Science.gov

Sample records for plant druckstossberechnungen fuer

  1. Pflanzen als Naehrsubstrat fuer Cryptococcus Neoformans (Plants as a Substratum for Growth of Cryptococcus Neoformans),

    DTIC Science & Technology

    The suitability of plants as a possible substratum for growth (in vitro) of C . neoformans has been investigated. A sample of hay collected from...the second left unsterile. The samples were inoculated by flooding them with suspensions prepared from two known strains of C . neoformans . The...month and subsequently at room temperature. Discrete colonies of C . neoformans appeared after five days on samples of hay as well as of dandelion

  2. 20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT TO RIGHT: RUDOLF NEBEL, FRANZ RITTER, UNKNOWN, KURT HEINISCH, UNKNOWN, HERMANN OBERTH, UNKNOWN, KLAUS RIEDEL, WERNHER VON BRAUN, UNKNOWN, KLAUS RIEDEL HOLDS EARLY VERSION OR MODEL FOR THE MINIMUM ROCKET, 'MIRAK'. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. Chemical Research at the Institut fuer Strahlenchemie, Muelheim.

    DTIC Science & Technology

    1981-03-16

    distributed in microorganisms, higher plants, and animals. In plants it is found as the fully phosphorylated derivative, phytic acid . IHP is the...deoxyribonucleic acid olefin radical cation vesicles inositol hexaphosphate (IHP) photochemistry hemoglobin photochemical disinfection of water 20...OF TIS PAGE fMb 21" -. effort of the institute involves the radiation chemistry of deoxyribonucleic acid and model compounds. Described in this report

  4. Considering Plants.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  5. [Poisonous plants].

    PubMed

    Hoppu, Kalle; Mustonen, Harriet; Pohjalainen, Tiina

    2011-01-01

    Approximately ten species of dangerously poisonous plants are found in Finland. Severe plant poisonings are very rare. Edible plants eaten raw or wrongly processed may cause severe symptoms. As first aid, activated charcoal should be given to the person who has eaten a plant causing a risk of significant poisoning. In case of exposure to topically irritating plant fluids, the exposed person's eyes must be irrigated and mouth or skin washed with copious amounts of water. In combination with solar UV radiation, light-sensitizing plants cause local burns. The diagnosis of plant poisoning is usually based on incidental information; the plant should be identified in order to make the correct treatment decisions.

  6. Poisonous Plants

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH POISONOUS PLANTS Recommend on Facebook Tweet Share Compartir Photo courtesy ... U.S. Department of Agriculture Many native and exotic plants are poisonous to humans when ingested or if ...

  7. Medicinal Plants.

    ERIC Educational Resources Information Center

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  8. Autoluminescent Plants

    PubMed Central

    Krichevsky, Alexander; Meyers, Benjamin; Vainstein, Alexander; Maliga, Pal; Citovsky, Vitaly

    2010-01-01

    Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye. PMID:21103397

  9. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  10. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  11. Plant Factory

    NASA Astrophysics Data System (ADS)

    Ikeda, Hideo

    Recently, much attention is paid on the plant factory, as it enable to grow plants stably under extraordinary climate condition such as high and/or low air temperature and less rain. Lots of questions such as decreasing investing cost, realizing stable plant production and developing new growing technique should be solved for making popular this growing system. However, I think that we can introduce a highly developed Japanese industrial now-how to plant factory system and can produce a business chance to the world market.

  12. Plant Minders

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Indoor plants are automatically watered by the Aqua Trends watering system. System draws water from building outlets or from pump/reservoir module and distributes it to the plants via a network of tubes and adjustable nozzles. Key element of system is electronic controller programmed to dispense water according to the needs of various plants in an installation. Adjustable nozzle meters out exactly right amount of water at proper time to the plant it's serving. More than 100 Aqua/Trends systems are in service in the USA, from a simple residential system to a large Mirage III system integrated to water all greenery in a large office or apartment building.

  13. Carnivorous Plants.

    ERIC Educational Resources Information Center

    Canipe, Stephen

    This biology lesson on carnivorous (insectivorous) plants is designed to supplement the textbook in the areas of plant diversity, ecology, and distribution. An introduction provides general background information for use as lecture material by the teacher or as reading and/or study material for students. The introduction also includes…

  14. Plant Identification.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of 12 Audubon Nature Bulletins, providing teachers and students with informational reading on plants. The bulletins include these titles: The Parade of Spring Wild Flowers, Wild Flowers of Our Prairies, Seeds and How They Travel, Poison Ivy and Other Poisonous Plants, The Forest Community, Common Trees and Their…

  15. Plant Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are faced with defending themselves against a multitude of pathogens, including bacteria, fungi, viruses, nematodes, etc. Immunity is multi-layered and complex. Plants can induce defenses when they recognize small peptides, proteins or double-stranded RNA associated with pathogens. Recognitio...

  16. Plant Behavior

    ERIC Educational Resources Information Center

    Liu, Dennis W. C.

    2014-01-01

    Plants are a huge and diverse group of organisms, ranging from microscopic marine phytoplankton to enormous terrestrial trees epitomized by the giant sequoia: 300 feet tall, living 3000 years, and weighing as much as 3000 tons. For this plant issue of "CBE-Life Sciences Education," the author focuses on a botanical topic that most…

  17. Plant minichromosomes.

    PubMed

    Birchler, James A; Graham, Nathaniel D; Swyers, Nathan C; Cody, Jon P; McCaw, Morgan E

    2016-02-01

    Plant minichromosomes have the potential for stacking multiple traits on a separate entity from the remainder of the genome. Transgenes carried on an independent chromosome would facilitate conferring many new properties to plants and using minichromosomes as genetic tools. The favored method for producing plant minichromosomes is telomere-mediated chromosomal truncation because the epigenetic nature of centromere function prevents using centromere sequences to confer the ability to organize a kinetochore when reintroduced into plant cells. Because haploid induction procedures are not always complete in eliminating one parental genome, chromosomes from the inducer lines are often present in plants that are otherwise haploid. This fact suggests that minichromosomes could be combined with doubled haploid breeding to transfer stacked traits more easily to multiple lines and to use minichromosomes for massive scale genome editing.

  18. Plant secretomics

    PubMed Central

    Tanveer, Tehreem; Shaheen, Kanwal; Parveen, Sajida; Kazi, Alvina Gul; Ahmad, Parvaiz

    2014-01-01

    Plant secretomes are the proteins secreted by the plant cells and are involved in the maintenance of cell wall structure, relationship between host and pathogen, communication between different cells in the plant, etc. Amalgamation of methodologies like bioinformatics, biochemical, and proteomics are used to separate, classify, and outline secretomes by means of harmonizing in planta systems and in vitro suspension cultured cell system (SSCs). We summed up and explained the meaning of secretome, methods used for the identification and isolation of secreted proteins from extracellular space and methods for the assessment of purity of secretome proteins in this review. Two D PAGE method and HPLC based methods for the analysis together with different bioinformatics tools used for the prediction of secretome proteins are also discussed. Biological significance of secretome proteins under different environmental stresses, i.e., salt stress, drought stress, oxidative stress, etc., defense responses and plant interactions with environment are also explained in detail. PMID:25763623

  19. Plant intelligence.

    PubMed

    Trewavas, Anthony

    2005-09-01

    Intelligent behavior is a complex adaptive phenomenon that has evolved to enable organisms to deal with variable environmental circumstances. Maximizing fitness requires skill in foraging for necessary resources (food) in competitive circumstances and is probably the activity in which intelligent behavior is most easily seen. Biologists suggest that intelligence encompasses the characteristics of detailed sensory perception, information processing, learning, memory, choice, optimisation of resource sequestration with minimal outlay, self-recognition, and foresight by predictive modeling. All these properties are concerned with a capacity for problem solving in recurrent and novel situations. Here I review the evidence that individual plant species exhibit all of these intelligent behavioral capabilities but do so through phenotypic plasticity, not movement. Furthermore it is in the competitive foraging for resources that most of these intelligent attributes have been detected. Plants should therefore be regarded as prototypical intelligent organisms, a concept that has considerable consequences for investigations of whole plant communication, computation and signal transduction.

  20. Plant intelligence

    PubMed Central

    Lipavská, Helena; Žárský, Viktor

    2009-01-01

    The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable discussion. However, plant intelligence remains loosely defined; often it is either perceived as practically synonymous to Darwinian fitness, or reduced to a mere decorative metaphor. A more strict view can be taken, emphasizing necessary prerequisites such as memory and learning, which requires clarifying the definition of memory itself. To qualify as memories, traces of past events have to be not only stored, but also actively accessed. We propose a criterion for eliminating false candidates of possible plant intelligence phenomena in this stricter sense: an “intelligent” behavior must involve a component that can be approximated by a plausible algorithmic model involving recourse to stored information about past states of the individual or its environment. Re-evaluation of previously presented examples of plant intelligence shows that only some of them pass our test. “You were hurt?” Kumiko said, looking at the scar. Sally looked down. “Yeah.” “Why didn't you have it removed?” “Sometimes it's good to remember.” “Being hurt?” “Being stupid.”—(W. Gibson: Mona Lisa Overdrive) PMID:19816094

  1. PLANT DIVERSITY

    EPA Science Inventory

    Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

  2. Audubon Plant Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Plants and Flowers," an adult leaders' guide, and a large wall chart picturing 37 wildflowers and describing 23 major plant families. The student reader presents these main topics: The Plant Kingdom, The Wonderful World of Plants, Plants Without Flowers, Flowering Plants, Plants Make Food…

  3. Plant Chemiluminescence

    PubMed Central

    Abeles, Fred B.; Leather, Gerald R.; Forrence, Leonard E.

    1978-01-01

    Light production by plants was confirmed by measuring chemiluminescence from root and stem tissue of peas (Pisum sativum), beans (Phaseolus vulgaris), and corn (Zea mays) in a modified scintillation spectrophotometer. Chemiluminescence was inhibited by treating pea roots with boiling ethanol or by placing them in a N2 gas phase. Chemiluminescence was increased by an O2 gas phase or by the addition of luminol. NaN3 and NaCN blocked both in vitro and in vivo chemiluminescence. It is postulated that the source of light is the hydrogen peroxide-peroxidase enzyme system. It is known that this system is responsible for chemiluminescence in leukocytes and it seems likely that a similar system occurs in plants. PMID:16660587

  4. Plant cooperation.

    PubMed

    Dudley, Susan A

    2015-09-25

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours.

  5. Plant cooperation

    PubMed Central

    Dudley, Susan A.

    2015-01-01

    The study of plant behaviour will be aided by conceptual approaches and terminology for cooperation, altruism and helping. The plant literature has a rich discussion of helping between species while the animal literature has an extensive and somewhat contentious discussion of within-species helping. Here, I identify and synthesize concepts, terminology and some practical methodology for speaking about helping in plant populations and measuring the costs and benefits. I use Lehmann and Keller's (2006) classification scheme for animal helping and McIntire and Fajardo's (2014) synthesis of facilitation to provide starting points for classifying the mechanisms of how and why organisms help each other. Contextual theory is discussed as a mechanism for understanding and measuring the fitness consequences of helping. I synthesize helping into four categories. The act of helping can be costly to the helper. If the helper gains indirect fitness by helping relatives but loses direct fitness, this is altruism, and it only occurs within species. Helpers can exchange costly help, which is called mutualism when between species, and reciprocation when within a species. The act of helping can directly benefit the helper as well as the recipient, either as an epiphenomenon resulting from behaviours under natural selection for other reasons, or because the helper is creating a mutual benefit, such as satiating predators or supporting a mutualism. Facilitation between species by stress amelioration, creation of novel ecosystems and habitat complexity often meets the definition of epiphenomenon helping. Within species, this kind of helping is called by-product mutualism. If the helping is under selection to create a mutual benefit shared by others, between species this is facilitation with service sharing or access to resources and within species, direct benefits by mutual benefits. These classifications provide a clear starting point for addressing the subject of helping behaviours

  6. The Essence of "Plantness."

    ERIC Educational Resources Information Center

    Darley, W. Marshall

    1990-01-01

    Major differences between plants and animals are presented. Discussed are autotrophs and heterotrophs, plant growth and development, gas exchange, the evolution of plants, ecosystem components, the alleged inferiority of plants, and fungi. (CW)

  7. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  8. Plant fertilizer poisoning

    MedlinePlus

    Plant fertilizers and household plant foods are used to improve plant growth. Poisoning can occur if someone swallows these products. Plant fertilizers are mildly poisonous if small amounts are swallowed. ...

  9. Plants. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    The study of plants is often limited to studying plant structure with little emphasis on the vital role plants play in our natural system and the variety of ways man uses plants. This unit, designed for intermediate level elementary students, reviews basic plant structure, discusses roles of plants in nature's system, illustrates plant…

  10. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of

  11. Plants on Display

    ERIC Educational Resources Information Center

    Lawniczak, Stefanie; Gerber, D. Timothy; Beck, Judy

    2004-01-01

    Food, medicine, clothing--much of what people encounter every day comes from plants or plant products. However, plants often do not get as much attention in the K-12 curriculum as they deserve. Because of the essential role plants play in peoples lives, it is important to include standards-based plant units in the elementary science curriculum.…

  12. Teaching Plant Reproduction.

    ERIC Educational Resources Information Center

    Tolman, Marvin N., Ed.; Hardy, Garry R., Ed.

    2000-01-01

    Recommends using Amaryllis hippeastrum to teach young children about plant reproduction. Provides tips for growing these plants, discusses the fast growing rate of the plant, and explains the anatomy. (YDS)

  13. Poinsettia plant exposure

    MedlinePlus

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  14. Plants in Space

    NASA Video Gallery

    This student plant growth investigation on the International Space Station compares plant growth on the ground with plant growth in space. Brassica rapa seeds, commonly known as a turnip mustard, w...

  15. The plant microbiome

    PubMed Central

    2013-01-01

    Plant genomes contribute to the structure and function of the plant microbiome, a key determinant of plant health and productivity. High-throughput technologies are revealing interactions between these complex communities and their hosts in unprecedented detail. PMID:23805896

  16. Students' Ideas about Plants and Plant Growth

    ERIC Educational Resources Information Center

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  17. Polyhydroxyalkanoate synthesis in plants

    DOEpatents

    Srienc, Friedrich; Somers, David A.; Hahn, J. J.; Eschenlauer, Arthur C.

    2000-01-01

    Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

  18. New baseload power plants

    SciTech Connect

    Not Available

    1994-04-01

    This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

  19. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  20. Plant Biology Science Projects.

    ERIC Educational Resources Information Center

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  1. Ethylene insensitive plants

    DOEpatents

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  2. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  4. Beginning Plant Biotechnology Laboratories Using Fast Plants.

    ERIC Educational Resources Information Center

    Williams, Mike

    This set of 16 laboratory activities is designed to illustrate the life cycle of Brassicae plants from seeds in pots to pods in 40 days. At certain points along the production cycle of the central core of labs, there are related lateral labs to provide additional learning opportunities employing this family of plants, referred to as "fast…

  5. Thrips management program for plants for planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thrips Management includes sanitation, exclusion, chemical control and biological control. Sanitation. Remove weeds, old plant debris, and growing medium from within and around the greenhouse. Eliminate old stock plants as these are a source of thrips and viruses. Removing old flowers may reduce the...

  6. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  7. Plant centromere compositions

    DOEpatents

    Mach, Jennifer M.; Zieler, Helge; Jin, RongGuan; Keith, Kevin; Copenhaver, Gregory P.; Preuss, Daphne

    2011-08-02

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  8. Plant centromere compositions

    DOEpatents

    Mach,; Jennifer M. , Zieler; Helge, Jin [Del Mar, CA; RongGuan, Keith [Chesterfield, MO; Kevin, Copenhaver [Three Forks, MT; Gregory P. , Preuss; Daphne, [Chicago, IL

    2011-11-22

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  9. Plant centromere compositions

    DOEpatents

    Mach, Jennifer; Zieler, Helge; Jin, James; Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-06-26

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  10. Plant centromere compositions

    DOEpatents

    Mach, Jennifer; Zieler, Helge; Jin, RongGuan; Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2007-06-05

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  11. Plant centromere compositions

    DOEpatents

    Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-10-10

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  12. Aspects of Plant Intelligence

    PubMed Central

    TREWAVAS, ANTHONY

    2003-01-01

    Intelligence is not a term commonly used when plants are discussed. However, I believe that this is an omission based not on a true assessment of the ability of plants to compute complex aspects of their environment, but solely a reflection of a sessile lifestyle. This article, which is admittedly controversial, attempts to raise many issues that surround this area. To commence use of the term intelligence with regard to plant behaviour will lead to a better understanding of the complexity of plant signal transduction and the discrimination and sensitivity with which plants construct images of their environment, and raises critical questions concerning how plants compute responses at the whole‐plant level. Approaches to investigating learning and memory in plants will also be considered. PMID:12740212

  13. Flooding and Plant Growth

    PubMed Central

    VISSER, E. J. W.; VOESENEK, L. A. C. J.; VARTAPETIAN, B. B.; JACKSON, M. B.

    2003-01-01

    This Special Issue is based on the 7th Conference of the International Society for Plant Anaerobiosis (ISPA), held in Nijmegen, The Netherlands, 12–16 June 2001. The papers describe and analyse many of the responses that plants display when subjected to waterlogging of the soil or deeper submergence. These responses may be injurious or adaptive, and are discussed at various levels of organizational complexity ranging from ecosystem processes, through individual plants to single cells. The research incorporates molecular biology and genetics, cell physiology, biochemistry, hormone physiology, whole plant physiology, plant demography and ecology. The study of the damage to young rice plants caused by submergence, especially as experienced in the rainfed lowlands of Asia, is comprehensively addressed. This work integrates various specialized approaches ranging from agronomy to molecular genetics, and demonstrates how plant biology can be harnessed to improve stress tolerance in an important crop species while simultaneously improving basic understanding of tolerance mechanisms and plant processes.

  14. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  15. New baseload power plants

    SciTech Connect

    Not Available

    1993-04-01

    This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

  16. Plant design: Integrating Plant and Equipment Models

    SciTech Connect

    Sloan, David; Fiveland, Woody; Zitney, S.E.; Osawe, Maxwell

    2007-08-01

    Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

  17. Plant Systems Biology (editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  18. Plants on the Move

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2005-01-01

    Living things respond to a stimulus, which is a change in the surroundings. Some common stimuli are noises, smells, and things the people see or feel, such as a change in temperature. Animals often respond to a stimulus by moving. Because plants can't move around in the same way animals do, plants have to respond in a different way. Plants can…

  19. Recognizing Plant Defense Priming.

    PubMed

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-10-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plants.

  20. Plants of the Bayshore.

    ERIC Educational Resources Information Center

    Bachle, Leo; And Others

    This field guide gives pictures and descriptions of plants that can be found along the San Francisco Bayshore, especially along the Hayward shoreline. The plants are divided into three categories, those of the mud-flat zone, the drier zone, and the levee zone. Eighteen plants are represented in all. The guide is designed to be used alone, with an…

  1. Iron stress in plants.

    PubMed

    Connolly, Erin L; Guerinot, Mary

    2002-07-30

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  2. Plant bugs on alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper treats the most important plant bugs, or Miridae, found on alfalfa in North America. It is estimated that more than 10 species of plant bugs have the potential to develop on this important forage legume. Of these, the alfalfa plant bug (Adelphocoris lineolatus), pale legume bug (Lygus e...

  3. Fundaments of plant cybernetics.

    PubMed

    Zucconi, F

    2001-01-01

    A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.

  4. Plant or Animal?

    ERIC Educational Resources Information Center

    Bowman, Frank; Matthews, Catherine E.

    1996-01-01

    Presents activities that use marine organisms with plant-like appearances to help students build classification skills and illustrate some of the less obvious differences between plants and animals. Compares mechanisms by which sessile plants and animals deal with common problems such as obtaining energy, defending themselves, successfully…

  5. Cycling Through Plants

    ERIC Educational Resources Information Center

    Cavallo, Ann

    2005-01-01

    Children notice seeds and plants every day. But do they really understand what seeds are and how they are related to plants? Have they ever observed what is inside the seed? What happens to the "things" inside a seed when it grows? What do plants need to grow, and what do they need to stay healthy? Through a sequence of three related learning…

  6. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  7. TRANSGENIC PLANT CONTAINMENT

    EPA Science Inventory

    The new technology using plant genetics to produce chemicals, pharmaceuticals, and therapeuitics in a wide array of new plant forms requires sufficient testing to ensure that these new plant introductions are benign in the environment. A recent effort to provide necessary guidan...

  8. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  9. Steroid plant hormones: effects outside plant kingdom.

    PubMed

    Zhabinskii, Vladimir N; Khripach, Natalia B; Khripach, Vladimir A

    2015-05-01

    Brassinosteroids (BS) are the first group of steroid-hormonal compounds isolated from and acting in plants. Among numerous physiological effects of BS growth stimulation and adaptogenic activities are especially remarkable. In this review, we provide evidence that BS possess similar types of activity also beyond plant kingdom at concentrations comparable with those for plants. This finding allows looking at steroids from a new point of view: how common are the mechanisms of steroid bioregulation in different types of organisms from protozoa to higher animals.

  10. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  11. Medicinal plants in therapy*

    PubMed Central

    Farnsworth, Norman R.; Akerele, Olayiwola; Bingel, Audrey S.; Soejarto, Djaja D.; Guo, Zhengang

    1985-01-01

    One of the prerequisites for the success of primary health care is the availability and use of suitable drugs. Plants have always been a common source of medicaments, either in the form of traditional preparations or as pure active principles. It is thus reasonable for decision-makers to identify locally available plants or plant extracts that could usefully be added to the national list of drugs, or that could even replace some pharmaceutical preparations that need to be purchased and imported. This update article presents a list of plant-derived drugs, with the names of the plant sources, and their actions or uses in therapy. PMID:3879679

  12. Outsourcing meets expanded plant`s requirements

    SciTech Connect

    Haas, W.E.

    1997-03-01

    This article describes a system provided and operated by outside contractor that converts treated sewage water to high-purity makeup for expanded gas-turbine plant with minimal environmental impact. Florida Power Corp. (FPC), St. Petersburg, Fla., faced various challenges when planning to expand the Intercession City gas-turbine plant located near Kissimmee, Fla. One challenge was dealing with water for NO{sub x} emissions reduction supplied from the Kissimmee sanitary sewage treatment plant. Another was to minimize or eliminate wastewater generated by chemical cleaning of the reverse-osmosis (RO) system envisioned for the plant. Because of the substantial capital investment needed to meet these challenges, FPC outsourced the design, construction, and operation of the water treatment system to Ecolochem Inc., Norfolk, VA. After three years of operation, the system is meeting all design requirements and is saving the utility about $250,000/yr.

  13. Quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Cramer, Rainer

    2011-02-01

    Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.

  14. Bumper transgenic plant crop

    SciTech Connect

    Moffat, A.S.

    1991-07-05

    Although it may seem hard to believe, it's been almost 10 years since researchers showed that they could use gene transfer technology on plants. Since then the plant genetic engineers have taken great strides. With several dozen field trials already under way, they may soon achieve their original goal - the development of high-yielding plant varieties with enhanced resistance to herbicides, disease, or insects. So now the researchers are branching out, beginning to design plants with improved consumer appeal, such as tomatoes that hold up better to freezing, as well as creating plants that can serve as factories for pharmaceuticals and industrial oils, just as researchers are now attempting to use pigs to make human hemoglobin. Some of the plant varieties being developed include: tobacco plants, soybeans, tomatoes, and dry, navy and green beans.

  15. Histidine biosynthesis in plants.

    PubMed

    Stepansky, A; Leustek, T

    2006-03-01

    The study of histidine metabolism has never been at the forefront of interest in plant systems despite the significant role that the analysis of this pathway has played in development of the field of molecular genetics in microbes. With the advent of methods to analyze plant gene function by complementation of microbial auxotrophic mutants and the complete analysis of plant genome sequences, strides have been made in deciphering the histidine pathway in plants. The studies point to a complex evolutionary origin of genes for histidine biosynthesis. Gene regulation studies have indicated novel regulatory networks involving histidine. In addition, physiological studies have indicated novel functions for histidine in plants as chelators and transporters of metal ions. Recent investigations have revealed intriguing connections of histidine in plant reproduction. The exciting new information suggests that the study of plant histidine biosynthesis has finally begun to flower.

  16. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  17. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  18. [Intoxications with plants].

    PubMed

    Kupper, Jacqueline; Reichert, Cornelia

    2009-05-01

    Ingestions of plants rarely lead to life-threatening intoxications. Highly toxic plants, which can cause death, are monkshood (Aconitum sp.), yew (Taxus sp.) and autumn crocus (Colchicum autumnale). Lethal ingestions of monkshood and yew are usually suicides, intoxications with autumn crocus are mostly accidental ingestions of the leaves mistaken for wild garlic (Allium ursinum). Severe intoxications can occur with plants of the nightshade family like deadly nightshade (Atropa belladonna), angel's trumpet (Datura suaveolens) or jimsonweed (Datura stramonium). These plants are ingested for their psychoactive effects. Ingestion of plant material by children most often only causes minor symptoms or no symptoms at all, as children usually do not eat great quantities of the plants. They are especially attracted by the colorful berries. There are plants with mostly cardiovascular effects like monkshood, yew and Digitalis sp. Some of the most dangerous plants belong to this group. Plants of the nightshade family cause an anticholinergic syndrome. With golden chain (Laburnum anagyroides), castor bean (Ricinus communis) and raw beans (Phaseolus vulgaris) we see severe gastrointestinal effects. Autumn crocus contains a cell toxin, colchicine, which leads to multiorgan failure. Different plants are irritative or even caustic to the skin. Treatment is usually symptomatic. Activated charcoal is administered within one hour after ingestion (1 g/kg). Endoscopic removal of plant material can be considered with ingestions of great quantities of highly toxic plants. Administration of repeated doses of charcoal (1-2 g/h every 2-4 hours) may be effective in case of oleander poisoning. There exist only two antidotes: Anti-digoxin Fab fragments can be used with cardenolide glycoside-containing plants (Digitalis sp., Oleander). Physostigmine is the antidote for severe anticholinergic symptoms of the CNS. Antibodies against colchicine, having been developed in France, are not available at

  19. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  20. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  1. Replacing baseload power plants with wind plants

    SciTech Connect

    Cavallo, A.J.

    1995-12-31

    Baseload nuclear power plants supply about 21 percent of the electricity consumed in the United States today, and as these plants are retired over the next 10 to 25 years, they will not be replicated. This will open a vast market for new generating facilities which should, if possible, be non-fossil fueled. Wind energy baseload systems are able to equal or exceed the technical performance of these nuclear plants at a delivered cost of energy of less than $0.05/kWh in wind class 4 regions. However, unless a new externality (the cost of maintaining the security of fossil fuel supply) is factored in to the extremely low market price of fossil fuels, wind and other renewable energy resources will not be able to compete with these fuels on the basis of simple economics over the next 20 to 30 years.

  2. Plant intelligence and attention

    PubMed Central

    Marder, Michael

    2013-01-01

    This article applies the phenomenological model of attention to plant monitoring of environmental stimuli and signal perception. Three complementary definitions of attention as selectivity, modulation and perdurance are explained with reference to plant signaling and behaviors, including foraging, ramet placement and abiotic stress communication. Elements of animal and human attentive attitudes are compared with plant attention at the levels of cognitive focus, context and margin. It is argued that the concept of attention holds the potential of becoming a cornerstone of plant intelligence studies. PMID:23425923

  3. Leatherwood prep plant upgrade

    SciTech Connect

    Hollis, R.W.; Jain, S.M.

    2007-06-15

    The Blue Diamond Coal Co. recently implemented major circuit modifications to the Leatherwood coal preparation plant (formerly known as the J.K. Cornett prep plant) in Slemp, KY, USA. The plant was originally built in the late 1980s, and then modified in 1999. The 2006 plant modifications included: two Krebs 33-inch heavy-media cyclones; five 10 x 20 ft single deck Conn-Weld Banana type vibrating screens; two 10 ft x 48 inch Eriez self-leveling magnetic separators; two Derrick Stacksizer high frequency screens; two CMI EBR-48 centrifugal dryers; Warman process pumps; and eight triple start MDL spiral concentrators. 2 figs.

  4. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  5. Epigenetic Regulation in Plants

    PubMed Central

    Pikaard, Craig S.; Mittelsten Scheid, Ortrun

    2014-01-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. PMID:25452385

  6. Plant intelligence and attention.

    PubMed

    Marder, Michael

    2013-05-01

    This article applies the phenomenological model of attention to plant monitoring of environmental stimuli and signal perception. Three complementary definitions of attention as selectivity, modulation and perdurance are explained with reference to plant signaling and behaviors, including foraging, ramet placement and abiotic stress communication. Elements of animal and human attentive attitudes are compared with plant attention at the levels of cognitive focus, context and margin. It is argued that the concept of attention holds the potential of becoming a cornerstone of plant intelligence studies.

  7. Databases for plant phosphoproteomics.

    PubMed

    Schulze, Waltraud X; Yao, Qiuming; Xu, Dong

    2015-01-01

    Phosphorylation is the most studied posttranslational modification involved in signal transduction in stress responses, development, and growth. In the recent years large-scale phosphoproteomic studies were carried out using various model plants and several growth and stress conditions. Here we present an overview of online resources for plant phosphoproteomic databases: PhosPhAt as a resource for Arabidopsis phosphoproteins, P3DB as a resource expanding to crop plants, and Medicago PhosphoProtein Database as a resource for the model plant Medicago trunculata.

  8. Plant antimicrobial peptides.

    PubMed

    Nawrot, Robert; Barylski, Jakub; Nowicki, Grzegorz; Broniarczyk, Justyna; Buchwald, Waldemar; Goździcka-Józefiak, Anna

    2014-05-01

    Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.

  9. Engineered Plants as Biosensors

    DTIC Science & Technology

    2007-11-02

    GFP fluorescence was detectable in the lower leaves and especially in the roots of one transgenic plant compared to negative and positive control...mgfp5-er gene, lane 5 contains cDNA from a 35s-mgfp5-er transgenic plant , lanes 6-10 contain cDNAs from gn1/gfp plants. RNA extraction was performed 7...contains transgenic plant sprayed with water (negative control). Lanes 5-12 are independent gn1/gfp transgenic events sprayed with 5 mM BTH. Lanes

  10. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  11. Phyllotactic Patterns on Plants

    NASA Astrophysics Data System (ADS)

    Shipman, Patrick D.; Newell, Alan C.

    2004-04-01

    We demonstrate how phyllotaxis (the arrangement of leaves on plants) and the deformation configurations seen on plant surfaces may be understood as the energy-minimizing buckling pattern of a compressed shell (the plant's tunica) on an elastic foundation. The key new idea is that the strain energy is minimized by configurations consisting of special triads of almost periodic deformations. We reproduce a wide spectrum of plant patterns, all with the divergence angles observed in nature, and show how the occurrences of Fibonacci-like sequences and the golden angle are natural consequences.

  12. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  13. Recombinant cytokines from plants.

    PubMed

    Sirko, Agnieszka; Vaněk, Tomas; Góra-Sochacka, Anna; Redkiewicz, Patrycja

    2011-01-01

    Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. Several research groups explored the possibilities of cost-effective production of animal cytokines in plant systems. This review summarizes recent advances in this field.

  14. Unifying plant molecular data and plants.

    PubMed

    Jacobsen, N; Orgaard, M

    1996-01-01

    Located at a botanical department at an Agricultural University, our taxonomical and genetic research is mainly directed towards cultivated plants and their wild relatives. The investigations are usually under a common heading 'experimental taxonomy', and include basic systematics, cytogenetics, biodiversity, population dynamics, conservation and evolutionary questions correlating the wild species and the cultivated forms. Our point of initiation is the plants and questions/problems raised regarding these plants. Our way of approaching the problems is usually by applying different sets of data and testing them. Experimental taxonomy covers classical cytogenetics (chromosome counting and karyotyping) as well as molecular cytogenetic methods (RAPD, RFLP, in situ hybridization), and includes also chemical data on isoenzymes and anthocyanins. We have had good collaborations with other laboratories and found their expertise on the plants in question very helpful. The aim is always to unify various data on the same set of problems, in order to get a more complete understanding of the plants. At present the department is working on several, quite different plant genera, comprising herbs, aquatic plants, and trees. The methods vary, depending on the plants and the problems in question. Some of the current investigations concern the horticultural genera Lilium and Crocus, in which the main point of interest is the study of chromosome evolution using fluorescence in situ hybridization; preliminary investigations into the composition of anthocyanins in Crocus look very promising. In the tropical starch tuber crop Pachyrhizus (Fabaceae), molecular analyses of relationships between existing cultivars, landraces and wild material have been carried out. A genus which we, in cooperation with a number of other laboratories, have been working with for many years is Hordeum (Poaceae) with one cultivated species (barley) and 31 wild species. Here the main areas of investigation have

  15. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  16. Plants Study Guide.

    ERIC Educational Resources Information Center

    Brynildson, Inga

    This study quide is intended to provide students with information about the types and functions of plants, along with some individual learning activities. The guide contains sections about: (1) the contributions of plants to life on earth and the benefits they afford to humanity; (2) the processes of photosynthesis and respiration; (3) the flow of…

  17. Modulating lignin in plants

    SciTech Connect

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  18. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  19. Better Plants Program Overview

    SciTech Connect

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  20. Plant Water Relations.

    ERIC Educational Resources Information Center

    Tomley, David

    1982-01-01

    Some simple field investigations on plant water relations are described which demonstrate links between physiological and external environmental factors. In this way, a more complex picture of a plant and how it functions within its habitat and the effects the environment has on it can be built up. (Author/JN)

  1. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  2. Plant Light Measurement & Calculations.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1991-01-01

    The differences between measuring light intensity for the human eye and for plant photosynthesis are discussed. Conversion factors needed to convert various units of light are provided. Photosynthetic efficiency and the electricity costs for plants to undergo photosynthesis using interior lighting are described. (KR)

  3. Plant growth promoting rhizobacterium

    DOEpatents

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  4. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations.

  5. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  6. Plants to Avoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of poisonous plants is extremely important for home owners, gardeners, farmers, hunters, hikers, and the rest of the general public. Among the most important plants to avoid in the Delta Region are poison ivy, bull nettle, eastern black nightshade, Queen Ann’s lace, jimsonweed, and trumpe...

  7. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  8. Some Plants We Eat.

    ERIC Educational Resources Information Center

    McKee, Mary E.

    1984-01-01

    Discusses various plant parts used as food (including seeds, roots, stems, and leaves), emphasizing the origin of plant materials bought in the supermarket. Also discusses several concepts of nutrition, menu planning, and the relationship between food and energy from the sun. (JM)

  9. Plant names and classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter updates one of the same title from Edition 12 of Stearn’s Introductory Biology published in 2011. It reviews binomial nomenclature, discusses three codes of plant nomenclature (the International Code of Botanical Nomenclature, the International Code of Nomenclature for Cultivated Plants...

  10. Evolution & Diversity in Plants.

    ERIC Educational Resources Information Center

    Pearson, Lorentz C.

    1988-01-01

    Summarizes recent findings that help in understanding how evolution has brought about the diversity of plant life that presently exists. Discusses basic concepts of evolution, diversity and classification, the three-line hypothesis of plant evolution, the origin of fungi, and the geologic time table. Included are 31 references. (CW)

  11. Carotenoid metabolism in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  12. Plant Study Guide.

    ERIC Educational Resources Information Center

    Brynildson, Inga

    Appropriate for secondary school botany instruction, this study guide focuses on the important roles of plants in human lives. Following a rationale for learning the basic skills of a botanist, separate sections discuss the process sunlight undergoes during photosynthesis, the flow of energy in the food chain, alternative plant lifestyles, plant…

  13. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  14. Kashaya Pomo Plants.

    ERIC Educational Resources Information Center

    Goodrich, Jennie; And Others

    The monograph describes more than 200 plants growing within the approximately 300 square miles of the original land of the Kashaya Pomo Indians, which lies along the coast of Sonoma County, California. An introduction provides information on the plant communities represented (redwood forest, mixed evergreen forest, oak woodland, Douglas fir…

  15. Ocean thermal plant

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1979-01-01

    Modular Ocean Thermal-Energy Conversion (OTEC) plant permits vital component research and testing and serves as operational generator for 100 megawatts of electric power. Construction permits evaporators and condensers to be tested in same environment in which they will be used, and could result in design specifications for most efficient plant facilities in future.

  16. Overview of plant pigments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  17. Plants without arbuscular mycorrhizae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P is second to N as the most limiting element for plant growth. Plants have evolved a number of effective strategies to acquire P and grow in a P-limited environment. Physiological, biochemical, and molecular studies of P-deficiency adaptations that occur in non-mycorrhizal species have provided str...

  18. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  19. Maintaining Medicinal Plant Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For all plant genetic resources collections, including medicinal plant germplasm, maintaining the genetic integrity of material held ex situ is of major importance. This holds true for all intended end uses of the material whether it is as a source for crop improvement, medical research, as voucher...

  20. Cellulose metabolism in plants.

    PubMed

    Hayashi, Takahisa; Yoshida, Kouki; Park, Yong Woo; Konishi, Teruko; Baba, Kei'ichi

    2005-01-01

    Many bacterial genomes contain a cellulose synthase operon together with a cellulase gene, indicating that cellulase is required for cellulose biosynthesis. In higher plants, there is evidence that cell growth is enhanced by the overexpression of cellulase and prevented by its suppression. Cellulase overexpression could modify cell walls not only by trimming off the paracrystalline sites of cellulose microfibrils, but also by releasing xyloglucan tethers between the microfibrils. Mutants for membrane-anchored cellulase (Korrigan) also show a typical phenotype of prevention of cellulose biosynthesis in tissues. All plant cellulases belong to family 9, which endohydrolyzes cellulose, but are not strong enough to cause the bulk degradation of cellulose microfibrils in a plant body. It is hypothesized that cellulase participates primarily in repairing or arranging cellulose microfibrils during cellulose biosynthesis in plants. A scheme for the roles of plant cellulose and cellulases is proposed.

  1. Poultry Plant Noise Control

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  2. Exploiting plant alkaloids.

    PubMed

    Schläger, Sabrina; Dräger, Birgit

    2016-02-01

    Alkaloid-containing plants have been used for medicine since ancient times. Modern pharmaceuticals still rely on alkaloid extraction from plants, some of which grow slowly, are difficult to cultivate and produce low alkaloid yields. Microbial cells as alternative alkaloid production systems are emerging. Before industrial application of genetically engineered bacteria and yeasts, several steps have to be taken. Original alkaloid-forming enzymes have to be elucidated from plants. Their activity in the heterologous host cells, however, may be low. The exchange of individual plant enzymes for alternative catalysts with better performance and optimal fermentation parameters appear promising. The overall aim is enhancement and stabilization of alkaloid yields from microbes in order to replace the tedious extraction of low alkaloid concentrations from intact plants.

  3. Plants on the move

    PubMed Central

    Scorza, Livia Camilla Trevisan; Dornelas, Marcelo Carnier

    2011-01-01

    One may think that plants seem relatively immobile. Nevertheless, plants not only produce movement but these movements can be quite rapid such as the closing traps of carnivorous plants, the folding up of leaflets in some Leguminosae species and the movement of floral organs in order to increase cross pollination. We focus this review on thigmotropic and thigmonastic movements, both in vegetative and reproductive parts of higher plants. Ultrastructural studies revealed that most thigmotropic and thigmonastic movements are caused by differentially changing cell turgor within a given tissue. Auxin has emerged as a key molecule that modulates proton extrusion and thus causing changes in cell turgor by enhancing the activity of H+ATPase in cell membranes. Finding conserved molecules and/or operational molecular modules among diverse types of movements would help us to find universal mechanisms controlling movements in plants and thus improve our understanding about the evolution of such phenomena. PMID:22231201

  4. Hemipterans as plant pathogens.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2005-01-01

    Integration of the tools of genetics, genomics, and biochemistry has provided new approaches for identifying genes responding to herbivory. As a result, a picture of the complexity of plant-defense signaling to different herbivore feeding guilds is emerging. Plant responses to hemipteran insects have substantial overlap with responses mounted against microbial pathogens, as seen in changes in RNA profiles and emission of volatiles. Responses to known defense signals and characterization of the signaling pathways controlled by the first cloned insect R gene (Mi-1) indicate that perception and signal transduction leading to resistance may be similar to plant-pathogen interactions. Additionally, novel signaling pathways are emerging as important components of plant defense to insects. The availability of new tools and approaches will further enhance our understanding of the nature of defense in plant-hemipteran interactions.

  5. Mycoplasma infections of plants.

    PubMed

    Bove, J M

    1981-07-01

    Plants can be infected by two types of wall-less procaryotes, spiroplasmas and mycoplasma-like organisms (MLO), both located intracellularly in the phloem tissues of affected plants. Spiroplasmas have been cultured, characterized and shown to be true members of the class Mollicutes. MLO have not yet been cultured or characterized; they are thought to be mycoplasma-like on the basis of their ultrastructure as seen in situ, their sensitivity to tetracycline and resistance to penicillin. Mycoplasmas can also be found on the surface of plants. These extracellularly located organisms are members of the following genera: Spiroplasma. Mycoplasma and Acholeplasma. The presence of such surface mycoplasmas must not be overlooked when attempts to culture MLO from affected plants are undertaken. Sensitive serological techniques such as the enzyme-linked immunosorbent assay (ELISA) can successfully be used to compare the MLO located in the phloem of affected plants with those eventually cultured from the same plants. In California and Morocco periwinkles naturally infected with both Spiroplasma citri and MLO have been reported. With such doubly infected plants, the symptom expression has been that characteristic of the MLO disease (phyllody or stolbur), not that given by S. citri. Only S. citri can be cultured from such plants, but this does not indicate that S. citri is the causal agent of the disease expressed by the plant. In California many nonrutaceous plants have been found to be infected with S. citri. Stubborn affected citrus trees represent an important reservoir of S. citri, and Circulifer tenellus is an active leafhopper vector of S. citri. Hence, it is not surprising that in California MLO-infected fruit trees could also become infected with S. citri but it would not mean that S. citri is the causal agent of the disease. Criteria are discussed that are helpful in distinguishing between MLO infections and S. citri infections.

  6. Plant Sex Determination.

    PubMed

    Pannell, John R

    2017-03-06

    Sex determination is as important for the fitness of plants as it is for animals, but its mechanisms appear to vary much more among plants than among animals, and the expression of gender in plants differs in important respects from that in most animals. In this Minireview, I provide an overview of the broad variety of ways in which plants determine sex. I suggest that several important peculiarities of plant sex determination can be understood by recognising that: plants show an alternation of generations between sporophytic and gametophytic phases (either of which may take control of sex determination); plants are modular in structure and lack a germ line (allowing for a quantitative expression of gender that is not common in animals); and separate sexes in plants have ultimately evolved from hermaphroditic ancestors. Most theorising about sex determination in plants has focused on dioecious species, but we have much to learn from monecious or hermaphroditic species, where sex is determined at the level of modules, tissues or cells. Because of the fundamental modularity of plant development and potentially important evolutionary links between monoecy and dioecy, it may be useful to relax the distinction often made between 'developmental sex determination' (which underpins the development of male versus female flowers in monoecious species) and 'genetic sex determination' (which underpins the separation of males and females in dioecious species, often mediated by a genetic polymorphism and sex chromosomes). I also argue for relaxing the distinction between sex determination involving a genetic polymorphism and that involving responses to environmental or hormonal cues, because non-genetic cues might easily be converted into genetic switches.

  7. Shaping plant architecture

    PubMed Central

    Teichmann, Thomas; Muhr, Merlin

    2015-01-01

    Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs

  8. The Development of Plant Biotechnology.

    ERIC Educational Resources Information Center

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  9. 37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of photograph. STEEL PLANT, OPEN HOUSE INSIDE PLANT AT TIME OF ITS OPENING, 1910. (From the Bethlehem Steel Corporation Collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  10. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  11. Cytoskeleton and plant organogenesis.

    PubMed Central

    Kost, Benedikt; Bao, Yi-Qun; Chua, Nam-Hai

    2002-01-01

    The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development. PMID:12079673

  12. Plant ABC Transporters

    PubMed Central

    Kang, Joohyun; Park, Jiyoung; Choi, Hyunju; Burla, Bo; Kretzschmar, Tobias; Lee, Youngsook; Martinoia, Enrico

    2011-01-01

    ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival. PMID:22303277

  13. Medicinal plants: conception / contraception.

    PubMed

    Chaing, H S; Merino-chavez, G; Yang, L L; Wang, F N; Hafez, E S

    1994-01-01

    Researchers have conducted considerable experiments on the effectiveness and therapeutic values of Chinese herbs and parts of plants. We should not ignore the significance of natural medicine. The Chinese have been perfecting medicinal therapy based on the raw ingredients of plants/herbs and their derivatives for thousands of years. Chinese practitioners of traditional medicine prescribe medicines based on yin and yang. Traditional medicine is communicated in a verb or written form. Natural resources used in traditional medicine to treat diseases are not limited to just medicinal plants but also include animals, shell fish, and minerals. Parts of plants used in traditional medicine are leaves, stems, flowers, bark, and root. Chinese medicine is the world's oldest continuous surviving tradition. The Chinese experimented with local plants, often resulting in mild to violent reactions. This process allowed them to become familiar with poisonous plants and those that could relieve pain or successfully treat illness. Current allopathic medicines are composed of synthetic compounds copied from natural chemical derivatives, which tend to be more potent than the original compound. Some medicinal plants used to effect conception/contraception include Striga astiatica (contraceptive); Eurycoma longifolia (male virility); and a mixture of lengkuas, mengkudu masak, black pepper seeds, ginger, salt, and 2 eggs (increase libido). Women in Malaysia take jamu to preserve their body shape and to provide nutrition during pregnancy. Praneem causes local cell-mediated immunity in the uterus. Clinical trials of Praneem with or without the hCG vaccine are planned.

  14. Plants and weightlessness

    NASA Technical Reports Server (NTRS)

    Karminskiy, V.; Tarkhanovskiy, V.

    1980-01-01

    The growth of two plants, wall cress and short-day red goosefoot, was traced for their entire lifetime in weightlessness. In the beginning both plants grew normally: the seeds sprouted in the normal periods, and the shoots did not differ in any way from the control plants. It is true that certain roots lost their normal orientation and did not go deeper into the nutrient medium, but rather crept over its surface. But then both the wall cress and the goosefoot slowed down their normal rate of growth, which became noticeable from the rate of formation of new leaves in the wall cress and stem development in the goosefoot. Although no disorders were successfully found in the morphology of the two plants, almost half of the experimental cress and goosefoot plants ceased growth completely, yellowed and died. The other part continued to develop normally and by the end of vegetation, differed from the control plants only in a lower height. Not all were fertile since certain experimental plants, after losing spatial orientation, became twisted and produced sterile flowers.

  15. Plants as Environmental Biosensors

    PubMed Central

    Ranatunga, Don Rufus A

    2006-01-01

    Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants. PMID:19521490

  16. Plant perceptions of plant growth-promoting Pseudomonas.

    PubMed Central

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol. PMID:15306406

  17. Optofluidics of plants

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Vasdekis, Andreas E.; Choi, Jae-Woo

    2016-05-01

    Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.

  18. TOR signalling in plants.

    PubMed

    Rexin, Daniel; Meyer, Christian; Robaglia, Christophe; Veit, Bruce

    2015-08-15

    Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.

  19. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  20. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  1. Plant genomics: an overview.

    PubMed

    Campos-de Quiroz, Hugo

    2002-01-01

    Recent technological advancements have substantially expanded our ability to analyze and understand plant genomes and to reduce the gap existing between genotype and phenotype. The fast evolving field of genomics allows scientists to analyze thousand of genes in parallel, to understand the genetic architecture of plant genomes and also to isolate the genes responsible for mutations. Furthermore, whole genomes can now be sequenced. This review addresses these issues and also discusses ways to extract biological meaning from DNA data. Although genomic issuesare addressed from a plant perspective, this review provides insights into the genomic analyses of other organisms.

  2. Cardioactive agents from plants.

    PubMed

    Gutiérrez, Rosa Martha Pérez; Baez, Efren Garcia

    2009-06-01

    This review presents 201 compounds isolated and identified from plants that present cardioactive activity. These substances have been classified by chemical groups and each provides the most relevant information of its pharmacological activity, action mechanism, chemical structure, spectroscopic date and other properties. Chemical structures have been drawn to indicate the stereochemistry. In this review the summary of the scientific information of plants that present biological activity and the compounds responsible for this activity is presented, which introduces the reader to the study of medicinal plants and also provide bibliographic references, where a detailed study of pharmacology can be found.

  3. Plant Genome Duplication Database.

    PubMed

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  4. Our World: Plants in Space

    NASA Video Gallery

    Find out how plants use light to make their own food in a process called photosynthesis. See how NASA uses LED lights to help grow plants in space. Design your own plant growth chamber like the one...

  5. Plant protein glycosylation

    PubMed Central

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  6. The dynamic plant chondriome.

    PubMed

    Logan, David C

    2010-08-01

    The higher plant chondriome is highly dynamic both in terms of the morphology and velocity of individual mitochondria within any given cell. Plant mitochondrial dynamics is a relatively new area of research, but one that has developed considerably over the early years of this century due to the generation of mitochondrially targeted fluorescent protein constructs and stably transformed lines. Several putative members of the plant mitochondrial division apparatus have been identified, but no genes have been identified as being involved in mitochondrial fusion. Despite the highly dynamic nature of plant mitochondria there is little specific scientific evidence linking mitochondrial dynamics to organelle and cell function. Two exceptions to this are the changes in mitochondrial dynamics that are early events during the induction of cell death programmes, and the extensive mitochondrial fusion that occurs before cytokinesis, although in both cases the role(s) of these events are a matter for conjecture.

  7. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  8. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  9. Memristors in plants

    PubMed Central

    Volkov, Alexander G; Tucket, Clayton; Reedus, Jada; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    We investigated electrical circuitry of the Venus flytrap, Mimosa pudica and Aloe vera. The goal was to discover if these plants might have a new electrical component—a resistor with memory. This element has attracted great interest recently and the researchers were looking for its presence in different systems. The analysis was based on cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation of plants by bipolar sinusoidal or triangle periodic waves induces electrical responses in the Venus flytrap, Mimosa pudica and Aloe vera with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in plant tissue. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. This study can be a starting point for understanding mechanisms of memory, learning, circadian rhythms, and biological clocks. PMID:24556876

  10. The Plant Population Explosion

    ERIC Educational Resources Information Center

    Swaminathan, M. S.

    1973-01-01

    Results achieved by researchers in the field of genetic plant engineering are described. However, it is believed that if their efforts were more decentralized, more farmers, especially in developing countries, could benefit and substantial advances made in production. (BL)

  11. Plant Models for DEMO

    NASA Astrophysics Data System (ADS)

    Maisonnier, David

    2008-03-01

    The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs for commercial fusion power plants. It focused on five power plant models, named PPCS A, B, AB, C and D, which are illustrative of a wider spectrum of possibilities. The PPCS study highlighted the need for specific design and R&D activities as well as the need to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first fusion power plant. An assessment of the PPCS models with limited extrapolations has led to the clarification of the objectives of DEMO. Many parameters will have to be controlled in DEMO in order (1) to control the machine, (2) to satisfy the testing requirements, (3) to satisfy regulatory requirements (primarily safety), and (4) to protect the investment. On the other, DEMO will ulilise one or two plasma scenarios only.

  12. Plant Growth Facility (PGF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  13. Chitosan in Plant Protection

    PubMed Central

    El Hadrami, Abdelbasset; Adam, Lorne R.; El Hadrami, Ismail; Daayf, Fouad

    2010-01-01

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions. PMID:20479963

  14. Geiselbullach refuse incineration plant

    SciTech Connect

    Not Available

    1990-03-01

    The vast diversity of wastes, heightened awareness of environmental problems, and unabating demand for power and raw materials, are making it imperative to minimize waste-dumping. Refuse incineration power plants present an ecologically and economically sound answer to this problem, since they also enable communities and large industrial facilities to convert their wastes into electricity and energy for district heating. The refuse produced each year by 1,000,000 people represents a resource equivalent to $30 million of fuel oil. This plant is now converting into energy the waste produced by a population of 280,000. The conversion and expansion were completed without any significant interruption to plant operation. The modernized plant complies fully with today's stringent legal requirements for obtaining an operating license in West Germany. Because landfill sites are becoming increasingly scarce everywhere, thermal processes that dispose of refuse and simultaneously generate electrical power and heat are creating a great deal of interest.

  15. Power plant profiles

    SciTech Connect

    Jakansi, J.

    1997-03-01

    The facilities described here represent the rich variety of technologies being applied at new and existing powerplants in the US. While new capacity additions are at an all-time low in this country, the plants and projects that are completed generally represent new highs in regulatory compliance, technical savvy, and management ingenuity. They range from a 4-MW landfill-gas-fired turbine to a 2,500-MW nuclear plant. Several gas-turbine projects are included, confirming the current dominance of this technology. The projects are: Fort St. Vrain, Pinon Pine, Cleburne cogeneration plant, Gilbert station, Hanes Mill Rd, El Dorado, Wolf Creek, South Texas Project, Stanton Energy Center Unit 2, Milliken station and Northampton plant.

  16. Education Highlights: Plant Health

    SciTech Connect

    Michaels, Michelle; Cook, David

    2016-01-27

    Argonne intern Michelle Michaels from Oakland Community College worked with Argonne mentor David Cook in studying trends in plant health. This research will help farmers determine crop yield during the growing season.

  17. Plant Vascular Biology 2010

    SciTech Connect

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  18. Cyanogenesis in Plants 1

    PubMed Central

    Poulton, Jonathan E.

    1990-01-01

    Several thousand plant species, including many economically important food plants, synthesize cyanogenic glycosides and cyanolipids. Upon tissue disruption, these natural products are hydrolyzed liberating the respiratory poison hydrogen cyanide. This phenomenon of cyanogenesis accounts for numerous cases of acute and chronic cyanide poisoning of animals including man. This article reviews information gathered during the past decade about the enzymology and molecular biology of cyanogenesis in higher plants. How compartmentation normally prevents the large-scale, suicidal release of HCN within the intact plant is discussed. A renewed interest in the physiology of these cyanogenic compounds has revealed that, in addition to providing protection for some species against herbivory, they may also serve as storage forms for reduced nitrogen. PMID:16667728

  19. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  20. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  1. Chitosan in plant protection.

    PubMed

    El Hadrami, Abdelbasset; Adam, Lorne R; El Hadrami, Ismail; Daayf, Fouad

    2010-03-30

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.

  2. Education Highlights: Plant Health

    ScienceCinema

    Michaels, Michelle; Cook, David

    2016-07-12

    Argonne intern Michelle Michaels from Oakland Community College worked with Argonne mentor David Cook in studying trends in plant health. This research will help farmers determine crop yield during the growing season.

  3. Aquaporins and plant transpiration.

    PubMed

    Maurel, Christophe; Verdoucq, Lionel; Rodrigues, Olivier

    2016-11-01

    Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth.

  4. Sulfation pathways in plants.

    PubMed

    Koprivova, Anna; Kopriva, Stanislav

    2016-11-25

    Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.

  5. Memristors in plants.

    PubMed

    Volkov, Alexander G; Tucket, Clayton; Reedus, Jada; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    We investigated electrical circuitry of the Venus flytrap, Mimosa pudica and Aloe vera. The goal was to discover if these plants might have a new electrical component--a resistor with memory. This element was postulated recently and the researchers were looking for its presence in different systems. The analysis was based on cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation of plants by bipolar sinusoidal or triangle periodic waves induces electrical responses in the Venus flytrap, Mimosa pudica and Aloe vera with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in plant tissue. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of plants has properties of a memristor. This study can be a starting point for understanding mechanisms of memory, learning, circadian rhythms, and biological clocks.

  6. Overnight Scentsation Rose Plant

    NASA Technical Reports Server (NTRS)

    1998-01-01

    International Flavors and Fragrances Inc., Dr. Braja Mookherjee with the Overnight Scentsation rose plant after its flight aboard NASA's shuttle mission STS-95 for experimentation on scent in microgravity.

  7. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  8. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  9. Plant Carbonic Anhydrases

    PubMed Central

    Atkins, C. A.; Patterson, B. D.; Graham, D.

    1972-01-01

    On the basis of polyacrylamide gradient gel electrophoresis of leaf extracts from 24 species of higher plants, two main forms of carbonic anhydrase (EC 4.2.1.1) were recognized; the “dicotyledon” type and the “monocotyledon” type. More than one band of enzyme was found on gels from most species, suggesting the possibility of carbonic anhydrase isoenzymes in higher plants. Images PMID:16658144

  10. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  11. Molecular plant volatile communication.

    PubMed

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  12. Landscaping plant epigenetics.

    PubMed

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  13. Variable plant spacing

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Weiss, Lee

    1988-01-01

    The goal of this project was to develop a system for varying the spacings between soybean plants as they grow to maximize the number of plants grown in a given volume. The project was studied to aid in the development of NASA's Controlled Ecological Life Support System (CELSS). The resulting design consists of plant trays which are three dimensional trapezoids arranged into circles in a compact geometrical configuration. These circles are stacked together in back to back pairs to form a long cylinder. In each growth tray, plants will be housed in individual containers containing a nutrient delivery system and a plant support mechanism. Between the containers, a half trellis has been designed to space the plants for maximum space efficiency. The design allows for localized seeding and harvesting mechanisms due to the chambers' geometrical configuration. In addition, the components have been designed for ease of cleaning and minimal maintenance. Next semester, the individual components will be constructed and tested to determine the success of the design.

  14. Coal processing plants

    NASA Astrophysics Data System (ADS)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  15. Detecting Plant Stress

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through an exclusive patent license from NASA Stennis Space Center, Spectrum Technologies, Inc., has developed a hand-held tool that helps farmers, foresters and other growers detect unhealthy crops before the human eye can see the damage. Developed by two NASA researchers, the Observer,TM shows the viewer which plants are under stress through multispectral imaging, a process that uses specific wavelengths of the light spectrum to obtain information about objects-in this case, plants. With this device, several wavelengths of light collect information about the plant and results are immediately processed and displayed. NASA research found that previsible signs of stress, such as such as a lack of nutrients, insufficient water, disease, or insect damage, can be detected by measuring the chlorophyll content based on light energy reflected from the plant. The Observer detects stress up to 16 days before deterioration is visible to the eye. Early detection provides an opportunity to reverse stress and save the plant. The hand-held, easily operated unit works in both natural and artificial light, making it suitable for outdoor or indoor planting.

  16. Urea metabolism in plants.

    PubMed

    Witte, Claus-Peter

    2011-03-01

    Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency.

  17. Gravity Cancellation in Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2005-04-01

    I have measured a 22% reduction in gravity, at maximum sap flow, with an accelerometer placed in a small hole in a tree. Accelerometer manipulation indicates a possible reduction of 100% changing the geometry. This agrees with the author's related work indicating that plants are regulated by gravity related standing waves. There apparently are a limited set of plant internodal spacings (representing half wavelengths) and corresponding harmonically related frequencies. These repeat from plant to plant and from species to species. Measuring the angle of growth of a straight portion of a branch with respect to the horizontal or vertical most often yields an integral multiple of 5^o with respect to the horizontal or vertical. Plants are well known to grow correction tissue to correct artificially produced angle errors. The velocities of the waves in plants are integral multiples of a basic velocity like 48cm/s, much greater than ionic velocities. Disturbing the standing waves in one tree seems to disturb the standing waves in nearby trees. The waves causing the disturbance are found to travel at about 5m/s horizontally in air (and probably vacuum) thus they are not sound waves. See chatlink.com/˜oedphd.

  18. Designing the Perfect Plant: Activities to Investigate Plant Ecology

    ERIC Educational Resources Information Center

    Lehnhoff, Erik; Woolbaugh, Walt; Rew, Lisa

    2008-01-01

    Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted to plant biology. Therefore, the authors have developed a series of activities, including a card game--Designing the Perfect Plant--to introduce student's to plant ecology and the ecological trade offs…

  19. The iPlant collaborative: cyberinfrastructure for plant biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF)funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enabl...

  20. Chemical signaling between plants and plant-pathogenic bacteria.

    PubMed

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  1. Electroanalysis of Plant Thiols

    PubMed Central

    Supalkova, Veronika; Huska, Dalibor; Diopan, Vaclav; Hanustiak, Pavel; Zitka, Ondrej; Stejskal, Karel; Baloun, Jiri; Pikula, Jiri; Havel, Ladislav; Zehnalek, Josef; Adam, Vojtech; Trnkova, Libuse; Beklova, Miroslava; Kizek, Rene

    2007-01-01

    Due to unique physico-chemical properties of –SH moiety thiols comprise wide group of biologically important compounds. A review devoted to biological functions of glutathione and phytochelatins with literature survey of methods used to analysis of these compounds and their interactions with cadmium(II) ions and Murashige-Skoog medium is presented. For these purposes electrochemical techniques are used. Moreover, we revealed the effect of three different cadmium concentrations (0, 10 and 100 μM) on cadmium uptake and thiols content in maize plants during 192 hours long experiments using differential pulse anodic stripping voltammetry to detect cadmium(II) ions and high performance liquid chromatography with electrochemical detection to determine glutathione. Cadmium concentration determined in tissues of the plants cultivated in nutrient solution containing 10 μM Cd was very low up to 96 hours long exposition and then the concentration of Cd markedly increased. On the contrary, the addition of 100 μM Cd caused an immediate sharp increase in all maize plant parts to 96 hours Cd exposition but subsequently the Cd concentration increased more slowly. A high performance liquid chromatography with electrochemical detection was used for glutathione determination in treated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd) in comparison with non-treated plant (control) where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  2. Plants in alpine environments

    USGS Publications Warehouse

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  3. Aquatic Plants and their Control.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  4. Who Needs Plants? Science (Experimental).

    ERIC Educational Resources Information Center

    Ropeik, Bernard H.; Kleinman, David Z.

    The basic elective course in introductory botany is designed for secondary students who probably will not continue study in plant science. The objectives of the course are to help the student 1) identify, compare and differentiate types of plants; 2) identify plant cell structures; 3) distinguish between helpful and harmful plants; 4) predict…

  5. 76 FR 31171 - Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... an appropriate level of protection against the risk associated with imported plants for planting...; (301) 734-0627. SUPPLEMENTARY INFORMATION: Background Under the Plant Protection Act (PPA) (7 U.S.C... is consistent with the International Plant Protection Convention's (IPPC) Glossary of...

  6. Plant ID. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  7. Plant the Seeds of Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2004-01-01

    Both indoor and outdoor garden plants can cause problems. For example, the foliage of the bird-of-paradise and philodendron plants is toxic. A poinsettia leaf can kill a young child. Outdoor plants such as castor beans are highly dangerous. All parts of the potato and tomato plant are poisonous, except the potato and tomato themselves. Large…

  8. Plant arginyltransferases (ATEs).

    PubMed

    Domitrovic, Tatiana; Fausto, Anna K; Silva, Tatiane da F; Romanel, Elisson; Vaslin, Maite F S

    2017-02-13

    Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway.

  9. Sucrose signaling in plants

    PubMed Central

    Tognetti, Jorge A.; Pontis, Horacio G.; Martínez-Noël, Giselle M.A.

    2013-01-01

    The role of sucrose as a signaling molecule in plants was originally proposed several decades ago. However, recognition of sucrose as a true signal has been largely debated and only recently this role has been fully accepted. The best-studied cases of sucrose signaling involve metabolic processes, such as the induction of fructan or anthocyanin synthesis, but a large volume of scattered information suggests that sucrose signals may control a vast array of developmental processes along the whole life cycle of the plant. Also, wide gaps exist in our current understanding of the intracellular steps that mediate sucrose action. Sucrose concentration in plant tissues tends to be directly related to light intensity, and inversely related to temperature, and accordingly, exogenous sucrose supply often mimics the effect of high light and cold. However, many exceptions to this rule seem to occur due to interactions with other signaling pathways. In conclusion, the sucrose role as a signal molecule in plants is starting to be unveiled and much research is still needed to have a complete map of its significance in plant function. PMID:23333971

  10. Plant chlorophyll content meter

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.

  11. Transgenic plants for phytoremediation.

    PubMed

    Maestri, Elena; Marmiroli, Nelson

    2011-01-01

    Phytoremediation is a green, sustainable and promising solution to problems of environmental contamination. It entails the use of plants for uptake, sequestration, detoxification or volatilization of inorganic and organic pollutants from soils, water, sediments and possibly air. Phytoremediation was born from the observation that plants possessed physiological properties useful for environmental remediation. This was shortly followed by the application of breeding techniques and artificial selection to genetically improve some of the more promising and interesting species. Now, after nearly 20 years of research, transgenic plants for phytoremediation have been produced, but none have reached commercial existence. Three main approaches have been developed: (1) transformation with genes from other organisms (mammals, bacteria, etc.); (2) transformation with genes from other plant species; and (3) overexpression of genes from the same plant species. Many encouraging results have been reported, even though in some instances results have been contrary to expectations. This review will illustrate the main examples with a critical discussion of what we have learnt from them.

  12. Plant critical concept

    SciTech Connect

    O`Regan, P.J.

    1995-12-31

    The achievement of operation and maintenance (O&M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant.

  13. Maintaining plant safety margins

    SciTech Connect

    Bergeron, P.A.

    1989-01-01

    The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

  14. Plants, diet, and health.

    PubMed

    Martin, Cathie; Zhang, Yang; Tonelli, Chiara; Petroni, Katia

    2013-01-01

    Chronic disease is a major social challenge of the twenty-first century. In this review, we examine the evidence for discordance between modern diets and those on which humankind evolved as the cause of the increasing incidence of chronic diseases, and the evidence supporting consumption of plant foods as a way to reduce the risk of chronic disease. We also examine the evidence for avoiding certain components of plant-based foods that are enriched in Western diets, and review the mechanisms by which different phytonutrients are thought to reduce the risk of chronic disease. This body of evidence strongly suggests that consuming more fruits and vegetables could contribute both to medical nutrition therapies, as part of a package of treatments for conditions like type 2 diabetes, heart disease, cancer, and obesity, and to the prevention of these diseases. Plant science should be directed toward improving the quality of plant-based foods by building on our improved understanding of the complex relationships between plants, our diet, and our health.

  15. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  16. Plant defense after flooding

    PubMed Central

    Hsu, Fu-Chiun; Shih, Ming-Che

    2013-01-01

    Since the first study of hypoxic response in plants with cDNA microarray in 2002, the number of hypoxia-responsive genes has grown to more than 2000. However, to date, only small numbers of hypoxia-responsive genes are known to confer hypoxic resistance. Most investigations in this area have focused on identifying which genes are responsive and then characterized how these genes are induced during hypoxia, but the roles of numerous genes in hypoxic response are still unknown. In our recent study, we demonstrated that a group of genes are induced by submergence to trigger plant immunity, which is a response to protect plants against a higher probability of pathogen infection during or after flooding. This work offered a brand new perspective, i.e., that hypoxia-responsive genes can be induced for reasons other than conferring hypoxic resistance. Possible reasons why these responses were triggered are discussed herein. PMID:24300693

  17. Tungsten Toxicity in Plants

    PubMed Central

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  18. Calcium in Plants

    PubMed Central

    WHITE, PHILIP J.; BROADLEY, MARTIN R.

    2003-01-01

    Calcium is an essential plant nutrient. It is required for various structural roles in the cell wall and membranes, it is a counter‐cation for inorganic and organic anions in the vacuole, and the cytosolic Ca2+ concentration ([Ca2+]cyt) is an obligate intracellular messenger coordinating responses to numerous developmental cues and environmental challenges. This article provides an overview of the nutritional requirements of different plants for Ca, and how this impacts on natural flora and the Ca content of crops. It also reviews recent work on (a) the mechanisms of Ca2+ transport across cellular membranes, (b) understanding the origins and specificity of [Ca2+]cyt signals and (c) characterizing the cellular [Ca2+]cyt‐sensors (such as calmodulin, calcineurin B‐like proteins and calcium‐dependent protein kinases) that allow plant cells to respond appropriately to [Ca2+]cyt signals. PMID:12933363

  19. Geothermal Plant Capacity Factors

    SciTech Connect

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  20. Willow plant name 'Preble'

    SciTech Connect

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  1. Landscape genetics of plants.

    PubMed

    Holderegger, Rolf; Buehler, Dominique; Gugerli, Felix; Manel, Stéphanie

    2010-12-01

    Landscape genetics is the amalgamation of landscape ecology and population genetics to help with understanding microevolutionary processes such as gene flow and adaptation. In this review, we examine why landscape genetics of plants lags behind that of animals, both in number of studies and consideration of landscape elements. The classical landscape distance/resistance approach to study gene flow is challenging in plants, whereas boundary detection and the assessment of contemporary gene flow are more feasible. By contrast, the new field of landscape genetics of adaptive genetic variation, establishing the relationship between adaptive genomic regions and environmental factors in natural populations, is prominent in plant studies. Landscape genetics is ideally suited to study processes such as migration and adaptation under global change.

  2. Plant extracts in BPH.

    PubMed

    Di Silverio, F; Flammia, G P; Sciarra, A; Caponera, M; Mauro, M; Buscarini, M; Tavani, M; D'Eramo, G

    1993-12-01

    In Italy plant extracts represent 8.6% of all pharmacological prescriptions for Benign Prostatic Hyperplasia (data from 1991). This review evaluates all the suggested mechanisms of action for plant extracts. Recently we demonstrated an antiestrogenic effect of Serenoa Repens in BPH patients. Clinical trials with plant extracts have yielded conflicting results. In a recent review by Dreikorn and Richter, only five placebo controlled studies were found. Moreover, as opposed to chemically defined drugs, it is possible that for these extracts the active ingredients are not known; consequently pharmacodynamic and pharmacokinetic data are often missing. The International Consultation of Benign Prostatic Hyperplasia (Paris, June 1991) concluded that, to date, phytotherapeutic agents must be considered as a symptomatic treatment. Now more adequate pharmacological and clinical studies, placebo controlled, should determine the exact role of these drugs in the treatment of BPH.

  3. Trehalose metabolism in plants.

    PubMed

    Lunn, John Edward; Delorge, Ines; Figueroa, Carlos María; Van Dijck, Patrick; Stitt, Mark

    2014-08-01

    Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.

  4. Apoplastic interactions between plants and plant root intruders.

    PubMed

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  5. Transient transformation of plants.

    PubMed

    Jones, Huw D; Doherty, Angela; Sparks, Caroline A

    2009-01-01

    Transient expression in plants is a valuable tool for many aspects of functional genomics and promoter testing. It can be used both to over-express and to silence candidate genes. It is also scaleable and provides a viable alternative to microbial fermentation and animal cell culture for the production of recombinant proteins. It does not depend on chromosomal integration of heterologous DNA so is a relatively facile procedure and can lead to high levels of transgene expression. Recombinant DNA can be introduced into plant cells via physical methods, via Agrobacterium or via viral vectors.

  6. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  7. Plant biotechnology: transgenic crops.

    PubMed

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  8. Orgenic plants: gene-manipulated plants compatible with organic farming.

    PubMed

    Ryffel, Gerhart U

    2012-11-01

    Based on recent advances in plant gene technology, I propose to develop a new category of GM plants, orgenic plants, that are compatible with organic farming. These orgenic plants do not contain herbicide resistance genes to avoid herbicide application in agriculture. Furthermore, they either contain genes that are naturally exchanged between species, or are sterile to avoid outcrossing if they received a transgene from a different species. These GM plants are likely to be acceptable to most skeptics of GM plants and facilitate the use of innovative new crops.

  9. Plant neurobiology: from sensory biology, via plant communication, to social plant behavior.

    PubMed

    Baluska, Frantisek; Mancuso, Stefano

    2009-02-01

    In plants, numerous parameters of both biotic and abiotic environments are continuously monitored. Specialized cells are evolutionary-optimized for effective translation of sensory input into developmental and motoric output. Importantly, diverse physical forces, influences, and insults induce immediate electric responses in plants. Recent advances in plant cell biology, molecular biology, and sensory ecology will be discussed in the framework of recently initiated new discipline of plant sciences, namely plant neurobiology.

  10. Modeling plant growth and development.

    PubMed

    Prusinkiewicz, Przemyslaw

    2004-02-01

    Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.

  11. Mechanisms in Plant Development

    SciTech Connect

    Hake, Sarah

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  12. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  13. Phenolics and plant allelopathy.

    PubMed

    Li, Zhao-Hui; Wang, Qiang; Ruan, Xiao; Pan, Cun-De; Jiang, De-An

    2010-12-07

    Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  14. Salinity and Plants.

    ERIC Educational Resources Information Center

    Langsford, Simon; Meredith, Steve; Munday, Bruce

    2002-01-01

    Presents science activities that mirror real life issues relating to plants and sustainability. Describes how to turn seed growing activities into an environmental simulation. Discusses the advantages of cross-curriculum learning opportunities. Includes student references and notes for teachers. (KHR)

  15. Plant Biotech Lab Manual.

    ERIC Educational Resources Information Center

    Tant, Carl

    This book provides laboratory experiments to enhance any food science/botany curriculum. Chapter 1, "Introduction," presents a survey of the techniques used in plant biotechnology laboratory procedures. Chapter 2, "Micronutrition," discusses media and nutritional requirements for tissue culture studies. Chapter 3, "Sterile Seeds," focuses on the…

  16. Pinellas Plant facts

    SciTech Connect

    1990-11-01

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  17. Power plants to go

    SciTech Connect

    Valenti, M.

    1996-05-01

    Simple-cycle portable power stations have been used to increase the electrical capacity in developing countries and in emergency situations. This article describes the first power barge using combined-cycle technology which has began operation in the Dominican Republic. The construction of a new mobile power plant in Puerto Plata, the Dominican Republic, marks the first time a power barge has been coupled with the efficiency of combined-cycle generation. The 185-megawatt plant, which became fully operational in January, provides 25% of the power required by the Dominican state-owned utility, the Corporacion Dominicana de Electricidad (CDE). The new plant is designed to end the power shortages and blackouts that have traditionally plagued the Caribbean nation. The Puerto Plata plant consists of two barges that were built in the US, transported to the Dominican Republic, installed, and backfilled into place. One barge, delivered in May 1994, contains a 76-megawatt gas turbine. The second barge, installed in April 1995, contains a 45-megawatt heat-recovery steam generator to recover heat energy from the turbine exhaust, two auxiliary boilers to produce additional steam, and a 118-megawatt steam-turbine generator.

  18. Planting for Wildlife.

    ERIC Educational Resources Information Center

    Dawson, Chad P.; Decker, Daniel J.

    1979-01-01

    Songbirds and small mammals can be encouraged to visit and live in residential yards if structures such as bird feeders and birdbaths are provided and if vegetation is planted to provide basic requirements of wildlife habitat. Examples and instructions are provided. (RE)

  19. Plant salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors have led to increased interest in using recycled wastewaters to irrigate agronomic and horticultural crops as well as plants in ornamental landscapes. One major driving force is the uncertainty of the allocation and dependability of good quality water in the future as competition among...

  20. Plants and Medicinal Chemistry

    ERIC Educational Resources Information Center

    Bailey, D.

    1977-01-01

    This is the first of two articles showing how plants that have been used in folk medicine for many centuries are guiding scientists in the design and preparation of new and potent drugs. Opium and its chemical derivatives are examined at length in this article. (Author/MA)

  1. Herbicides and plant hormesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide hormesis is commonly observed at sub-toxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon is influenced by plant growth stage and physiological status, environmental factors, the endpoint measured, and the timing between treatment and endpoint me...

  2. Engineered minichromosomes in plants.

    PubMed

    Birchler, James A

    2015-02-01

    Engineered minichromosomes have been produced in several plant species via telomere-mediated chromosomal truncation. This approach bypasses the complications of the epigenetic nature of centromere function in plants, which has to date precluded the production of minichromosomes by the re-introduction of centromere sequences to a plant cell. Genes to be added to a cleaved chromosome are joined together with telomere repeats on one side. When these constructs are introduced into plant cells, the genes are ligated to the broken chromosomes but the telomere repeats will catalyze the formation of a telomere on the other end cutting the chromosome at that point. Telomere-mediated chromosomal truncation is sufficiently efficient that very small chromosomes can be generated consisting of basically the endogenous centromere and the added transgenes. The added transgenes provide a platform onto which it should be possible to assemble a synthetic chromosome to specification. Combining engineered minichromosomes with doubled haploid breeding should greatly expedite the transfer of transgenes to new lines and to test the interaction of transgenes in new background genotypes. Potential basic and applied applications of synthetic chromosomes are discussed.

  3. B Plant hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-23

    This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  4. T Plant hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-27

    This document establishes the technical basis in support of Emergency Planning activities for the T Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  5. Plants on the Move

    ERIC Educational Resources Information Center

    Bricker, Mary

    2009-01-01

    When it comes to directly interacting with and doing experiments with organisms, plants have some distinct advantages over animals. Their diversity and accessibility allows students to use them in experiments, thus practicing important science inquiry skills. This article describes an investigation that was designed to help students appreciate the…

  6. Tetrapyrrole Signaling in Plants

    PubMed Central

    Larkin, Robert M.

    2016-01-01

    Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling. PMID:27807442

  7. Plants and Pollution

    ERIC Educational Resources Information Center

    Brunsell, Eric; Hug, J. William

    2007-01-01

    Investigations with Wisconsin Fast Plants can make the subject matter come alive...or dead, depending on the experimental treatment. This became apparent when a university-based teacher educator and a fifth-grade teacher collaborated on a professional development experience aimed at increasing understanding of how science inquiry could be used…

  8. Peru, People and Plants.

    ERIC Educational Resources Information Center

    Thompson, Dennis

    Designed for horticulture, horticulture therapy, and botany students at Edmonds Community College (Washington), this 6-hour module explores the pre-Columbian use of plant materials in Peru and its relationships to cultural practices in modern Peru. The first sections provide basic information about the module, such as its objectives, the concepts…

  9. Plant Tissue Culture Studies.

    ERIC Educational Resources Information Center

    Smith, Robert Alan

    Plant tissue culture has developed into a valid botanical discipline and is considered a key area of biotechnology, but it has not been a key component of the science curriculum because of the expensive and technical nature of research in this area. This manual presents a number of activities that are relatively easy to prepare and perform. The…

  10. Wanted: Schoolyard Plants.

    ERIC Educational Resources Information Center

    Callison, Priscilla L.; Wright, Emmett L.

    1992-01-01

    Describes an activity for studying weeds in grades four through nine. "Wanted" posters are prepared with the scientific name of a common weed and a few identifying features. Students find the plant, give it an "alias" or common name, and then draw the "wanted" picture. Presents six wanted posters and describes expansion lessons and follow-up…

  11. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  12. Plant biochemistry course, 1993

    SciTech Connect

    1993-12-31

    This paper provides a brief description of a summer lecture course on metabolic pathways and regulation of flow through these pathways in plants. Descriptions of the 1992 course held at La Jolla,Ca; 1993 course held in Madison, Wis, and plans for the 1994 course projected for East Lansing, MI.

  13. Plants, People, and Politics

    ERIC Educational Resources Information Center

    Galston, Arthur W.

    1970-01-01

    Advocates that some established botanists should become involved in social and political problems to which botanical expertise is relevant. Discusses food production in relation to world population growth, indicating problems on which botanical knowledge and research should be brought to bear. Discusses herbicides and plant growth regulators as…

  14. Parasites, Plants, and People.

    PubMed

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment.

  15. [Amebicidal plants extracts].

    PubMed

    Derda, Monika; Hadaś, Edward; Thiem, Barbara; Sułek, Anna

    2004-01-01

    The free-living amoebae from genus Acanthamoeba are the causative agents of granulomatous amebic encephalitis (GAE), a chronic progressive disease of the central nervous system; amebic keratitis (AK), a chronic eye infection; amebic pneumitis (AP), a chronic lung infection, and skin infection. Chemotherapy of Acanthamoeba infection is problematic. The majority of infections have been fatal. Only a few cases are reported to have been treated successfully with very highly toxic drugs. The therapy might be succeed, if the diagnosis and therapy is made at very early stage of infection. In our experiments we used the following plant extracts: Solidago virgaurea, Solidago graminifolia, Rubus chamaemorus, Pueraria lobata, and natural plants products as ellagic acid and puerarin. Those therapeutic agents and plants extracts have been tested in vitro for amebicidal or amebostatic activity against pathogenic Acanthamoeba spp. Our results showed that methanol extracts obtained from plants are active against axenic pathogenic Acanthamoeba sp. trophozoites in vitro at concentration below 0.1 mg/ml. Further studies are needed to investigate whether these extracts are also effective in vivo in animal model of infection with Acanthamoeba sp.

  16. Diagnosing Physical Plant Operation

    ERIC Educational Resources Information Center

    McKay, B. P.; Smith, H. W.

    1972-01-01

    Describes a survey designed to help administrators evaluate functional aspects, adequacy of employee work areas, quality of housekeeping methods, maintenance response, interior and exterior appearances, alteration and renovation satisfaction, employee feelings about parking adequacy, plant security, and attraction and function of roads and…

  17. Apoplastic interactions between plants and plant root intruders

    PubMed Central

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  18. Evolution of plant senescence

    PubMed Central

    Thomas, Howard; Huang, Lin; Young, Mike; Ougham, Helen

    2009-01-01

    Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic characteristics of senescence

  19. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  20. Indigenous plant remedies in Zimbabwe.

    PubMed

    Chinemana, F; Drummond, R B; Mavi, S; de Zoysa, I

    1985-01-01

    Two household surveys undertaken in Zimbabwe between 1981 and 1983 revealed extensive use of indigenous plant remedies in the home-management of childhood diarrhoea and many adult illnesses. Names of the local plants, trees and shrubs are listed, together with the part of the plant used and the type of condition treated. The usage of medicinal plants underscores the need for further study of indigenous pharmacopoeias and the therapeutic properties of plants. The role of indigenous plant remedies within local health care systems is also worthy of closer investigation.

  1. Top 10 Plant Viruses in Molecular Plant Pathology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientific and economic importance were used to rank plant viruses to indicate the Top 10. Each virus is discussed to open debate and conversation within and beyond the plant virology community as new pathogens come and go in importance....

  2. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  3. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  4. Plant blindness and the implications for plant conservation.

    PubMed

    Balding, Mung; Williams, Kathryn J H

    2016-12-01

    Plant conservation initiatives lag behind and receive considerably less funding than animal conservation projects. We explored a potential reason for this bias: a tendency among humans to neither notice nor value plants in the environment. Experimental research and surveys have demonstrated higher preference for, superior recall of, and better visual detection of animals compared with plants. This bias has been attributed to perceptual factors such as lack of motion by plants and the tendency of plants to visually blend together but also to cultural factors such as a greater focus on animals in formal biological education. In contrast, ethnographic research reveals that many social groups have strong bonds with plants, including nonhierarchical kinship relationships. We argue that plant blindness is common, but not inevitable. If immersed in a plant-affiliated culture, the individual will experience language and practices that enhance capacity to detect, recall, and value plants, something less likely to occur in zoocentric societies. Therefore, conservation programs can contribute to reducing this bias. We considered strategies that might reduce this bias and encourage plant conservation behavior. Psychological research demonstrates that people are more likely to support conservation of species that have human-like characteristics and that support for conservation can be increased by encouraging people to practice empathy and anthropomorphism of nonhuman species. We argue that support for plant conservation may be garnered through strategies that promote identification and empathy with plants.

  5. Plant hydraulics as a hub integrating plant and ecosystem function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water plays a central role in plant biology and the efficiency of water transport throughout the plant (i.e., “plant hydraulics”) affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits media...

  6. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  7. Plant Genetic Resources: Not Just for Plant Breeding Anymore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. National Plant Germplasm System maintains over 480,000 accessions of plant genetic resources from 2,000 genera and 12,400 species. These genetic resources consist of agronomic crops, horticultural crops, fruit and nut crops, medicinal plants, ornamental crops, and other species. Each year...

  8. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  9. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  10. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  11. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  12. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  13. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  14. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  15. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  16. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  17. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  18. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  19. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  20. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  1. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  2. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  3. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  4. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  5. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  6. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  7. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  8. 7 CFR 52.81 - Plant survey.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... for Plants to Be Approved and for Plants Using Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or the inauguration of in-plant inspection services, and at...

  9. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  10. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  11. 7 CFR 52.81 - Plant survey.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... for Plants to Be Approved and for Plants Using Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or the inauguration of in-plant inspection services, and at...

  12. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  13. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  14. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  15. Plants Do the Weirdest Things!

    ERIC Educational Resources Information Center

    Lewis, Carol

    1992-01-01

    Discusses some of the remarkable capabilities and fascinating behavior of plants. Describes several simple experiments that young scientists can accomplish with plants to demonstrate their ability to sense, react, and adapt to their environment. (JJK)

  16. TRIBAL MEDICINAL PLANTS OF CHITTOOR

    PubMed Central

    Vedavathy, S.; Sudhakar, A.; Mrdula, V.

    1997-01-01

    Medicinal plants used in tribal medicine from chittoor district have been surveyed and documented systematically. The paper deals with 202 medicinal plants, indexed along with important tribal applications for the cure of various ailments. PMID:22556807

  17. Ecology of Fungal Plant Pathogens.

    PubMed

    Termorshuizen, Aad J

    2016-12-01

    Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

  18. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  19. Birth of space plant growing

    NASA Technical Reports Server (NTRS)

    Mashinskiy, A.; Nechitaylo, G.

    1983-01-01

    The attempts, and successes, to grow plants in space, and get them to fully develop, bloom and produce seeds using orchids are presented. The psychological advantages of the presence of plants onboard space vehicles and space stations is indicated.

  20. Protecting Yourself from Poisonous Plants

    MedlinePlus

    ... NIOSH NIOSH Fast Facts: Protecting Yourself from Poisonous Plants Language: English Español (Spanish) Kreyol Haitien (Hatian Creole) ... outdoors is at risk of exposure to poisonous plants, such as poison ivy, poison oak, and poison ...

  1. Production of virus resistant plants

    DOEpatents

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  2. Teaching Tips: Plant Tissue Testing.

    ERIC Educational Resources Information Center

    Osborne, Ed

    1991-01-01

    Plant tissue testing can be done to monitor plant nutrition levels during the growing season and diagnose nutrient deficiency problems. They can provide feedback on crop conditions and fertility needs. (Author)

  3. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  4. Jennings Demonstration PLant

    SciTech Connect

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  5. Plant TOR signaling components

    PubMed Central

    John, Florian; Roffler, Stefan; Wicker, Thomas; Ringli, Christoph

    2011-01-01

    Cell growth is a process that needs to be tightly regulated. Cells must be able to sense environmental factors like nutrient abundance, the energy level or stress signals and coordinate growth accordingly. The Target Of Rapamycin (TOR) pathway is a major controller of growth-related processes in all eukaryotes. If environmental conditions are favorable, the TOR pathway promotes cell and organ growth and restrains catabolic processes like autophagy. Rapamycin is a specific inhibitor of the TOR kinase and acts as a potent inhibitor of TOR signaling. As a consequence, interfering with TOR signaling has a strong impact on plant development. This review summarizes the progress in the understanding of the biological significance and the functional analysis of the TOR pathway in plants. PMID:22057328

  6. Plant hydrocarbon recovery process

    SciTech Connect

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  7. Pardee prep plant expansion

    SciTech Connect

    Holcomb, T.; Pinson, K.; Bethell, P.

    2007-01-15

    By adding a heavy-media vessel and improving the fine coal circuit, Cumberland River Coal's Pardee preparation plant (in Wise County, VA) increased raw feed capacity with minimal disruptions. The plan called for the installation of a heavy media vessel to treat 5 x 1/2 inch material with a cyclone circuit processing 1/2 inch x 1 mm, and a deslime column flotation circuit. The article describes the new circuit design and the construction process. In January 2006, the plant's raw feed capacity averaged 765 tph over six days. The article was adapted from a paper presented at Coal prep 2006 (2-4 May, Lexington, KY (United States)). 3 refs., 1 fig., 2 tabs.

  8. Strigolactones: promising plant signals.

    PubMed

    Gomez-Roldan, Victoria; Roux, Christophe; Girard, Daniel; Bécard, Guillaume; Puech-Pagés, Virginie

    2007-05-01

    As obligate biotrophic symbionts, Arbuscular Mycorrhizal (AM) fungi must efficiently recognize their host plant to insure their survival and complete their life cycle. Recent works have shown that some root secreted molecules, the strigolactones, activate the presymbiotic growth of AM fungi at extremely low concentrations. These compounds, derived from carotenoid biosynthesis, induce the mitochondrial metabolism of the fungus. The hypothesis that strigolactones are important plant recognition signals for AM fungi was further supported in this study by using maize seedlings treated with fluridone, an upstream inhibitor of the carotenoid metabolism. We showed that mycorrhization of the treated seedlings was significantly reduced, but restored by the addition of GR24, a strigolactone analogue. Similar results were obtained with the y9 mutant of maize defective in an upstream step of carotenoid synthesis. These data provide additional evidence that strigolactones may be essential symbiotic signals for the establishment of AM symbiosis.

  9. Integrated turbomachine oxygen plant

    SciTech Connect

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  10. Lunar Influence On Plants

    NASA Astrophysics Data System (ADS)

    Schad, Wolfgang

    Concerning lunar periodicity in biology, we summarized all what has been observationally and experimentally found and published in scientific literature till 1996. We summoned up as many as about 600 living species (mostly animals) with identified lunar periodicities, functioning in a more or less endogenous manner. Here we give a short review about the occurrence in the plant kingdom. In Thallophytes 45 species have been described as well as 40 species of Angiosperms. In Prokaryonts no lunar rhythms could be found. Their individual life cycles do not reach the time span of at least comparable parts of a lunar day. Thus as in all Eukaryonts the occurrence of the cell nucleus constitutes specifically ndogenous rhythms in plants as well as in the animal kingdom.

  11. Engineered minichromosomes in plants.

    PubMed

    Birchler, James A

    2014-06-01

    Platforms for the development of synthetic chromosomes in plants have been produced in several species using telomere mediated chromosomal truncation with the simultaneous inclusion of sites that facilitate further additions to the newly generated minichromosome. By utilizing truncated supernumerary or B chromosomes, the output of the genes on the minichromosome can be amplified. Proof of concept experiments have been successful illustrating that minichromosome platforms can be modified in vivo. Engineered minichromosomes can likely be combined with haploid breeding if they are incorporated into inducer lines given that the observations that basically inert chromosomes from haploid inducer lines can be recovered at workable frequencies in otherwise haploid plants. Future needs of synthetic chromosome development are discussed.

  12. Ocean thermal plant

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1978-01-01

    A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.

  13. US prep plant census 2008

    SciTech Connect

    Fiscor, S.

    2008-10-15

    Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

  14. Epigenetic memory in plants.

    PubMed

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-09-17

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.

  15. Epigenetic memory in plants

    PubMed Central

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-01-01

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable ‘cellular memory’. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms. PMID:25104823

  16. Nuclear Plant Inspection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  17. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  18. Spin Glass Patch Planting

    NASA Technical Reports Server (NTRS)

    Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.

    2016-01-01

    In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.

  19. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  20. Planting Guidelines for Seagrasses.

    DTIC Science & Technology

    1980-02-01

    Shoalgrass and Manatee Grass in Lower Laguna Madre , Texas ," Journal of Wildlife Management, Vol. 32, No. 3, July 1968, pp. 501-506. MCMILLAN, C...Atmospheric Administration (NOAA), and local U.S. Fish and Wildlife Service Refuges, bait houses, or boat marinas. If unavailable, salinity should be...metal would not kill the plants. Phillips (1976) found that turtle grass and shoalgrass in Texas and eelgrass in Alaska were killed when metal anchors

  1. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  2. Plant intentionality and the phenomenological framework of plant intelligence

    PubMed Central

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  3. Plant immunity to necrotrophs.

    PubMed

    Mengiste, Tesfaye

    2012-01-01

    Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.

  4. Toluene emissions from plants

    NASA Astrophysics Data System (ADS)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  5. Magnetoreception in plants.

    PubMed

    Galland, Paul; Pazur, Alexander

    2005-12-01

    This article reviews phenomena of magnetoreception in plants and provides a survey of the relevant literature over the past 80 years. Plants react in a multitude of ways to geomagnetic fields-strong continuous fields as well as alternating magnetic fields. In the past, physiological investigations were pursued in a somewhat unsystematic manner and no biological advantage of any magnetoresponse is immediately obvious. As a result, most studies remain largely on a phenomenological level and are in general characterised by a lack of mechanistic insight, despite the fact that physics provides several theories that serve as paradigms for magnetoreception. Beside ferrimagnetism, which is well proved for bacterial magnetotaxis and for some cases of animal navigation, two further mechanisms for magnetoreception are currently receiving major attention: (1) the "radical-pair mechanism" consisting of the modulation of singlet-triplet interconversion rates of a radical pair by weak magnetic fields, and (2) the "ion cyclotron resonance" mechanism. The latter mechanism centres around the fact that ions should circulate in a plane perpendicular to an external magnetic field with their Lamor frequencies, which can interfere with an alternating electromagnetic field. Both mechanisms provide a theoretical framework for future model-guided investigations in the realm of plant magnetoreception.

  6. Plant health sensing

    NASA Technical Reports Server (NTRS)

    Manukian, Ara; Mckelvy, Colleen; Pearce, Michael; Syslo, Steph

    1988-01-01

    If plants are to be used as a food source for long term space missions, they must be grown in a stable environment where the health of the crops is continuously monitored. The sensor(s) to be used should detect any diseases or health problems before irreversible damage occurs. The method of analysis must be nondestructive and provide instantaneous information on the condition of the crop. In addition, the sensor(s) must be able to function in microgravity. This first semester, the plant health and disease sensing group concentrated on researching and consulting experts in many fields in attempts to find reliable plant health indicators. Once several indicators were found, technologies that could detect them were investigated. Eventually the three methods chosen to be implemented next semester were stimulus response monitoring, video image processing and chlorophyll level detection. Most of the other technologies investigated this semester are discussed here. They were rejected for various reasons but are included in the report because NASA may wish to consider pursuing them in the future.

  7. Plant Transgenerational Epigenetics.

    PubMed

    Quadrana, Leandro; Colot, Vincent

    2016-11-23

    Transgenerational epigenetics is defined in opposition to developmental epigenetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about transgenerational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the creation of epimutable alleles. We also argue that because reprogramming of DNA methylation across generations seems limited in plants, the inheritance of DNA methylation defects results from the failure to reinforce rather than reset this modification during sexual reproduction. We compare genome-wide assessments of heritable DNA methylation variation and its phenotypic impact in natural populations to those made using near-isogenic populations derived from crosses between parents with experimentally induced DNA methylation differences. Finally, we question the role of the environment in inducing transgenerational epigenetic variation and briefly present theoretical models under which epimutability is expected to be selected for.

  8. Paramutation phenomena in plants.

    PubMed

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them.

  9. Plants, endosymbionts and parasites

    PubMed Central

    Nagamune, Kisaburo; Xiong, Liming; Chini, Eduardo

    2008-01-01

    It was recently discovered that the protozoan parasite, Toxoplasma gondii produces and uses the plant hormone, abscisic acid (ABA), for communication. Following intracellular replication, ABA production influences the timing of parasite egress from the host cell. This density-dependent signal may serve to coordinate exit from the host cell in a synchronous manner by triggering calcium-dependent activation of motility. In the absence of ABA production, parasites undergo differentiation to the semidormant, tissue cyst. The pathway for ABA production in T. gondii may be derived from a relict endosymbiont, acquired by ingestion of a red algal cell. Although the parasite has lost the capacity for photosynthesis, the plant-like nature of this signaling pathway may be exploited to develop new drugs. In support of this idea, an inhibitor of ABA biosynthesis protected mice against lethal infection with T. gondii. Here, we compare the role of ABA in parasites to its activities in plants, where it is know to control development and stress responses. PMID:19513200

  10. Congress targets DOE plants

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Calling the Department of Energy's management of the nation's crippled nuclear weapons production complex “a 35-year secret chemical war waged against people living near DOE's sites,” Representative Thomas Luken (D-OH) opened a congressional hearing on February 23 with an appeal to DOE Secretary-designate James Watkins to release secret health records of workers at the plants. In testimony that followed, Comptroller General Charles Bowsher told a subcommittee of the House Energy and Commerce Committee that President Bush's new budget does not go far enough on the long and costly road of cleaning up and modernizing the contaminated and aging facilities. The renovation is expected to cost up to $155 billion.By next month, 11 of the 17 installations that make up the DOE complex will be on the EPA's Superfund list of the nation's most contaminated waste sites. Some o f the DOE facilities, including the Rocky Flats plant in Denver, Colo., the Hanford Reservation in eastern Washington, and the Savannah River plant in South Carolina, are among the most polluted sites ever identified by EPA. The principal function of the facilities, the production of tritium and plutonium for nuclear weapons, has stopped, creating what DOE has characterized as a looming national security crisis.

  11. Genetics and plant development.

    PubMed

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s.

  12. Nickel in Plants

    PubMed Central

    Cataldo, Dominic A.; Garland, Thomas R.; Wildung, Raymond E.

    1978-01-01

    The absorption of Ni2+ by 21-day-old soybean plants (Glycine max cv. Williams) was investigated with respect to its concentration dependence, transport kinetics, and interactions with various nutrient cations. Nickel absorption, measured as a function of concentration (0.02 to 100 μm), demonstrated the presence of multiple absorption isotherms. Each of the three isotherms conforms to Michaelis-Menten kinetics; kinetic constants are reported for uptake by the intact plant and for transfer from root to shoot tissues. The absorption of Ni2+ by the intact plant and its transfer from root to shoot were inhibited by the presence of Cu2+, Zn2+, Fe2+, and Co2+. Competition kinetic studies showed Cu2+ and Zn2+ to inhibit Ni2+ absorption competitively, suggesting that Ni2+, Cu2+, and Zn2+ are absorbed using the same carrier site. Calculated Km and Ki constants for Ni2+ in the presence and absence of Cu2+ were 6.1 and 9.2 μm, respectively, whereas Km and Ki constants were calculated to be 6.7 and 24.4 μm, respectively, for Ni2+ in the presence and absence of Zn2+. The mechanism of inhibition of Ni2+ in the presence of Fe2+ and Co2+ was not resolved by classical kinetic relationships. PMID:16660559

  13. [Functions of plant apyrases].

    PubMed

    Wujak, Magdalena; Komoszyński, Michał

    2011-01-01

    This publication presents results of the recent studies on plant NTPDases (apyrases). The structure and major physicochemical properties of this enzymes are reviewed. The attention has been paid to metabolic functions of apyrases from Solanum tuberosum and Arabidopsis thaliana. Apyrases constitute a family of proteins hydrolyzing phosphoanhydride bonds of nucleoside tri- and di-phosphates. They share common features like a similar structure, broad nucleotide substrate specificity and divalent cation requirement for their catalytic activity. The presence of plant NTPDases was detected in various cellular compartments. They are soluble or membrane-bound proteins. In hydrolytic processes catalyzed by activity of apoplastic apyrases and other ectoenzymes, adenine, ribose and orthophosphate are produced. These compounds are transported to the cell. Apyrases have been speculated to be involved in the regulation of starch synthesis and signal transmission. Their activity is necessary for development and growth of tubers and roots. Enzymes from leguminous plants activate the symbiosis with root nodule bacteria. Considering the fact, that NTPDases change the nucleotide concentration in cells and tissues, most of described functions may be related to the regulation of the energy charge of cell.

  14. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  15. Protection Goals for Aquatic Plants

    EPA Science Inventory

    Someone once said plants are the ugly stepchildren of the toxicological world. This was not out of lack of respect for plants, but rather reflected the common assumption that aquatic plants were less sensitive than aquatic fauna to chemicals. We now know this is not a valid gener...

  16. Selected Landscape Plants. Slide Script.

    ERIC Educational Resources Information Center

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  17. Measuring sap flow in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sap flow measurements provide a powerful tool for quantifying plant water use and monitoring qualitative physiological responses of plants to environmental conditions. As such, sap flow methods are widely employed to invesitgate the agronomic, ecological and hydrological outcomes of plant growth. T...

  18. Herbaceous Ornamental Plants. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important herbaceous ornamental plants. Included in the script are narrations for use with a total of 338 slides illustrating 150 different plants. Generally, two slides are used to illustrate each plant: one slide shows…

  19. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  20. Plants and the changing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this Special Issue of Plant Biology, current trends in research on plant responses to the changing environment are highlighted. Several studies consider plant responses to the mixture of interacting stresses that will accompany climate change, including drought, heat, high light and increased CO2...

  1. Plant Tissues. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant tissues. Presented first are an attention step and a series of questions and answers designed to convey general information about plant tissues and the effect of water and minerals on them. The following topics are among those discussed: reasons why water is important to plants,…

  2. PlantRGDB: A Database of Plant Retrocopied Genes.

    PubMed

    Wang, Yi

    2017-01-22

    RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants.

  3. Effects of plants and plant products on the testis.

    PubMed

    D'Cruz, Shereen Cynthia; Vaithinathan, Selvaraju; Jubendradass, Rajamanickam; Mathur, Premendu Prakash

    2010-07-01

    For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to their anticancer, antidiabetic, hepatoprotective, cardioprotective, antispasmodic, analgesic and various other pharmacological properties. However, several commonly used plants have been reported to adversely affect male reproductive functions in wildlife and humans. The effects observed with most of the plant and plant-based products have been attributed to the antispermatogenic and/or antisteroidogenic properties of one or more active ingredients. This review discusses the detrimental effects of some of the commonly used plants on various target cells in the testis. A deeper insight into the molecular mechanisms of action of these natural compounds could pave the way for developing therapeutic strategies against their toxicity.

  4. Effects of plants and plant products on the testis

    PubMed Central

    D'Cruz, Shereen Cynthia; Vaithinathan, Selvaraju; Jubendradass, Rajamanickam; Mathur, Premendu Prakash

    2010-01-01

    For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to their anticancer, antidiabetic, hepatoprotective, cardioprotective, antispasmodic, analgesic and various other pharmacological properties. However, several commonly used plants have been reported to adversely affect male reproductive functions in wildlife and humans. The effects observed with most of the plant and plant-based products have been attributed to the antispermatogenic and/or antisteroidogenic properties of one or more active ingredients. This review discusses the detrimental effects of some of the commonly used plants on various target cells in the testis. A deeper insight into the molecular mechanisms of action of these natural compounds could pave the way for developing therapeutic strategies against their toxicity. PMID:20562897

  5. Mycorrhizal fungal identity and diversity relaxes plant-plant competition.

    PubMed

    Wagg, Cameron; Jansa, Jan; Stadler, Marina; Schmid, Bernhard; van der Heijden, Marcel G A

    2011-06-01

    There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF

  6. Beaver herbivory on aquatic plants.

    PubMed

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  7. B plant mission analysis report

    SciTech Connect

    Lund, D.P.

    1995-05-24

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

  8. The year 2000 power plant

    SciTech Connect

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies.

  9. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  10. Quo vadis plant hormone analysis?

    PubMed

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, Petr; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-07-01

    Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.

  11. [Quality control of plant extract].

    PubMed

    Shao, Yun-dong; Gao, Wen-yuan; Liu, Dan; Jia, Wei; Duan, Hong-Quan; Zhang, Tie-jun

    2003-10-01

    The current situation of plant extract in domestic and international market was analyzed in the paper. The quality control of 20 plant extracts which have reasonably good sales in USA market was compared and analyzed. The analysis of the quality control of six plant extracts indicated that there were two main reasons leading to the varied quality specifications among different suppliers. One reason was that the plant species utilized by different companies were different. The other reason was that the extraction processes were different among different production plants. Comparing with the significant international suppliers of plant extracts, the product quality of Chinese companies were not satisfactory. It was suggested that chromatography and chromatographic fingerprint techniques should be applied to improve the quality control standard of plant extract in our country.

  12. Effects of Wind on Plants

    NASA Astrophysics Data System (ADS)

    de Langre, Emmanuel

    2008-01-01

    This review surveys the large variety of mechanical interactions between wind and plants, from plant organs to plant systems. These interactions range from leaf flutter to uprooting and seed dispersal, as well as indirect effects on photosynthesis or insect communication. I first estimate the relevant nondimensional parameters and then discuss turbulence, plant dynamics, and the mechanisms of interaction in this context. Some common features are identified and analyzed in relation to the wind engineering of manmade structures. Strong coupling between plants and wind exists, in which the plant motion modifies the wind dynamics. I also present some related biological issues in which the relation between plant life and wind environment is emphasized. [V]oici la lourde nappe/Et la profonde houle et l’océan des blés [Like a sheet/The deep swell on a sea of wheat] Charles Péguy (1873 1914)

  13. [Nitric oxide production in plants].

    PubMed

    Małolepsza, Urszula

    2007-01-01

    There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.

  14. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.

  15. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  16. Plant adaptation to drought stress

    PubMed Central

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress. PMID:27441087

  17. Pinellas Plant Environmental Baseline Report

    SciTech Connect

    Not Available

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  18. Plant adaptation to drought stress.

    PubMed

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress.

  19. Plant toxicity, adaptive herbivory, and plant community dynamics

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  20. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    PubMed Central

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  1. Recovering plant biodiversity

    PubMed Central

    2011-01-01

    Studying recovering plant biodiversity on Mount Pinatubo may provide valuable insights that improve our understanding of recovery of other ecosystems following disturbances of all types. Ongoing sheet and rill erosion coupled with mass waste events in the unstable pyroclastic flow deposits persist, effectively re-setting primary succession at micro-landscape scale without affecting habitat level diversity. Spatial factors and micro-habitat diversity may exert more control over continued succession as the riparian systems become more deeply dissected and complex. The number of taxa within functional groups and conservation concerns are botanical issues that deserve further research. PMID:22019638

  2. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  3. Growing plant in space

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bula, R. J.; Tibbits, T. W.

    1989-01-01

    Space agencies in several countries are planning for the culture of plants in long duration space bases. The challenge of developing crop production procedures suitable for space projects will result in a new approach of problems we may meet today or in the near future in our common production systems. You may keep in mind subjects as: minimizing wastes or pollution problems, saving materials, introductions robotic helps. Discussion between scientists involved with food production for space programmes and protected horticultural cultivation may open new perspectives.

  4. Plants with useful traits and related methods

    DOEpatents

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2016-10-25

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  5. Simulating solar power plant variability :

    SciTech Connect

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  6. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  7. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  9. Lipid hydroperoxides in plants.

    PubMed

    Griffiths, G; Leverentz, M; Silkowski, H; Gill, N; Sánchez-Serrano, J J

    2000-12-01

    Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and were determined spectrophotometrically based on their reaction with an excess of Fe2+ at low pH in the presence of the dye Xylenol Orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in a range of plant tissues including Phaseolus hypocotyls (26 +/- 5 nmol.g of fresh weight(-1); mean +/- S.D.), Alstroemeria floral tissues (sepals, 66+/-13 nmol.g of fresh weight(-1); petals, 49+/-6 nmol.g of fresh weight(-1)), potato leaves (334+/-75 nmol.g of fresh weight(-1)), broccoli florets (568+/-68 nmol.g of fresh weight(-1)) and Chlamydomonas cells (602+/-40 nmol.g of wet weight(-1)). Relative to the total fatty acid content of the tissues, the percentage hydroperoxide content was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. Leaves of transgenic potato with the fatty acid hydroperoxide lyase enzyme expressed in the antisense orientation were elevated by 38%, indicating a role for this enzyme in the maintenance of cellular levels of lipid hydroperoxides.

  10. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  11. [On Mexican medicinal plants].

    PubMed

    de Micheli, Alfredo; Izaguirre-Avila, Raúl

    2009-12-01

    During the XVIII century, two Spanish scientific expeditions arrived here led, respectively, by the naturalist Martín Sessé and by the Italian mariner Alessandro Malaspina di Mulazzo, dependent from the Spanish Government. The members collected a rich scientific material, which was carried to Madrid in 1820. At the end of XVIII century, the Franciscan friar Juan Navarro depicted and described several Mexican medicinal plants in the fifth volume of his "American Garden". In the last years of the Colonial period, fundamental works of Humboldt and Bonpland, on the geographic distribution of the American plants, were published. At the end of the XIX century, the first researches on the Mexican medicinal botany were performed at the laboratory of the "Instituto Médico Nacional" under the leadership of doctor Fernando Altamirano, starting pharmacological studies in our country. During the first half of the XX century, trials of cardiovascular pharmacology were performed in the small laboratories of the cardiological unit at the General Hospital of Mexico, due to doctor Ignacio Chávez, initiative. Mexican botanical-pharmacological tradition remains alive and vigorous in the modern scientific institutes of the country.

  12. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  13. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  14. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  15. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  16. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  17. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  18. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  19. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  20. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  1. 7 CFR 52.81 - Plant survey.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... Regulations Governing Inspection and Certification Requirements for Plants to Be Approved and for Plants Using Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or...

  2. 7 CFR 52.81 - Plant survey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... Regulations Governing Inspection and Certification Requirements for Plants to Be Approved and for Plants Using Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or...

  3. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  4. Attention "Blinks" Differently for Plants and Animals

    ERIC Educational Resources Information Center

    Balas, Benjamin; Momsen, Jennifer L.

    2014-01-01

    Plants, to many, are simply not as interesting as animals. Students typically prefer to study animals rather than plants and recall plants more poorly, and plants are underrepresented in the classroom. The observed paucity of interest for plants has been described as "plant blindness," a term that is meant to encapsulate both the…

  5. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  6. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  7. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  8. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  9. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  10. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  11. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  12. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  13. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  14. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  15. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  16. 7 CFR 52.81 - Plant survey.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Plant survey. 52.81 Section 52.81 Agriculture... Regulations Governing Inspection and Certification Requirements for Plants to Be Approved and for Plants Using Contract In-Plant Inspection Services 1 § 52.81 Plant survey. Prior to a plant being approved, or...

  17. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  18. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  19. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  20. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  1. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  2. 7 CFR 1000.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1000.8 Section 1000.8 Agriculture... Definitions § 1000.8 Nonpool plant. Nonpool plant means any milk receiving, manufacturing, or processing plant other than a pool plant. The following categories of nonpool plants are further defined as follows:...

  3. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  4. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  5. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  6. [Plant hydroponics and its application prospect in medicinal plants study].

    PubMed

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  7. Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor.

    PubMed

    Vitale, Alessandro; Pedrazzini, Emanuela

    2005-08-01

    The production of safe pharmaceuticals at affordable costs is one of the great challenges of our times. Research has proven that transgenic plants can fulfill this need. This review focuses on the peculiar features of plant cells that allow high accumulation of recombinant proteins. The endomembrane system and the secretory pathway of plant cells in themselves offer a fascinating model of protein sorting, and in practical terms, represent the potential for the facile and very low-cost purification of recombinant pharmaceutical proteins.

  8. Chemical defense lowers plant competitiveness.

    PubMed

    Ballhorn, Daniel J; Godschalx, Adrienne L; Smart, Savannah M; Kautz, Stefanie; Schädler, Martin

    2014-11-01

    Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth-differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis-a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.

  9. Plants, plant pathogens, and microgravity--a deadly trio.

    PubMed

    Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

    2001-06-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  10. Plants, plant pathogens, and microgravity--a deadly trio

    NASA Technical Reports Server (NTRS)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; Guikema, J. A.

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  11. Plants Consumption and Liver Health

    PubMed Central

    Guan, Yong-Song; He, Qing

    2015-01-01

    The liver is a very important organ with a lot of functions for the host to survive. Dietary components are essential for and can be beneficial or detrimental to the healthy or diseased liver. Plants food is an essential part of the human diet and comprises various compounds which are closely related to liver health. Selected food plants can provide nutritional and medicinal support for liver disease. At the present, the knowledge of the effects of plants on the liver is still incomplete. The most urgent task at the present time is to find the best dietary and medicinal plants for liver health in an endless list of candidates. This review article updates the knowledge about the effects of plants consumption on the health of the liver, putting particular emphasis on the potential beneficial and harmful impact of dietary and medicinal plants on liver function. PMID:26221179

  12. Rocklick Plant designed for flexibility

    SciTech Connect

    Mason, R.H.

    1987-10-01

    Eastern Associated Coal Corp. constructed the 1,200-tph Rocklick Preparation Plant to complement its new system of production planning. Rocklick is designed to clean coal from all of Eastern Associated's mines and contractors working in the Pond Fork Valley of southwestern West Virginia. The Rocklick Plant can process and blend about three million tpy to meet customer specifications. The plant can ship coal by barge or rail to any market. Thus the plant is a key link in marketing Eastern's low-sulfur steam coal. To fulfill a wide range of customer specifications the Rocklick Plant is equipped to provide fully washed, high-volatile steam coal; partially washed, high-volatile steam coal; and blends of fully washed and raw coal. This article explains how the plant operates.

  13. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  14. Anthocyanins. Plant pigments and beyond.

    PubMed

    Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor

    2014-07-23

    Anthocyanins are plant pigments widespread in nature. They play relevant roles in plant propagation and ecophysiology and plant defense mechanisms and are responsible for the color of fruits and vegetables. A large number of novel anthocyanin structures have been identified, including new families such as pyranoanthocyanins or anthocyanin oligomers; their biosynthesis pathways have been elucidated, and new plants with "a la carte" colors have been created by genetic engineering. Furthermore, evidence about their benefits in human health has accumulated, and processes of anthocyanin absorption and biotransformation in the human organism have started to be ascertained. These advances in anthocyanin research were revised in the Seventh International Workshop on Anthocyanins that took place in Porto (Portugal) on September 9-11, 2013. Some selected papers are collected in this special issue, where aspects such as anthocyanin accumulation in plants, relationship with color expression, stability in plants and food, and bioavailability or biological activity are revised.

  15. Plant Communication from Biosemiotic Perspective

    PubMed Central

    2006-01-01

    As in all organisms, the evolution, development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign mediated interactions and not simply an exchange of information. They involve active coordination and active organization—conveyed by signs. A wide range of chemical substances and physical influences serve as signs. Different abiotic or biotic influences require different behaviors. Depending on the behavior, the core set of signs common to species, families, genera and organismic kingdoms is variously produced, combined and transported. This allows entirely different communication processes to be carried out with the same types of chemical molecules. Almost without exception, plant communication are parallel processes on multiple levels, (A) between plants and microorganisms, fungi, insects and other animals, (B) between different plant species as well as between members of the same plant species; (C), between cells and in cells of the plant organism. PMID:19521482

  16. Plant photomorphogenesis and canopy growth

    NASA Technical Reports Server (NTRS)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  17. Plant features measurements for robotics

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1989-01-01

    Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.

  18. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  19. Nitric Oxide Production in Plants

    PubMed Central

    Planchet, Elisabeth

    2006-01-01

    There is now general agreement that nitric oxide (NO) is an important and almost universal signal in plants. Nevertheless, there are still many controversial observations and opinions on the importance and function of NO in plants. Partly, this may be due to the difficulties in detecting and even more in quantifying NO. Here, we summarize major pathways of NO production in plants, and briefly discuss some methodical problems. PMID:19521475

  20. Is your plant inherently safer?

    SciTech Connect

    Snyder, P.G.

    1996-07-01

    Managing process risk begins at the conceptual design stage. Using these guidelines, engineers can explore how to make existing and future plants inherently safer. Despite progress made in process design tools and development of industry standards for design, procurement and construction, the hydrocarbon processing industry (HPI) struggles to improve the safety and operation of existing facilities. The paper discusses design standards and practices, plant design success stories, and achieving inherently safer plant designs.

  1. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  2. Plant Responses to Nanoparticle Stress.

    PubMed

    Hossain, Zahed; Mustafa, Ghazala; Komatsu, Setsuko

    2015-11-06

    With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs) contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  3. Dynamic protoneural networks in plants

    PubMed Central

    Debono, Marc-Williams

    2013-01-01

    Taking as a basis of discussion Kalanchoe’s spontaneous and evoked extracellular activities recorded at the whole plant level, we put the challenging questions: do these low-voltage variations, together with endocellular events, reflect integrative properties and complex behavior in plants? Does it reflect common perceptive systems in animal and plant species? Is the ability of plants to treat short-term variations and information transfer without nervous system relevant? Is a protoneural construction of the world by lower organisms possible? More generally, the aim of this paper is to reevaluate the probably underestimated role of plant surface potentials in the plant relation life, carefully comparing the biogenesis of both animal and plant organisms in the era of plant neurobiology. Knowing that surface potentials participate at least to morphogenesis, cell to cell coupling, long distance transmission and transduction of stimuli, some hypothesis are given indicating that plants have to be studied as environmental biosensors and non linear dynamic systems able to detect transitional states between perception and response to stimuli. This study is conducted in the frame of the “plasticity paradigm,” which gives a theoretical model of evolutionary processes and suggests some hypothesis about the nature of complexity, information and behavior. PMID:23603975

  4. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  5. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  6. Plant cells as pharmaceutical factories.

    PubMed

    Rischer, Heiko; Häkkinen, Suvi T; Ritala, Anneli; Seppänen-Laakso, Tuulikki; Miralpeix, Bruna; Capell, Teresa; Christou, Paul; Oksman-Caldentey, Kirsi-Marja

    2013-01-01

    Molecules derived from plants make up a sizeable proportion of the drugs currently available on the market. These include a number of secondary metabolite compounds the monetary value of which is very high. New pharmaceuticals often originate in nature. Approximately 50% of new drug entities against cancer or microbial infections are derived from plants or micro-organisms. However, these compounds are structurally often too complex to be economically manufactured by chemical synthesis, and frequently isolation from naturally grown or cultivated plants is not a sustainable option. Therefore the biotechnological production of high-value plant secondary metabolites in cultivated cells is potentially an attractive alternative. Compared to microbial systems eukaryotic organisms such as plants are far more complex, and our understanding of the metabolic pathways in plants and their regulation at the systems level has been rather poor until recently. However, metabolic engineering including advanced multigene transformation techniques and state-of-art metabolomics platforms has given us entirely new tools to exploit plants as Green Factories. Single step engineering may be successful on occasion but in complex pathways, intermediate gene interventions most often do not affect the end product accumulation. In this review we discuss recent developments towards elucidation of complex plant biosynthetic pathways and the production of a number of highvalue pharmaceuticals including paclitaxel, tropane, morphine and terpenoid indole alkaloids in plants and cell cultures.

  7. Bioinspired materials: Boosting plant biology

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory D.; Sargent, Edward H.

    2014-04-01

    Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

  8. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  9. Development of the merchant plant

    SciTech Connect

    Wolfinger, R.; Gilliss, M.B.

    1998-07-01

    The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

  10. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  11. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  12. Soil microbes and plant fertilization.

    PubMed

    Miransari, Mohammad

    2011-12-01

    With respect to the adverse effects of chemical fertilization on the environment and their related expenses, especially when overused, alternative methods of fertilization have been suggested and tested. For example, the combined use of chemical fertilization with organic fertilization and/or biological fertilization is among such methods. It has been indicated that the use of organic fertilization with chemical fertilization is a suitable method of providing crop plants with adequate amount of nutrients, while environmentally and economically appropriate. In this article, the importance of soil microbes to the ecosystem is reviewed, with particular emphasis on the role of plant growth-promoting rhizobacteria, arbuscular mycorrhizal fungi, and endophytic bacteria in providing necessary nutrients for plant growth and yield production. Such microbes are beneficial to plant growth through colonizing plant roots and inducing mechanisms by which plant growth increases. Although there has been extensive research work regarding the use of microbes as a method of fertilizing plants, it is yet a question how the efficiency of such microbial fertilization to the plant can be determined and increased. In other words, how the right combination of chemical and biological fertilization can be determined. In this article, the most recent advances regarding the effects of microbial fertilization on plant growth and yield production in their combined use with chemical fertilization are reviewed. There are also some details related to the molecular mechanisms affecting the microbial performance and how the use of biological techniques may affect the efficiency of biological fertilization.

  13. (Photosynthesis in intact plants)

    SciTech Connect

    Not Available

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  14. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  15. Plant electrical memory.

    PubMed

    Volkov, Alexander G; Carrell, Holly; Adesina, Tejumade; Markin, Vladislav S; Jovanov, Emil

    2008-07-01

    Electrical signaling, short-term memory and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since the XIX century. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation is the same as mechanically induced closing. Transmission of a single electrical charge between a lobe and the midrib causes closure of the trap and induces an electrical signal propagating between both lobes and midrib. The Venus flytrap can accumulate small subthreshold charges, and when the threshold value is reached, the trap closes. Repeated application of smaller charges demonstrates the summation of stimuli. The cumulative character of electrical stimuli points to the existence of short-term electrical memory in the Venus flytrap.

  16. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  17. Wound healing in plants

    PubMed Central

    Tisi, Alessandra; Angelini, Riccardo

    2008-01-01

    Copper amine oxidases (CuAO) and flavin-containing amine oxidases (PAO) are hydrogen peroxide (H2O2)-producing enzymes responsible for the oxidative de-amination of polyamines. Currently, a key role has been ascribed to apoplastic amine oxidases in plants, i.e., to behave as H2O2-delivering systems in the cell wall during cell growth and differentiation as well as in the context of host-pathogen interactions. Indeed, H2O2 is the co-substrate for the peroxidase-driven reactions during cell-wall maturation and a key signalling molecule in defence mechanisms. We recently demonstrated the involvement of an apoplastic PAO in the wound-healing process of the Zea mays mesocotyl. Experimental evidence indicated a similar role for an apoplastic PAO in Nicotiana tabacum. In this addendum we suggest that a CuAO activity is also involved in this healing event. PMID:19704660

  18. Plant influence on nitrification.

    PubMed

    Skiba, Marcin W; George, Timothy S; Baggs, Elizabeth M; Daniell, Tim J

    2011-01-01

    Modern agriculture has promoted the development of high-nitrification systems that are susceptible to major losses of nitrogen through leaching of nitrate and gaseous emissions of nitrogen oxide (NO and N2O), contributing to global warming and depletion of the ozone layer. Leakage of nitrogen from agricultural systems forces increased use of nitrogen fertilizers and causes water pollution and elevated costs of food production. Possible strategies for prevention of these processes involve various agricultural management approaches and use of synthetic inhibitors. Growing plants capable of producing nitrification suppressors could become a potentially superior method of controlling nitrification in the soil. There is a need to investigate the phenomenon of biological nitrification inhibition in arable crop species.

  19. Plant gravity sensing.

    PubMed

    Sack, F D

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  20. Dust and Ocean Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Adding iron to the diet of marine plant life has been shown in shipboard experiments to boost the amount of carbon-absorbing phytoplankton in certain parts of the world's oceans. A new study promises to give scientists their first global picture of the extent of these unique 'iron-limited' ocean regions, an important step in understanding how the ocean's biology controls the flow of carbon between the atmosphere and the ocean. The new study by researchers at NASA's Goddard Space Flight Center and the Department of Energy's Oak Ridge National Laboratory was presented at the American Geophysical Union's annual meeting in San Francisco on Friday, Dec. 15, 2000. Oceanic phytoplankton remove nearly as much carbon from the atmosphere each year as all land-based plants. Identifying the location and size of nutrient-limited areas in the open ocean has challenged oceanographers for nearly a century. The study pinpointed iron-limited regions by seeing which phytoplankton-rich areas of the world's oceans were also areas that received iron from wind-blown dust. In this map, areas with high levels of chlorophyll from phytoplankton and high levels of dust deposition (high correlation coefficients) are indicated in dark brown. Dust deposition was calculated by a 3-year modelled climatology for the years 1996-1998. The chlorophyll measurements are from 1998 observations from the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) instrument on the OrbView-2 satellite. 'Global, satellite-based analyses such as this gives us insight into where iron deposition may be limiting ocean biological activity,' says lead author David Erickson of Oak Ridge National Laboratory's Computer Science and Mathematics Division. 'With this information we will be able to infer how the ocean productivity/iron deposition relationship might shift in response to climate change.' Map Source: David Erickson, Oak Ridge National Laboratory's Computer Science and Mathematics Division

  1. Plant ALDH10 Family

    PubMed Central

    Kopečný, David; Končitíková, Radka; Tylichová, Martina; Vigouroux, Armelle; Moskalíková, Hana; Soural, Miroslav; Šebela, Marek; Moréra, Solange

    2013-01-01

    Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development. PMID:23408433

  2. 3. EXTERIOR VIEW OF CURRENT YARN PLANT. THE BOILER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EXTERIOR VIEW OF CURRENT YARN PLANT. THE BOILER PLANT IS ON THE LEFT. THIS THREE-STORY SECTION WAS BUILT AS THE MAIN MILL HOUSING SPINNING RELATED PROCESSES. THIS END OF THE STRUCTURE WAS THE PICKER ROOM. NOTE THE FIRE WALL VISIBLE FOUR BAYS IN ON THE LEFT. - Hillside Cotton Mill, 1300 Brownwood Avenue, La Grange, Troup County, GA

  3. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  4. PLEXdb: Gene expression resources for plants and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLEXdb (Plant Expression Database), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facili...

  5. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  6. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  7. Compatible plant-aphid interactions: how aphids manipulate plant responses.

    PubMed

    Giordanengo, Philippe; Brunissen, Laurence; Rusterucci, Christine; Vincent, Charles; van Bel, Aart; Dinant, Sylvie; Girousse, Christine; Faucher, Mireille; Bonnemain, Jean-Louis

    2010-01-01

    To access phloem sap, aphids have developed a furtive strategy, their stylets progressing towards sieve tubes mainly through the apoplasmic compartment. Aphid feeding requires that they overcome a number of plant responses, ranging from sieve tube occlusion and activation of phytohormone-signalling pathways to expression of anti-insect molecules. In addition to bypassing plant defences, aphids have been shown to affect plant primary metabolism, which could be a strategy to improve phloem sap composition in nutrients required for their growth. During compatible interactions, leading to successful feeding and reproduction, aphids cause alterations in their host plant, including morphological changes, modified resource allocation and various local as well as systemic symptoms. Repeated salivary secretions injected from the first probe in the epidermal tissue up to ingestion of sieve-tube sap may play a crucial role in the compatibility between the aphid and the plant.

  8. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  9. Plant DNA sequencing for phylogenetic analyses: from plants to sequences.

    PubMed

    Neves, Susana S; Forrest, Laura L

    2011-01-01

    DNA sequences are important sources of data for phylogenetic analysis. Nowadays, DNA sequencing is a routine technique in molecular biology laboratories. However, there are specific questions associated with project design and sequencing of plant samples for phylogenetic analysis, which may not be familiar to researchers starting in the field. This chapter gives an overview of methods and protocols involved in the sequencing of plant samples, including general recommendations on the selection of species/taxa and DNA regions to be sequenced, and field collection of plant samples. Protocols of plant sample preparation, DNA extraction, PCR and cloning, which are critical to the success of molecular phylogenetic projects, are described in detail. Common problems of sequencing (using the Sanger method) are also addressed. Possible applications of second-generation sequencing techniques in plant phylogenetics are briefly discussed. Finally, orientation on the preparation of sequence data for phylogenetic analyses and submission to public databases is also given.

  10. Chapter 10: Plant bugs (Miridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Miridae, or plant bugs, with more than 1,300 genera and 11,130 described species, represent the largest and most diverse family of Heteroptera. Although many plant bugs are phytophagous and may cause serious damage to crops, a great many are predatory and may be important in biological control ...

  11. Plant Physiological Aspects of Silicon

    SciTech Connect

    Epstein, E.; Fan, T.W-M.; Higashi, R.M.; Silk, W.K.

    2002-07-10

    The element silicon, Si, represents an anomaly in plant physiology (Epstein, 1994, 1999b). Plants contain the element in amounts comparable to those of such macronutrient elements as phosphorus, calcium, magnesium, viz. at tissue concentrations (dry weight basis) of about 0.1-10%, although both lower and higher values may be encountered. In some plants, such as rice and sugarcane, Si may be the mineral element present in largest amount. In much of plant physiological research, however, Si is considered a nonentity. Thus, not a single formulation of the widely used nutrient solutions includes Si. Experimental plants grown in these solutions are therefore abnormally low in their content of the element, being able to obtain only what Si is present as an unavoidable contaminant of the nutrient salts used, and from the experimental environment and their own seeds. The reason for the astonishing discrepancy between the prominence of Si in plants and its neglect in much of the enterprise of plant physiological research is that Si does not qualify as an ''essential'' element. Ever since the introduction of the solution culture method in the middle of the last century (Epstein, 1999a, b) it has been found that higher plants can grow in nutrient solutions in the formulation of which Si is not included. The only exceptions are the Equisitaceae (horsetails or scouring rushes), for which Si is a quantitatively major essential element.

  12. The In-Plant Printer.

    ERIC Educational Resources Information Center

    Bailey, Frank A.

    This text is an attempt to cover all areas in preparing deaf students to function in an in-plant printing office. Specific practice tasks are provided in all areas. The titles of the eight units are Introduction to In-Plant Printing and Cold Composition (four lessons), Paper (five lessons), Cold Composition Devices and Machines (fourteen lessons),…

  13. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  14. Bean Plants: A Growth Experience

    ERIC Educational Resources Information Center

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  15. Who's doing coal plant maintenance?

    SciTech Connect

    Oldani, R.

    2008-02-15

    POWER has reported on several EUCG bench marking studies over the past several years. This paper examines the maintenance staffing of 45 coal plants reported by 13 EUCG member utilities. If you benchmark your plants or fleet, as you should, some of the study's results challenge what is considered conventional wisdom.

  16. Antifertility activity of medicinal plants.

    PubMed

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study.

  17. Talking about Plants and People

    ERIC Educational Resources Information Center

    Peacock, Alan

    2004-01-01

    The Eden Project in Cornwall sets out to educate about the interdependence of plants and people. Its tropical and Mediterranean biomes are housed in the largest "greenhouses" in the world, which serve as a backdrop to plants that grow in the temperate zones of the world, grown in Eden's outdoor landscape. Eden has aroused worldwide…

  18. Microtubule dynamics in plant cells.

    PubMed

    Buschmann, Henrik; Sambade, Adrian; Pesquet, Edouard; Calder, Grant; Lloyd, Clive W

    2010-01-01

    This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.

  19. Meticulous plans make plant sail

    SciTech Connect

    Not Available

    1984-09-27

    It takes about five years for a top nuclear builder in the US to bring in a new plant. In Japan, they'd already be working on the second unit. The reasons why the Japanese can construct a nuclear power plant 2-7 years ahead of their US counterparts is discussed.

  20. Commissioned Review. Carbon: freshwater plants

    USGS Publications Warehouse

    Keeley, J.E.; Sandquist, D.R.

    1992-01-01

    δ13C values for freshwater aquatic plant matter varies from −11 to −50‰ and is not a clear indicator of photosynthetic pathway as in terrestrial plants. Several factors affect δ13C of aquatic plant matter. These include: (1) The δ13C signature of the source carbon has been observed to range from +1‰ for HCO3− derived from limestone to −30‰ for CO2 derived from respiration. (2) Some plants assimilate HCO3−, which is –7 to –11‰ less negative than CO2. (3) C3, C4, and CAM photosynthetic pathways are present in aquatic plants. (4) Diffusional resistances are orders of magnitude greater in the aquatic environment than in the aerial environment. The greater viscosity of water acts to reduce mixing of the carbon pool in the boundary layer with that of the bulk solution. In effect, many aquatic plants draw from a finite carbon pool, and as in terrestrial plants growing in a closed system, biochemical discrimination is reduced. In standing water, this factor results in most aquatic plants having a δ13C value similar to the source carbon. Using Farquhar's equation and other physiological data, it is possible to use δ13C values to evaluate various parameters affecting photosynthesis, such as limitations imposed by CO2 diffusion and carbon source.

  1. Plant responses to tropospheric ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  2. Waste Water Plant Operators Manual.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…

  3. Dramatic change at T Plant

    SciTech Connect

    Gerber, M.S.

    1994-04-01

    T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW), the name for the Hanford Site during World War II. Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the Reduction-Oxidation (REDOX) Plant in January 1952. T Plant performed the third step in plutonium production operations, following the steps of uranium fuel manufacture and then irradiation in defense production reactors. The fissionable core (plutonium) used in the world`s first atomic explosion, the Trinity bomb test held at Alamogordo, New Mexico, on July 16, 1945, was processed in T Plant. Likewise, the fissionable core of the weapon dropped over Nagasaki, Japan, on August 9, 1945, was processed in T Plant. Because it formed a crucial link in the first full-scale plutonium production operations in world history, T Plant meets criteria established in the National Historic Preservation Act of 19661 as a Historic Place.

  4. Chemical Control of Plant Growth.

    ERIC Educational Resources Information Center

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  5. The Overnight Scentsation Rose Plant

    NASA Technical Reports Server (NTRS)

    1998-01-01

    International Flavors and Fragrances Inc., is a company that creates and manufactures flavors, fragrances and aroma chemicals. The Overnight Scentsation rose plant will be housed aboard NASA's shuttle flight STS-95 in a specially-designed structure under ultraviolet lights. The flowering plant was brought to Cape Canaveral from its home at IFF's greenhouse in Union Beach, New Jersey.

  6. Making Plant Biology Curricula Relevant.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Reviews rationale, purposes, challenges, and relevance of hands-on, plant biology curricula that have been developed in response to the limited use of plants in biology education. Discusses methods to maintain both instructional rigor and student interest in the following topics: cut flowers, container-growing media, fertilizers, hydroponics,…

  7. Plant-growth-promoting rhizobacteria.

    PubMed

    Lugtenberg, Ben; Kamilova, Faina

    2009-01-01

    Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

  8. Moving plants means moving pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ornamentals industry must recognize not only that it is at direct risk from invasive species and resistant pests, but also that there is increased public awareness about the movement of any pest species on ornamental plants, and increased concern that these pests will move from ornamental plants...

  9. Our Human-Plant Connection

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2011-01-01

    It is relatively easy to incorporate plants into a curriculum and extend their use beyond the botany unit into other scientific arenas. There are numerous web-based resources for teachers, including the Human Flower Project (HFP) website, which offers numerous vignettes on all aspects of flowering plants. In addition to botany and invasive plant…

  10. Thirsty Plants in Arid Places

    ERIC Educational Resources Information Center

    Schaffer, Linda; Kingsley, Karla V.

    2009-01-01

    In order to demonstrate how plants remove water from the soil and release it to the atmosphere, students compared open- and closed-growing systems using drought-tolerant and higher water requirement plants. Then, students designed a drought-tolerant garden demonstrating what they had learned. Through this experience, students not only learned…

  11. Plant transpiration distillation of water

    SciTech Connect

    Virostko, M.K.; Spielberg, J.I.

    1986-01-01

    A project using solar energy and the transpiration of plants for the distillation of water is described. Along with determining which of three plants thrived best growing in a still, the experiment also revealed that the still functioned nearly as well in inclement weather as in fair weather.

  12. Planting the Spirit of Inquiry

    ERIC Educational Resources Information Center

    Quinones, Christin; Jeanpierre, Bobby

    2005-01-01

    Just asking questions can lead to the best classroom experiences. After a three-week unit on living things, one of the authors asked their second-grade students what else they wanted to learn about plants. Their questions were the prelude to a three-week inquiry on plant growth. From question formulation to presentation of results, the students…

  13. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  14. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  15. Does pyrogenicity protect burning plants?

    PubMed

    Gagnon, Paul R; Passmore, Heather A; Platt, William J; Myers, Jonathan A; Paine, C E Timothy; Harms, Kyle E

    2010-12-01

    Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our "pyrogenicity as protection" hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis.

  16. Endangered vascular plants in Japan

    PubMed Central

    Iwatsuki, Kunio

    2008-01-01

    The history of the Red List of Japanese vascular plants is briefly reviewed for editing and research. Especially on the results of recent monitoring, the present status of information and conservation activities on the endangered plants in Japan is discussed and the dynamics of the Japanese flora are taken up, in relation to basic research on plant biodiversity on the Japanese Archipelago. The figures of endangered plants are not very variable during the past quarter of a century, but we can surmise that the conservation of threatened species in Japan has been promoted to some extent. Based on the results of such a study, proposals are made to contribute to the sustainable use of plant biodiversity on the Japanese Archipelago under a global conspectus. PMID:18941303

  17. A history of plant virology.

    PubMed

    van der Want, J P H; Dijkstra, J

    2006-08-01

    This review traces developments in plant virus research from its very beginning in the eighties of the 19th century until the present day. Starting with the earliest research, which gave a clue as to the existence of a pathogen different from the then known bacteria and fungi, the subsequent topics in plant virus research are highlighted, including the spread of plant viruses in nature and their relationships with possible vectors. In the course of more than a century, macroscopical and (sub)microscopical studies gave way to those with a molecular dimension, thanks to the development of sophisticated molecular-biological techniques and information technology. As a result an insight has been gained into both the molecular characteristics of plant viruses and various resistance mechanisms in plants.

  18. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.

  19. Plant production systems for vaccines.

    PubMed

    Streatfield, Stephen J; Howard, John A

    2003-12-01

    Plants offer an attractive alternative for the production and delivery of subunit vaccines. Various antigens have been expressed at sufficiently high levels in plants to render vaccine development practical. An increasing body of evidence demonstrates that these plant-produced antigens can induce immunogenic responses and confer protection when delivered orally. Plant-based vaccines are relatively inexpensive to produce and production can be rapidly scaled up. There is also the potential for oral delivery of these vaccines, which can dramatically reduce distribution and delivery costs. Here we describe the technology to develop plant-based vaccines, review their advantages and discuss potential roadblocks and concerns over their commercialization. We also speculate on likely future developments with these vaccines and on their potential impact in the realms of human and animal health.

  20. Bioprospecting plant-associated microbiomes.

    PubMed

    Müller, Christina A; Obermeier, Melanie M; Berg, Gabriele

    2016-10-10

    There is growing demand for new bioactive compounds and biologicals for the pharmaceutical, agro- and food industries. Plant-associated microbes present an attractive and promising source to this end, but are nearly unexploited. Therefore, bioprospecting of plant microbiomes is gaining more and more attention. Due to their highly specialized and co-evolved genetic pool, plant microbiomes host a rich secondary metabolism. This article highlights the potential detection and use of secondary metabolites and enzymes derived from plant-associated microorganisms in biotechnology. As an example we summarize the findings from the moss microbiome with special focus on the genus Sphagnum and its biotechnological potential for the discovery of novel microorganisms and bioactive molecules. The selected examples illustrate unique and yet untapped properties of plant-associated microbiomes, which are an immense treasure box for future research.

  1. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  2. Nutrient metal elements in plants.

    PubMed

    DalCorso, Giovanni; Manara, Anna; Piasentin, Silvia; Furini, Antonella

    2014-10-01

    Plants need many different metal elements for growth, development and reproduction, which must be mobilized from the soil matrix and absorbed by the roots as metal ions. Once taken up by the roots, metal ions are allocated to different parts of the plant by the vascular tissues. Metals are naturally present in the soil, but human activities, ranging from mining and agriculture to sewage processing and heavy industry, have increased the amount of metal pollution in the environment. Plants are challenged by environmental metal ion concentrations that fluctuate from low to high toxic levels, and have therefore evolved mechanisms to cope with such phenomena. In this review, we focus on recent data that provide insight into the molecular mechanisms of metal absorption and transport by plants, also considering the effect of metal deficiency and toxicity. We also highlight the positive effects of some non-essential metals on plant fitness.

  3. Metabolomics for plant stress response.

    PubMed

    Shulaev, Vladimir; Cortes, Diego; Miller, Gad; Mittler, Ron

    2008-02-01

    Stress in plants could be defined as any change in growth condition(s) that disrupts metabolic homeostasis and requires an adjustment of metabolic pathways in a process that is usually referred to as acclimation. Metabolomics could contribute significantly to the study of stress biology in plants and other organisms by identifying different compounds, such as by-products of stress metabolism, stress signal transduction molecules or molecules that are part of the acclimation response of plants. These could be further tested by direct measurements, correlated with changes in transcriptome and proteome expression and confirmed by mutant analysis. In this review, we will discuss recent application of metabolomics and system biology to the area of plant stress response. We will describe approaches such as metabolic profiling and metabolic fingerprinting as well as combination of different 'omics' platforms to achieve a holistic view of the plant response stress and conduct detailed pathway analysis.

  4. Plant tendrils: Nature's hygroscopic springs

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Puzey, Joshua; McCormick, Andrew; Mahadevan, L.

    2012-02-01

    Plant tendrils are specialized climbing organs that have fascinated biologists and physicists alike for centuries. Initially straight tendrils attach at the tip to an elevated rigid support and then winch the plant upward by coiling into a helical morphology characterized by two helices of opposite handedness connected by a helical perversion. In his renowned treatise on twining and tendril-bearing plants, Charles Darwin surmised that coiled tendrils serve as soft, springy attachments for the climbing plant. Yet, the true effect of the perverted helical shape of a coiled plant tendril has not been fully revealed. Using a combination of experiments on Cucurbitaceae tendrils, physical models constructed from strained rubber sheets, and numerical models of helical perversions, we have uncovered that tendril coiling occurs via anisotropic shrinkage of a strip of specialized cells in the interior of the tendril. Furthermore, variations in the mechanical behavior of tendrils as they become drier and ``woodier'' adds a new twist to the story of tendril coiling.

  5. Medicinal Plants and Cancer Chemoprevention

    PubMed Central

    Desai, Avni G.; Qazi, Ghulam N.; Ganju, Ramesh K.; El-Tamer, Mahmoud; Singh, Jaswant; Saxena, Ajit K.; Bedi, Yashbir S.; Taneja, Subhash C.; Bhat, Hari K.

    2014-01-01

    Cancer is the second leading cause of death worldwide. Although great advancements have been made in the treatment and control of cancer progression, significant deficiencies and room for improvement remain. A number of undesired side effects sometimes occur during chemotherapy. Natural therapies, such as the use of plant-derived products in cancer treatment, may reduce adverse side effects. Currently, a few plant products are being used to treat cancer. However, a myriad of many plant products exist that have shown very promising anti-cancer properties in vitro, but have yet to be evaluated in humans. Further study is required to determine the efficacy of these plant products in treating cancers in humans. This review will focus on the various plant-derived chemical compounds that have, in recent years, shown promise as anticancer agents and will outline their potential mechanism of action. PMID:18781909

  6. Bioinformatic characterization of plant networks

    SciTech Connect

    McDermott, Jason E.; Samudrala, Ram

    2008-06-30

    Cells and organisms are governed by networks of interactions, genetic, physical and metabolic. Large-scale experimental studies of interactions between components of biological systems have been performed for a variety of eukaryotic organisms. However, there is a dearth of such data for plants. Computational methods for prediction of relationships between proteins, primarily based on comparative genomics, provide a useful systems-level view of cellular functioning and can be used to extend information about other eukaryotes to plants. We have predicted networks for Arabidopsis thaliana, Oryza sativa indica and japonica and several plant pathogens using the Bioverse (http://bioverse.compbio.washington.edu) and show that they are similar to experimentally-derived interaction networks. Predicted interaction networks for plants can be used to provide novel functional annotations and predictions about plant phenotypes and aid in rational engineering of biosynthesis pathways.

  7. Plant sex and the evolution of plant defenses against herbivores

    PubMed Central

    Johnson, Marc T. J.; Smith, Stacey D.; Rausher, Mark D.

    2009-01-01

    Despite the importance of plant–herbivore interactions to the ecology and evolution of terrestrial ecosystems, the evolutionary factors contributing to variation in plant defenses against herbivores remain unresolved. We used a comparative phylogenetic approach to examine a previously untested hypothesis (Recombination-Mating System Hypothesis) that posits that reduced sexual reproduction limits adaptive evolution of plant defenses against arthropod herbivores. To test this hypothesis we focused on the evening primrose family (Onagraceae), which includes both sexual and functionally asexual species. Ancestral state reconstructions on a 5-gene phylogeny of the family revealed between 18 and 21 independent transitions between sexual and asexual reproduction. Based on these analyses, we examined susceptibility to herbivores on 32 plant species representing 15 independent transitions. Generalist caterpillars consumed 32% more leaf tissue, gained 13% greater mass, and experienced 21% higher survival on functionally asexual than on sexual plant species. Survival of a generalist feeding mite was 19% higher on asexual species. In a field experiment, generalist herbivores consumed 64% more leaf tissue on asexual species. By contrast, a specialist beetle fed more on sexual than asexual species, suggesting that a tradeoff exists between the evolution of defense to generalist and specialist herbivores. Measures of putative plant defense traits indicate that both secondary compounds and physical leaf characteristics may mediate this tradeoff. These results support the Recombination-Mating System Hypothesis and suggest that variation in sexual reproduction among plant species may play an important, yet overlooked, role in shaping the macroevolution of plant defenses against arthropod herbivores. PMID:19617572

  8. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  9. Application of plant impedance for diagnosing plant disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  10. Plant health sensing system for determining nitrogen status in plants

    NASA Astrophysics Data System (ADS)

    Thomasson, J. A.; Sui, Ruixiu; Read, John J.; Reddy, K. R.

    2004-03-01

    A plant health sensing system was developed for determining nitrogen status in plants. The system consists of a multi-spectral optical sensor and a data-acquisition and processing unit. The optical sensor"s light source provides modulated panchromatic illumination of a plant canopy with light-emitting diodes, and the sensor measures spectral reflectance through optical filters that partition the energy into blue, green, red, and near-infrared wavebands. Spectral reflectance of plants is detected in situ, at the four wavebands, in real time. The data-acquisition and processing unit is based on a single board computer that collects data from the multi-spectral sensor and spatial information from a global positioning system receiver. Spectral reflectance at the selected wavebands is analyzed, with algorithms developed during preliminary work, to determine nitrogen status in plants. The plant health sensing system has been tested primarily in the laboratory and field so far, and promising results have been obtained. This article describes the development, theory of operation, and test results of the plant health sensing system.

  11. PlantProm: a database of plant promoter sequences

    PubMed Central

    Shahmuradov, Ilham A.; Gammerman, Alex J.; Hancock, John M.; Bramley, Peter M.; Solovyev, Victor V.

    2003-01-01

    PlantProm DB, a plant promoter database, is an annotated, non-redundant collection of proximal promoter sequences for RNA polymerase II with experimentally determined transcription start site(s), TSS, from various plant species. The first release (2002.01) of PlantProm DB contains 305 entries including 71, 220 and 14 promoters from monocot, dicot and other plants, respectively. It provides DNA sequence of the promoter regions (−200 : +51) with TSS on the fixed position +201, taxonomic/promoter type classification of promoters and Nucleotide Frequency Matrices (NFM) for promoter elements: TATA-box, CCAAT-box and TSS-motif (Inr). Analysis of TSS-motifs revealed that their composition is different in dicots and monocots, as well as for TATA and TATA-less promoters. The database serves as learning set in developing plant promoter prediction programs. One such program (TSSP) based on discriminant analysis has been created by Softberry Inc. and the application of a support ftp: vector machine approach for promoter identification is under development. PlantProm DB is available at http://mendel.cs.rhul.ac.uk/ and http://www.softberry.com/. PMID:12519961

  12. Linking Plant Nutritional Status to Plant-Microbe Interactions

    PubMed Central

    Carvalhais, Lilia C.; Dennis, Paul G.; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress. PMID:23874669

  13. Biodiversity effects on plant stoichiometry.

    PubMed

    Abbas, Maike; Ebeling, Anne; Oelmann, Yvonne; Ptacnik, Robert; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W; Wilcke, Wolfgang; Hillebrand, Helmut

    2013-01-01

    In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (-27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for

  14. Plant-herbivore interactions mediated by plant toxicity

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.

    2008-01-01

    We explore the impact of plant toxicity on the dynamics of a plant-herbivore interaction, such as that of a mammalian browser and its plant forage species, by studying a mathematical model that includes a toxin-determined functional response. In this functional response, the traditional Holling Type 2 response is modified to include the negative effect of toxin on herbivore growth, which can overwhelm the positive effect of biomass ingestion at sufficiently high plant toxicant concentrations. Two types of consumption decisions of the herbivore are considered. One of these (Case 1) incorporates the adaptation of the herbivore to control its rate of consumption of plant items when that is likely to lead to levels of toxicity that more than offset the marginal gain to the herbivore of consuming more plant biomass, while the other (Case 2) simply assumes that, although the herbivore's rate of ingestion of plant biomass is negatively affected by increasing ingestion of toxicant relative to the load it can safely deal with, the herbivore is not able to prevent detrimental or even lethal levels of toxicant intake. A primary result of this work is that these differences in behavior lead to dramatically different outcomes, summarized in bifurcation diagrams. In Case 2, a wide variety of dynamics may occur due to the interplay of Holling Type 2 dynamics and the effect of the plant toxicant. These dynamics include the occurrence of bistability, in which both a periodic solution and the herbivore-extinction equilibrium are attractors, as well the possibility of a homoclinic bifurcation. Whether the herbivore goes to extinction in the bistable case depends on initial conditions of herbivore and plant biomasses. For relatively low herbivore resource acquisition rates, the toxicant effect increases the likelihood of 'paradox of enrichment' type limit cycle oscillations, but at higher resource acquisition rates, the toxicant may decrease the likelihood of these cycles. ?? 2007

  15. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  16. Plants under Climatic Stress

    PubMed Central

    Taylor, A. O.; Rowley, J. A.

    1971-01-01

    Photosynthetic rates of both C4- and C3-pathway plants grown at 25 C were measured before and during a period of chilling stress at 10 C, and then again at 25 C following various periods at 10 C. When temperatures are first lowered photosynthetic rates drop immediately, then undergo a further reduction which is quite rapid in species such as Sorghum, maize, and Pennisetum; slower in soybean; and very slow in Paspalum and ryegrass. Visible light causes progressive permanent damage to the photosynthetic capacity of leaves during this period of lowered photosynthesis. The extent of damage increases with light intensity and the length of time leaves are held at 10 C but varies greatly between species, being roughly correlated with the extent to which chilling initially and subsequently lowers photosynthesis. Three days of chilling (10 C) at 170 w·m−2 reduces the photosynthetic capacity of youngest-mature Paspalum leaves only 30 to 40% while Sorghum leaves are essentially inoperative when returned to 25 C after the same stress. Root temperature has a substantial rapid effect on photosynthesis of soybean and little immediate effect on Sorghum. Photosynthesis of stress-intolerant species (Sorghum) is reduced only slightly more than that of semitolerant species (Paspalum) when temperatures are lowered at mid-photo-period, but to a far greater extent if temperatures are reduced at the commencement of a photoperiod. PMID:16657691

  17. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2000-10-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

    2001-05-17

    The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

  19. Microtubules in Plants

    PubMed Central

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized. PMID:26019693

  20. Aquatic plant control research

    SciTech Connect

    Pryfogle, P.A.; Rinehart, B.N.; Ghio, E.G.

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  1. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Belma Demirel; Ming He; Troy Raybold; Manuel E. Quintana; Lalit S. Shah; Kenneth A. Yackly

    2003-06-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  2. Polyamines in plant physiology

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  3. 7 CFR 1000.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  4. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  5. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to the plant's operations as described...

  6. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to the plant's operations as described...

  7. 7 CFR 1000.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  8. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  9. Compounds and methods for improving plant performance

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas Joseph

    2016-09-20

    The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.

  10. 7 CFR 1000.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  11. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to the plant's operations as described...

  12. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to the plant's operations as described...

  13. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  14. 7 CFR 1000.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  15. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  16. 7 CFR 1000.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1000.6 Section 1000.6 Agriculture... Definitions § 1000.6 Supply plant. Supply plant means a plant approved by a duly constituted regulatory agency... diverts fluid milk products to other plants or manufactures dairy products on its premises....

  17. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to the plant's operations as described...

  18. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants....

  19. Distinguishing succulent plants from crop and woody plants

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Everitt, J. H.; Richardson, A. J.; Rodriguez, R. R.

    1978-01-01

    We compared laboratory spectrophotometrically measured leaf reflectances of six succulents (peperomia, possum-grape, prickly pear, spiderwort, Texas tuberose, wolfberry) with those of four nonsucculents (cenizo, honey mesquite, cotton, sugarcane) for plant species discrimination. Succulents (average leaf water content of 92.2 percent) could be distinguished from nonsucculents (average leaf water content of 71.2 percent) within the near-infrared water absorption waveband (1.35 to 2.5 microns). This was substantiated by field spectrophotometric reflectances of plant canopies. Sensor bands encompassing either the 1.6- or 2.2-wavelengths may be useful to distinguish succulent from nonsucculent plant species.

  20. Plant maintenance and plant life extension issue, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-03-15

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.