kirsi-Marja

    2013-01-01

    Molecules derived from plants make up a sizeable proportion of the drugs currently available on the market. These include a number of secondary metabolite compounds the monetary value of which is very high. New pharmaceuticals often originate in nature. Approximately 50% of new drug entities against cancer or microbial infections are derived from plants or micro-organisms. However, these compounds are structurally often too complex to be economically manufactured by chemical synthesis, and frequently isolation from naturally grown or cultivated plants is not a sustainable option. Therefore the biotechnological production of high-value plant secondary metabolites in cultivated cells is potentially an attractive alternative. Compared to microbial systems eukaryotic organisms such as plants are far more complex, and our understanding of the metabolic pathways in plants and their regulation at the systems level has been rather poor until recently. However, metabolic engineering including advanced multigene transformation techniques and state-of-art metabolomics platforms has given us entirely new tools to exploit plants as Green Factories. Single step engineering may be successful on occasion but in complex pathways, intermediate gene interventions most often do not affect the end product accumulation. In this review we discuss recent developments towards elucidation of complex plant biosynthetic pathways and the production of a number of highvalue pharmaceuticals including paclitaxel, tropane, morphine and terpenoid indole alkaloids in plants and cell cultures.

  11. Reprogramming plant cells for endosymbiosis.

    PubMed

    Oldroyd, Giles E D; Harrison, Maria J; Paszkowski, Uta

    2009-05-08

    The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.

  12. Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology

    NASA Astrophysics Data System (ADS)

    Sharma, Harshita; Zerbe, Norman; Heim, Daniel; Wienert, Stephan; Lohmann, Sebastian; Hellwich, Olaf; Hufnagl, Peter

    2016-03-01

    This paper describes a novel graph-based method for efficient representation and subsequent classification in histological whole slide images of gastric cancer. Her2/neu immunohistochemically stained and haematoxylin and eosin stained histological sections of gastric carcinoma are digitized. Immunohistochemical staining is used in practice by pathologists to determine extent of malignancy, however, it is laborious to visually discriminate the corresponding malignancy levels in the more commonly used haematoxylin and eosin stain, and this study attempts to solve this problem using a computer-based method. Cell nuclei are first isolated at high magnification using an automatic cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they contain information about cell nuclei morphology as vertex attributes, along with knowledge of neighborhood in the form of edge linking and edge attributes. Global graph characteristics are derived and ensemble learning is used to discriminate between three types of malignancy levels, namely, non-tumor, Her2/neu positive tumor and Her2/neu negative tumor. Performance is compared with state of the art methods including four texture feature groups (Haralick, Gabor, Local Binary Patterns and Varma Zisserman features), color and intensity features, and Voronoi diagram and Delaunay triangulation. Texture, color and intensity information is also combined with graph-based knowledge, followed by correlation analysis. Quantitative assessment is performed using two cross validation strategies. On investigating the experimental results, it can be concluded that the proposed method provides a promising way for computer-based analysis of histopathological images of gastric cancer.

  13. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  14. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover

    SciTech Connect

    Bergmann, Olaf; Zdunek, Sofia; Alkass, Kanar; Druid, Henrik; Bernard, Samuel; Frisen, Jonas

    2011-01-15

    Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously {sup 14}C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that {sup 14}C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans.

  15. Recovery of cell nuclei from 15,000 years old mammoth tissues and its injection into mouse enucleated matured oocytes.

    PubMed

    Kato, Hiromi; Anzai, Masayuki; Mitani, Tasuku; Morita, Masahiro; Nishiyama, Yui; Nakao, Akemi; Kondo, Kenji; Lazarev, Petr A; Ohtani, Tsuyoshi; Shibata, Yasuyuki; Iritani, Akira

    2009-01-01

    Here, we report the recovery of cell nuclei from 14,000-15,000 years old mammoth tissues and the injection of those nuclei into mouse enucleated matured oocytes by somatic cell nuclear transfer (SCNT). From both skin and muscle tissues, cell nucleus-like structures were successfully recovered. Those nuclei were then injected into enucleated oocytes and more than half of the oocytes were able to survive. Injected nuclei were not taken apart and remained its nuclear structure. Those oocytes did not show disappearance of nuclear membrane or premature chromosome condensation (PCC) at 1 hour after injection and did not form pronuclear-like structures at 7 hours after injection. As half of the oocytes injected with nuclei derived from frozen-thawed mouse bone marrow cells were able to form pronuclear-like structures, it might be possible to promote the cell cycle of nuclei from ancient animal tissues by suitable pre-treatment in SCNT. This is the first report of SCNT with nuclei derived from mammoth tissues.

  16. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status.

    PubMed

    Raulf, Alexandra; Horder, Hannes; Tarnawski, Laura; Geisen, Caroline; Ottersbach, Annika; Röll, Wilhelm; Jovinge, Stefan; Fleischmann, Bernd K; Hesse, Michael

    2015-05-01

    Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific αMHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.

  17. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo.

    PubMed

    Ajduk, Anna; Biswas Shivhare, Sourima; Zernicka-Goetz, Magdalena

    2014-08-15

    The early mouse embryo undertakes two types of cell division: symmetric that gives rise to the trophectoderm and then placenta or asymmetric that gives rise to inner cells that generate the embryo proper. Although cell division orientation is important, the mechanism regulating it has remained unclear. Here, we identify the relationship between the plane of cell division and the position of the nucleus and go towards identifying the mechanism behind it. We first find that as the 8-cell embryo progresses through the cell cycle, the nuclei of most - but not all - cells move from apical to more basal positions, in a microtubule- and kinesin-dependent manner. We then find that all asymmetric divisions happen when nuclei are located basally and, in contrast, all cells, in which nuclei remain apical, divide symmetrically. To understand the potential mechanism behind this, we determine the effects of modulating expression of Cdx2, a transcription factor key for trophectoderm formation and cell polarity. We find that increased expression of Cdx2 leads to an increase in a number of apical nuclei, whereas down-regulation of Cdx2 leads to more nuclei moving basally, which explains a previously identified relationship between Cdx2 and cell division orientation. Finally, we show that down-regulation of aPKC, involved in cell polarity, decreases the number of apical nuclei and doubles the number of asymmetric divisions. These results suggest a model in which the mutual interdependence of Cdx2 and cell polarity affects the cytoskeleton-dependent positioning of nuclei and, in consequence, the plane of cell division in the early mouse embryo.

  18. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space

    PubMed Central

    Tokunaga, Terumasa; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-01-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  19. Selective transport of cationized fluorescent topoisomerase into nuclei of live cells for DNA damage studies.

    PubMed

    Minchew, Candace L; Didenko, Vladimir V

    2014-01-01

    The targeted delivery of fluorescently labeled, DNA-modifying proteins into cellular nuclei permits investigation of DNA damage and chromatin function in living cells. Commercially available protein delivery vectors cannot provide selective intranuclear transportation and primarily unload their cargo in the cytoplasm. Here we describe a simple approach for specific intranuclear transportation of vaccinia topoisomerase protein based on its cationization. The delivered protein can be observed and monitored by fluorescence microscopy. The technique is cost-efficient and time-saving. It can be useful in live cell studies.

  20. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    PubMed

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  1. Heterologous expression of Paranosema (Antonospora) locustae hexokinase in lepidopteran, Sf9, cells is followed by accumulation of the microsporidian protein in insect cell nuclei.

    PubMed

    Timofeev, Sergey A; Senderskiy, Igor V; Tsarev, Alexander A; Tokarev, Yuri S; Dolgikh, Viacheslav V

    2017-02-01

    Paranosema (Nosema, Antonospora) locustae is the only microsporidium produced as a commercial product for biological control. Molecular mechanisms of the effects of this pathogen and other invertebrate microsporidia on host cells remain uncharacterized. Previously, we immunolocalized P. locustae hexokinase in nuclei of Locusta migratoria infected adipocytes. Here, the microsporidian protein was expressed in the yeast Pichia pastoris and in lepidopteran Sf9 cells. During heterologous expression, P. locustae hexokinase was accumulated in the nuclei of insect cells but not in yeast cell nuclei. This confirms nuclear localization of hexokinase secreted by microsporidia into infected host cells and suggests convenient model for its further study.

  2. Rapid isolation of nuclei from living immune cells by a single centrifugation through a multifunctional lysis gradient.

    PubMed

    Poglitsch, Marko; Katholnig, Karl; Säemann, Marcus D; Weichhart, Thomas

    2011-10-28

    Due to their low protein content and limited nuclear detergent stability, primary human immune cells such as monocytes or T lymphocytes represent a great challenge for standard nuclear isolation protocols. Nuclei clumping during the multiple centrifugation steps or contamination of isolated nuclei with cytoplasmic proteins due to membrane lysis is a frequently observed problem. Here we describe a versatile and novel method for the isolation of clean and intact nuclei from primary human monocytes, which can be applied for virtually any cell type. Living cells were applied on an iso-osmolar discontinuous iodixanol-based density gradient including a detergent-containing lysis layer. Mild cell lysis as well as efficient washing of the nuclei was performed during the course of one single low g-force centrifugation step. The isolation procedure, which we call lysis gradient centrifugation (LGC), results in the recovery of 90-95% of highly pure nuclei. This easy and highly reproducible procedure allows an effective preparation of nuclei and the cytoplasm in only 15 min with the ability to handle as little as one million cells per sample and easy parallel processing of multiple samples.

  3. UPTAKE OF GLYCINE-N15 BY COMPONENTS OF CELL NUCLEI

    PubMed Central

    Daly, Marie M.; Allfrey, V. G.; Mirsky, A. E.

    1952-01-01

    1. The uptake of glycine-N15 by components of cell nuclei was studied. The nuclear components were derived both from tissues with high metabolic rates-mammalian liver, kidney, and pancreas-and from cells with relatively low rates of metabolism-avian erythrocytes and echinoderm sperm. N15 uptake by nuclear components of liver, kidney, and pancreas was far more rapid than by those of erythrocytes and sperm. 2. The nuclear components of liver, kidney, and pancreas for which measurements were made were DNA, histone, and residual protein of chromatin. Uptake into DNA was low, into histone higher, and into residual protein much higher still, being comparable with that into mixed cytoplasmic protein. 3. A comparison of the uptake of N15 by the chromosomal components, histone and DNA of liver, pancreas, and kidney showed that chromosomal "activity" varies in different cells and also in the same cell depending upon its over-all activity. PMID:13011275

  4. Study of RNA Polymerase II Clustering inside Live-Cell Nuclei Using Bayesian Nanoscopy.

    PubMed

    Chen, Xuanze; Wei, Mian; Zheng, M Mocarlo; Zhao, Jiaxi; Hao, Huiwen; Chang, Lei; Xi, Peng; Sun, Yujie

    2016-02-23

    Nanoscale spatiotemporal clustering of RNA polymerase II (Pol II) plays an important role in transcription regulation. However, dynamics of individual Pol II clusters in live-cell nuclei has not been measured directly, prohibiting in-depth understanding of their working mechanisms. In this work, we studied the dynamics of Pol II clustering using Bayesian nanoscopy in live mammalian cell nuclei. With 50 nm spatial resolution and 4 s temporal resolution, Bayesian nanoscopy allows direct observation of the assembly and disassembly dynamics of individual Pol II clusters. The results not only provide quantifications of Pol II clusters but also shed light on the understanding of cluster formation and regulation. Our study suggests that transcription factories form on-demand and recruit Pol II molecules in their pre-elongation phase. The assembly and disassembly of individual Pol II clusters take place asynchronously. Overall, the methods developed herein are also applicable to studying a wide realm of real-time nanometer-scale nuclear processes in live cells.

  5. Exploiting native forces to capture chromosome conformation in mammalian cell nuclei.

    PubMed

    Brant, Lilija; Georgomanolis, Theodore; Nikolic, Milos; Brackley, Chris A; Kolovos, Petros; van Ijcken, Wilfred; Grosveld, Frank G; Marenduzzo, Davide; Papantonis, Argyris

    2016-12-09

    Mammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure-to-function relationship. However, all 3C-based methods rely on chemical cross-linking to stabilize spatial interactions. This step remains a "black box" as regards the biases it may introduce, and some discrepancies between microscopy and 3C studies have now been reported. To address these concerns, we developed "i3C", a novel approach for capturing spatial interactions without a need for cross-linking. We apply i3C to intact nuclei of living cells and exploit native forces that stabilize chromatin folding. Using different cell types and loci, computational modeling, and a methylation-based orthogonal validation method, "TALE-iD", we show that native interactions resemble cross-linked ones, but display improved signal-to-noise ratios and are more focal on regulatory elements and CTCF sites, while strictly abiding to topologically associating domain restrictions.

  6. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth

    SciTech Connect

    Han, Bin; Izumi, Hiroto; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Fujimoto, Naohiro; Matsumoto, Tetsuro; Wu, Bin; Tanimoto, Akihide; Sasaguri, Yasuyuki; Kohno, Kimitoshi

    2011-04-29

    Highlights: {yields} Mitochondrial transcription factor A (mtTFA) localizes in nuclei and binds tightly to the nuclear chromatin. {yields} mtTFA contains two putative nuclear localization signals (NLS) in the HMG-boxes. {yields} Overexpression of mtTFA enhances the growth of cancer cells, whereas downregulation of mtTFA inhibits their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). {yields} Knockdown of mtTFA expression induces p21-dependent G1 cell cycle arrest. -- Abstract: Mitochondrial transcription factor A (mtTFA) is one of the high mobility group protein family and is required for both transcription from and maintenance of mitochondrial genomes. However, the roles of mtTFA have not been extensively studied in cancer cells. Here, we firstly reported the nuclear localization of mtTFA. The proportion of nuclear-localized mtTFA varied among different cancer cells. Some mtTFA binds tightly to the nuclear chromatin. DNA microarray and chromatin immunoprecipitation assays showed that mtTFA can regulate the expression of nuclear genes. Overexpression of mtTFA enhanced the growth of cancer cell lines, whereas downregulation of mtTFA inhibited their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). Knockdown of mtTFA expression induced p21-dependent G1 cell cycle arrest. These results imply that mtTFA functions in both nuclei and mitochondria to promote cell growth.

  7. Nuclear transfer of embryonic cell nuclei to non-enucleated eggs in zebrafish, Danio rerio.

    PubMed

    Hattori, Manabu; Hashimoto, Hisashi; Bubenshchikova, Ekaterina; Wakamatsu, Yuko

    2011-04-15

    We previously established a novel method for nuclear transfer in medaka (Oryzias latipes) using non-enucleated, diploidized eggs as recipients for adult somatic cell nuclei. Here we report the first attempt to apply this method to another fish species. To examine suitability of using non-enucleated eggs as recipients for nuclear transfer in the zebrafish (Danio rerio), we transferred blastula cell nuclei from a wild-type donor strain to non-enucleated, unfertilized eggs from a golden recipient strain. As a result, 31 of 184 (16.8%) operated eggs developed normally and reached the adult stage. Twenty-eight (15.2%) of these transplants showed wild-type phenotype and the remaining three (1.6%) were golden. Except for one individual that exhibited diploid/tetraploid mosaicism, all of the wild-type nuclear transplants were either triploid or diploid. While all of 19 triploid transplants were infertile, a total of six transplants (21.4%) were fertile (five of the eight diploid transplants and one transplant exhibiting ploidy mosaicism). Except for one diploid individual, all of the fertile transplants transferred both the wild-type golden gene allele (slc24a5) as well as the phenotype, the wild-type body color, to their F(1) and F(2) progeny in a typical Mendelian fashion. PCR analysis of slc24a5 suggested that triploidy originated from a fused nucleus in the diploid donor and haploid recipient nuclei, and that the sole origin of diploidy was the diploid donor nucleus. The results of the present study demonstrated the suitability of using non-enucleated eggs as recipients for nuclear transfer experiments in zebrafish.

  8. Transcription is Associated with Z-DNA Formation in Metabolically Active Permeabilized Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Wittig, Burghardt; Dorbic, Tomislav; Rich, Alexander

    1991-03-01

    Mammalian cells have been encapsulated in agarose microbeads, and from these cells metabolically active permeabilized nuclei were prepared. Previously, we showed that biotin-labeled monoclonal antibodies against Z-DNA can be diffused into the nuclei and, over a specific concentration range, they will bind to Z-DNA within the nucleus in a concentration-independent manner. By using radiolabeled streptavidin, we showed that the amount of Z-DNA antibody bound is related to the torsional strain of the DNA in the nucleus. Relaxation of the DNA results in a decrease of Z-DNA formation, whereas increasing torsional strain through inhibiting topoisomerase I results in increased Z-DNA formation. Here we measure the influence of RNA transcription and DNA replication. Transcription is associated with a substantial increase in the binding of anti-Z-DNA antibodies, paralleling the increased level of RNA synthesized as the level of ribonucleoside triphosphate in the medium is increased. DNA replication yields smaller increases in the binding of Z-DNA antibodies. Stopping RNA transcription with inhibitors results in a large loss of Z-DNA antibody binding, whereas only a small decrease is associated with inhibition of DNA replication.

  9. Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation.

    PubMed

    Zhang, Tao; Paulson, James R; Bakhrebah, Muhammed; Kim, Ji Hun; Nowell, Cameron; Kalitsis, Paul; Hudson, Damien F

    2016-05-01

    Condensin is an integral component of the mitotic chromosome condensation machinery, which ensures orderly segregation of chromosomes during cell division. In metazoans, condensin exists as two complexes, condensin I and II. It is not yet clear what roles these complexes may play outside mitosis, and so we have examined their behaviour both in normal interphase and in premature chromosome condensation (PCC). We find that a small fraction of condensin I is retained in interphase nuclei, and our data suggests that this interphase nuclear condensin I is active in both gene regulation and chromosome condensation. Furthermore, live cell imaging demonstrates condensin II dramatically increases on G1 nuclei following completion of mitosis. Our PCC studies show condensins I and II and topoisomerase II localise to the chromosome axis in G1-PCC and G2/M-PCC, while KIF4 binding is altered. Individually, condensins I and II are dispensable for PCC. However, when both are knocked out, G1-PCC chromatids are less well structured. Our results define new roles for the condensins during interphase and provide new information about the mechanism of PCC.

  10. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  11. Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell Nuclei to Epithelium Morphology.

    PubMed

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2016-01-01

    It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A number of approaches were developed to find an appropriate mathematical description of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating the morphology of cells in epithelial tissues. However, a study providing a statistically sound analysis of this method's accuracy is not available in the literature. We addressed this issue here by comparing a number of morphological measures of the cells, including area, perimeter, and elongation obtained from such a tessellation with identical measures extracted from direct imaging acquired by staining the cell membranes. After analyzing the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that CMVT reasonably well reproduces many of the morphological properties of the tissue with an error that is between 10 and 15%. Moreover, cross-correlations between different morphological measures are reproduced qualitatively correctly by this method. However, all of the properties including the cell perimeters, number of neighbors, and anisotropy measures often suffer from systematic or size dependent errors. These discrepancies originate from the polygonal nature of the tessellation which sets the limits of the applicability of CMVT.

  12. ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells

    PubMed Central

    Silva, Suély V.; Lima, Maíra A.; Cella, Nathalie; Jaeger, Ruy G.

    2016-01-01

    Proteins secreted in the extracellular matrix microenvironment (ECM) by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A) and tumoral (MCF7 and MDA-MB-231) human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate. PMID:27764205

  13. Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell Nuclei to Epithelium Morphology

    PubMed Central

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2016-01-01

    It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A number of approaches were developed to find an appropriate mathematical description of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating the morphology of cells in epithelial tissues. However, a study providing a statistically sound analysis of this method's accuracy is not available in the literature. We addressed this issue here by comparing a number of morphological measures of the cells, including area, perimeter, and elongation obtained from such a tessellation with identical measures extracted from direct imaging acquired by staining the cell membranes. After analyzing the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that CMVT reasonably well reproduces many of the morphological properties of the tissue with an error that is between 10 and 15%. Moreover, cross-correlations between different morphological measures are reproduced qualitatively correctly by this method. However, all of the properties including the cell perimeters, number of neighbors, and anisotropy measures often suffer from systematic or size dependent errors. These discrepancies originate from the polygonal nature of the tessellation which sets the limits of the applicability of CMVT. PMID:27932987

  14. Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system.

    PubMed Central

    Blow, J J; Watson, J V

    1987-01-01

    We have used a novel approach to investigate the control of initiation of replication of sperm nuclei in a Xenopus cell-free extract. Nascent DNA was labelled with biotin by supplementing the extract with biotin-11-dUTP, and isolated nuclei were then probed with fluorescein-conjugated streptavidin. Flow cytometry was used to measure the biotin content of individual nuclei and their total DNA content. This showed that incorporation of the biotinylated precursor increases linearly with DNA content. Haploid sperm nuclei replicate fully to reach the diploid DNA content over 2-6 h in the extract. Synthesis stops once the diploid DNA content is reached. Different nuclei enter S phase at different times over greater than 1.5 h, although they share the same cytoplasmic environment. Nuclei reach their maximum rates of synthesis soon after entry into S phase and some replicate fully in less than 0.5 h, resembling the rates of replication observed in the intact egg. These results indicate that initiations are coordinated within each nucleus such that the nucleus is the fundamental unit of replication in the cell-free system. Images Fig. 1. Fig. 2. PMID:3653079

  15. Regio- and stereoselectivities in plant cell biotransformation

    SciTech Connect

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  16. Regulation of Water in Plant Cells

    ERIC Educational Resources Information Center

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  17. Reactivation of DNA replication in nuclei from terminally differentiated cells: nuclear membrane permeabilization is required for initiation in Xenopus egg extract.

    PubMed

    Leno, G H; Munshi, R

    1997-05-01

    We have used Xenopus egg extract to investigate the requirements for reactivation of DNA replication in nuclei isolated from terminally differentiated chicken erythrocytes. Previous work has shown that reactivation of erythrocyte nuclei in egg extract is accompanied by chromatin decondensation, nuclear envelope reformation, and the accumulation of egg lamin, LIII. However, in those studies, erythrocyte nuclei were prepared by methods that were not designed to maintain the selective permeability of the nuclear membrane, and as such, it is not clear if loss of nuclear membrane integrity played a role in the reactivation process. Therefore, the purpose of this study was to determine if changes in nuclear membrane permeability are required for reactivation of erythrocyte nuclei in egg extract. Nuclei with intact nuclear membranes were prepared from erythrocytes with streptolysin O and permeable nuclei by treatment of intact nuclei with the detergent Nonidet-P40. Like permeable nuclei, most intact nuclei decondensed, imported nuclear protein, and accumulated lamin LIII from the extract. However, unlike permeable nuclei, which replicated extensively in the extract, few intact nuclei initiated replication under the same conditions. These data demonstrate that permeabilization of the nuclear membrane is required for reactivation of DNA replication in terminally differentiated erythrocyte nuclei by egg extract and suggest that loss of nuclear membrane integrity may be a general requirement for replication of quiescent cell nuclei by this system.

  18. Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications.

    PubMed

    Venkatesh, V; Shukla, Akansha; Sivakumar, Sri; Verma, Sandeep

    2014-02-12

    We report facile one-pot synthesis of water-soluble green fluorescent gold nanoclusters (AuNCs), capped with 8-mercapto-9-propyladenine. The synthesized AuNCs were characterized by Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), (1)H NMR, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. These nanoclusters show high photostability and biocompatibility. We observed that AuNCs stain cell nuclei with high specificity, where the mechanism of AuNC uptake was established through pathway-specific uptake inhibitors. These studies revealed that cell internalization of AuNCs occurs via a macropinocytosis pathway.

  19. Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale

    PubMed Central

    Szczurek, Aleksander; Xing, Jun; Birk, Udo J.; Cremer, Christoph

    2016-01-01

    Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50–100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field. PMID:27446198

  20. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    PubMed

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties.

  1. Whole-Mount DAPI Staining and Measurement of DNA Content in Plant Cells.

    PubMed

    Schnittger, Arp; Hülskamp, Martin

    2007-01-01

    INTRODUCTIONDuring development, many plant cells undergo endoreduplication, whereby ploidy increases to a multiple of the normal 2C content. For example, trichome development is accompanied by an increase in ploidy to 32C, indicating that trichome cells undergo four rounds of endoreduplication. In the protocol described here, DNA levels, and hence developmental progress in the corresponding cells, are measured by staining the DNA with a fluorescent marker and then quantifying the fluorescence of individual nuclei.

  2. Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes).

    PubMed

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Motosugi, Nami; Fujimoto, Takafumi; Arai, Katsutoshi; Kinoshita, Masato; Hashimoto, Hisashi; Ozato, Kenjiro; Wakamatsu, Yuko

    2007-12-01

    Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.

  3. Three-dimensional imaging of interphase cell nuclei with laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Boecker, Wilfried; Radtke, Thomas; Streffer, Christian

    1998-10-01

    During the past decade 3D image processing has become an important key component in biological research mainly due to two different developments. The first is based on an optical instrument, the so-called confocal laser scanning microscope, allowing optical sectioning of the biological specimen. The second is a biological preparatory method, the so-called FISH-technique (Fluorescence-In-Situ- Hybridization), allowing labeling of certain cellular and sub-cellular compartments with highly specific fluorescent dyes. Both methods make it possible to investigate the 3D biological framework within cells and nuclei. Image acquisition with confocal laser scanning microscopy must deal with different limits of resolution along and across the optical axis. Although lateral resolution is about 0.7 times better than in non-confocal arrangements, axial resolution is more than 3 - 4 times poorer than that of the lateral (depending on the pinhole size). For 3D reconstruction it is desirable to improve axial resolution in order to provide nearly identical image information across the 3D specimen space. This presentation will give an overview of some of the most popular restoration and deblurring algorithms used in 3D image microscopy. After 3D image restoration, segmentation of certain details of the cell structure is usually the next step in image processing. We compared two different kinds of algorithms for segmentation of chromosome territories in interphase cell nuclei. One is based on Mathematical Morphology, the other on Split & Merge methods. The segmented image regions provided the basis for chromosome domain reconstruction as well as for regional localization for subsequent quantitative measurements. As a result the chromatin density within certain chromosome domains as well as some terminal DNA sequences (telomere signals) could be measured.

  4. Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange.

    PubMed

    Toyama, Kaori; Yamada, Masumi; Seki, Minoru

    2012-08-01

    Separation/purification of nuclei from cells is a critical process required for medical and biochemical research applications. Here, we report a flow-through microfluidic device for isolating cell nuclei by selectively digesting the cell membrane by using the concept of hydrodynamic filtration (HDF). When a cell suspension is continuously introduced into a microchannel (main channel) possessing multiple side channels, cells flow through the main channel, whereas the carrier medium of the cells is drained through the side channels. Introductions of a cell treatment solution containing a surfactant and a washing buffer enable the two-step exchange of the carrier-medium and the cell treatment by the surfactant for a short span of time. The precise control of the treatment time by changing the flow rate and/or the size of the microchannel enables the selective digestion of cell membranes, resulting in the isolation of cell nuclei after separation from membrane debris and cytoplasmic components according to size. We examined several surfactant molecules and demonstrated that Triton X-100 exhibited high efficiency regarding nucleus isolation for both adherent (HeLa) and nonadherent (JM) cells, with a recovery ratio of ~80 %. In addition, the isolation efficiency was evaluated by western blotting. The presented flow-through microfluidic cell-nucleus separator may be a useful tool for general biological applications, because of its simplicity in operation, high reproducibility, and accuracy.

  5. Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro.

    PubMed

    Fujita, Hirofumi; Yamamoto, Masanao; Ogino, Tetsuya; Kobuchi, Hirotsugu; Ohmoto, Naoko; Aoyama, Eriko; Oka, Takashi; Nakanishi, Tohru; Inoue, Keiji; Sasaki, Junzo

    2014-01-01

    A close relationship between cell death and pathological calcification has recently been reported, such as vascular calcification in atherosclerosis. However, the roles of cell death in calcification by osteoblast lineage have not been elucidated in detail. In this study, we investigated whether cell death is involved in the calcification on osteoblastic differentiation of human bone marrow mesenchymal stem cells (hMSC) under osteogenic culture in vitro. Apoptosis and necrosis occurred in an osteogenic culture of hMSC, and cell death preceded calcification. The generation of intracellular reactive oxygen species, chromatin condensation and fragmentation, and caspase-3 activation increased in this culture. A pan-caspase inhibitor (Z-VAD-FMK) and anti-oxidants (Tiron and n-acetylcysteine) inhibited osteogenic culture-induced cell death and calcification. Furthermore, calcification was significantly promoted by the addition of necrotic dead cells or its membrane fraction. Spontaneously dead cells by osteogenic culture and exogenously added necrotic cells were surrounded by calcium deposits. Induction of localized cell death by photodynamic treatment in the osteogenic culture resulted in co-localized calcification. These findings show that necrotic and apoptotic cell deaths were induced in an osteogenic culture of hMSC and indicated that both necrotic and apoptotic cells of osteoblast lineage served as nuclei for calcification on osteoblastic differentiation of hMSC in vitro.

  6. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells.

    PubMed

    Pfeiffer, Martin J; Esteves, Telma C; Balbach, Sebastian T; Araúzo-Bravo, Marcos J; Stehling, Martin; Jauch, Anna; Houghton, Franchesca D; Schwarzer, Caroline; Boiani, Michele

    2013-11-01

    The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.

  7. Automatic Detection of Mitosis and Nuclei From Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation.

    PubMed

    González, Jorge Ernesto; Radl, Analía; Romero, Ivonne; Barquinero, Joan Francesc; García, Omar; Di Giorgio, Marina

    2016-12-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention.

  8. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  9. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model

    SciTech Connect

    Engh, G. van den; Trask, B.J. ); Sachs, R. )

    1992-09-04

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  10. Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model

    NASA Astrophysics Data System (ADS)

    van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.

    1992-09-01

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  11. Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II

    PubMed Central

    1990-01-01

    We report the development of a new method for producing mitotic extracts from tissue culture cells. These extracts reproducibly promote the condensation of chromatin in vitro when incubated with purified interphase nuclei. This condensation reaction is not species specific, since nuclei from chicken, human, and hamster cell lines all undergo chromatin condensation upon incubation with the extract. We have used this extract to investigate the role of DNA topoisomerase II (topo II) in the chromosome condensation process. Chromatin condensation does not require the presence of soluble topo II in the mitotic extract. However, the extent of formation of discrete chromosome-like structures correlates with the level of endogenous topo II present in the interphase nuclei. Our results further suggest that chromatin condensation in this extract may involve two processes: chromatin compaction and resolution into discrete chromosomes. PMID:2176652

  12. Plant small nuclear RNAs. II. U6 RNA and a 4.5SI-like RNA are present in plant nuclei.

    PubMed Central

    Kiss, T; Antal, M; Solymosy, F

    1987-01-01

    Two small nuclear RNA species (U6 RNA and a 4.5SI-like RNA) not described so far for plants were detected in broad bean (Vicia faba L.) nuclei. U6 RNA is 98 nucleotides long, contains psi and methylated nucleotides and shows a surprisingly high degree of sequence homology (80%) with its rat counterpart, particularly in the middle part (a 57 nucleotide-long stretch) of the molecule, where it amounts to 98%. The 4.5SI-like RNA, similar in its structure to 4.5SI RNA detected so far only in rodent nuclei, is 94 nucleotides long, contains psi and an unidentified nucleotide and exhibits 52% overall sequence homology with rat 4.5SI RNA. A block of 20 consecutive nucleotides at the 5' end of the molecule is conserved between broad bean 4.5SI-like RNA and rat 4.5SI RNA. The presence of the two RNA polymerase III internal promoter consensus sequences in 4.5SI-like RNA suggests that it is an RNA polymerase III transcript. Images PMID:2434924

  13. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei.

    PubMed

    Butler, William N; Taube, Jeffrey Steven

    2017-03-01

    The head direction (HD) circuit is a complex, interconnected network of brain regions ranging from the brainstem to the cortex. Recent work found that HD cells co-recorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar tunings. Here, we demonstrate that the same high frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were co-recorded bilaterally we observed the same high frequency (~150-200 Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related, despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN.

  14. Computer vision approach to morphometric feature analysis of basal cell nuclei for evaluating malignant potentiality of oral submucous fibrosis.

    PubMed

    Muthu Rama Krishnan, M; Pal, Mousumi; Paul, Ranjan Rashmi; Chakraborty, Chandan; Chatterjee, Jyotirmoy; Ray, Ajoy K

    2012-06-01

    This research work presents a quantitative approach for analysis of histomorphometric features of the basal cell nuclei in respect to their size, shape and intensity of staining, from surface epithelium of Oral Submucous Fibrosis showing dysplasia (OSFD) to that of the Normal Oral Mucosa (NOM). For all biological activity, the basal cells of the surface epithelium form the proliferative compartment and therefore their morphometric changes will spell the intricate biological behavior pertaining to normal cellular functions as well as in premalignant and malignant status. In view of this, the changes in shape, size and intensity of staining of the nuclei in the basal cell layer of the NOM and OSFD have been studied. Geometric, Zernike moments and Fourier descriptor (FD) based as well as intensity based features are extracted for histomorphometric pattern analysis of the nuclei. All these features are statistically analyzed along with 3D visualization in order to discriminate the groups. Results showed increase in the dimensions (area and perimeter), shape parameters and decreasing mean nuclei intensity of the nuclei in OSFD in respect to NOM. Further, the selected features are fed to the Bayesian classifier to discriminate normal and OSFD. The morphometric and intensity features provide a good sensitivity of 100%, specificity of 98.53% and positive predicative accuracy of 97.35%. This comparative quantitative characterization of basal cell nuclei will be of immense help for oral onco-pathologists, researchers and clinicians to assess the biological behavior of OSFD, specially relating to their premalignant and malignant potentiality. As a future direction more extensive study involving more number of disease subjects is observed.

  15. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  16. Microfluidic platforms for plant cells studies.

    PubMed

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  17. Immunological demonstration of the accumulation of insulin, but not insulin receptors, in nuclei of insulin-treated cells

    SciTech Connect

    Soler, A.P.; Thompson, K.A.; Smith, R.M.; Jarett, L. )

    1989-09-01

    Although insulin is known to regulate nuclear-related processes, such as cell growth and gene transcription, the mechanisms involved are poorly understood. Previous studies suggested that translocation of insulin or its receptor to cell nuclei might be involved in some of these processes. The present investigation demonstrated that intact insulin, but not the insulin receptor, accumulated in nuclei of insulin-treated cells. Cell fractionation studies demonstrated that the nuclear accumulation of {sup 125}I-labeled insulin was time-, temperature-, and insulin-concentration-dependent. Electron microscopic immunocytochemistry demonstrated that the insulin that accumulated in the nucleus was immunologically intact and associated with the heterochromatin. Only 1% of the {sup 125}I-labeled insulin extracted from isolated nuclei was eluted from a Sephadex G-50 column as {sup 125}I-labeled tyrosine. Plasma membrane insulin receptors were not detected in the nucleus by immuno electron microscopy or when wheat germ agglutinin-purified extracts of the nuclei were subjected to PAGE, electrotransfer, and immunoblotting with anti-insulin receptor antibodies. These results suggested that internalized insulin dissociated from its receptor and accumulated in the nucleus without its membrane receptor. The authors propose that some of insulin's effects on nuclear function may be caused by the translocation of the intact and biologically active hormone to the nucleus and its binding to nuclear components in the heterochromatin.

  18. [The frequency of sex chromatine occurring in cell nuclei of internal organs determined by the smear method (author's transl)].

    PubMed

    Michailow, R

    1975-09-05

    The frequency of sex chromatine occurring in cell nuclei of twelve organs from 25 male and female corpses was determined using the smear method. It was found to be about 60% in the case of female, and about 6% in the case of male corpses.

  19. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  20. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  1. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts.

    PubMed Central

    Bruno, J; Reich, N; Lucas, J J

    1981-01-01

    The polypeptides synthesized by mature embryonic erythrocytes prepared from the peripheral blood of 14- to 15-day-old chicken embryos were analyzed by two-dimensional gel electrophoresis. Fewer than 200 species of polypeptides were detected; the major polypeptides made at this time were identified as the alpha A-, alpha D-, and beta-globin chains. The dormant erythrocyte nuclei were next reactivated to transcriptional competence by transplantation into enucleated mouse or chicken embryo fibroblasts, with frequencies of cytoplast renucleation of about 50 and 90%, respectively. Since large numbers of hybrid cells could be constructed, a biochemical analysis was possible. Electrophoretic analysis of the [35S]methionine-labeled polypeptides made in the hybrid cell types showed that polypeptides having the mobilities of only two (alpha A and alpha D) of the three major adult globin chains were made as major constituents of the hybrid cells. However, analysis of 14C-amino acid-labeled polypeptides revealed that a beta-like polypeptide that lacked methionine was also synthesized in large amounts. This polypeptide was tentatively identified as the early embryonic globin species rho. Globin synthesis was detected as early as 3 h after nuclear transplantation and as late as 18 h, the last time measured in these experiments. It appeared that globin polypeptides made at very early times were translated at least partially from chicken messenger ribonucleic acid introduced into the hybrid cells during fusion, whereas those made at later times were translated primarily from newly synthesized globin messenger ribonucleic acid. The potential usefulness of this hybrid cell system in analyzing mechanisms regulating globin gene expression is discussed. Images PMID:7346715

  2. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor.

  3. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed Central

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor. Images PMID:2104881

  4. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  5. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization.

    PubMed

    Wang, Xiaozhu; Takebayashi, Shin-Ichiro; Bernardin, Evans; Gilbert, David M; Chella, Ravindran; Guan, Jingjiao

    2012-06-01

    We have developed a novel method for genetic characterization of single cells by integrating microfluidic stretching of chromosomal DNA and fiber fluorescence in situ hybridization (FISH). In this method, individually isolated cell nuclei were immobilized in a microchannel. Chromosomal DNA was released from the nuclei and stretched by a pressure-driven flow. We analyzed and optimized flow conditions to generate a millimeter-long band of stretched DNA from each nucleus. Telomere fiber FISH was successfully performed on the stretched chromosomal DNA. Individual telomere fiber FISH signals from single cells could be resolved and their lengths measured, demonstrating the ability of the method to quantify genetic features at the level of single cells.

  6. [Automated morphometric evaluation of the chromatin structure of liver cell nuclei after vagotomy].

    PubMed

    Butusova, N N; Zhukotskiĭ, A V; Sherbo, I V; Gribkov, E N; Dubovaia, T K

    1989-05-01

    The morphometric analysis of the interphase chromatine structure of the hepatic cells nuclei was carried out on the automated TV installation for the quantitative analysis of images "IBAS-2" (by the OPTON firm, the FRG) according to 50 optical and geometric parameters during various periods (1.2 and 4 weeks) after the vagotomy operation. It is determined that upper-molecular organisation of chromatine undergoes the biggest changes one week after operation, and changes of granular component are more informative than changes of the nongranular component (with the difference 15-20%). It was also revealed that chromatine components differ in tinctorial properties, which are evidently dependent on physicochemical characteristics of the chromatine under various functional conditions of the cell. As a result of the correlation analysis the group of morphometric indices of chromatine structure was revealed, which are highly correlated with level of transcription activity of chromatine during various terms after denervation. The correlation quotient of these parameters is 0.85-0.97. The summing up: vagus denervation of the liver causes changes in the morphofunctional organisation of the chromatine.

  7. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  8. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus.

    PubMed

    Poncelet, Luc; Garigliany, Mutien; Ando, Kunie; Franssen, Mathieu; Desmecht, Daniel; Brion, Jean-Pierre

    2016-12-16

    The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.

  9. [On plant stem cells and animal stem cells].

    PubMed

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  10. Morphologic studies of lymphocyte nuclei in follicular and diffuse mixed small- and large-cell (lymphocytic-histiocytic) lymphoma.

    PubMed

    Dardick, I; Caldwell, D R; Moher, D; Jabi, M

    1988-08-01

    Twelve examples of mixed small- and large-cell lymphoma (eight follicular, one follicular and diffuse, and three diffuse) were investigated morphometrically using plastic-embedded tissue in order to study nuclear characteristics of lymphocyte populations in this form of non-Hodgkin's lymphoma (NHL) and to test morphologic bases for current NHL classification systems. This study illustrates that there are many inaccuracies, illusions, and misconceptions in the morphologic criteria currently used to classify mixed small- and large-cell lymphoma. A principal finding was that lymphocyte nuclear profiles in mixed-cell lymphomas tend to be smaller in size (P less than .005) and more irregular in shape (P = .0001) than the morphologically similar counterparts in germinal centers of lymph nodes with reactive hyperplasia. Intercase comparison of mixed small- and large-cell lymphomas revealed a considerable range of mean nuclear area values, some of which were within the size range of normal, small lymphocytes. At the magnifications used for morphometric assessment, a high proportion of lymphocyte nuclear profiles had shallow invaginations, but only a limited number of profiles (4% to 14%) had deep (cleaved) indentations. Contrary to current definitions for this subtype of NHL, lymphocytes with "small" nuclei had the same proportion of the nuclear diameter occupied by nuclear invaginations as lymphocytes with "large" nuclei and, in fact, mean nuclear invagination depth was shallower in "small" nuclei than in "large" nuclei. Furthermore, regardless of whether it is nuclear area or shape that is evaluated, lymphocytes in mixed-cell lymphoma do not separate into two populations of small-cleaved and large noncleaved cells. Morphometry reveals that only four of the 12 examples of mixed small- and large-cell lymphoma had a proportion of the lymphocytes in the size range of fully transformed germinal center lymphocytes that exceeded 25%, and none of the cases approached 50% even

  11. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes.

    PubMed

    Li, Jie; Guo, Kunru; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-04-09

    Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications.

  12. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    PubMed

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  13. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  14. A cell line with decreased sensitivity to the methyl mercury-induced stimulation of alpha-amanitin sensitive RNA synthesis in isolated nuclei.

    PubMed

    Frenkel, G D; Ducote, J; Reboulleau, C P; Gierthy, J

    1988-01-01

    1. In nuclei isolated from cells of the B50 rat neuroblastoma line the stimulatory effect of methyl mercury on alpha-amanitin-sensitive RNA synthesis is very much reduced compared to the stimulatory effect in HeLa nuclei (see: Frenkel G. D. and Randles K. (1982) Specific stimulation of alpha-amanitin-sensitive RNA synthesis in isolated HeLa nuclei by methyl mercury. J. biol. Chem. 257, 6275-6279). 2. The stimulatory effect of another mercury compound, p-hydroxymercuribenzoate, was also much less pronounced in the B50 nuclei. 3. Similar results were obtained with nuclei isolated from B50 cells which had been induced to differentiate by exposure to dibutaryl cyclic AMP. 4. Nuclei isolated from cells of another rat neuroblastoma line (B35), and nuclei from cells of a human neuroblastoma line both exhibited levels of stimulation similar to that of HeLa nuclei. 5. The B50 and HeLa cells were also compared as to their sensitivity to other effects of methyl mercury.

  15. Pathological modifications of plant stem cell destiny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  16. Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images

    PubMed Central

    Gross, Polina; Honnorat, Nicolas; Varol, Erdem; Wallner, Markus; Trappanese, Danielle M.; Sharp, Thomas E.; Starosta, Timothy; Duran, Jason M.; Koller, Sarah; Davatzikos, Christos; Houser, Steven R.

    2016-01-01

    Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias. PMID:27005843

  17. Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images.

    PubMed

    Gross, Polina; Honnorat, Nicolas; Varol, Erdem; Wallner, Markus; Trappanese, Danielle M; Sharp, Thomas E; Starosta, Timothy; Duran, Jason M; Koller, Sarah; Davatzikos, Christos; Houser, Steven R

    2016-03-23

    Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.

  18. Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images

    NASA Astrophysics Data System (ADS)

    Gross, Polina; Honnorat, Nicolas; Varol, Erdem; Wallner, Markus; Trappanese, Danielle M.; Sharp, Thomas E.; Starosta, Timothy; Duran, Jason M.; Koller, Sarah; Davatzikos, Christos; Houser, Steven R.

    2016-03-01

    Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.

  19. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  20. Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework.

    PubMed

    Bergmeir, Christoph; García Silvente, Miguel; Benítez, José Manuel

    2012-09-01

    In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.

  1. Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts.

    PubMed

    Zhang, Ling; Kong, Hui; Chin, Chien Ting; Liu, Shaoxiong; Chen, Zhi; Wang, Tianfu; Chen, Siping

    2014-07-01

    Automation-assisted reading (AAR) techniques have the potential to reduce errors and increase productivity in cervical cancer screening. The sensitivity of AAR relies heavily on automated segmentation of abnormal cervical cells, which is handled poorly by current segmentation algorithms. In this paper, a global and local scheme based on graph cut approach is proposed to segment cervical cells in images with a mix of healthy and abnormal cells. For cytoplasm segmentation, the multi-way graph cut is performed globally on the a* channel enhanced image, which can be effective when the image histogram presents a non-bimodal distribution. For segmentation of nuclei, especially when they are abnormal, we propose to use graph cut adaptively and locally, which allows the combination of intensity, texture, boundary and region information. Two concave points-based approaches are integrated to split the touching-nuclei. As part of an ongoing clinical trial, preliminary validation results obtained from 21 cervical cell images with non-ideal imaging condition and pathology show that our segmentation method achieved 93% accuracy for cytoplasm, and 88.4% F-measure for abnormal nuclei, outperforming state of the art methods in terms of accuracy. Our method has the potential to improve the sensitivity of AAR in screening for cervical cancer.

  2. Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains.

    PubMed

    Alonso, Antonia; Merchán, Paloma; Sandoval, Juan E; Sánchez-Arrones, Luisa; Garcia-Cazorla, Angels; Artuch, Rafael; Ferrán, José L; Martínez-de-la-Torre, Margaret; Puelles, Luis

    2013-09-01

    The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.

  3. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  4. Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles.

    PubMed

    Pantic, I; Paunovic, J; Perovic, M; Cattani, C; Pantic, S; Suzic, S; Nesic, D; Basta-Jovanovic, G

    2013-12-01

    Recent studies have suggested that silver nanoparticles (AgNPs) may affect cell DNA structure in in vitro conditions. In this paper, we present the results indicating that AgNPs change nuclear complexity properties in isolated human epithelial buccal cells in a time-dependent manner. Epithelial buccal cells were plated in special tissue culture chamber / slides and were kept at 37°C in an RPMI 1640 cell culture medium supplemented with L-glutamine. The cells were treated with colloidal silver nanoparticles suspended in RPMI 1640 medium at the concentration 15 mg L⁻¹. Digital micrographs of the cell nuclei in a sample of 30 cells were created at five different time steps: before the treatment (controls), immediately after the treatment, as well as 15 , 30 and 60 min after the treatment with AgNPs. For each nuclear structure, values of fractal dimension, lacunarity, circularity, as well as parameters of grey level co-occurrence matrix (GLCM) texture, were determined. The results indicate time-dependent reduction of structural complexity in the cell nuclei after the contact with AgNPs. These findings further suggest that AgNPs, at concentrations present in today's over-the-counter drug products, might have significant effects on the cell genetic material.

  5. Rapid and Semi-Automated Extraction of Neuronal Cell Bodies and Nuclei from Electron Microscopy Image Stacks

    PubMed Central

    Holcomb, Paul S.; Morehead, Michael; Doretto, Gianfranco; Chen, Peter; Berg, Stuart; Plaza, Stephen; Spirou, George

    2016-01-01

    Connectomics—the study of how neurons wire together in the brain—is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes. PMID:27259933

  6. Plant cell proliferation inside an inorganic host.

    PubMed

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  7. Laboratory studies with cloud-derived Bacterial Cells acting as Ice Nuclei in the Immersion and Deposition Mode

    NASA Astrophysics Data System (ADS)

    Oehm, C.; Chou, C.; Amato, P.; Attard, E.; Delort, A.-M.; Morris, C.; Kiselev, A.; Stetzer, O.; Möhler, O.; Leisner, T.

    2012-04-01

    Atmospheric aerosol particles play an important role in cloud microphysics. Aerosols of biological origin are a subgroup, and some of them are able to act as heterogeneous ice nuclei and thus influence cloud life cycles and the climate. Some bacteria species have been found to act as ice nuclei at relatively high temperatures up to -2 degree Celsius and are therefore of particular importance as "high temperature" ice nuclei. Recently, ice nucleation experiments with bacterial cells from different sources were performed at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology. At the AIDA facility, microphysical cloud processes can be simulated and investigated in laboratory at realistic atmospheric cloud conditions. Different ice nucleation active (INA) bacteria strains were isolated from cloud water, glacier melt water and phyllosphere and examined in AIDA experiments. The living cells were suspended in nanopure or artificial cloud water and injected into the cloud chamber through a dispersion nozzle. The injected droplets evaporated in the chamber and the bacterial cells were transformed into the aerosol phase. After the spraying, the cloud formation was started by expansion cooling. Experiments were performed in the temperature range from -2 down to -20 degree Celsius. Detailed measurements of the number concentration and size distribution of the aerosol particles as well as of the droplets and ice particles were carried out during the AIDA experiments. A minor fraction of the bacteria cells was observed to act as ice nuclei in the immersion nucleation mode at higher temperatures as well as in the deposition nucleation mode at lower temperatures. The ice activity started at -6 degree Celsius. The most efficient INA bacteria species were Pseudomonas syringae 32b74 and Pseudomonas fluorescens Antarctica1. The ice active number fraction with respect to the cells varied from 0,01 to 0,1, and it does not change at different

  8. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells.

    PubMed

    Schwarz-Finsterle, Jutta; Scherthan, Harry; Huna, Anda; González, Paula; Mueller, Patrick; Schmitt, Eberhard; Erenpreisa, Jekaterina; Hausmann, Michael

    2013-08-30

    The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra

  9. Sexual Differences in Cell Loss during the Post-Hatch Development of Song Control Nuclei in the Bengalese Finch.

    PubMed

    Chen, XiaoNing; Li, Jia; Zeng, Lei; Zhang, XueBo; Lu, XiaoHua; Zuo, MingXue; Zhang, XinWen; Zeng, ShaoJu

    2015-01-01

    Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei.

  10. Sexual Differences in Cell Loss during the Post-Hatch Development of Song Control Nuclei in the Bengalese Finch

    PubMed Central

    Lu, XiaoHua; Zuo, MingXue; Zhang, XinWen; Zeng, ShaoJu

    2015-01-01

    Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei. PMID:25938674

  11. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.

    PubMed

    Husson, Zoé; Rousseau, Charly V; Broll, Ilja; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane

    2014-07-09

    The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.

  12. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  13. Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging.

    PubMed

    Lipiec, Ewelina; Bambery, Keith R; Heraud, Philip; Kwiatek, Wojciech M; McNaughton, Don; Tobin, Mark J; Vogel, Christian; Wood, Bayden R

    2014-09-07

    SR-FTIR in combination with Principal Component Analysis (PCA) was applied to investigate macromolecular changes in a population of melanocytes and their extracted nuclei induced by environmentally relevant fluxes of UVR (Ultraviolet Radiation). Living cells and isolated cellular nuclei were investigated post-irradiation for three different irradiation dosages (130, 1505, 15,052 Jm(-2) UVR, weighted) after either 24 or 48 hours of incubation. DNA conformational changes were observed in cells exposed to an artificial UVR solar-simulator source as evidenced by a shift in the DNA asymmetric phosphodiester vibration from 1236 cm(-1) to 1242 cm(-1) in the case of the exposed cells and from 1225 cm(-1) to 1242 cm(-1) for irradiated nuclei. PCA Scores plots revealed distinct clustering of spectra from irradiated cells and nuclei from non-irradiated controls in response to the range of applied UVR radiation doses. 3D Raman confocal imaging in combination with k-means cluster analysis was applied to study the effect of the UVR radiation exposure on cellular nuclei. Chemical changes associated with apoptosis were detected and included intra-nuclear lipid deposition along with chromatin condensation. The results reported here demonstrate the utility of SR-FTIR and Raman spectroscopy to probe in situ DNA damage in cell nuclei resulting from UVR exposure. These results are in agreement with the increasing body of evidence that lipid accumulation is a characteristic of aggressive cancer cells, and are involved in the production of membranes for rapid cell proliferation.

  14. Isolation of Nuclei.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.

  15. Carbonate fuel cell power plant systems

    NASA Astrophysics Data System (ADS)

    Reinstrom, R. M.

    1981-12-01

    Carbonate fuel cells are an attractive means of developing highly efficient power plants capable of achieving low atmospheric emissions. Because carbonate fuel cells can be used with coal derived fuel gases and their operating temperatures allow the use of turbomachinery bottoming cycles, they are well suited for large installations like central utility stations. Presently, system development activity is directed toward evaluating the readiness of gasifier and fuel processor technology, defining candidate cycle configurations, and calculating projected plant efficiencies.

  16. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  17. Plant cells in vitro under altered gravity.

    PubMed

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  18. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  19. Regulation of cell division in higher plants

    SciTech Connect

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  20. Cell-cycle-dependent Ca(2+) transients in human induced pluripotent stem cells revealed by a simultaneous imaging of cell nuclei and intracellular Ca(2+) level.

    PubMed

    Shimba, Kenta; Iida, Shoko; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2016-09-12

    Cell cycle phase and [Ca(2+)]i are key determinants of self-renewal and differentiation in pluripotent stem cells. However, little is known about their relationship in human pluripotent stem cells owing to the lack of an effective method. Here, we applied an imaging-based approach for evaluating the relationship between the cell cycle and Ca(2+) transients in human induced pluripotent stem (iPS) cells. Ca imaging and DNA staining was simultaneously performed at the same site. Then, individual cells were recognized and the cell cycle phase was estimated from the image of nuclei. We found that 18 ± 4% of human iPS cells exhibited spontaneous Ca(2+) transients and their inter-transient interval was 119 ± 19 s. Ca wave events were observed in 64% of the sample and the [Ca(2+)]i elevation propagated among 47 ± 30 cells with a duration of 57 ± 22 s. With the imaging-based approach, we demonstrated that the ratio of cells exhibiting Ca(2+) transients significantly decreased during cell cycle progression, suggesting that the relationship previously described in mouse cells holds true in the human context as well. These results suggest that our method is suitable for evaluating Ca(2+) transients, the cell cycle phase, and their relationship with densely cultured cells.

  1. 500-WATT FUEL-CELL POWER PLANT.

    DTIC Science & Technology

    hydrogen and air, fuel - cell power plant. Two independent units are to be developed - a hydrogen-generator assembly and a fuel - cell assembly. The...hydrogen-generator assembly will convert the hydrocarbon fuel to hydrogen by steam reforming, and the fuel - cell assembly will electrochemically oxidize the...The report presents the technical approach to be used to establish the feasibility of a compact 500-watt, liquid-hydrocarbon and air, fuel - cell power

  2. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  3. Does flat epithelial atypia have rounder nuclei than columnar cell change/hyperplasia? A morphometric approach to columnar cell lesions of the breast.

    PubMed

    Yamashita, Yoshiko; Ichihara, Shu; Moritani, Suzuko; Yoon, Han-Seung; Yamaguchi, Masahiro

    2016-06-01

    Columnar cell lesions of the breast encompass columnar cell change/hyperplasia (CCC/CCH) and flat epithelial atypia (FEA). These have attracted researchers because emerging data suggest that FEA may represent the earliest histologically detectable non-obligate precursor of breast cancer. However, it is occasionally difficult to distinguish FEA from CCC/CCH because of similar histology. Although the nuclei of FEA are frequently described as relatively round compared with those of CCC/CCH, there are few morphometric studies to support this statement. The aim of this study was to provide objective data as to the nuclear shape in columnar cell lesions. As a shape descriptor, we adopted ellipticity that is defined by the formula 2b/2a, where a is the length of the long axis of the ellipse and b is the length of the short axis. Contrary to circularity, ellipticity reflects the overall configuration of an ellipse irrespective of surface irregularity. Our image analysis included generating whole slide images, extracting glandular cell nuclei, measuring nuclear ellipticity, and superimposing graded colors based on execution of results on the captured images. A total of 7917 nuclei extracted from 22 FEA images and 5010 nuclei extracted from 13 CCC/CCH images were analyzed. There was a significant difference in nuclear roundness between FEA and CCC/CCH with mean ellipticity values of 0.723 and 0.679, respectively (p < 0.001, Welch's t test). Furthermore, FEA with malignancy had significantly rounder nuclei than FEA without malignancy (p < 0.001). Our preliminary results suggest that nuclear ellipticity is a key parameter in reproducibly classifying columnar cell lesions of the breast.

  4. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content.

    PubMed

    Schoft, Vera K; Chumak, Nina; Bindics, János; Slusarz, Lucyna; Twell, David; Köhler, Claudia; Tamaru, Hisashi

    2015-03-01

    Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.

  5. Improved and robust detection of cell nuclei from four dimensional fluorescence images.

    PubMed

    Bashar, Md Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J

    2014-01-01

    Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9% over the previous methods

  6. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  7. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  8. Nonrigid Registration of 2-D and 3-D Dynamic Cell Nuclei Images for Improved Classification of Subcellular Particle Motion

    PubMed Central

    Kim, Il-Han; Chen, Yi-Chun M.; Spector, David L.; Eils, Roland; Rohr, Karl

    2012-01-01

    The observed motion of subcellular particles in fluorescence microscopy image sequences of live cells is generally a superposition of the motion and deformation of the cell and the motion of the particles. Decoupling the two types of movements to enable accurate classification of the particle motion requires the application of registration algorithms. We have developed an intensity-based approach for nonrigid registration of multi-channel microscopy image sequences of cell nuclei. First, based on 3-D synthetic images we demonstrate that cell nucleus deformations change the observed motion types of particles and that our approach allows to recover the original motion. Second, we have successfully applied our approach to register 2-D and 3-D real microscopy image sequences. A quantitative experimental comparison with previous approaches for nonrigid registration of cell microscopy has also been performed. PMID:20840894

  9. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  10. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  11. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  12. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  13. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  14. Mechanisms of DNA strand breakage and interstrand cross-linking by diaziridinylbenzoquinone (diaziquone) in isolated nuclei from human cells.

    PubMed

    Szmigiero, L; Kohn, K W

    1984-10-01

    AZQ had been found to produce DNA strand breaks and interstrand cross-links in intact cells; evidence had indicated that these two DNA lesions arise by different chemical mechanisms and vary independently in degree in different cell types. In the present work, the mechanisms of the production of DNA strand breaks and interstrand cross-links by AZQ were studied in isolated cell nuclei. This system avoided the problem of poor penetration of test substances into cells. The DNA lesions were measured by means of the alkaline elution technique. It was found that the production of DNA strand breaks by AZQ in isolated nuclei required the addition of a reducing agent such as NADPH and was almost completely prevented by superoxide dismutase. This indicates that the mechanism of DNA strand breakage involves transfer of an electron from a reduced form of AZQ to molecular oxygen. Unexpectedly, interstrand cross-linking also was enhanced greatly by previous reduction of AZQ by NADPH or NaBH4. However, this reaction was not inhibited by superoxide dismutase. General alkylating activity of AZQ also was stimulated by reduction; the pH-dependence of this reaction was determined. The mechanism of DNA interstrand cross-linking by AZQ was surmised to stem from alkylation reactions of the two aziridine groups. The findings suggest the possibility that AZQ or related compounds may function as bioreductive alkylating agents which might be selectively toxic to hypoxic tissues.

  15. Ricin trafficking in plant and mammalian cells.

    PubMed

    Lord, J Michael; Spooner, Robert A

    2011-07-01

    Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  16. Difference of the Nuclear Green Light Intensity between Papillary Carcinoma Cells Showing Clear Nuclei and Non-neoplastic Follicular Epithelia in Papillary Thyroid Carcinoma

    PubMed Central

    Lee, Hyekyung; Baek, Tae Hwa; Park, Meeja; Lee, Seung Yun; Son, Hyun Jin; Kang, Dong Wook; Kim, Joo Heon; Kim, Soo Young

    2016-01-01

    Background There is subjective disagreement regarding nuclear clearing in papillary thyroid carcinoma. In this study, using digital instruments, we were able to quantify many ambiguous pathologic features and use numeric data to express our findings. Methods We examined 30 papillary thyroid carcinomas. For each case, we selected representative cancer cells showing clear nuclei and surrounding non-neoplastic follicular epithelial cells and evaluated objective values of green light intensity (GLI) for quantitative analysis of nuclear clearing in papillary thyroid carcinoma. Results From 16,274 GLI values from 600 cancer cell nuclei and 13,752 GLI values from 596 non-neoplastic follicular epithelial nuclei, we found a high correlation of 94.9% between GLI and clear nuclei. GLI between the cancer group showing clear nuclei and non-neoplastic follicular epithelia was statistically significant. The overall average level of GLI in the cancer group was over two times higher than the non-neoplastic group despite a wide range of GLI. On a polygonal line graph, there was a fluctuating unique difference between both the cancer and non-neoplastic groups in each patient, which was comparable to the microscopic findings. Conclusions Nuclear GLI could be a useful factor for discriminating between carcinoma cells showing clear nuclei and non-neoplastic follicular epithelia in papillary thyroid carcinoma. PMID:27550048

  17. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells.

    PubMed

    Park, Su Hyun; Park, Tae Jun; Lim, In Kyoung

    2011-04-15

    We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H(2)O(2), rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.

  18. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells

    SciTech Connect

    Park, Su Hyun; Park, Tae Jun; Lim, In Kyoung

    2011-04-15

    We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H{sub 2}O{sub 2}, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.

  19. Plant single-cell and single-cell-type metabolomics.

    PubMed

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.

  20. Phospholipids of liver cell nuclei during hibernation of Yakutian ground squirrel.

    PubMed

    Lakhina, A A; Markevich, L N; Zakharova, N M; Afanasyev, V N; Kolomiytseva, I K; Fesenko, E E

    2016-07-01

    In hibernating Yakutian ground squirrels S. undulatus, the content of total phospholipids in the nuclei of liver increased by 40% compared to that in animals in summer. In torpid state, the amount of sphingomyelin increased almost 8 times; phosphatidylserine, 7 times; and cardiolipin, 4 times. In active "winter" ground squirrels, the amount of sphingomyelin, phosphatidylserine, and cardiolipin decreased compared to the hibernating individuals but remained high compared to the "summer" ones. The torpor state did not affect the amount of lysophosphatidylcholine and phosphatidylinositol.

  1. Identification of c-Yes expression in the nuclei of hepatocellular carcinoma cells: involvement in the early stages of hepatocarcinogenesis.

    PubMed

    Nonomura, Takako; Masaki, Tsutomu; Morishita, Asahiro; Jian, Gong; Uchida, Naohito; Himoto, Takashi; Izuishi, Kunihiko; Iwama, Hisakazu; Yoshiji, Hitoshi; Watanabe, Seishiro; Kurokohchi, Kazutaka; Kuriyama, Shigeki

    2007-01-01

    It is thought that the subcellular distribution of Src-family tyrosine kinases, including c-Yes binding to the cellular membrane, is membranous and/or cytoplasmic. c-Yes protein tyrosine kinase is known to be related to malignant transformation. However, the expression patterns of c-Yes in hepatocellular carcinoma (HCC) remains unknown. In the present study, we report that c-Yes is expressed not only in the membrane and cytoplasm, but also in the nuclei of cancer cells in some human HCC tissues and in a human HCC cell line. We examined the expression and localization of c-Yes in human HCC cell lines (HLE, HLF, PLC/PRF/5 and Hep 3B) by Western blotting and immunohistochemical analyses; we also examined the expression of c-Yes by immunohistochemistry and Western blotting in the tissues of various liver diseases, including 39 samples from HCC patients. We used an antibody array to detect proteins that bind to nuclear c-Yes in PLC/PRF/5 cell line. c-Yes was found to be expressed in the membranes and cytoplasm of HLE, HLF and Hep 3B HCC cells; it was also detected in the nuclei in addition to the membranes and cytoplasm of PLC/PRF/5 HCC cells. HCC with nuclear c-Yes was detected in 5 of 39 cases (13.0%), and nuclear c-Yes expression was not detected in normal, chronic hepatitis or cirrhotic livers. All HCCs with nuclear c-Yes expression were well-differentiated, small tumors at the early stages. In the PLC/PRF/5 cell line, the nuclear localization of c-Yes with cyclin-dependent kinase 1 was confirmed by a protein antibody array. In conclusion, nuclear c-Yes expression was found in cancer cells at the early stages of hepatocarcinogenesis, suggesting that nucleus-located c-Yes may be a useful marker to detect early-stage HCC.

  2. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  3. Distinguishing nuclei-specific benzo[a]pyrene-induced effects from whole-cell alterations in MCF-7 cells using Fourier-transform infrared spectroscopy.

    PubMed

    Obinaju, Blessing E; Fullwood, Nigel J; Martin, Francis L

    2015-09-01

    Exposure to chemicals such as benzo[a]pyrene (B[a]P) can generate intracellular toxic mechanisms. Fourier-transform infrared (FTIR) spectroscopy is a novel approach that allows the non-destructive analysis of underlying chemical bond alterations in patho-physiological processes. This study set out to examine whether B[a]P-induced whole cell alterations could be distinguished from effects on nuclei of exposed cells. Using attenuated total reflection FTIR (ATR-FTIR) spectroscopy, alterations in nuclei isolated from B[a]P-treated MCF-7 cells concentrated either in G0/G1- or S-phase were observed. B[a]P-induced effects in whole-cells included alterations to lipids, DNA and protein spectral regions. Absorbance areas for protein and DNA/RNA regions in B[a]P-treated whole cells differed significantly (P<0.0001) from vehicle controls and these observations correlated with alterations noted in isolated nuclei. Our findings provide evidence that FTIR spectroscopy has the ability to identify specific chemical-induced alterations.

  4. Papillary renal cell carcinoma with oncocytic cells and nonoverlapping low grade nuclei: expanding the morphologic spectrum with emphasis on clinicopathologic, immunohistochemical and molecular features.

    PubMed

    Kunju, Lakshmi P; Wojno, Kirk; Wolf, J Stuart; Cheng, Liang; Shah, Rajal B

    2008-01-01

    Papillary renal cell carcinoma (PRCC), a morphologically and genetically distinct subtype of RCC, is morphologically separated into 2 subtypes, type 1 and 2, for prognostic purposes. Type 1 PRCC (single layer of small cells, scant pale cytoplasm) is more common and has a favorable prognosis compared with type 2 (pseudostratified high-grade nuclei, abundant eosinophilic/oncocytic cytoplasm). We report the clinicopathologic, immunohistochemical, and molecular data of 7 adult papillary tumors with morphological features distinct from type 1 or 2 PRCC. All tumors demonstrated predominant papillary architecture, lined by cells with oncocytic cytoplasm, and nonoverlapping low Fuhrman grade nuclei (1 or 2). Foamy macrophages were noted in 2 of 7 tumors. No case demonstrated necrosis or psammoma bodies. Most tumors (6/7) were small (mean size, 2.0 cm; range, 0.8-5.7 cm) and limited to the kidney. No tumor recurrence or metastasis was identified (median follow-up, 22 months). All tumors demonstrated trisomy for 7 and 17 by fluorescence in situ hybridization analysis and uniform CK 7, CD10, and alpha-methylacyl-coenzyme A racemase expression, characteristic of PRCC. These results suggest that these tumors are distinct from type 1 (owing to oncocytic cells) and type 2 (owing to low-grade nonstratified nuclei, low stage, and good outcome). Awareness of this favorable spectrum of PRCC is important to avoid its potential misinterpretation as an aggressive type 2 PRCC (owing to oncocytic cells) or rarely as an oncocytoma (owing to oncocytic cells and low-grade nuclei). Morphologic spectrum of these PRCCs emphasizes that the future prognostic model of PRCC may need to be based primarily on the nuclear characteristics, irrespective of the cytoplasmic features.

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  6. Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.

    PubMed

    Chalut, Kevin J; Chen, Sulin; Finan, John D; Giacomelli, Michael G; Guilak, Farshid; Leong, Kam W; Wax, Adam

    2008-06-01

    Accurate measurements of nuclear deformation, i.e., structural changes of the nucleus in response to environmental stimuli, are important for signal transduction studies. Traditionally, these measurements require labeling and imaging, and then nuclear measurement using image analysis. This approach is time-consuming, invasive, and unavoidably perturbs cellular systems. Light scattering, an emerging biophotonics technique for probing physical characteristics of living systems, offers a promising alternative. Angle-resolved low-coherence interferometry (a/LCI), a novel light scattering technique, was developed to quantify nuclear morphology for early cancer detection. In this study, a/LCI is used for the first time to noninvasively measure small changes in nuclear morphology in response to environmental stimuli. With this new application, we broaden the potential uses of a/LCI by demonstrating high-throughput measurements and by probing aspherical nuclei. To demonstrate the versatility of this approach, two distinct models relevant to current investigations in cell and tissue engineering research are used. Structural changes in cell nuclei due to subtle environmental stimuli, including substrate topography and osmotic pressure, are profiled rapidly without disrupting the cells or introducing artifacts associated with traditional measurements. Accuracy > or = 3% is obtained for the range of nuclear geometries examined here, with the greatest deviations occurring for the more complex geometries. Given the high-throughput nature of the measurements, this deviation may be acceptable for many biological applications that seek to establish connections between morphology and function.

  7. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  8. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  9. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  10. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies

    NASA Astrophysics Data System (ADS)

    Enger, Shirin A.; Ahnesjö, Anders; Verhaegen, Frank; Beaulieu, Luc

    2012-07-01

    It has been suggested that modern dose calculation algorithms should be able to report absorbed dose both as dose to the local medium, Dm,m, and as dose to a water cavity embedded in the medium, Dw,m, using conversion factors from cavity theory. Assuming that the cell nucleus with its DNA content is the most important target for biological response, the aim of this study is to investigate, by means of Monte Carlo (MC) simulations, the relationship of the dose to a cell nucleus in a medium, Dn,m, to Dm,m and Dw,m, for different combinations of cell nucleus compositions and tissue media for different photon energies used in brachytherapy. As Dn,m is very impractical to calculate directly for routine treatment planning, while Dm,m and Dw,m are much easier to obtain, the questions arise which one of these quantities is the best surrogate for Dn,m and which cavity theory assumptions should one use for its estimate. The Geant4.9.4 MC code was used to calculate Dm,m, Dw,m and Dn,m for photon energies from 20 (representing the lower energy end of brachytherapy for 103Pd or125I) to 300 keV (close to the mean energy of 192Ir) and for the tissue media adipose, breast, prostate and muscle. To simulate the cell and its nucleus, concentric spherical cavities were placed inside a cubic phantom (10 × 10 × 10 mm3). The diameter of the simulated nuclei was set to 14 µm. For each tissue medium, three different setups were simulated; (a) Dn,m was calculated with nuclei embedded in tissues (MC-Dn,m). Four different published elemental compositions of cell nuclei were used. (b) Dw,m was calculated with MC (MC-Dw,m) and compared with large cavity theory calculated Dw,m (LCT-Dw,m), and small cavity theory calculated Dw,m (SCT-Dw,m). (c) Dm,m was calculated with MC (MC-Dm,m). MC-Dw,m is a good substitute for MC-Dn,m for all photon energies and for all simulated nucleus compositions and tissue types. SCT-Dw,m can be used for most energies in brachytherapy, while LCT-Dw,m should only be

  11. Osmosis in Poisoned Plant Cells.

    ERIC Educational Resources Information Center

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  12. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  13. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  14. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  15. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  16. Superdeformed nuclei

    SciTech Connect

    Janssens, R.V.F.; Khoo, Teng Lek.

    1991-01-01

    This paper reviews the most recent advances in the understanding of the physics of superdeformed nuclei from the point of view of the experimentalists. It covers among other subjects the following topics: (1) the discovery of a new region of superdeformed nuclei near A=190, (2) the surprising result of the occurrence of bands with identical transition energies in neighboring superdeformed nuclei near A=150 and A=190, (3) the importance of octupole degrees of freedom at large deformation and (4) the properties associated with the feeding and the decay of superdeformed bands. The text presented hereafter will appear as a contribution to the Annual Review of Nuclear and Particle Science, Volume 41. 88 refs., 11 figs.

  17. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  18. In vitro examination of ontogenesis of developing neuronal cells in vagal nuclei in medulla oblongata in newborns.

    PubMed

    Islami, Hilmi; Shabani, Ragip; Bexheti, Sadi; Behluli, Ibrahim; Sukalo, Aziz; Raka, Denis; Koliqi, Rozafa; Haliti, Naim; Dauti, Hilmi; Krasniqi, Shaip; Disha, Mentor

    2008-11-01

    The development of neuron cells in vagal nerve nuclei in medulla oblongata was studied in vitro in live newborns and stillborns from different cases. Morphological changes were studied in respiratory nuclei of dorsal motor centre (DMNV) and nucleus tractus solitarius (NTS) in medulla oblongata. The material from medulla oblongata was fixated in 10 micro buffered formalin solution. Fixated material was cut in series of 10mu thickness, with starting point from obex in +/- 4 mm thickness. Special histochemical and histoenzymatic methods for central nervous system were used: cresyl echt violet coloring, tolyidin blue, Sevier-Munger modification and Grimelius coloring. In immature newborns (abortions and immature) in dorsal motor nucleus of the vagus (DMNV) population stages S1, S2, S3 are dominant. In neuron population in vagal sensory nuclei (NTS) stages S1, S2 are dominant. In more advanced stages of development of newborns (premature), in DMNV stages S3 and S4 are seen and in NTS stages S2 and S3 are dominant. In mature phase of newborns (maturity) in vagal nucleus DMNV stages S5 and S6 are dominant, while in sensory nucleus NTS stages S4 and S5 are dominant. These data suggest that neuron population in dorsal motor nucleus of the vagus (DMNV) are more advanced in neuronal maturity in comparison with sensory neuron population of vagal sensory nucleus NTS. This occurrence shows that phylogenetic development of motor complex is more advanced than the sensory one, which is expected to take new information's from the extra uterine life after birth (extra uterine vagal phenotype).

  19. Integrated bioprocessing for plant cell cultures.

    PubMed

    Choi, J W; Cho, G H; Byun, S Y; Kim, D I

    2001-01-01

    Plant cell suspension culture has become the focus of much attention as a tool for the production of secondary metabolites including paclitaxel, a well-known anticancer agent. Recently, it has also been regarded as one of the host systems for the production of recombinant proteins. In order to produce phytochemicals using plant cell cultures, efficient processes must be developed with adequate bioreactor design. Most of the plant secondary metabolites are toxic to cells at the high concentrations required during culture. Therefore, if the product could be removed in situ during culture, productivity might be enhanced due to the alleviation of this toxicity. In situ removal or extractive bioconversion of such products can be performed by in situ extraction with various kinds of organic solvents. In situ adsorption using polymeric resins is another possibility. Using the fact that secondary metabolites are generally hydrophobic, various integrated bioprocessing techniques can be designed not only to lower toxicity, but also to enhance productivity. In this article, in situ extraction, in situ adsorption, utilization of cyclodextrins, and the application of aqueous two-phase systems in plant cell cultures are reviewed.

  20. H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos.

    PubMed

    Wen, Duancheng; Banaszynski, Laura A; Rosenwaks, Zev; Allis, C David; Rafii, Shahin

    2014-01-01

    Transfer of a somatic nucleus into an enucleated oocyte is the most efficient approach for somatic cell reprogramming. While this process is known to involve extensive chromatin remodeling of the donor nucleus, the maternal factors responsible and the underlying chromatin-based mechanisms remain largely unknown. Here we discuss our recent findings demonstrating that the histone variant H3.3 plays an essential role in reprogramming and is required for reactivation of key pluripotency genes in somatic cell nuclear transfer (SCNT) embryos. Maternal-derived H3.3 replaces H3 in the donor nucleus shortly after oocyte activation, with the amount of replacement directly related to the differentiation status of the donor nucleus in SCNT embryos. We provide additional evidence to suggest that de novo synthesized H3.3 replaces histone H3 carrying repressive modifications in the donor nuclei of SCNT embryos, and hypothesize that replacement may occur at specific loci that must be reprogrammed for gene reactivation.

  1. Fixed nuclei as alternative template of BIOMED-2 multiplex polymerase chain reaction for immunoglobulin gene clonality testing in B-cell malignancies.

    PubMed

    Tang, Yuan; Chen, Jie; Wang, Jianchao; Zheng, Ke; Liao, Dianying; Liao, Xiaomei; Liu, Weiping; Wang, Lin

    2015-01-01

    Evaluation of immunoglobulin (Ig) gene rearrangements with BIOMED-2 multiplex PCR has become a standard detection of clonality in mature B cell malignancies. Conventionally, this method is relatively labor-intensive and time-consuming, as it requires DNA isolation from bone marrow aspirates (BM) or peripheral blood (PB) in patients with BM or PB involvement. On the other hand, fluorescence in situ hybridization (FISH) is routinely used as genetic screening in B cell malignancies, but the surplus fixed nuclei initially prepared for FISH usually turn useless afterwards. We sought to use these surplus nuclei after FISH as a template to perform PCR-based Ig gene clonality testing. Templates of 12 patients with mature B cell malignancies, which consisted of both DNA isolated with commercial DNA isolation kit from fresh BM or PB (DNA group) and the fixed nuclei initially prepared for FISH (nuclei group) from the same individuals, were subjected to PCR with BIOMED-2 primer sets for immunoglobulin heavy chain and kappa light chain under recommended conditions. Our result, for the first time, showed a high consistency between the two groups in detecting B cell clonality, which indicates that nuclei for FISH can function as a reliable template comparable to fresh tissue-isolated DNA in PCR based Ig clonality testing. This offers a simple, rapid and more economical alternative to standard Ig testing based on regular DNA.

  2. A method for estimating the accuracy of measurements of optical characteristics of the nuclei of blood cells in the diagnosis of acute leukemia

    NASA Astrophysics Data System (ADS)

    Polyakov, E. V.; Nikitaev, V. G.

    2017-01-01

    The work is devoted to investigation of the random component of the measurement error of the nuclei structure characteristics, which are used in the method of structural elements to measure the differences of blood cells of different types. This method is realized in information-measuring system of the analysis of micropreparations of blood cells in the diagnosis of acute leukemia and its variants.

  3. Plant cells on earth and in space.

    PubMed

    Braun, M; Sievers, A

    2000-09-01

    Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (statoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions (10(-4) g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  4. Glycosylation of Fluorophenols by Plant Cell Cultures

    PubMed Central

    Shimoda, Kei; Kubota, Naoji; Kondo, Yoko; Sato, Daisuke; Hamada, Hiroki

    2009-01-01

    Fluoroaromatic compounds are used as agrochemicals and released into environment as pollutants. Glycosylation of 2-, 3-, and 4-fluorophenols using plant cell cultures of Nicotiana tabacum was investigated to elucidate their potential to metabolize these compounds. Cultured N. tabacum cells converted 2-fluorophenol into its β-glucoside (60%) and β-gentiobioside (10%). 4-Fluorophenol was also glycosylated to its β-glucoside (32%) and β-gentiobioside (6%) by N. tabacum cells. On the other hand, N. tabacum glycosylated 3-fluorophenol to β-glucoside (17%). PMID:19564930

  5. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  6. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  7. Accessibility of chromosomal recombination breaks in nuclei of wild-type and DNA-PKcs-deficient cells.

    PubMed

    Franco, Daniel; Chang, Yung

    2009-07-04

    V(D)J recombination is a highly regulated process, proceeding from a site-specific cleavage to an imprecise end joining. After the DNA excision catalyzed by the recombinase encoded by recombination activating genes 1 and 2 (RAG1/2), newly generated recombination ends are believed held by a post-cleavage complex (PC) consisting of RAG1/2 proteins, and are subsequently resolved by non-homologous end joining (NHEJ) machinery. The relay of these ends from PC to NHEJ remains elusive. It has been speculated that NHEJ factors modify the RAG1/2-PC to gain access to the ends or act on free ends after the disassembly of the PC. Thus, recombination ends may either be retained in a complex throughout the recombination process or left as unprotected free ends after cleavage, a condition that may permit an alternative, non-classical NHEJ end joining pathway. To directly test these scenarios on recombination induced chromosomal breaks, we have developed a recombination end protection assay to monitor the accessibility of recombination ends to exonuclease-V in intact nuclei. We demonstrate that these ends are well protected in the nuclei of wild-type cells, suggesting a seamless cleavage-joining reaction. However, divergent end protection of coding versus signal ends was found in cells derived from severe combined immunodeficient (scid) mice that are defective in the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While signal ends are resistant, opened coding ends are susceptible to enzymatic modification. Our data suggests a role of DNA-PKcs in protecting chromosomal coding ends. Furthermore, using recombination inducible scid cell lines, we demonstrate that conditional protection of coding ends is inversely correlated with the level of their resolution, i.e., the greater the accessibility of the coding ends, the higher level of coding joints formed. Taken together, our findings provide important insights into the resolution of recombination ends by error

  8. 3. Right side of Zinc Plant, from Cell Room midpoint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Right side of Zinc Plant, from Cell Room midpoint to Plant Office (foreground) and #5 Roaster and Concentrate Handling (background). View is to the east. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  9. Differentiation between antibodies to protamines and somatic nuclear antigens by means of a comparative fluorescence study on swollen nuclei of spermatozoa and somatic cells.

    PubMed

    Samuel, T

    1978-05-01

    The indirect immunofluorescence test on swollen nuclei of rat thymocytes, chicken red blood cells and human and salmon spermatozoa was found to be an easy and satisfactory method for the discrimination between antibodies to sperm-specific nuclear antigens and somatic nuclear antigens. This study shows that nuclear antibodies present in the sera of vasectomized men and in rabbit antisera to human protamines are directed against the human sperm-specific nuclear antigens (protamines), and that they may cross-react with salmon protamine. These sera do not react with somatic nuclear antigens. This comparative fluorescence study and a complement fixation study, performed with sera from diabetic patients, proved that the administration of insulin retard (protamine-zinc-insulin) may lead to the formation of antibodies to the fish protamine. These antibodies may reveal a weak cross reaction with human protamines. The results obtained in this study also prove that the nuclei of chicken red blood cells and human sperm do not contain, or contain very small amounts of, histone fraction H1, and that salmon sperm nuclei do not contain any of the histone fractions, and suggest that the nuclei of mature human spermatozoa contain smaller amounts of histones in comparison to somatic cell nuclei.

  10. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei

    PubMed Central

    Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T.

    2016-01-01

    Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo. Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1–4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory

  11. Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes.

    PubMed

    Li, Yufeng; Miyanari, Yusuke; Shirane, Kenjiro; Nitta, Hirohisa; Kubota, Takeo; Ohashi, Hirofumi; Okamoto, Akimitsu; Sasaki, Hiroyuki

    2013-10-01

    Methylation-specific fluorescence in situ hybridization (MeFISH) was developed for microscopic visualization of DNA methylation status at specific repeat sequences in individual cells. MeFISH is based on the differential reactivity of 5-methylcytosine and cytosine in target DNA for interstrand complex formation with osmium and bipyridine-containing nucleic acids (ICON). Cell nuclei and chromosomes hybridized with fluorescence-labeled ICON probes for mouse major and minor satellite repeats were treated with osmium for crosslinking. After denaturation, fluorescent signals were retained specifically at satellite repeats in wild-type, but not in DNA methyltransferase triple-knockout (negative control) mouse embryonic stem cells. Moreover, using MeFISH, we successfully detected hypomethylated satellite repeats in cells from patients with immunodeficiency, centromeric instability and facial anomalies syndrome and 5-hydroxymethylated satellite repeats in male germ cells, the latter of which had been considered to be unmethylated based on anti-5-methylcytosine antibody staining. MeFISH will be suitable for a wide range of applications in epigenetics research and medical diagnosis.

  12. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated... that the organization known as Conspiracy of Fire Nuclei, also known as Conspiracy of the Nuclei...

  13. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  14. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  15. Isomaltulose is actively metabolized in plant cells.

    PubMed

    Wu, Luguang; Birch, Robert G

    2011-12-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.

  16. Calcium signaling in plant cell organelles delimited by a double membrane.

    PubMed

    Xiong, Tou-Cheu; Bourque, Stéphane; Lecourieux, David; Amelot, Nicolas; Grat, Sabine; Brière, Christian; Mazars, Christian; Pugin, Alain; Ranjeva, Raoul

    2006-11-01

    Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that these organelles harbor calcium-dependent biological processes. Mitochondria, chloroplasts as well as nuclei are equipped to generate calcium signal on their own. Changes in free calcium in a given organelle may also favor the relocalization of proteins and regulatory components and therefore have a profound influence on the integrated functioning of the cell. Studying, in time and space, the dynamics of different components of calcium signaling pathway will certainly give clues to understand the extraordinary flexibility of plants to respond to stimuli and mount adaptive responses. The availability of technical and biological resources should allow breaking new grounds by unveiling the contribution of signaling networks in integrative plant biology.

  17. Isolation of plant cell wall proteins.

    PubMed

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  18. Postnatal changes in the number of serotonin-immunoreactive cells in midbrain raphe nuclei of male rats.

    PubMed

    Ito, Hiroyuki; Moriizumi, Tetsuji; Shimogawa, Yuji; Yamanouchi, Korehito

    2014-09-01

    To clarify the developmental changes in serotonergic neurons in the subdivisions of the dorsal (DR) and median raphe (MR) nuclei before puberty, the extent of the nuclei and the number of serotonin (5-HT) immunoreactive (ir) cells were measured in 5-, 15-, and 30-day-old rats and 8-week-old (adult) castrated male rats. The brains were fixed and 50 μm frozen sections prepared. After immunostaining for 5-HT, the number of 5-HT-ir cells in a 0.2 × 0.2 mm frame in the dorsal, ventral and lateral subdivisions of the DR (dDR, vDR and lDR, respectively) and MR were counted. Total numbers of 5-HT-ir cells counted in the frame of three sections in each rat were expressed as the number of cells per cubic millimeter (density). The results indicated that the densities of 5-HT-ir cells in the MR were almost the same in all age groups. On the other hand, among the subdivisions of the DR, the mean density of 5-HT-ir cells in 15-day-old rats was higher than that in the 5-day-old group in the lDR only. The area of the three sections of the DR and of the MR was also measured. The area of the DR in 15-day-old rats was found to be twice that in the 5-day-old rats, and differed from the area in 30-day-old rats and adults. There were no differences among the age groups in the areas of the MR. The results indicate that the expression of 5-HT in the lDR and extent of the DR increased to adult levels from days 5 to 15 after birth. In the dDR, vDR and MR, expression of 5-HT at postnatal day 5 was at adult levels already.

  19. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  20. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates.

    PubMed

    Tanabe, Hideyuki; Müller, Stefan; Neusser, Michaela; von Hase, Johann; Calcagno, Enzo; Cremer, Marion; Solovei, Irina; Cremer, Christoph; Cremer, Thomas

    2002-04-02

    We demonstrate that the nuclear topological arrangement of chromosome territories (CTs) has been conserved during primate evolution over a period of about 30 million years. Recent evidence shows that the positioning of chromatin in human lymphocyte nuclei is correlated with gene density. For example, human chromosome 19 territories, which contain mainly gene-dense and early replicating chromatin, are located toward the nuclear center, whereas chromosome 18 territories, which consist mainly of gene-poor and later replicating chromatin, is located close to the nuclear border. In this study, we subjected seven different primate species to comparative analysis of the radial distribution pattern of human chromosome 18- and 19-homologous chromatin by three-dimensional fluorescence in situ hybridization. Our data demonstrate that gene-density-correlated radial chromatin arrangements were conserved during higher-primate genome evolution, irrespective of the major karyotypic rearrangements that occurred in different phylogenetic lineages. The evolutionarily conserved positioning of homologous chromosomes or chromosome segments in related species supports evidence for a functionally relevant higher-order chromatin arrangement that is correlated with gene-density.

  1. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  2. Programmed cell death in plant reproduction.

    PubMed

    Wu, H M; Cheun, A Y

    2000-10-01

    Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.

  3. Distinctions in burst spiking between thalamic reticular nucleus cells projecting to the dorsal lateral geniculate and lateral posterior nuclei in the anesthetized rat.

    PubMed

    Kimura, A; Yokoi, I; Imbe, H; Donishi, T; Kaneoke, Y

    2012-12-13

    Thalamic cell activity is under a significant influence of inhibition from the thalamic reticular nucleus (TRN) that is composed of domains connected with first and higher order thalamic nuclei, which are thought to subserve transmission of sensory inputs to the cortex and cortico-thalamo-cortical transmission of cortical outputs, respectively. Provided that TRN cells have distinct activities along with their projections to first and higher order thalamic nuclei, TRN cells could shape cell activities of the two thalamic nuclei in different manners for the distinct functions. In anesthetized rats, visual response and spontaneous activity were recorded from TRN cells projecting to the dorsal lateral geniculate (first order) and lateral posterior (higher order) nuclei (TRN-DLG and TRN-LP cells), using juxta-cellular recording and labeling techniques. TRN-DLG cells had a higher propensity for burst spiking and exhibited bursts of larger numbers of spikes with shorter inter-spike intervals as compared to TRN-LP cells in both visual response and spontaneous activity. Sustained effects of visual input on burst spiking were recognized in recurrent activation of TRN-DLG but not of TRN-LP cells. Further, the features of burst spiking were related with the locations of topographically connected cell bodies and terminal fields. The difference in burst spiking contrasts with the difference between thalamic cells in the DLG and LP, which show low and high levels of burst spiking, respectively. The synergy between thalamic and TRN cell activities with their contrasting features of burst spiking may compose distinctive sensory processing and attentional gating functions of geniculate and extra-geniculate systems.

  4. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  5. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  6. Cell-to-cell communication via plasmodesmata in vascular plants.

    PubMed

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants.

  7. The potential of single-cell profiling in plants.

    PubMed

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  8. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    SciTech Connect

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  9. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies.

    PubMed

    Enger, Shirin A; Ahnesjö, Anders; Verhaegen, Frank; Beaulieu, Luc

    2012-07-21

    It has been suggested that modern dose calculation algorithms should be able to report absorbed dose both as dose to the local medium, D(m,m,) and as dose to a water cavity embedded in the medium, D(w,m), using conversion factors from cavity theory. Assuming that the cell nucleus with its DNA content is the most important target for biological response, the aim of this study is to investigate, by means of Monte Carlo (MC) simulations, the relationship of the dose to a cell nucleus in a medium, D(n,m,) to D(m,m) and D(w,m), for different combinations of cell nucleus compositions and tissue media for different photon energies used in brachytherapy. As D(n,m) is very impractical to calculate directly for routine treatment planning, while D(m,m) and D(w,m) are much easier to obtain, the questions arise which one of these quantities is the best surrogate for D(n,m) and which cavity theory assumptions should one use for its estimate. The Geant4.9.4 MC code was used to calculate D(m,m,) D(w,m) and D(n,m) for photon energies from 20 (representing the lower energy end of brachytherapy for ¹⁰³Pd or ¹²⁵I) to 300 keV (close to the mean energy of (¹⁹²Ir) and for the tissue media adipose, breast, prostate and muscle. To simulate the cell and its nucleus, concentric spherical cavities were placed inside a cubic phantom (10 × 10 × 10 mm³). The diameter of the simulated nuclei was set to 14 µm. For each tissue medium, three different setups were simulated; (a) D(n,m) was calculated with nuclei embedded in tissues (MC-D(n,m)). Four different published elemental compositions of cell nuclei were used. (b) D(w,m) was calculated with MC (MC-D(w,m)) and compared with large cavity theory calculated D(w,m) (LCT-D(w,m)), and small cavity theory calculated D(w,m) (SCT-D(w,m)). (c) D(m,m) was calculated with MC (MC-D(m,m)). MC-D(w,m) is a good substitute for MC-D(n,m) for all photon energies and for all simulated nucleus compositions and tissue types. SCT-D(w,m) can be used

  10. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  11. [Feedback control mechanisms of plant cell expansion

    SciTech Connect

    Cosgrove, D.J.

    1992-01-01

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  12. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  13. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  14. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress.

    PubMed

    Sainz, Martha; Pérez-Rontomé, Carmen; Ramos, Javier; Mulet, Jose Miguel; James, Euan K; Bhattacharjee, Ujjal; Petrich, Jacob W; Becana, Manuel

    2013-12-01

    The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.

  15. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  16. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  17. Automated detection of retinal cell nuclei in 3D micro-CT images of zebrafish using support vector machine classification

    NASA Astrophysics Data System (ADS)

    Ding, Yifu; Tavolara, Thomas; Cheng, Keith

    2016-03-01

    Our group is developing a method to examine biological specimens in cellular detail using synchrotron microCT. The method can acquire 3D images of tissue at micrometer-scale resolutions, allowing for individual cell types to be visualized in the context of the entire specimen. For model organism research, this tool will enable the rapid characterization of tissue architecture and cellular morphology from every organ system. This characterization is critical for proposed and ongoing "phenome" projects that aim to phenotype whole-organism mutants and diseased tissues from different organisms including humans. With the envisioned collection of hundreds to thousands of images for a phenome project, it is important to develop quantitative image analysis tools for the automated scoring of organism phenotypes across organ systems. Here we present a first step towards that goal, demonstrating the use of support vector machines (SVM) in detecting retinal cell nuclei in 3D images of wild-type zebrafish. In addition, we apply the SVM classifier on a mutant zebrafish to examine whether SVMs can be used to capture phenotypic differences in these images. The longterm goal of this work is to allow cellular and tissue morphology to be characterized quantitatively for many organ systems, at the level of the whole-organism.

  18. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS].

    PubMed

    Vildanova, M S; Smirnova, E A

    2016-01-01

    Plant hormones are signal molecules of different chemical structure, secreted by plant cells and acting at low concentrations as regulators of plant growth and differentiation. Certain plant hormones are similar to animal hormones or can be produced by animal cells. A number of studies show that the effect of biologically active components of plant origin including plant/phytohormones is much wider than was previously thought, but so far there are no objective criteria for assessing the influence of phytohormones on the physiological state of animal cells. Presented in the survey data show that plant hormones, which have different effects on plant growth and development (jasmonic, abscisic and gibberellic acids), are not neutral to the cells of animal origin, and animal cells response to them may be either positive or negative.

  19. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy.

    PubMed

    Krause, Marina; Te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m(-1), force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  20. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  1. Become a Laboratory Investigator: Detect the Presence of Nuclei in Red Blood Cells.

    ERIC Educational Resources Information Center

    Puckering, Amanda L.; Synenki, Lauren R.; Moore, Kristin; Steapleton, Melissa; Hammond, Paul; Pomart, Katrina; Sisken, Dorothy

    2003-01-01

    Presents lab exercises in which students use the microscope to study cells. Describes these activities as allowing students to work independently and become more proficient at microscope use. Students also gain a deeper understanding of the more invisible world of science. (Author/KHR)

  2. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters.

    PubMed

    Ranganath, R M

    2005-09-01

    Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.

  3. Effects of hypergravity on the development of cell number and asymmetry in fish brain nuclei

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Werner, K.; Rahmann, H.

    Larval cichlid fish ( Oreochromis mossambicus) siblings were subjected to 3g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1g and alternating light/dark (12h:12h) conditions served as contros. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.

  4. Role of Calcium and Calmodulin in Plant Cell Regulation

    NASA Technical Reports Server (NTRS)

    Cormier, M. J.

    1983-01-01

    The role of calcium and calmodulin in plant cell regulation is discussed. Experiments are done to discover the level of calcium in plants and animals. The effect of intracellular calcium on photosynthesis is discussed.

  5. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  6. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice

    PubMed Central

    Blosa, M.; Bursch, C.; Weigel, S.; Holzer, M.; Jäger, C.; Janke, C.; Matthews, R. T.; Arendt, T.; Morawski, M.

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  7. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.

  8. Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.

    1999-01-01

    The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.

  9. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.

  10. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.

    PubMed

    Spagnol, Stephen T; Dahl, Kris Noel

    2016-01-01

    The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes.

  11. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  12. Ultrastructure of autophagy in plant cells: a review.

    PubMed

    van Doorn, Wouter G; Papini, Alessio

    2013-12-01

    Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.

  13. Auxin regulation of cell polarity in plants.

    PubMed

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  14. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  15. Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei

    SciTech Connect

    Niedojadlo, Janusz; Perret-Vivancos, Cecile; Kalland, Karl-Henning; Cmarko, Dusan; Cremer, Thomas; Driel, Roel van; Fakan, Stanislav

    2011-02-15

    The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure. Carried out on ultrathin sections of fixed and resin-embedded COS-7 cells, it revealed at high resolution the localization of the genes that code for the cellular mRNAs. Quantitative analysis shows that most transcribed DNA is concentrated in the perichromatin region, i.e. the interface between subchromosomal compact chromatin domains and the interchromatin space essentially devoid of DNA. The RNA that is produced is found mainly in the perichromatin region and the interchromatin space. These results imply that in the mammalian nucleus the chromatin fiber is folded so that active genes are predominantly present in the perichromatin region, which is the most prominent site of transcription.

  16. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  17. Plant and animal stem cells: similar yet different.

    PubMed

    Heidstra, Renze; Sabatini, Sabrina

    2014-05-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.

  18. Auxetic nuclei

    PubMed Central

    Wang, Ning

    2015-01-01

    The nucleus of naïve mouse embryonic stem cells in transition to differentiation expands when the cells are stretched and contracts when they are compressed. What drives this auxetic phenotype is, however, unclear. PMID:24845989

  19. Efficient Delivery of DOX to Nuclei of Hepatic Carcinoma Cells in the Subcutaneous Tumor Model Using pH-Sensitive Pullulan-DOX Conjugates.

    PubMed

    Li, Huanan; Cui, Yani; Sui, Junhui; Bian, Shaoquan; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2015-07-29

    A series of pullulan-doxorubicin conjugates (Pu-DOXs) were investigated for effectively delivering DOX to nuclei of hepatic carcinoma cells in subcutaneous tumor model. These Pu-DOXs were prepared by conjugating DOX onto pullulan molecule via pH-responsive hydrazone bond using spacers with different alkane chain length. The highest drug loading content of Pu-DOXs went up to nearly 50%, and the diameter of Pu-DOX nanoparticles ranged from 50 to 170 nm, as measured by DLS and TEM. These Pu-DOX nanoparticles could rapidly release DOX in the acidic environment at pH = 5.0 while being kept relatively stable in neural conditions. The in vitro cell coculture experiments revealed that these Pu-DOX nanoparticles were selectively internalized by hepatic carcinoma cells through receptor-mediated endocytosis via asialoglycoprotein receptor on the hepatic carcinoma cell surface. DOX was rapidly released from Pu-DOX nanoparticles in acidic endosome/lysosome, diffused into cell nuclei due to its strong affinity to nucleic acid, inhibited the cell proliferation, and accelerated the cell apoptosis. In the nude mice subcutaneous hepatic carcinoma model, Pu-DOX nanoparticles efficiently accumulated in the tumor site through the enhanced permeation and retention effect. Then DOX was specifically internalized by hepatic carcinoma cells and rapidly diffused into the nuclei of cells. Compared with the control group in in vivo experiments, these Pu-DOX nanoparticles effectively inhibited solid tumor growth, prolonging the lifetime of the experimental animal. These pH sensitive nanoparticles might provide an important clinical implication for targeted hepatic carcinoma therapy with high efficiency and low systematic toxicity.

  20. Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms.

    PubMed

    Davidson, Patricia M; Fromigué, Olivia; Marie, Pierre J; Hasirci, Vasif; Reiter, Günter; Anselme, Karine

    2010-03-01

    Osteosarcoma-derived cell lines (SaOs-2, MG63) have recently been shown to deform their nucleus considerably in response to surface topography. Such a deformation had not been described previously. Here we present results on additional cell lines, including cancerous (OHS4, U2OS), immortalized (F/STRO-1(+)A and FHSO6) and healthy cells (HOP). The cancerous cells were found to deform extensively, the immortalized cells showed small deformations, whereas the healthy cells showed deformation only at short incubation times. These results suggest a strong link between the malignant transformation of cells and the state of the cytoskeletal network. We propose mechanisms to explain the deformation in which the cytoskeleton either pushes down on the nucleus during spreading or pulls it down upon adhesion to the pillars.

  1. Characterization of biological ice nuclei from a lichen.

    PubMed Central

    Kieft, T L; Ruscetti, T

    1990-01-01

    Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei. PMID:2188965

  2. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  3. Over-expression of GFP-FEZ1 causes generation of multi-lobulated nuclei mediated by microtubules in HEK293 cells

    SciTech Connect

    Lanza, Daniel C.F.; Trindade, Daniel M.; Assmann, Eliana M.; Kobarg, Joerg

    2008-06-10

    FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transiently over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, {alpha}- and especially with {gamma}-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.

  4. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Voulgari, Georgia; Papadopoulou, Galini

    2011-07-01

    Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.

  5. Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns.

    PubMed

    Martí, J; Wills, K V; Ghetti, B; Bayer, S A

    2001-10-01

    To determine whether the neurogenetic patterns of Purkinje cells and deep cerebellar nuclei neurons were normal in weaver homozygotes and whether the degeneration of those neuronal types was linked to their time of origin, [3H] thymidine autoradiography was applied on sections of homozygous weaver mice and normal controls on postnatal day 90. The experimental animals were the offspring of pregnant dams injected with [3H] thymidine on embryonic days 11-12, 12-13, 13-14 and 14-15. The results show that the onset of neurogenesis, its pattern of peaks and valleys, and its total span were similar between wild type and homozygous weaver in the cerebellar areas analyzed, indicating that the loss of Purkinje cells and deep cerebellar nuclei neurons is not related to neurogenetic patterns. In weaver homozygotes, the loss of Purkinje cells and deep cerebellar nuclei neurons followed a lateral to medial gradient of increasing severity. Thus, the vermis and the fastigial nucleus, which are medially located, presented the most important neuron loss, whereas in the lateral hemisphere and the dentate nucleus, neuron loss was spared.

  6. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  7. Experimental approaches to study plant cell walls during plant-microbe interactions.

    PubMed

    Xia, Ye; Petti, Carloalberto; Williams, Mark A; DeBolt, Seth

    2014-01-01

    Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act as the first barrier of defense against biotic and abiotic stress. In addition to providing structural integrity, plant cell walls serve an important function in connecting cells to their extracellular environment by sensing and transducing signals to activate cellular responses, such as those that occur during pathogen infection. This mini review will summarize current experimental approaches used to study cell wall functions during plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses, and metabolic profiling techniques.

  8. Rho-GTPase-regulated vesicle trafficking in plant cell polarity.

    PubMed

    Chen, Xu; Friml, Jiří

    2014-02-01

    ROPs (Rho of plants) belong to a large family of plant-specific Rho-like small GTPases that function as essential molecular switches to control diverse cellular processes including cytoskeleton organization, cell polarization, cytokinesis, cell differentiation and vesicle trafficking. Although the machineries of vesicle trafficking and cell polarity in plants have been individually well addressed, how ROPs co-ordinate those processes is still largely unclear. Recent progress has been made towards an understanding of the co-ordination of ROP signalling and trafficking of PIN (PINFORMED) transporters for the plant hormone auxin in both root and leaf pavement cells. PIN transporters constantly shuttle between the endosomal compartments and the polar plasma membrane domains, therefore the modulation of PIN-dependent auxin transport between cells is a main developmental output of ROP-regulated vesicle trafficking. The present review focuses on these cellular mechanisms, especially the integration of ROP-based vesicle trafficking and plant cell polarity.

  9. Epigenetic memory and cell fate reprogramming in plants

    PubMed Central

    Roudier, François

    2017-01-01

    Abstract Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration. PMID:28316791

  10. Epigenetic memory and cell fate reprogramming in plants.

    PubMed

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  11. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  12. Formative cell divisions: principal determinants of plant morphogenesis.

    PubMed

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  13. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors.

    PubMed

    Xu, Zejun; Guo, Kunru; Yu, Jieshi; Sun, Haili; Tang, Jun; Shen, Jie; Müllen, Klaus; Yang, Wantai; Yin, Meizhen

    2014-10-29

    To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.

  14. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  15. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  16. Tanshinone IIA enhances bystander cell killing of cancer cells expressing Drosophila melanogaster deoxyribonucleoside kinase in nuclei and mitochondria.

    PubMed

    Jiang, Haiyang; Zhao, Lei; Dong, Xiaoshen; He, Anning; Zheng, Caiwei; Johansson, Magnus; Karlsson, Anna; Zheng, Xinyu

    2015-09-01

    Heterologous expression of the Drosophila melanogaster multi-substrate deoxyribonucleoside kinase (Dm-dNK) increases the sensitivity of cancer cells to several cytotoxic nucleoside analogs. Thus, it may be used as a suicide gene in combined gene/chemotherapy treatment of cancer. To further characterize this potential suicide gene, we constructed two retroviral vectors that enabled the expression of Dm-dNK in cancer cells. One vector harbored the wild‑type enzyme that localized to the nucleus. The other vector harbored a mitochondrial localized mutant enzyme that was constructed by deleting the nuclear localization signal and fusing it to a mitochondrial import signal of cytochrome c oxidase. A thymidine kinase-deficient osteosarcoma cell line was transduced with the recombinant viruses. The sensitivity and bystander cell killing in the presence of pyrimidine nucleoside analogs (E)-5-(2-bromovinyl)‑2'‑deoxyuridine and 1-β-D-arabinofuranosylthymine were investigated. Tanshinone IIA is a constituent of Danshen; a traditional Chinese medicine used in the treatment of cardiovascular diseases. This study also looked at the influence of Tanshinone IIA on the bystander effect and the underlying mechanisms. We showed that sensitivity of the osteosarcoma cell line to the nucleoside analogs and the efficiency of bystander cell killing were independent of the subcellular localization of Dm-dNK. The enhanced effect of tanshinone IIA on the bystander effect was related to the increased expression of Cx43 and Cx26.

  17. Projections to the anterodorsal thalamus and lateral mammillary nuclei arise from different cell populations within the postsubiculum: implications for the control of head direction cells.

    PubMed

    Yoder, Ryan M; Taube, Jeffrey S

    2011-10-01

    The neural representation of directional heading is encoded by a population of cells located in a circuit that includes the postsubiculum (PoS), anterodorsal thalamus (ADN), and lateral mammillary nuclei (LMN). Throughout this circuit, many cells rely on both movement- and landmark-related information to discharge as a function of the animal's directional heading. The PoS projects to both the ADN and LMN, and these connections may convey critical spatial information about landmarks, because lesions of the PoS disrupt landmark control in head direction (HD) cells and hippocampal place cells [Goodridge and Taube (1997) J Neurosci 17:9315-9330; Calton et al. (2003) J Neurosci 23:9719-9731]. The PoS → ADN projection originates in the deep layers of PoS, but no studies have determined whether the PoS → LMN projection originates from the same cells that project to ADN. To address this issue, two distinct cholera toxin-subunit B (CTB) fluorophore conjugates (Alexa Fluor 488 and Alexa Fluor 594) were injected into the LMN and ADN of the same rats, and PoS sections were examined for cell bodies containing either or both CTB conjugates. Results indicated that the PoS → LMN projection originates exclusively from a thin layer of cells located superficial to the layer(s) of PoS → ADN projection cells, with no overlap. To verify the laminar distribution and morphological characteristics of PoS → LMN and PoS → ADN cells, biotinylated dextran amine was injected into LMN or ADN of different rats, and tissue sections were counterstained with thionin. Results indicated that the PoS → LMN projection arises from large pyramidal cells in layer IV, whereas the PoS → ADN projection arises from a heterogeneous cell population in layers V/VI. This study provides the first evidence that the PoS → ADN and PoS → LMN projections arise from distinct, nonoverlapping cell layers in PoS. Functionally, the PoS may provide landmark information to HD cells in LMN.

  18. Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm.

    PubMed

    Locato, Vittoria; Uzal, Esther Novo; Cimini, Sara; Zonno, Maria Chiara; Evidente, Antonio; Micera, Alessandra; Foyer, Christine H; De Gara, Laura

    2015-05-01

    Ophiobolin A, a tetracyclic sesterpenoid produced by phytopathogenic fungi, is responsible for catastrophic losses in crop yield but its mechanism of action is not understood. The effects of ophiobolin A were therefore investigated on the growth and redox metabolism of Tobacco Bright Yellow-2 (TBY-2) cell cultures by applying concentrations of the toxin that did not promote cell death. At concentrations between 2 and 5 μM, ophiobolin A inhibited growth and proliferation of the TBY-2 cells, which remained viable. Microscopic and cytofluorimetric analyses showed that ophiobolin A treatment caused a rapid decrease in mitotic index, with a lower percentage of the cells at G1 and increased numbers of cells at the S/G2 phases. Cell size was not changed following treatment suggesting that the arrest of cell cycle progression was not the result of a block on cell growth. The characteristic glutathione redox state and the localization of glutathione in the nucleus during cell proliferation were not changed by ophiobolin A. However, subsequent decreases in glutathione and the re-distribution of glutathione between the cytoplasm and nuclei after mitosis occurring in control cells, as well as the profile of glutathionylated proteins, were changed in the presence of the toxin. The profile of poly ADP-ribosylated proteins were also modified by ophiobolin A. Taken together, these data provide evidence of the mechanism of ophiobolin A action as a cell cycle inhibitor and further demonstrate the link between nuclear glutathione and the cell cycle regulation, suggesting that glutathione-dependent redox controls in the nuclei prior to cell division are of pivotal importance.

  19. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  20. Electrophoretic mobility of cell nuclei (EMN index) as a biomarker of the biological aging process: Considering the association between EMN index and age.

    PubMed

    Czapla, Z; McPhail, S M

    2015-12-01

    The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n=1273) aged 18-98 years, and males (n=506) aged 19-93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r=-0.71, p<0.001) and women (r=-0.60, p<0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.

  1. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  2. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  3. Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro

    2008-01-01

    Background Plant cells divide by the formation of new cross walls, known as cell plates, from the center to periphery of each dividing cell. Formation of the cell plate occurs in the phragmoplast, a complex structure composed of membranes, microtubules (MTs) and actin microfilaments (MFs). Disruption of phragmoplast MTs was previously found to completely inhibit cell plate formation and expansion, indicative of their crucial role in the transport of cell plate membranes and materials. In contrast, disruption of MFs only delays cell plate expansion but does not completely inhibit cell plate formation. Despite such findings, the significance and molecular mechanisms of MTs and MFs remain largely unknown. Results Time-sequential changes in MF-distribution were monitored by live imaging of tobacco BY-2 cells stably expressing the GFP-actin binding domain 2 (GFP-ABD2) fusion protein, which vitally co-stained with the endocytic tracer, FM4-64, that labels the cell plate. During cytokinesis, MFs accumulated near the newly-separated daughter nuclei towards the emerging cell plate, and subsequently approached the expanding cell plate edges. Treatment with an actin polymerization inhibitor caused a decrease in the cell plate expansion rate, which was quantified using time-lapse imaging and regression analysis. Our results demonstrated time-sequential changes in the contribution of MFs to cell plate expansion; MF-disruption caused about a 10% decrease in the cell plate expansion rate at the early phase of cytokinesis, but about 25% at the late phase. MF-disruption also caused malformation of the emerging cell plate at the early phase, indicative of MF involvement in early cell plate formation and expansion. The dynamic movement of endosomes around the cell plate was also inhibited by treatment with an actin polymerization inhibitor and a myosin ATPase inhibitor, respectively. Furthermore, time-lapse imaging of the endoplasmic reticulum (ER) revealed that MFs were involved in

  4. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  5. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  6. Reprogramming of plant cells by filamentous plant-colonizing microbes.

    PubMed

    Doehlemann, Gunther; Requena, Natalia; Schaefer, Patrick; Brunner, Frederic; O'Connell, Richard; Parker, Jane E

    2014-12-01

    Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.

  7. Production of recombinant proteins in suspension-cultured plant cells.

    PubMed

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  8. Setup with Laser Ionization in Gas Cell for Production and Study of Neutron-Rich Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Zemlyanoy, S. G.; Kozulin, E. M.; Kudryavtsev, Yu.; Fedosseev, V.; Bark, R.; Janas, Z.; Othman, H. A.

    2015-11-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N=126 is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  9. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  10. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  11. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway.

    PubMed

    Xue, Tao; Wei, Li; Zha, Ding-Jun; Qiao, Li; Lu, Lian-Jun; Chen, Fu-Quan; Qiu, Jian-Hua

    2015-03-01

    Stem cell therapy has attracted widespread attention for a number of diseases. Recently, neural stem cells (NSCs) from the cochlear nuclei have been identified, indicating a potential direction for the treatment of sensorineural hearing loss. Acoustic stimuli play an important role in the development of the auditory system. In this study, we aimed to determine whether acoustic stimuli induce NSC development and differentiation through the upregulation of clusterin (CLU) in NSCs isolated from the cochlear nuclei. To further clarify the underlying mechanisms involved in the development and differentiation of NSCs exposed to acoustic stimuli, we successfully constructed animal models in which was CLU silenced by an intraperitoneal injection of shRNA targeting CLI. As expected, the NSCs from rats treated with LV-CLU shRNA exhibited a lower proliferation ratio when exposed to an augmented acoustic environment (AAE). Furthermore, the inhibition of cell apoptosis induced by exposure to AAE was abrogated after silencing the expression of the CLU gene. During the differentiation of acoustic stimuli-exposed stem cells into neurons, the number of astrocytes was significantly reduced, as evidenced by the expression of the cell markers, microtubule associated protein‑2 (MAP-2) and glial fibrillary acidic protein (GFAP), which was markedly inhibited when the CLU gene was silenced. Our results indicate that acoustic stimuli may induce the development and differentiation of NSCs from the cochlear nucleus mainly through the CLU pathway. Our study suggests that CLU may be a novel target for the treatment of sensorineural hearing loss.

  12. Pluripotent versus totipotent plant stem cells: dependence versus autonomy?

    PubMed

    Verdeil, Jean-Luc; Alemanno, Laurence; Niemenak, Nicolas; Tranbarger, Timothy John

    2007-06-01

    Little is known of the mechanisms that induce the dedifferentiation of a single somatic cell into a totipotent embryogenic cell that can either be regenerated or develop into an embryo and subsequently an entire plant. In this Opinion article, we examine the cellular, physiological and molecular similarities and differences between different plant stem cell types. We propose to extend the plant stem cell concept to include single embryogenic cells as a totipotent stem cell based on their capacity to regenerate or develop into an embryo under certain conditions. Our survey suggests that differences in chromatin structure might ensure that meristem-localized stem cells have supervised freedom and are pluripotent, and that embryogenic stem cells are unsupervised, autonomous and, hence, freely totipotent.

  13. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  14. Maintenance and Function of a Plant Chromosome in Human Cells.

    PubMed

    Wada, Naoki; Kazuki, Yasuhiro; Kazuki, Kanako; Inoue, Toshiaki; Fukui, Kiichi; Oshimura, Mitsuo

    2017-02-17

    Replication, segregation, gene expression, and inheritance are essential features of all eukaryotic chromosomes. To delineate the extent of conservation of chromosome functions between humans and plants during evolutionary history, we have generated the first human cell line containing an Arabidopsis chromosome. The Arabidopsis chromosome was mitotically stable in hybrid cells following cell division, and initially existed as a translocated chromosome. During culture, the translocated chromosomes then converted to two types of independent plant chromosomes without human DNA sequences, with reproducibility. One pair of localization signals of CENP-A, a marker of functional centromeres was detected in the Arabidopsis genomic region in independent plant chromosomes. These results suggest that the chromosome maintenance system was conserved between human and plants. Furthermore, the expression of plant endogenous genes was observed in the hybrid cells, implicating that the plant chromosomal region existed as euchromatin in a human cell background and the gene expression system is conserved between two organisms. The present study suggests that the essential chromosome functions are conserved between evolutionarily distinct organisms such as humans and plants. Systematic analyses of hybrid cells may lead to the production of a shuttle vector between animal and plant, and a platform for the genome writing.

  15. Small Molecule Probes for Plant Cell Wall Polysaccharide Imaging

    PubMed Central

    Wallace, Ian S.; Anderson, Charles T.

    2012-01-01

    Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics. PMID:22639673

  16. An introduction to plant cell culture: the future ahead.

    PubMed

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  17. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  18. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  19. The Assessment of Fuel Cell Power Plants for Surface Combatants.

    DTIC Science & Technology

    1994-09-30

    fuel cell technology on the design and effectiveness of future naval surface combatants. The study involved the collection of data to characterize four different fuel cell technologies; proton exchange membrane, molten carbonate, phosphoric acid, and solid oxide fuel cells. This information was used to expand current computer models to develop specific fuel cell plants that met the power requirements for several applications on a nominal 5000 Lton destroyer and a nominal 200 Lton corvette. Each of the fuel cell

  20. Regulation of cell division in higher plants. Progress report

    SciTech Connect

    Jacobs, T.W.

    1992-07-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant`s essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  1. Direct carbonate fuel cell power plant operating with logistic fuels

    SciTech Connect

    Abens, S.G.; Steinfeld, G.

    1997-12-31

    In response to the US Department of Defense need for power generators which operate with logistic fuels, Energy Research Corporation and its subcontractors, Haldor Topsoe and Fluor Daniel, have conducted design studies and subscale equipment tests toward the development of fuel cell power plants with multifuel capability. A principal objective of this work was the development of a fixed-base carbonate fuel cell power plant design which can utilize both natural gas and military logistic fuels DF-2 and JP-8. To verify ERC`s technical approach, a 32 kW brassboard logistic fuel preprocessing system was assembled and operated with a Direct Carbonate Fuel Cell (DFC) stack. The project was conducted as part of DARPA`s Fuel Cell Power Plant Initiative Program for the development of dual use fuel cell power plants. The logistic fuel preprocessor consisted of a hydrodesulfurization plant which supplied desulfurized feed to an adiabatic prereformer. The methane-rich product gas provides fuel cell performance similar to that with natural gas. A preliminary design of a 3MW multifuel power plant prepared with input from the 32kW brassboard test confirmed that the thermal efficiency of a DFC power plant is nearly as high with logistic fuel (57%) as it is with natural gas (58%).

  2. Hosting the plant cells in vitro: recent trends in bioreactors.

    PubMed

    Georgiev, Milen I; Eibl, Regine; Zhong, Jian-Jiang

    2013-05-01

    Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as "green cell factories" for sustainable production of value-added molecules.

  3. Formation and maintenance of the Golgi apparatus in plant cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.

  4. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    products • 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell...FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell Energy, Inc. Electrical Balance Of Plant (EBOP): • Converts DC power to grid...logo, Direct FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat

  5. Energy from plants and microorganisms: progress in plant-microbial fuel cells.

    PubMed

    Deng, Huan; Chen, Zheng; Zhao, Feng

    2012-06-01

    Plant-microbial fuel cells (PMFCs) are newly emerging devices, in which electricity can be generated by microorganisms that use root exudates as fuel. This review presents the development of PMFCs, with a summary of their power generation, configurations, plant types, anode and cathode materials, biofilm communities, potential applications, and future directions.

  6. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  7. 31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) AT LEFT, LABORATORY (BUILDING 241) AT CENTER AND CAUSTIC FUSION PLANT (BUILDING 254) AT RIGHT. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  8. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  9. Investigating Wound Healing in Plant Cells: This Spud's for You!

    ERIC Educational Resources Information Center

    Thomson, Norm

    2000-01-01

    Presents classroom inquiry-based investigations to investigate wound healing in plant tissues and cells. Students create their own research problems and the investigations can be related to the National Science Standards. (SAH)

  10. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  11. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  12. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  13. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  14. Heat stress induces ferroptosis-like cell death in plants.

    PubMed

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.

  15. The Structure of Plant Cell Walls

    PubMed Central

    Burke, David; Kaufman, Peter; McNeil, Michael; Albersheim, Peter

    1974-01-01

    The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included. PMID:16658824

  16. Electrochemical Detection of Nitric Oxide in Plant Cell Suspensions.

    PubMed

    Griveau, Sophie; Besson-Bard, Angélique; Bedioui, Fethi; Wendehenne, David

    2016-01-01

    Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

  17. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  18. Plant cell culture strategies for the production of natural products

    PubMed Central

    Ochoa-Villarreal, Marisol; Howat, Susan; Hong, SunMi; Jang, Mi Ok; Jin, Young-Woo; Lee, Eun-Kyong; Loake, Gary J.

    2016-01-01

    Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158] PMID:26698871

  19. Plant cell culture strategies for the production of natural products.

    PubMed

    Ochoa-Villarreal, Marisol; Howat, Susan; Hong, SunMi; Jang, Mi Ok; Jin, Young-Woo; Lee, Eun-Kyong; Loake, Gary J

    2016-03-01

    Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158].

  20. From plants to animals; the role of plant cell death in ruminant herbivores.

    PubMed

    Kingston-Smith, Alison H; Davies, Teri E; Edwards, Joan E; Theodorou, Michael K

    2008-01-01

    Plant cell death occurring as a result of adverse environmental conditions is known to limit crop production. It is less well recognized that plant cell death processes can also contribute to the poor environmental footprint of ruminant livestock production. Although the forage cells ingested by grazing ruminant herbivores will ultimately die, the lack of oxygen, elevated temperature, and challenge by microflora experienced in the rumen induce regulated plant stress responses resulting in DNA fragmentation and autolytic protein breakdown during the cell death process. Excessive ruminal proteolysis contributes to the inefficient conversion of plant to microbial and animal protein which results in up to 70% of the ingested nitrogen being returned to the land as the nitrogenous pollutants ammonia and urea. This constitutes a significant challenge for sustainable livestock production. As it is estimated that 25% of cultivated land worldwide is assigned to livestock production, it is clear that understanding the fundamental biology underlying cell death in ingested forage will have a highly significant role in minimizing the impact of human activities. This review examines our current understanding of plant metabolism in the rumen and explores opportunities for exploitation of plant genetics to advance sustainable land use.

  1. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  2. Chromosomes and plant cell division in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1988-01-01

    The objectives were: examination of chromosomal aberrations; development of an experimental system; and engineering design units (EDUs) evaluation. Evaluation criteria are presented. Procedures were developed for shuttle-based investigations which result in the procurement of plant root tips for subsequent cytological examination.

  3. BUB1 and SURVIVIN proteins are not degraded after a prolonged mitosis and accumulate in the nuclei of HCT116 cells

    PubMed Central

    Andonegui-Elguera, Marco A; Cáceres-Gutiérrez, Rodrigo E; Luna-Maldonado, Fernando; López-Saavedra, Alejandro; Díaz-Chávez, José; Cisneros-Soberanis, Fernanda; Prada, Diddier; Mendoza-Pérez, Julia; Herrera, Luis A

    2016-01-01

    Spindle poisons activate the spindle assembly checkpoint and prevent mitotic exit until cells die or override the arrest. Several studies have focused on spindle poison-mediated cell death, but less is known about consequences in cells that survive a mitotic arrest. During mitosis, proteins such as CYCLIN B, SECURIN, BUB1 and SURVIVIN are degraded in order to allow mitotic exit, and these proteins are maintained at low levels in the next interphase. In contrast, exit from a prolonged mitosis depends only on degradation of CYCLIN B; it is not known whether the levels of other proteins decrease or remain high. Here, we analyzed the levels and localization of the BUB1 and SURVIVIN proteins in cells that escaped from a paclitaxel-mediated prolonged mitosis. We compared cells with a short arrest (HCT116 cells) with cells that spent more time in mitosis (HT29 cells) after paclitaxel treatment. BUB1 and SURVIVIN were not degraded and remained localized to the nuclei of HCT116 cells after a mitotic arrest. Moreover, BUB1 nuclear foci were observed; BUB1 did not colocalize with centromere proteins. In HT29 cells, the levels of BUB1 and SURVIVIN decreased during the arrest, and these proteins were not present in cells that reached the next interphase. Using time-lapse imaging, we observed morphological heterogeneity in HCT116 cells that escaped from the arrest; this heterogeneity was due to the cytokinesis-like mechanism by which the cells exited mitosis. Thus, our results show that high levels of BUB1 and SURVIVIN can be maintained after a mitotic arrest, which may promote resistance to cell death. PMID:27818790

  4. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.

  5. Analysis of spatial correlations between patterns of DNA damage response and DNA replication in nuclei of cells subjected to replication stress or oxidative damage.

    PubMed

    Bernas, Tytus; Berniak, Krzysztof; Rybak, Paulina; Zarębski, Mirosław; Zhao, Hong; Darzynkiewicz, Zbigniew; Dobrucki, Jerzy W

    2013-10-01

    Sites of DNA replication (EdU incorporation) and DNA damage signaling (γH2AX) induced by camptothecin (Cpt) or hydrogen peroxide (H2O2) form characteristic patterns of foci in cell nuclei. The overlap between these patterns is a function of the number of DNA double strand breaks (DSBs) formed in replication sites. The goal of this study was to optimize a method of quantitative assessment of a degree of correlation between these two patterns. Such a correlation can be used to estimate a probability of inducing damage in sections of replicating DNA. The damage and replication foci are imaged in 3D with confocal microscopy and their respective positions within nuclei are determined with adaptive image segmentation. Using correlation functions spatial proximity of the resultant point patterns is quantified over the range of distances in cells in early-, mid- and late S-phase. As the numbers (and nuclear densities) of γH2AX and replication foci differ significantly in the subsequent substages of S phase, the detected association values were corrected for the expected random overlap between both classes of foci. Thus, the probability of their nonrandom association was estimated. Moreover, self association (clustering) of DNA replication sites in different stages of S-phase of the cell cycle was detected and accounted for. While the analysis revealed a strong correlation between the γH2AX foci and the sites of DNA replication in cells treated with Cpt, only a low correlation was apparent in cells exposed to H2O2. © 2013 International Society for Advancement of Cytometry.

  6. Meloidogyne javanica chorismate mutase 1 alters plant cell development.

    PubMed

    Doyle, Elizabeth A; Lambert, Kris N

    2003-02-01

    Root-knot nematodes are obligate plant parasites that alter plant cell growth and development by inducing the formation of giant cells for feeding. Nematodes inject secretions from their esophageal glands through their stylet and into plant cells to induce giant cell formation. Meloidogyne javanica chorismate mutase 1 (MjCM-1) is one such esophageal gland protein likely to be secreted from the nematode as giant cells form. MjCM-1 has two domains, an N-terminal chorismate mutase (CM) domain and a C-terminal region of unknown function. It is the N-terminal CM domain of the protein that is the predominant form produced in root-knot nematodes. Transgenic expression of MjCM-1 in soybean hairy roots results in a phenotype of reduced and aborted lateral roots. Histological studies demonstrate the absence of vascular tissue in hairy roots expressing MjCM-1. The phenotype of MjCM-1 expressed at low levels can be rescued by the addition of indole-3-acetic acid (IAA), indicating MjCM-1 overexpression reduces IAA biosynthesis. We propose MjCM-1 lowers IAA by causing a competition for chorismate, resulting in an alteration of chorismate-derived metabolites and, ultimately, in plant cell development. Therefore, we hypothesize that MjCM-1 is involved in allowing nematodes to establish a parasitic relationship with the host plant.

  7. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  8. The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion

    PubMed Central

    Underwood, William

    2012-01-01

    Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area. PMID:22639669

  9. Plant organelle proteomics: collaborating for optimal cell function.

    PubMed

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  10. Association of redox-active iron bound to high molecular weight structures in nuclei with inhibition of cell growth by H2O2.

    PubMed

    Li, H; Byrnes, R W

    1999-01-01

    Perturbations to Fe species contributing to generation of DNA single-strand breaks (SSBs) and inhibition of growth by H2O2 were studied in HL-60 cells made Fe-deficient by 24 h pretreatment with 144 microM bathophenanthroline disulfonic acid and 400 microM ascorbic acid (Free Radic. Biol. Med. 20: 399; 1996). The diffusion distance for SSB generation (d) in Fe-deficient cells, measured via inhibition with the *OH scavenger Me2SO using alkaline elution, was 6.5 nm. This is similar to the d for Fe-normal cells reported previously. After 1 and 3 h in fresh RPMI 1640 medium containing 10% serum, SSB generation increased from 29 to 56 and 93% of control Fe-normal cells, respectively. The d of the major contributor to SSB generation at these two treatment times was 1.9 nm. This d resembled the d for Fe-ATP as determined in isolated Ehrlich cell nuclei. The association of ATP with Fe2+ was further supported by decreased SSB generation in cells in which ATP synthesis was inhibited. In contrast to SSB generation, H2O2-induced inhibition of growth of Fe-deficient cells treated immediately after placing in fresh medium was not appreciably different from Fe-normal cells. However, after 3 h, an approximately 70% greater concentration of H2O2 than for control, Fe-normal cells was required to inhibit growth. This increase in H2O2 concentration was associated with decreased generation of SSBs by H2O2 in isolated HL-60 cell nuclei. Thus, Fe bound to nuclear structures is more closely associated with inhibition of cell growth than apparent Fe-ATP species. In parallel experiments, changes in total cellular Fe assayed by ashing and complexing with ferrozine were consistent with a non-transferrin mode of acquisition. These short-term changes appear due to processes accompanying reestablishment of the Fe content and distribution normally observed during long-term growth.

  11. Formation of starch in plant cells.

    PubMed

    Pfister, Barbara; Zeeman, Samuel C

    2016-07-01

    Starch-rich crops form the basis of our nutrition, but plants have still to yield all their secrets as to how they make this vital substance. Great progress has been made by studying both crop and model systems, and we approach the point of knowing the enzymatic machinery responsible for creating the massive, insoluble starch granules found in plant tissues. Here, we summarize our current understanding of these biosynthetic enzymes, highlighting recent progress in elucidating their specific functions. Yet, in many ways we have only scratched the surface: much uncertainty remains about how these components function together and are controlled. We flag-up recent observations suggesting a significant degree of flexibility during the synthesis of starch and that previously unsuspected non-enzymatic proteins may have a role. We conclude that starch research is not yet a mature subject and that novel experimental and theoretical approaches will be important to advance the field.

  12. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  13. Peroxisome Ca(2+) homeostasis in animal and plant cells.

    PubMed

    Costa, Alex; Drago, Ilaria; Zottini, Michela; Pizzo, Paola; Pozzan, Tullio

    2013-01-01

    Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.

  14. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  15. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  16. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    PubMed

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants.

  17. Effect of temperature on plant elongation and cell wall extensibility.

    PubMed

    Pietruszka, M; Lewicka, S

    2007-03-01

    Lockhart equation was derived for explaining plant cell expansion where both cell wall extension and water uptake must occur concomitantly. Its fundamental contribution was to express turgor pressure explicitly in terms of osmosis and wall mechanics. Here we present a new equation in which pressure is determined by temperature. It also accounts for the role of osmosis and consequently the role of water uptake in growing cell. By adopting literature data, we also attempt to report theoretically the close relation between plant elongation and cell wall extensibility. This is accomplished by the modified equation of growth solved for various temperatures in case of two different species. The results enable to interpret empirical data in terms of our model and fully confirm its applicability to the investigation of the problem of plant cell extensibility in function of environmental temperature. Moreover, by separating elastic effects from growth process we specified the characteristic temperature common for both processes which corresponds to the resonance energy of biochemical reactions as well as to the rapid softening of the elastic modes toward the high temperature end where we encountered viscoelastic and/or plastic behavior as dominating. By introducing analytical formulae connected with growth and elastic properties of the cell wall, we conclude with the statement how these both processes contribute quantitatively to the resonance-like shape of the elongation curve. In addition, the tension versus temperature "phase diagram" for a living plant cell is presented.

  18. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  19. Polyphosphoinositides are present in plant tissue culture cells

    SciTech Connect

    Boss, W.F.; Massel, M.O.

    1985-11-15

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-(2-/sup 3/H) inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate.

  20. Elucidating the regulation of complex signalling systems in plant cells.

    PubMed

    Liu, Junli; Lindsey, Keith; Hussey, Patrick J

    2014-02-01

    The pollen tube represents a model system for the study of tip growth, and the root provides a valuable system to study gene and signalling networks in plants. In the present article, using the two systems as examples, we discuss how to elucidate the regulation of complex signalling systems in plant cells. First, we discuss how hormones and related genes in plant root development form a complex interacting network, and their activities are interdependent. Therefore their roles in root development must be analysed as an integrated system, and elucidation of the regulation of each component requires the adaptation of a novel modelling methodology: regulation analysis. Secondly, hydrodynamics, cell wall and ion dynamics are all important properties that regulate plant cell growth. We discuss how regulation analysis can be applied to study the regulation of hydrodynamics, cell wall and ion dynamics, using pollen tube growth as a model system. Finally, we discuss future prospects for elucidating the regulation of complex signalling systems in plant cells.

  1. Difference in extractability of estradiol- and tamoxifen-receptor complex in the nuclei from MCF-7 cells with Nonidet P-40.

    PubMed

    Ikeda, M; Omukai, Y; Hosokawa, K; Senoo, T

    1984-05-01

    The extraction of [3H]estradiol- and [3H]tamoxifen-receptor complex in the nuclei from MCF-7 cells with the nonionic detergent Nonidet P-40 has been studied. We found that there is a striking difference in the extractability of estradiol- and tamoxifen-receptor complex from nuclei with 0.5% Nonidet P-40. The nuclear bound estradiol-receptor complex is scarcely extractable with Nonidet P-40. In contrast, almost all of the nuclear bound tamoxifen-receptor complex is extractable. The nuclear [3H]tamoxifen-receptor complex extracted in the presence of Nonidet P-40 sediments in two peaks at 7 S and 5 S. The latter sedimentation rate is the same with that of the nuclear [3H]tamoxifen-receptor complex extracted with 0.4 M KCl. The nuclear [3H]estradiol-receptor complex extracted with 0.4 M KCl sediments at 4 S. The results suggest that interaction of tamoxifen-receptor complex with chromatin is different from that of estradiol-receptor complex.

  2. Dynamic metabolic flux analysis of plant cell wall synthesis.

    PubMed

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  3. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia.

    PubMed

    Yahav, Gilad; Hirshberg, Abraham; Salomon, Ophira; Amariglio, Ninette; Trakhtenbrot, Luba; Fixler, Dror

    2016-07-01

    B-cell chronic lymphocytic leukaemia (B-CLL) and B-cell precursor acute lymphoblastic leukaemia (B-ALL) are the most common type of leukaemia in adults and children, respectively. Today, fluorescence in situ hybridization (FISH) is the standard for detecting chromosomal aberrations that reflect adverse and favorable outcome. This study revealed a new, simple, and fast diagnostic tool to detect pathological cells by measuring and imaging the fluorescence lifetime (FLT) using FLT imaging microscopy (FLIM) of the peripheral blood (PB) cells of B-CLL samples that were labeled with the DNA binder, DAPI. The FLT of DAPI in healthy individuals was found to be 2.66 ± 0.12 ns. In contrast, PB cells of B-CLL and BM cells of B-ALL patients were characterized by a specific group distribution of the FLT values. The FLT of DAPI was divided into four subgroups, relative to 2.66 ns: short+, normal, prolonged, and prolonged+. These alterations could be related to different chromatin arrangements of B-CLL and B-ALL interphase nuclei. Notably, extremely long FLT of nuclear DAPI correlate with the presence of extra chromosome 12, while moderate increases compared to normal characterize the deletion of p53. Such correlations potentially enable a FLT-based rapid automatic diagnosis and classification of B-CLL even when the frequency of genetic and chromosomal abnormalities is low. © 2016 International Society for Advancement of Cytometry.

  4. The market for utility-scale fuel cell plants

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasuo; Matsumoto, Masaru; Takasu, Kazuhiko

    This paper is devoted to a survey of the current technology and future market for utility-scale fuel cell plants. The phosphoric acid fuel cell (PAFC) is entering into the stage where it is practically available for use with natural gas. Large capacity plants such as 11, 5 and 1 MW have been installed and operated in Italy and Japan. Their efficiency ranges from 36 to 42%. The molten carbonate fuel cell (MCFC) is in the demonstrating stage, both the fuel cell and the balance-of-plant (BOP) for natural gas. Demonstration plants of 2 and 1 MW have been under construction in the USA and Japan. Their efficiency will range from 40 to 50%. The solid oxide fuel cell (SOFC) is in the experimental stage around 100 kW for co-generation. Its conceptual system design has been conducted for both centralized and dispersed power plant in a cooperation with Westinghouse and NEDO. A market survey is now considered on the basis that future fuel cells will run for around 40 000 h in a stable manner with competitive performance. The market for fuel cells will be roughly at 2000 MW in Japan by the year 2010. Half of them will be installed for electric companies on the utility scale. The market will be shared between PAFC and MCFC by 10 and 90%, respectively. Current technologies have not reached the stage to precisely forecast when fuel cells will be entering into the market on a utility scale. At the present time, it is worthwhile to consider how the technological and economic requirements will be definitely achieved. After achieving these requirements, fuel cells will be positively introduced and socially accepted as the best energy converting option to save energy and environmental impact. Further efforts will be devoted to meeting the market from the technological and economic aspects.

  5. A quantitative and dynamic model for plant stem cell regulation.

    PubMed

    Geier, Florian; Lohmann, Jan U; Gerstung, Moritz; Maier, Annette T; Timmer, Jens; Fleck, Christian

    2008-01-01

    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  6. 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography.

    PubMed

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  7. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  8. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?

    PubMed Central

    Petre, Benjamin; Kamoun, Sophien

    2014-01-01

    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens. PMID:24586116

  9. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  10. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation.

  11. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells

    PubMed Central

    Kwon, Kwang-Chul; Daniell, Henry

    2016-01-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood–brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery. PMID:27378236

  12. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  13. Control of cell proliferation by microRNAs in plants.

    PubMed

    Rodriguez, Ramiro E; Schommer, Carla; Palatnik, Javier F

    2016-12-01

    Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.

  14. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  15. Nanosecond electric pulses trigger actin responses in plant cells

    SciTech Connect

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  16. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    PubMed

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  17. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  18. Shuttle orbter fuel cell power plant

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is one of the three fuel cells that make up the generating system which provides electrical power to the space shuttle orbiter. Each unit measures 14 inches (35 centimeters) high, 15 inches (38 centimeters) wide, 40 inches (101 centimeters) long and weighs 200 pounds.

  19. Puzzling Out the Cell's Power Plant.

    ERIC Educational Resources Information Center

    Miller, Julie Ann

    1979-01-01

    The biological research, of Gottfried Schatz at the University of Basel and Gunter Blobel at Rockefeller University, which explains a mechanism by which mitochondrial proteins are transported across membranes is described. Results indicate that the construction and heredity of mitochondria have surprising differences from other cell processes. (BT)

  20. Calcium signaling in plant cells in altered gravity.

    PubMed

    Kordyum, E L

    2003-01-01

    Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension

  1. Calcium signaling in plant cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  2. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  3. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    PubMed

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  4. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  5. Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths

    PubMed Central

    Arifler, Dizem; MacAulay, Calum; Follen, Michele; Guillaud, Martial

    2014-01-01

    We use an extensive set of quantitative histopathology data to construct realistic three-dimensional models of normal and dysplastic cervical cell nuclei at different epithelial depths. We then employ the finite-difference time-domain method to numerically simulate the light scattering response of these representative models as a function of the polar and azimuthal scattering angles. The results indicate that intensity and shape metrics computed from two-dimensional scattering patterns can be used to distinguish between different diagnostic categories. Our numerical study also suggests that different epithelial layers and angular ranges need to be considered separately to fully exploit the diagnostic potential of two-dimensional light scattering measurements. PMID:24575343

  6. Unipolar brush cells in the human cochlear nuclei identified by their expression of a metabotropic glutamate receptor (mGluR2/3).

    PubMed

    Spatz, W B

    2001-12-28

    Unipolar brush cells (UBCs) reside in the mammalian vestibulo-cerebellum and the ventral (VCN) and, particularly, dorsal cochlear nuclei (DCN). Human cerebellar UBCs are numerous too, but auditory UBCs have escaped detection. The human DCN, considered a degenerated structure, lost lamination and possibly neurons common in lower mammals, like UBCs. We searched for human auditory UBCs probing their immunoreactivity against the calcium-binding protein calretinin (CR-IR), and a metabotropic glutamate receptor (mGluR2/3-IR). We found: UBCs are constituents of the human DCN and VCN, though in small numbers. These auditory UBCs are not CR-IR, in contrast to human cerebellar UBCs and cerebellar and auditory UBCs in non-primate mammals, but display mGluR2/3-IR. The human DCN, thus, appears more complete than previously thought. This may be of interest regarding auditory brainstem electrode implantations in deaf patients.

  7. Cell proliferation and plant development under novel altered gravity environments.

    PubMed

    Herranz, R; Medina, F J

    2014-01-01

    Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in

  8. Plastids: dynamic components of plant cell development

    NASA Technical Reports Server (NTRS)

    Guikema, J. A.; Gallegos, G. L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The gravitropic bending of maize roots, as a response to reorientation of the root within a gravitational field, was examined for sensitivity to exogenous applications of the cytoskeletal inhibitor, cytochalasin D. Agar blocks were impregnated with this inhibitor, and were applied either to the root cap or to the zone of root cell elongation. Root growth was normal with either treatment, if the roots were not repositioned with respect to the gravitational vector. When untreated roots were placed in a horizontal position with respect to gravity, a 40 degree bending response was observed within one hour. This bending also occurred when cytochalasin D was applied at high concentrations to the zone of root cell elongation. However, when cytochalasin D above 40 micrograms/ml was applied to the root cap, roots lost the ability of directional reorientation within the gravitational field, causing a random bending.

  9. Dynamic rheological properties of plant cell-wall particle dispersions.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Lundin, Leif; Hemar, Yacine

    2010-12-01

    The rheological behaviour of plant cell-wall particle dispersions was investigated using dynamic oscillatory measurements. Two starting plant materials, broccoli stem and carrot were used and two types of particles were obtained by mechanically shearing blanched (80°C, 10 min) or cooked (100°C, 15 min) plant tissues. Blanching resulted in cell-wall particles made up of a collection of clusters of cells with an average particles size of ∼200 μm, while cooking generated nearly all single-cell particles with an average particle size of ∼80 μm. The rheological measurements showed that in the range of weight concentrations considered (∼0.5% to ∼8%) the dispersions behaved as elastic materials with the elastic modulus G' higher than G″ within the frequency range (0.01-10 Hz). This study shows that the behaviour of the complex modulus G* as a function of the effective volume fraction ϕ can be modelled using different theoretical equations. To do so, it is assumed that below a critical volume fraction ϕc a network of plant cell-wall particles was formed and G* as a function of ϕ obeys a power-law relationship. However above ϕc, where the particles were highly packed, G* could be modelled using theoretical equations developed for concentrated emulsions and elastic particle dispersions.

  10. Specific organization of Golgi apparatus in plant cells.

    PubMed

    Vildanova, M S; Wang, W; Smirnova, E A

    2014-09-01

    Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist "by default". We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.

  11. Gene expression in Fusarium graminearum grown on plant cell wall.

    PubMed

    Carapito, Raphaël; Hatsch, Didier; Vorwerk, Sonja; Petkovski, Elizabet; Jeltsch, Jean-Marc; Phalip, Vincent

    2008-05-01

    Fusarium graminearum is a phytopathogenic filamentous fungus attacking a wide range of plants including Humulus lupulus (hop). Transcriptional analysis of F. graminearum grown on minimal media containing hop cell wall or glucose as the sole carbon source was performed by applying a highly stringent method combining microarrays and a subtracted cDNA library. In addition to genes coding for various cell wall degrading enzymes (CWDE), several metabolic pathways were induced in response to the plant cell wall substrate. Many genes participating in these pathways are probably involved in cellular transport. But the most interesting was that all the genes composing the 4-aminobutyrate-shunt (GABA-shunt) were also up-regulated in the presence of plant cell wall material and were present in the cDNA library. This study provides a description of a part of the fungal gene expression profile when it is in contact with raw biological materials, and helps in understanding the plant cell wall degradation and the infection process.

  12. The role of the cell wall in plant immunity

    PubMed Central

    Malinovsky, Frederikke G.; Fangel, Jonatan U.; Willats, William G. T.

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant’s immune receptors. While some receptors sense conserved microbial features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle processes underlying cell wall modification poses special challenges for plant glycobiology. In this review we describe the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack. In so doing, we also highlight some of the challenges inherent in studying these interactions, and briefly describe the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology. PMID:24834069

  13. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  14. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  15. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  16. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    PubMed

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  17. A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells.

    PubMed

    Morales, Carlos R; Lefrancois, Stephane; Chennathukuzhi, Vargheese; El-Alfy, Mohamed; Wu, XinQi; Yang, Juxiang; Gerton, George L; Hecht, Norman B

    2002-06-15

    The testis brain RNA-binding protein (TB-RBP) functions as an RNA-binding protein in brain and testis, binding to conserved sequence elements present in specific mRNAs, such as protamine 1 and 2. We show here by RNA gel shift assays, immunoprecipitation, and by a novel in situ hybridization immunohistochemical technique that TB-RBP binds to AKAP4 mRNA in male mouse germ cells. AKAP4 is a component of the fibrous sheath and functions as a scaffolding protein in the sperm flagellum. AKAP4 is encoded by an X-linked gene, is expressed solely in postmeiotic (haploid) male germ cells, and is an essential protein in all spermatozoa, requiring its transport between spermatids as a protein or mRNA. AKAP4 mRNA forms a complex with TB-RBP and the Ter ATPase in nuclei and remains associated with these proteins as it exits nuclei into the cytoplasm and as it passes through intercellular bridges between spermatids. A similar mRNA-TB-RBP-Ter ATPase association is seen for protamine 2 mRNA, which is stored in the cytoplasm of postmeiotic germ cells about 7 days before translation. In contrast, no association is seen with PGK-2 mRNA which is initially transcribed early in meiosis with increased transcription in postmeiotic male germ cells. Although PGK-2 mRNA is subject to translational control, it lacks TB-RBP-binding sequences in its mRNA. The AKAP4 or protamine 2 mRNA-protein complexes dissociate in late-stage male germ cells when the mRNAs are translated. We propose that TB-RBP and the Ter ATPase are part of a complex that accompanies specific mRNAs in haploid mouse male germ cells in intracellular and intercellular movement. The temporal relationship of TB-RBP binding and mRNA inactivation in conjunction with the subsequent dissociation of the mRNA-protein complex at the time of mRNA translation suggests a role in translational suppression and/or mRNA stabilization.

  18. Gravity sensing mechanisms in plant cells.

    PubMed

    Sievers, A

    1991-07-01

    Sensing of gravity is essential for the survival of plant seedlings. Therefore it is understandable that gravistimulation of only 0.5 sec-duration causes a graviresponse. The earliest graviresponses could be measured within seconds as alterations in membrane potentials of the statocytes in the root cap. Root statocytes are polarly organized. From a 6-day microgravity (10(-3) - 10(-4) g) experiment in the Spacelab D1 Mission it has been concluded that the observed polar differentiation is a result of a genetically prepatterned developmental program. Statoliths, the sedimentable organelles of statocytes, are surrounded by actin filaments which partly keep them in position. Under 6 min of microgravity during parabolic flights of rockets it could be demonstrated that the statoliths moved in the opposite direction to the initial gravity vector. It is concluded that shearing forces are exerted by microfilaments. It is supposed that the change of the position of statoliths is transmitted to gravisensitive structures of the statocytes (ER, plasma membrane) via microfilaments. As graviperception is influenced by calcium ions, it is suggested that these interactions regulate the activity of ion channels and/or pumps in the membranes thus initiating the graviresponse chain. In the case of cytoplasmic streaming in Chara rhizoids, the endogenous difference between the opposing streaming directions is diminished under microgravity during the flights of rockets. Possibly, shear stresses are affected by gravity, thus inducing gravity-related differences in the streaming velocities via actin filaments.

  19. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  20. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  1. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  2. Tubulin tyrosine nitration regulates microtubule organization in plant cells

    PubMed Central

    Blume, Yaroslav B.; Krasylenko, Yuliya A.; Demchuk, Oleh M.; Yemets, Alla I.

    2013-01-01

    During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics. PMID:24421781

  3. Neat methanol fuel cell power plant

    NASA Astrophysics Data System (ADS)

    Abens, S.; Farooque, M.

    1985-12-01

    Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.

  4. Differentiation of plant graviperceiving and graviresponding cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Martyn, G. G.; Shevchenko, G. V.; Kozeko, L. Ye.; Artemenko, O. A.

    2005-08-01

    A main goal of our work was to compare the anatomy and ultrastructure of a root cap, including statocytes (graviperceiving cells), and a root proper meristem and elongation zone (graviresponding cells) of Beta vulgaris seedlings grown in the control and under clinorotation as a root apex is a very convenient model for the study of plant cell gravisensitivity. The comparison of the ultrastructure and topography of cell organelles clearly showed the differences in growth by elongation and differentiation in time and space between statocytes and cortex cells of the distal elongation zone (DEZ), in dependence on their main functions. A root graviperceptive apparatus develops under clinorotation but it does not function. DEZ cells reveal the highest metabolism activity in both variants that can underlie their specific physiological properties and provide cell rapid growth in the central elongation zone.

  5. Plant cells use auxin efflux to explore geometry.

    PubMed

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-07-28

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.

  6. Plant Cells Use Auxin Efflux to Explore Geometry

    PubMed Central

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-01-01

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions. PMID:25068254

  7. Plant cell walls: Protecting the barrier from degradation by microbial enzymes.

    PubMed

    Lagaert, Stijn; Beliën, Tim; Volckaert, Guido

    2009-12-01

    Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.

  8. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  9. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  10. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    PubMed

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  11. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae.

    PubMed

    Szabala, Bartosz Mieczyslaw; Fudali, Sylwia; Rorat, Tadeusz

    2014-04-01

    The role of acidic SK(n) dehydrins in stress tolerance of important crop and model species of the Solanaceae remains unknown. We have previously shown that the acidic SK₃ dehydrin DHN24 from Solanum sogarandinum is constitutively expressed and its expression is associated with cold acclimation. Here we found that DHN24 is specifically localized to phloem cells of vegetative organs of non-acclimated plants. More precise localization of DHN24 revealed that it is primarily found in sieve elements (SEs) and companion cells (CCs) of roots and stems. In cold-acclimated plants, DHN24 is mainly present in all cell types of the phloem. Dhn24 transcripts are also predominantly localized to phloem cells of cold-acclimated stems. Immunoelectron microscopy localized DHN24 to the cytosol and close to organelle membranes of phloem cells, the lumen with phloem protein filaments, parietal cytoplasm of SEs and the nucleoplasm of some nuclei. Cell fractionation experiments revealed that DHN24 was detected in the cytosolic, nuclear and microsomal fractions. We also determined whether homologous members of the acidic subclass dehydrins from Capsicum annuum and Lycopersicon chilense share the characteristics of DHN24. We showed that they are also constitutively expressed, but their protein level is upregulated preferentially by drought stress. Immunofluorescent localization revealed that they are detected in SEs and CCs of unstressed plants and throughout the phloem in drought-stressed plants. These results suggest that one of the primary roles of DHN24 and its homologs may be the protection of the phloem region from adverse effects of abiotic stresses.

  12. The Structure of Plant Cell Walls

    PubMed Central

    Talmadge, Kenneth W.; Keegstra, Kenneth; Bauer, Wolfgang D.; Albersheim, Peter

    1973-01-01

    This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan. The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall. The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan. The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein

  13. Teaching about Water Relations in Plant Cells: An Uneasy Struggle

    ERIC Educational Resources Information Center

    Malinska, Lilianna; Rybska, Eliza; Sobieszczuk-Nowicka, Ewa; Adamiec, Malgorzata

    2016-01-01

    University students often struggle to understand the role of water in plant cells. In particular, osmosis and plasmolysis appear to be challenging topics. This study attempted to identify student difficulties (including misconceptions) concerning osmosis and plasmolysis and examined to what extent the difficulties could be revised during a plant…

  14. JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei.

    PubMed

    Shishido-Hara, Yukiko; Yazawa, Takuya; Nagane, Motoo; Higuchi, Kayoko; Abe-Suzuki, Shiho; Kurata, Morito; Kitagawa, Masanobu; Kamma, Hiroshi; Uchihara, Toshiki

    2014-05-01

    In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.

  15. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants

    PubMed Central

    Leelawat, Surang; Leelawat, Kawin

    2017-01-01

    Cholangiocarcinoma (CCA) is one of the most common causes of cancer-associated mortality in Thailand. Certain phytochemicals have been demonstrated to modulate apoptotic signaling pathways, which may be targeted for the prevention and treatment of cancer. Therefore, the aim of the present study was to investigate the effect of specific medicinal plants on the inhibition of CCA cell proliferation, and to identify the molecular mechanisms underlying this. A WST-1 cell proliferation assay was performed using an RMCCA1 cell line, and apoptotic signaling pathways were also investigated using a PathScan Stress and Apoptosis Signaling Antibody Array Kit. The cell proliferation assay indicated that extracts from the Phyllanthus emblica fruit pulp (PEf), Phyllanthus emblica seed (PEs), Terminalia chebula fruit pulp (TCf), Terminalia chebula seed (TCs), Areca catechu seed (ACs), Curcuma longa (CL) and Moringa oleifera seed (MOs) exerted anti-proliferative activity in RMCCA1 cells. In addition, the PathScan assay revealed that certain pro-apoptotic molecules, including caspase-3, poly (ADP-ribose) polymerase, checkpoint kinase 2 and tumor protein 53, exhibited increased activity in RMCCA1 cells treated with the aforementioned selected plant extracts, with the exception of PEf. The mitogen-activated protein kinase (MAPK) pathways (including ERK1/2 and p38 MAPK) expression level was significantly increased in RMCCA1 cells pre-treated with extracts of PEs, TCf, CL and MOs. The activation of protein kinase B (Akt) was significantly demonstrated in RMCCA1 cells pre-treated with extracts of TCf, ACs and MOs. In summary, the present study demonstrated that extracts of PEs, TCf, TCs, ACs, CL and MOs exhibited anti-proliferative effects in CCA cells by inducing pro-apoptotic signals and modulating signal transduction molecules. Further studies in vivo are required to demonstrate the potential applications of specific plant extracts for the treatment of human cancer. PMID:28356985

  16. PP2A-twins is antagonized by greatwall and collaborates with polo for cell cycle progression and centrosome attachment to nuclei in drosophila embryos.

    PubMed

    Wang, Peng; Pinson, Xavier; Archambault, Vincent

    2011-08-01

    Cell division and development are regulated by networks of kinases and phosphatases. In early Drosophila embryogenesis, 13 rapid nuclear divisions take place in a syncytium, requiring fine coordination between cell cycle regulators. The Polo kinase is a conserved, crucial regulator of M-phase. We have recently reported an antagonism between Polo and Greatwall (Gwl), another mitotic kinase, in Drosophila embryos. However, the nature of the pathways linking them remained elusive. We have conducted a comprehensive screen for additional genes functioning with polo and gwl. We uncovered a strong interdependence between Polo and Protein Phosphatase 2A (PP2A) with its B-type subunit Twins (Tws). Reducing the maternal contribution of Polo and PP2A-Tws together is embryonic lethal. We found that Polo and PP2A-Tws collaborate to ensure centrosome attachment to nuclei. While a reduction in Polo activity leads to centrosome detachments observable mostly around prophase, a reduction in PP2A-Tws activity leads to centrosome detachments at mitotic exit, and a reduction in both Polo and PP2A-Tws enhances the frequency of detachments at all stages. Moreover, we show that Gwl antagonizes PP2A-Tws function in both meiosis and mitosis. Our study highlights how proper coordination of mitotic entry and exit is required during embryonic cell cycles and defines important roles for Polo and the Gwl-PP2A-Tws pathway in this process.

  17. Introducing the Cell Concept with Both Animal and Plant Cells: A Historical and Didactic Approach

    ERIC Educational Resources Information Center

    Clement, Pierre

    2007-01-01

    In France, as well as in several other countries, the cell concept is introduced at school by two juxtaposed drawings, a plant cell and an animal cell. After indicating the didactic obstacles associated with this presentation, this paper focuses on the reasons underlying the persistence of these two prototypes, through three complementary…

  18. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  19. Micrasterias as a Model System in Plant Cell Biology

    PubMed Central

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  20. Regulation of cell division in higher plants. Final technical report

    SciTech Connect

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  1. The role of vacuole in plant cell death.

    PubMed

    Hara-Nishimura, I; Hatsugai, N

    2011-08-01

    Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.

  2. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis.

    PubMed

    Iwabuchi, Kosei; Takagi, Shingo

    2010-08-01

    The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.

  3. Measurement of pectin methylation in plant cell walls

    SciTech Connect

    McFeeters, R.F.; Armstrong, S.A.

    1984-01-01

    A procedure was developed to measure the degree of pectin methylation in small samples of isolated cell walls from nonlignified plant tissues or pectin solutions. Galacturonic acid was determined colorimetrically with the 3,5-dimethylphenol reagent. Methylation was measured by base hydrolysis of galacturonic acid methyl esters, followed by gas chromatographic determination of released methanol. Estimates of the precision of analysis of pectin and cell wall samples were made. The coefficient of variation for estimates of the pectin esterification in cell walls isolated from 10-g samples of cucumber tissue ranged from 7.7 to 13.2%.

  4. (Rapid regulatory control of plant cell expansion and wall relaxation)

    SciTech Connect

    Cosgrove, D.J.

    1990-01-01

    This section presents a brief overview of accomplishments related to this project in the past 3-year period. Our work has focused on the basic mechanisms of plant cell expansion, particularly on the interrelations of water and solute transport with cell wall relaxation and expansion. To study these processes, we have developed new methods and used these methods to analyze the dynamic behavior of growth processes and to examine how various agents (GA, drought, light, genetic lesions) alter the growth machinery of the cell.

  5. Formins: Emerging Players in the Dynamic Plant Cell Cortex

    PubMed Central

    Cvrčková, Fatima

    2012-01-01

    Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants. PMID:24278734

  6. Using Apple Peel Sections To Study Plant Cells and Water Relations.

    ERIC Educational Resources Information Center

    Silvius, John E.; Eckart, Christopher P.

    1997-01-01

    Suggests the cells of an apple peel as a plant species that can further enhance the plant cell laboratory. Describes the structure of apple peel cells and the benefits of including them in studies of plant cells. Suggests questions to stimulate further investigations for open-ended laboratories or independent studies. (PVD)

  7. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  8. Lignin variability in plant cell walls: contribution of new models.

    PubMed

    Neutelings, Godfrey

    2011-10-01

    Lignin is a major component of certain plant cell walls. The enzymes and corresponding genes associated with the metabolic pathway leading to the production of this complex phenolic polymer have been studied for many years now and are relatively well characterized. The use of genetically modified model plants (Arabidopsis, tobacco, poplar.) and mutants has contributed greatly to our current understanding of this process. The recent utilisation and/or development of a number of dedicated genomic and transcriptomic tools for other species opens new perspectives for advancing our knowledge of the biological role of this important polymer in less typical situations and/or species. In this context, studies on the formation of hypolignified G-type fibres in angiosperm tension wood, and the natural hypolignification of secondary cell walls in plant bast fibre species such as hemp (Cannabis sativa), flax (Linum usitatissimum) or ramie (Boehmeria nivea) are starting to provide novel information about how plants control secondary cell wall formation. Finally, other biologically interesting species for which few molecular resources currently exist could also represent interesting future models.

  9. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    PubMed

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  10. Metabolite Diffusion into Bundle Sheath Cells from C4 Plants

    PubMed Central

    Weiner, Hendrik; Burnell, James N.; Woodrow, Ian E.; Heldt, Hans W.; Hatch, Marshall D.

    1988-01-01

    The present studies provide the first measurements of the resistance to diffusive flux of metabolites between mesophyll and bundle sheath cells of C4 plants. Species examined were Panicum miliaceum, Urochloa panicoides, Atriplex spongiosa, and Zea mays. Diffusive flux of metabolites into isolated bundle sheath cells was monitored by following their metabolic transformation. Evidence was obtained that the observed rapid fluxes occurred via functional plasmodesmata. Diffusion constants were determined from the rate of transformation of limiting concentrations of metabolites via cytosolic enzymes with high potential velocities and favorable equilibrium constants. Values on a leaf chlorophyll basis ranged between 1 and 5 micromoles per minute per milligram of chlorophyll per millimolar gradient depending on the molecular weight of the metabolite and the source of bundle sheath cells. Diffusion of metabolites into these cells was unaffected by a wide variety of compounds including respiratory inhibitors, monovalent and divalent cations, and plant hormones, but it was interrupted by treatments inducing cell plasmolysis. The molecular weight exclusion limit for permeation of compounds into bundle sheath cells was in the range of 850 to 900. These cells provide an ideal system for the quantitative study of plasmodesmatal function. PMID:16666390

  11. Tracing Cell Wall Biogenesis in Intact Cells and Plants 1

    PubMed Central

    Gibeaut, David M.; Carpita, Nicholas C.

    1991-01-01

    Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development. PMID:16668434

  12. Metabolism of fluoranthene in different plant cell cultures and intact plants

    SciTech Connect

    Kolb, M.; Harms, H.

    2000-05-01

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formed in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.

  13. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs.

  14. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana.

    PubMed

    Sakamoto, Yuki; Takagi, Shingo

    2013-04-01

    The morphology of plant nuclei varies among different species, organs, tissues and cell types. However, mechanisms and factors involved in the maintenance of nuclear morphology are poorly understood. Because nuclei retain their shapes even after cytoskeletal inhibitor treatments both in vivo and in vitro, we assumed involvement of the nuclear lamina, which plays a critical role in the regulation of nuclear morphology in animals. The crude nuclear lamina fraction isolated from Arabidopsis thaliana leaves was analyzed by mass spectrometry, and putative nuclear lamina proteins were identified. Among their T-DNA insertion lines, nuclei of little nuclei1 (linc1) and linc4 disruptants were more spherical than those of wild-type plants. Because A. thaliana harbors four LINC genes, we prepared all single and linc1/4 and linc2/3 double disruptants. In leaf epidermal cells, the circularity index of the nucleus in all linc disruptants except linc3 was significantly higher than that in the wild-type plants. The extent of the effects of LINC1 and/or LINC4 disruption was significantly higher than that of the effects of LINC2 disruption. The nuclear area was significantly smaller in the linc1, linc4 and linc1/4 disruptants than in the wild-type plants. Regardless of the defects in nuclear morphology, all linc disruptants exhibited a normal ploidy level. In interphase cells, LINC1 and LINC4 were mainly localized to the nuclear periphery, whereas LINC2 was in the nucleoplasm and LINC3 was detected in both regions. From prometaphase to anaphase in mitotic root tip cells, LINC1 was co-localized with chromosomes, whereas other LINCs were dispersed in the cytoplasm.

  15. Somatic embryogenesis - Stress-induced remodeling of plant cell fate.

    PubMed

    Fehér, Attila

    2015-04-01

    Plants as sessile organisms have remarkable developmental plasticity ensuring heir continuous adaptation to the environment. An extreme example is somatic embryogenesis, the initiation of autonomous embryo development in somatic cells in response to exogenous and/or endogenous signals. In this review I briefly overview the various pathways that can lead to embryo development in plants in addition to the fertilization of the egg cell and highlight the importance of the interaction of stress- and hormone-regulated pathways during the induction of somatic embryogenesis. Somatic embryogenesis can be initiated in planta or in vitro, directly or indirectly, and the requirement for dedifferentiation as well as the way to achieve developmental totipotency in the various systems is discussed in light of our present knowledge. The initiation of all forms of the stress/hormone-induced in vitro as well as the genetically provoked in planta somatic embryogenesis requires extensive and coordinated genetic reprogramming that has to take place at the chromatin level, as the embryogenic program is under strong epigenetic repression in vegetative plant cells. Our present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program. The role of stress-related chromatin reorganization in the genetic instability of in vitro cultures is also discussed. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.

  16. Can plant oncogenes inhibit programmed cell death? The rolB oncogene reduces apoptosis-like symptoms in transformed plant cells.

    PubMed

    Gorpenchenko, Tatiana Y; Aminin, Dmitry L; Vereshchagina, Yuliya V; Shkryl, Yuri N; Veremeichik, Galina N; Tchernoded, Galina K; Bulgakov, Victor P

    2012-09-01

    The rolB oncogene was previously identified as an important player in ROS metabolism in transformed plant cells. Numerous reports indicate a crucial role for animal oncogenes in apoptotic cell death. Whether plant oncogenes such as rolB can induce programmed cell death (PCD) in transformed plant cells is of particular importance. In this investigation, we used a single-cell assay based on confocal microscopy and fluorescent dyes capable of discriminating between apoptotic and necrotic cells. Our results indicate that the expression of rolB in plant cells was sufficient to decrease the proportion of apoptotic cells in steady-state conditions and diminish the rate of apoptotic cells during induced PCD. These data suggest that plant oncogenes, like animal oncogenes, may be involved in the processes mediating PCD.

  17. How to let go: pectin and plant cell adhesion.

    PubMed

    Daher, Firas Bou; Braybrook, Siobhan A

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.

  18. Space stress and genome shock in developing plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1996-01-01

    In the present paper I review symptoms of stress at the level of the nucleus in cells of plants grown in space under nonoptimized conditions. It remains to be disclosed to what extent gravity "unloading" in the space environment directly contributes to the low mitotic index and the chromosomal anomalies and damage that is frequently, but not invariably, demonstrable in space-grown plants. Evaluation of the available facts indicates that indirect effects play a major role and that there is a significant biological component to the susceptibility to stress damage equation as well. Much remains to be learned on how to provide strictly controlled, optimal environments for plant growth in space. Only after optimized controls become possible will one be able to attribute any observed space effects to lowered gravity or to other significant but more indirect effects of the space environment.

  19. Isomaltulose Is Actively Metabolized in Plant Cells1

    PubMed Central

    Wu, Luguang; Birch, Robert G.

    2011-01-01

    Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with Vmax for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different Vmax and Vmax/Km ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields. PMID:22010106

  20. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  1. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  2. Cell physiology of plants growing in cold environments.

    PubMed

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  3. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  4. The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei.

    PubMed

    Nalaskowski, Marcus M; Metzner, Anja; Brehm, Maria A; Labiadh, Sena; Brauer, Helena; Grabinski, Nicole; Mayr, Georg W; Jücker, Manfred

    2012-03-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in hematopoietic cells. SHIP1 mediates its regulatory function after relocalization from the cytoplasm to the plasma membrane where it converts its substrate PI(3,4,5)P(3) to PI(3,4)P(2) thereby terminating PI3-kinase mediated signaling. In addition, SHIP1 converts Ins(1,3,4,5)P(4) to Ins(1,3,4)P(3) thereby regulating inositol phosphate metabolism. Here we report, that SHIP1 can be detected in nuclear puncta of Jurkat cells by confocal microscopy after expression of SHIP1 from a tetracycline inducible vector. SHIP1-containing nuclear puncta partially co-localize with FLASH, a multifunctional nuclear protein that has been linked to apoptotic signaling and transcriptional control. Nuclear localization was confirmed for endogenously expressed SHIP1 in the myeloid leukemia cell line TF1. In addition, enzymatically active SHIP1 was found in nuclear fractions of Jurkat cells with a similar specific activity as cytoplasmic SHIP1. Further analysis revealed that SHIP1 is a nucleocytoplasmic shuttling protein which is actively imported into and exported out of the nucleus. Nuclear import is mediated by two canonical nuclear localization signals (NLS) i.e. K(327)KSK and K(547)KLR. Mutational inactivation of each NLS motif inhibited nuclear import and reduced the proliferation of cells indicating a functional role of nuclear SHIP1 for cell growth. Our data indicate that SHIP1 is partly localized in the nucleus and suggest that SHIP1 plays a role for nuclear phosphoinositide and/or nuclear inositol phosphate signaling.

  5. The Quantitative Criteria Based on the Fractal Dimensions, Entropy, and Lacunarity for the Spatial Distribution of Cancer Cell Nuclei Enable Identification of Low or High Aggressive Prostate Carcinomas

    PubMed Central

    Waliszewski, Przemyslaw

    2016-01-01

    Background: Tumor grading, PSA concentration, and stage determine a risk of prostate cancer patients with accuracy of about 70%. An approach based on the fractal geometrical model was proposed to eliminate subjectivity from the evaluation of tumor aggressiveness and to improve the prediction. This study was undertaken to validate classes of equivalence for the spatial distribution of cancer cell nuclei in a larger, independent set of prostate carcinomas. Methods: The global fractal capacity D0, information D1 and correlation D2 dimension, the local fractal dimension (LFD) and the local connected fractal dimension (LCFD), Shannon entropy H and lacunarity λ were measured using computer algorithms in digitalized images of both the reference set (n = 60) and the test set (n = 208) of prostate carcinomas. Results: Prostate carcinomas were re-stratified into seven classes of equivalence. The cut-off D0-values 1.5450, 1.5820, 1.6270, 1.6490, 1.6980, 1.7640 defined the classes from C1 to C7, respectively. The other measures but the D1 failed to define the same classes of equivalence. The pairs (D0, LFD), (D0, H), (D0, λ), (D1, LFD), (D1, H), (D1, λ) characterized the spatial distribution of cancer cell nuclei in each class. The co-application of those measures enabled the subordination of prostate carcinomas to one out of three clusters associated with different tumor aggressiveness. For D0 < 1.5820, LFD < 1.3, LCFD > 1.5, H < 0.7, and λ > 0.8, the class C1 or C2 contains low complexity low aggressive carcinomas exclusively. For D0 > 1.6980, LFD > 1.7644, LCFD > 1.7051, H > 0.9, and λ < 0.7, the class C6 or C7 contains high complexity high aggressive carcinomas. Conclusions: The cut-off D0-values defining the classes of equivalence were validated in this study. The cluster analysis suggested that the number of the subjective Gleason grades and the number of the objective classes of equivalence could be decreased from seven to three without a loss of clinically

  6. Nonhomologous end joining-mediated gene replacement in plant cells.

    PubMed

    Weinthal, Dan Michael; Taylor, Roslyn Ann; Tzfira, Tzvi

    2013-05-01

    Stimulation of the homologous recombination DNA-repair pathway via the induction of genomic double-strand breaks (DSBs) by zinc finger nucleases (ZFNs) has been deployed for gene replacement in plant cells. Nonhomologous end joining (NHEJ)-mediated repair of DSBs, on the other hand, has been utilized for the induction of site-specific mutagenesis in plants. Since NHEJ is the dominant DSB repair pathway and can also lead to the capture of foreign DNA molecules, we suggest that it can also be deployed for gene replacement. An acceptor DNA molecule in which a green fluorescent protein (GFP) coding sequence (gfp) was flanked by ZFN recognition sequences was used to produce transgenic target plants. A donor DNA molecule in which a promoterless hygromycin B phosphotransferase-encoding gene (hpt) was flanked by ZFN recognition sequences was constructed. The donor DNA molecule and ZFN expression cassette were delivered into target plants. ZFN-mediated site-specific mutagenesis and complete removal of the GFP coding sequence resulted in the recovery of hygromycin-resistant plants that no longer expressed GFP and in which the hpt gene was unlinked to the acceptor DNA. More importantly, ZFN-mediated digestion of both donor and acceptor DNA molecules resulted in NHEJ-mediated replacement of the gfp with hpt and recovery of hygromycin-resistant plants that no longer expressed GFP and in which the hpt gene was physically linked to the acceptor DNA. Sequence and phenotypical analyses, and transmission of the replacement events to the next generation, confirmed the stability of the NHEJ-induced gene exchange, suggesting its use as a novel method for transgene replacement and gene stacking in plants.

  7. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  8. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants.

    PubMed Central

    Gordon-Kamm, WJ; Spencer, TM; Mangano, ML; Adams, TR; Daines, RJ; Start, WG; O'Brien, JV; Chambers, SA; Adams, WR; Willetts, NG; Rice, TB; Mackey, CJ; Krueger, RW; Kausch, AP; Lemaux, PG

    1990-01-01

    A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize. PMID:12354967

  9. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  10. Progress in kalata peptide production via plant cell bioprocessing.

    PubMed

    Dörnenburg, Heike

    2009-05-01

    Cyclotides are disulfide-rich mini-proteins with the unique structural features of a circular backbone and knotted arrangement of three conserved disulfide bonds. They typically comprise 28-37 amino acids and are produced from linear precursors, and translational modification via oxidative folding, proteolytic processing and N-C cyclization. Because these plant-derived peptides are resistant to degradation and do exhibit a diverse range of biological activities, they have become important agronomic and industrial objectives. Due to its tolerance to sequence variation, the cyclotide backbone is also potentially useful as a molecular scaffold for protein-engineering applications. Several production options are available for bioactive plant metabolites including natural harvesting, total chemical synthesis, and expression of plant pathways in microbial systems. For the cyclotides with low yields in nature, chemical complexity and lack of knowledge of the complete biosynthetic pathway, however, many of these options are precluded. Plant cell-culture technology shows promise towards the goal of producing therapeutically active cyclotides in quality and quantities required for drug development as they are amenable to process optimization, scale-up, and metabolic engineering. It is conceivable that plant-based production systems may ultimately prove to be the preferred route for the production of native or designed cyclotides, and will contribute towards the development of target-specific drugs.

  11. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis.

    PubMed

    Burgert, Ingo; Keplinger, Tobias

    2013-11-01

    In the last few decades, micro- and nanomechanical methods have become increasingly important analytical techniques to gain deeper insight into the nanostructure and mechanical design of plant cell walls. The objective of this article is to review the most common micro- and nanomechanical approaches that are utilized to study primary and secondary cell walls from a biomechanics perspective. In light of their quite disparate functions, the common and opposing structural features of primary and secondary cell walls are reviewed briefly. A significant part of the article is devoted to an overview of the methodological aspects of the mechanical characterization techniques with a particular focus on new developments and advancements in the field of nanomechanics. This is followed and complemented by a review of numerous studies on the mechanical role of cellulose fibrils and the various matrix components as well as the polymer interactions in the context of primary and secondary cell-wall function.

  12. The Product of the Herpes Simplex Virus Type 2 UL16 Gene is Critical for the Egress of Capsids from the Nuclei of Infected Cells.

    PubMed

    Gao, Jie; Hay, Thomas J M; Banfield, Bruce W

    2017-03-08

    The herpes simplex virus (HSV) UL16 gene is conserved throughout the Herpesviridae and encodes a poorly understood tegument protein. The HSV-1 UL16 protein forms complexes with several viral proteins including UL11, gE, VP22 and UL21. We previously demonstrated that HSV-2 UL21 was essential for virus propagation due to the failure of DNA-containing capsids to exit the nucleus. We hypothesized that if a UL16/UL21 complex were required for nuclear egress then HSV-2 lacking UL16 would have a similar phenotype as HSV-2 lacking UL21. Deletion of HSV-2 UL16 (Δ16) resulted in a 950-fold reduction in virus propagation in mouse L cell fibroblasts and a 200-fold reduction in virus propagation in Vero cells that was fully reversed upon repair of Δ16 (Δ16R), and partially reversed by infecting UL16 expressing cells with Δ16. The kinetics of viral gene expression in cells infected with Δ16 was indistinguishable from cells infected with Δ16R or parental virus. Additionally, similar numbers of capsids were isolated from the nuclei of cells infected with Δ16 and parental virus. However, transmission electron microscopy, fluorescence in situ hybridization experiments and fluorescent capsid localization assays all indicated a reduction in the ability of Δ16 C-capsids to exit the nucleus of infected cells. Taken together, these data indicate that, like UL21, UL16 is critical for HSV-2 propagation and suggest that UL16 and UL21 proteins may function together to facilitate the nuclear egress of capsids.IMPORTANCE HSV-2 is a highly prevalent sexually transmitted human pathogen that is the main cause of genital herpes infections and is fueling the epidemic transmission of HIV in sub-Saharan Africa. Despite important differences in the pathological features of HSV-1 and HSV-2 infections, HSV-2 is understudied compared to HSV-1. Here we demonstrate that deletion of the HSV-2 UL16 gene results in a substantial inhibition of virus replication due to a reduction in the ability of DNA

  13. Ultrafast spectroscopic study on caffeine mediated dissociation of mutagenic ethidium from synthetic DNA and various cell nuclei.

    PubMed

    Banerjee, Soma; Bhowmik, Debajit; Verma, Pramod Kumar; Mitra, Rajib Kumar; Sidhhanta, Anirban; Basu, Gautam; Pal, Samir Kumar

    2011-12-15

    We report a systematic investigation of caffeine-induced dissociation of ethidium (Et) cation, a potential mutagen. Time-resolved fluorescence studies are consistent with a mechanism where caffeine-Et complex formation in bulk solution drives the dissociation of DNA-bound Et. Temperature-dependent picosecond-resolved studies show the caffeine-Et complex to be stable over a wide range of temperature, within and beyond the normal physiological limit. A combination of NMR spectroscopy and dynamic light scattering experiments allowed us to propose a molecular model of the caffeine-Et complex. Caffeine-induced extraction of Et from whole cells was also performed on squamous epithelial cells collected from the inner lining of the human mouth, A549 (lung carcinoma), A375 (human skin), RAW (macrophage), and Vero (African green monkey kidney epithelium) cell lines. Interestingly the efficiency of caffeine in extracting Et has been found to be dependent on cell types. Our results both in vitro as well as ex vivo provide important clues about the efficiency and mechanism of caffeine as a potential antimutagenic therapeutic agent.

  14. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  15. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  16. Integrating fuel cell power systems into building physical plants

    SciTech Connect

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  17. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  18. Magnetic alignment of plant cell microfibrils and their anisotropic elasticity

    NASA Astrophysics Data System (ADS)

    Fujimura, Yuu; Sakaida, Hidetaka; Iino, Masaaki

    2010-06-01

    The magnetic alignment of microfibrils on a single regenerated plant cell surface subjected to magnetic fields and its anisotropic cell surface area expansivity modulus (area modulus) were studied. The magnetic alignment around the equator of the cell (the polar axis parallel to the magnetic field) was confirmed by a 2-dim Fourier analysis of images from a scanning electron microscope, and these were expressed by a theoretical magnetic order parameter for anisotropic relative magnetic permeability of 3×10-27, while the microfibrils near the pole did not show any such magnetic alignment. The magnetic field anisotropically stiffened the cell surface. The stiffness around the equator was greater than that around the pole. The magnetic field dependences of the area modulus agreed with the mechanical model.

  19. DREAMs make plant cells to cycle or to become quiescent.

    PubMed

    Magyar, Zoltán; Bögre, László; Ito, Masaki

    2016-12-01

    Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes.

  20. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  1. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  2. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants.

    PubMed

    Tucker, Matthew R; Koltunow, Anna M G

    2014-02-01

    The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.

  3. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  4. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line

    PubMed Central

    2011-01-01

    Background Six plants from Thailand were evaluated for their cytotoxicity and apoptosis induction in human hepatocarcinoma (HepG2) as compared to normal African green monkey kidney epithelial cell lines. Methods Ethanol-water crude extracts of the six plants were tested with neutral red assay for their cytotoxicity after 24 hours of exposure to the cells. Apoptotic induction was tested in the HepG2 cells with diamidino-2-phenylindole staining. DNA fragmentation, indicative of apoptosis, was analyzed with agarose gel electrophoresis. Alkylation, indicative of DNA damage, was also evaluated in vitro by 4-(4'-nitrobenzyl) pyridine assay. Results The extract of Pinus kesiya showed the highest selectivity (selectivity index = 9.6) and potent cytotoxicity in the HepG2 cell line, with an IC50 value of 52.0 ± 5.8 μg/ml (mean ± standard deviation). Extract of Catimbium speciosum exerted cytotoxicity with an IC50 value of 55.7 ± 8.1 μg/ml. Crude extracts from Glochidion daltonii, Cladogynos orientalis, Acorus tatarinowii and Amomum villosum exhibited cytotoxicity with IC50 values ranging 100-500 μg/ml. All crude extracts showed different alkylating abilities in vitro. Extracts of P. kesiya, C. speciosum and C. orientalis caused nuclei morphological changes and DNA laddering. Conclusion The extracts of C. speciosum, C. orientalis and P. kesiya induced apoptosis. Among the three plants, P. kesiya possessed the most robust anticancer activity, with specific selectivity against HepG2 cells. PMID:22041055

  5. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells.

    PubMed

    Apone, Fabio; Tito, Annalisa; Carola, Antonietta; Arciello, Stefania; Tortora, Assunta; Filippini, Lucio; Monoli, Irene; Cucchiara, Mirna; Gibertoni, Simone; Chrispeels, Maarten J; Colucci, Gabriella

    2010-02-15

    Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells. In this article, we describe the preparation of a new mixture of peptides and sugars derived from the chemical and enzymatic digestion of plant cell wall glycoproteins. We investigate the multiple roles of this product as potential "biostimulator" to protect plants from abiotic stresses, and also as potential cosmeceutical. In particular, the molecular effects of the peptide/sugar mixture of inducing plant defense responsive genes and protecting cultured skin cells from oxidative burst damages were deeply evaluated.

  6. Protein migration from transplanted nuclei in Amoeba proteus. I. The relation to the cell cycle and RNA migration, as studied by autoradiography

    SciTech Connect

    Mills, K.I.; Bell, L.G.

    1982-11-01

    Autoradiography has been used to examine the migration of proteins from a radioactivity labelled amoeba nucleus following transplantation into an unlabelled homophasic amoeba. Nuclei were transferred at three times in the cell cycle coinciding with DNA synthesis (4 h post-division); a peak of RNA synthesis (25 h); and a relative lull in synthetic activity (43 h). Six amino acids were added individually to the culture medium to label the nuclear proteins. Migration of the proteins from the donor nucleui and least with proteins labelled with the basic amino acids. All amino acids exhibited the greatest extent of migration following the 25-h transfers, i.e., coinciding with a peak of RNA synthesis at 26-27.5 h. Actinomycin D (actD) inhibition of RNA synthesis reduced, but did not eliminate the extent of protein migration from the transplanted nucleus, thus indicating the existence of two classes of migratory proteins. Firstly, proteins, associated with RNA transport, which migrated mainly into the host cytoplasm. The second class migrated into the host nucleus from the transplanted nucleus, irrespective of RNA synthesis. The shuttling character of the latter class of proteins is consistent with a role of regulation of nuclear activity.

  7. Imaging of plant cell walls by confocal Raman microscopy.

    PubMed

    Gierlinger, Notburga; Keplinger, Tobias; Harrington, Michael

    2012-09-01

    Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ∼10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.

  8. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells.

    PubMed

    Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay

    2014-01-01

    Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.

  9. Plant hormones increase efficiency of reprogramming mouse somatic cells to induced pluripotent stem cells and reduce tumorigenicity.

    PubMed

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Edel, Michael J

    2014-03-15

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for over 30 years. The plant hormones responsible for cell reprogramming to pluripotency, indole-3-acetic acid (IAA) and isopentenyl adenosine (IPA), are present in human cells, leading to the exciting possibility that plant hormones might reprogram mammalian cells without genetic factors. We found that plant hormones on their own could not reprogram mammalian cells but increase the efficiency of the early formation of iPS cells combined with three defined genetic factors during the first 3 weeks of reprogramming by accelerating the cell cycle and regulating pluripotency genes. Moreover, the cytokinin IPA, a known human anticancer agent, reduced the threat of cancer of iPS cell in vitro by regulating key cancer and stem cell-related genes, most notably c-Myc and Igf-1. In conclusion, the plant hormones, auxin and cytokinin, are new small chemicals useful for enhancing early reprogramming efficiency of mammalian cells and reducing the threat of cancer from iPS cells. These findings suggest a novel role for plant hormones in the biology of mammalian cell plasticity.

  10. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but