Science.gov

Sample records for plant gene family

  1. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both lowcopy- number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  2. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-03-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94,000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae-wide, angiosperm-specific, monocot-specific, dicot-specific, and those that were species-specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low-copy-number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g., photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein-protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  3. Evolution of the YABBY gene family in seed plants.

    PubMed

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants.

  4. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  5. Biofuel Potential of Plants Transformed Genetically with NAC Family Genes

    PubMed Central

    Singh, Sadhana; Grover, Atul; Nasim, M.

    2016-01-01

    NAC genes contribute to enhance survivability of plants under conditions of environmental stress and in secondary growth of the plants, thereby building biomass. Thus, genetic transformation of plants using NAC genes provides a possibility to tailor biofuel plants. Over-expression studies have indicated that NAC family genes can provide tolerance to various biotic and abiotic stresses, either by physiological or biochemical changes at the cellular level, or by affecting visible morphological and anatomical changes, for example, by development of lateral roots in a number of plants. Over-expression of these genes also work as triggers for development of secondary cell walls. In our laboratory, we have observed a NAC gene from Lepidium latifolium contributing to both enhanced biomass as well as cold stress tolerance of model plants tobacco. Thus, we have reviewed all the developments of genetic engineering using NAC genes which could enhance the traits required for biofuel plants, either by enhancing the stress tolerance or by enhancing the biomass of the plants. PMID:26858739

  6. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  7. Caspases in plants: metacaspase gene family in plant stress responses.

    PubMed

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.

  8. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F; Moore, David; Lascoux, Martin; Lagercrantz, Ulf

    2011-08-01

    The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.

  9. Tandem repeat distribution of gene transcripts in three plant families

    PubMed Central

    2009-01-01

    Tandem repeats (microsatellites or SSRs) are molecular markers with great potential for plant genetic studies. Modern strategies include the transfer of these markers among widely studied and orphan species. In silico analyses allow for studying distribution patterns of microsatellites and predicting which motifs would be more amenable to interspecies transfer. Transcribed sequences (Unigene) from ten species of three plant families were surveyed for the occurrence of micro and minisatellites. Transcripts from different species displayed different rates of tandem repeat occurrence, ranging from 1.47% to 11.28%. Both similar and different patterns were found within and among plant families. The results also indicate a lack of association between genome size and tandem repeat fractions in expressed regions. The conservation of motifs among species and its implication on genome evolution and dynamics are discussed. PMID:21637460

  10. Molecular Evolution and Expression Divergence of the Aconitase (ACO) Gene Family in Land Plants

    PubMed Central

    Wang, Yi-Ming; Yang, Qi; Liu, Yan-Jing; Yang, Hai-Ling

    2016-01-01

    Aconitase (ACO) is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA) and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: Bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants. PMID:28018410

  11. Different evolutionary histories of two cation/proton exchanger gene families in plants

    PubMed Central

    2013-01-01

    Background Gene duplication events have been proposed to be involved in the adaptation of plants to stress conditions; precisely how is unclear. To address this question, we studied the evolution of two families of antiporters. Cation/proton exchangers are important for normal cell function and in plants, Na+,K+/H+ antiporters have also been implicated in salt tolerance. Two well-known plant cation/proton antiporters are NHX1 and SOS1, which perform Na+ and K+ compartmentalization into the vacuole and Na+ efflux from the cell, respectively. However, our knowledge about the evolution of NHX and SOS1 stress responsive gene families is still limited. Results In this study we performed a comprehensive molecular evolutionary analysis of the NHX and SOS1 families. Using available sequences from a total of 33 plant species, we estimated gene family phylogenies and gene duplication histories, as well as examined heterogeneous selection pressure on amino acid sites. Our results show that, while the NHX family expanded and specialized, the SOS1 family remained a low copy gene family that appears to have undergone neofunctionalization during its evolutionary history. Additionally, we found that both families are under purifying selection although SOS1 is less constrained. Conclusions We propose that the different evolution histories are related with the proteins’ function and localization, and that the NHX and SOS1 families are examples of two different evolutionary paths through which duplication events may result in adaptive evolution of stress tolerance. PMID:23822194

  12. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants

    PubMed Central

    Morant, Marc; Hehn, Alain; Werck-Reichhart, Danièle

    2002-01-01

    Background Availability of genomewide information on an increasing but still limited number of plants offers the possibility of identifying orthologues, or related genes, in species with major economical impact and complex genomes. In this paper we exploit the recently described CODEHOP primer design and PCR strategy for targeted isolation of homologues in large gene families. Results The method was tested with two different objectives. The first was to analyze the evolution of the CYP98 family of cytochrome P450 genes involved in 3-hydroxylation of phenolic compounds and lignification in a broad range of plant species. The second was to isolate an orthologue of the sorghum glucosyl transferase UGT85B1 and to determine the complexity of the UGT85 family in wheat. P450s of the CYP98 family or closely related sequences were found in all vascular plants. No related sequence was found in moss. Neither extensive duplication of the CYP98 genes nor an orthologue of UGT85B1 were found in wheat. The UGT85A subfamily was however found to be highly variable in wheat. Conclusions Our data are in agreement with the implication of CYP98s in lignification and the evolution of 3-hydroxylation of lignin precursors with vascular plants. High conservation of the CYP98 family strongly argues in favour of an essential function in plant development. Conversely, high duplication and diversification of the UGT85A gene family in wheat suggests its involvement in adaptative response and provides a valuable pool of genes for biotechnological applications. This work demonstrates the high potential of the CODEHOP strategy for the exploration of large gene families in plants. PMID:12153706

  13. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    PubMed Central

    2009-01-01

    Background As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement. Results We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis. Conclusion The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots

  14. Dynein light chain family genes in 15 plant species: Identification, evolution and expression profiles.

    PubMed

    Cao, Jun; Li, Xiangyang; Lv, Yueqing

    2017-01-01

    Dynein light chain (DLC) is one important component of the dynein complexes, which have been proved involving in a variety of cellular functions. However, higher plants lack all other components of the complexes except DLCs, suggesting that in plants, the DLC protein does not carry out the same function as it in animals. Therefore, the function of this family in plants is mysterious. In this study, we investigated the DLC gene family in 15 plant species and analyzed their expression profiles. In total, 128 DLC genes were identified from the 15 studied plant species and were divided into eight groups by their phylogenetic relation. Highly conserved gene structure and motif arrangement was discovered within each group, indicating their functional correlation. Genetic variation and recombination events were also detected in DLC genes. Through selection analyses, we also identified some significant site-specific constraints in most of the DLC paralogs. In addition, DLC genes presented various expression profiles in different development stages, or under different abiotic stresses or phytohormone treatments. This may be associated with a variety of cis-elements responding to stress and phytohormone in the upstream sequences of the DLC genes. Functional network analysis exhibited 123 physical or functional interactions. The results provide a foundation for exploring the characterization of the DLC genes in plants and offer insights for additional functional studies.

  15. Genome-Wide Analysis of the NADK Gene Family in Plants

    PubMed Central

    Li, Wen-Yan; Wang, Xiang; Li, Ri; Li, Wen-Qiang; Chen, Kun-Ming

    2014-01-01

    Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity

  16. F-box gene family is expanded in herbaceous annual plants Arabidopsis and rice relative to woody perennial plant Populus

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Jawdy, Sara; Gunter, Lee E; Yin, Tongming; Tschaplinski, Timothy J; Weston, David; Ranjan, Priya; Tuskan, Gerald A

    2008-01-01

    F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteosome pathway. In plants, F-box genes influence a variety of biological processes such as leaf senescence, branching, self-incompatibility and responses to biotic and abiotic stresses. The number of F-box genes in Populus (~320) is less than half that found in Arabidopsis (~660) or rice (~680), even though the total number of genes in Populus is equivalent to that in rice and 1.5 times that in Arabidopsis. We performed comparative genomic analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and rice in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure and gene expression. The set of F-box genes shared by these three species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and rice. The present study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.

  17. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family.

    PubMed

    Priya, R; Siva, Ramamoorthy

    2015-07-01

    During different environmental stress conditions, plant growth is regulated by the hormone abscisic acid (an apocarotenoid). In the biosynthesis of abscisic acid, the oxidative cleavage of cis-epoxycarotenoid catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the crucial step. The NCED genes were isolated in numerous plant species and those genes were phylogenetically investigated to understand the evolution of NCED genes in various plant lineages comprising lycophyte, gymnosperm, dicot and monocot. A total of 93 genes were obtained from 48 plant species to statistically estimate their sequence conservation and functional divergence. Selaginella moellendorffii appeared to be evolutionarily distinct from those of the angiosperms, insisting the substantial influence of natural selection pressure on NCED genes. Further, using exon-intron structure analysis, the gene structures of NCED were found to be conserved across some species. In addition, the substitution rate ratio of non-synonymous (Ka) versus synonymous (Ks) mutations using the Bayesian inference approach, depicted the critical amino acid residues for functional divergence. A significant functional divergence was found between some subgroups through the co-efficient of type-I functional divergence. Our results suggest that the evolution of NCED genes occurred by duplication, diversification and exon intron loss events. The site-specific profile and functional diverge analysis revealed NCED genes might facilitate the tissue-specific functional divergence in NCED sub-families, that could combat different environmental stress conditions aiding plant survival.

  18. From manual curation to visualization of gene families and networks across Solanaceae plant species.

    PubMed

    Pujar, Anuradha; Menda, Naama; Bombarely, Aureliano; Edwards, Jeremy D; Strickler, Susan R; Mueller, Lukas A

    2013-01-01

    High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL: http://solgenomics.net/

  19. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants.

    PubMed

    Liu, Yan-Jing; Han, Xue-Min; Ren, Lin-Ling; Yang, Hai-Ling; Zeng, Qing-Yin

    2013-02-01

    Plant glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family that play major roles in the detoxification of xenobiotics and oxidative stress metabolism. To date, studies on the GST gene family have focused mainly on vascular plants (particularly agricultural plants). In contrast, little information is available on the molecular characteristics of this large gene family in nonvascular plants. In addition, the evolutionary patterns of this family in land plants remain unclear. In this study, we identified 37 GST genes from the whole genome of the moss Physcomitrella patens, a nonvascular representative of early land plants. The 37 P. patens GSTs were divided into 10 classes, including two new classes (hemerythrin and iota). However, no tau GSTs were identified, which represent the largest class among vascular plants. P. patens GST gene family members showed extensive functional divergence in their gene structures, gene expression responses to abiotic stressors, enzymatic characteristics, and the subcellular locations of the encoded proteins. A joint phylogenetic analysis of GSTs from P. patens and other higher vascular plants showed that different class GSTs had distinct duplication patterns during the evolution of land plants. By examining multiple characteristics, this study revealed complex patterns of evolutionary divergence among the GST gene family in land plants.

  20. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    PubMed

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  1. Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants.

    PubMed

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K(+)-efflux antiporter (KEA) and cation/H(+) exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na(+)-H(+) exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1-4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K(+) transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants.

  2. Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Algae to Flowering Plants

    PubMed Central

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F.; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation–proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K+-efflux antiporter (KEA) and cation/H+ exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na+–H+ exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1–4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K+ transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1–4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants. PMID:22639643

  3. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants.

    PubMed

    De Smet, Riet; Adams, Keith L; Vandepoele, Klaas; Van Montagu, Marc C E; Maere, Steven; Van de Peer, Yves

    2013-02-19

    The importance of gene gain through duplication has long been appreciated. In contrast, the importance of gene loss has only recently attracted attention. Indeed, studies in organisms ranging from plants to worms and humans suggest that duplication of some genes might be better tolerated than that of others. Here we have undertaken a large-scale study to investigate the existence of duplication-resistant genes in the sequenced genomes of 20 flowering plants. We demonstrate that there is a large set of genes that is convergently restored to single-copy status following multiple genome-wide and smaller scale duplication events. We rule out the possibility that such a pattern could be explained by random gene loss only and therefore propose that there is selection pressure to preserve such genes as singletons. This is further substantiated by the observation that angiosperm single-copy genes do not comprise a random fraction of the genome, but instead are often involved in essential housekeeping functions that are highly conserved across all eukaryotes. Furthermore, single-copy genes are generally expressed more highly and in more tissues than non-single-copy genes, and they exhibit higher sequence conservation. Finally, we propose different hypotheses to explain their resistance against duplication.

  4. Characterization of the 11S globulin gene family in the castor plant Ricinus communis L.

    PubMed

    Chileh, Tarik; Esteban-García, Belén; Alonso, Diego López; García-Maroto, Federico

    2010-01-13

    The 11S globulin (legumin) gene family has been characterized in the castor plant Ricinus communis L. Phylogenetic analysis reveals the presence of two diverged subfamilies (RcLEG1 and RcLEG2) comprising a total of nine genes and two putative pseudogenes. The expression of castor legumin genes has been studied, indicating that it is seed specific and developmentally regulated, with a maximum at the stage when cellular endosperm reaches its full expansion (around 40-45 DAP). However, conspicuous differences are appreciated in the expression timing of individual genes. A characterization of the 5'-proximal regulatory regions for two genes, RcLEG1-1 and RcLEG2-1, representative of the two legumin subfamilies, has also been performed by fusion to the GUS reporter gene. The results obtained from heterologous expression in tobacco and transient expression in castor, indicating seed-specific regulation, support the possible utility of these promoters for biotechnological purposes.

  5. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Librado, Pablo; Chang, Tien-Hao; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-05-01

    Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.

  6. Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution1[W][OA

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F.; Moore, David; Lascoux, Martin; Lagercrantz, Ulf

    2011-01-01

    The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms. PMID:21642442

  7. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    PubMed

    Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling

    2015-01-01

    Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  8. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants

    PubMed Central

    Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling

    2015-01-01

    Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants. PMID:26684301

  9. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development1[OPEN

    PubMed Central

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-01-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. PMID:26417009

  10. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.

    PubMed Central

    Clemens, S; Kim, E J; Neumann, D; Schroeder, J I

    1999-01-01

    Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes. PMID:10369673

  11. The lateral organ boundaries gene defines a novel, plant-specific gene family.

    PubMed

    Shuai, Bin; Reynaga-Peña, Cristina G; Springer, Patricia S

    2002-06-01

    The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species. Proteins showing similarity to the LOB domain were not found outside of plant databases, indicating that this unique protein may play a role in plant-specific processes. Genes encoding LOB domain proteins are expressed in a variety of temporal- and tissue-specific patterns, suggesting that they may function in diverse processes. Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions, suggesting that LOB is functionally redundant or required during growth under specific environmental conditions. Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility. The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development.

  12. Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy.

    PubMed

    Guo, Hai-Song; Zhang, Yan-Mei; Sun, Xiao-Qin; Li, Mi-Mi; Hang, Yue-Yu; Xue, Jia-Yu

    2016-04-01

    Very long-chain fatty acids (VLCFAs) play an important role in the survival and development of plants, and VLCFA synthesis is regulated by β-ketoacyl-CoA synthases (KCSs), which catalyze the condensation of an acyl-CoA with malonyl-CoA. Here, we present a genome-wide survey of the genes encoding these enzymes, KCS genes, in 28 species (26 genomes and two transcriptomes), which represents a large phylogenetic scale, and also reconstruct the evolutionary history of this gene family. KCS genes were initially single-copy genes in the green plant lineage; duplication resulted in five ancestral copies in land plants, forming five fundamental monophyletic groups in the phylogenetic tree. Subsequently, KCS genes duplicated to generate 11 genes of angiosperm origin, expanding up to 20-30 members in further-diverged angiosperm species. During this process, tandem duplications had only a small contribution, whereas polyploidy events and large-scale segmental duplications appear to be the main driving force. Accompanying this expansion were variations that led to the sub- and neofunctionalization of different members, resulting in specificity that is likely determined by the 3-D protein structure. Novel functions involved in other physiological processes emerged as well, though redundancy is also observed, largely among recent duplications. Conserved sites and variable sites of KCS proteins are also identified by statistical analysis. The variable sites are likely to be involved in the emergence of product specificity and catalytic power, and conserved sites are possibly responsible for the preservation of fundamental function.

  13. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    PubMed Central

    Lakhssassi, Naoufal; Liu, Shiming; Bekal, Sadia; Zhou, Zhou; Colantonio, Vincent; Lambert, Kris; Barakat, Abdelali; Meksem, Khalid

    2017-01-01

    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN. PMID:28338077

  14. Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze

    PubMed Central

    Wang, Yong-Xin; Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Hui; Zhuang, Jing

    2016-01-01

    In plants, the NAC (NAM-ATAF1/2-CUC) family of proteins constitutes several transcription factors and plays vital roles in diverse biological processes, such as growth, development, and adaption to adverse factors. Tea, as a non-alcoholic drink, is known for its bioactive ingredients and health efficacy. Currently, knowledge about NAC gene family in tea plant remains very limited. In this study, a total of 45 CsNAC genes encoding NAC proteins including three membrane-bound members were identified in tea plant through transcriptome analysis. CsNAC factors and Arabidopsis counterparts were clustered into 17 subgroups after phylogenetic analysis. Conserved motif analysis revealed that CsNAC proteins with a close evolutionary relationship possessed uniform or similar motif compositions. The distribution of NAC family MTFs (membrane-associated transcription factors) among higher plants of whose genome-wide has been completed revealed that the existence of doubled TMs (transmembrane motifs) may be specific to fabids. Transcriptome analysis exhibited the expression profiles of CsNAC genes in different tea plant cultivars under non-stress conditions. Nine CsNAC genes, including the predicted stress-related and membrane-bound genes, were examined through qRT-PCR (quantitative real time polymerase chain reaction) in two tea plant cultivars, namely, ‘Huangjinya’ and ‘Yingshuang’. The expression patterns of these genes were investigated in different tissues (root, stem, mature leaf, young leaf and bud) and under diverse environmental stresses (drought, salt, heat, cold and abscisic acid). Several CsNAC genes, including CsNAC17 and CsNAC30 that are highly orthologous to known stress-responsive ANAC072/RD26 were identified as highly responsive to abiotic stress. This study provides a global survey of tea plant NAC proteins, and would be helpful for the improvement of stress resistance in tea plant via genetic engineering. PMID:27855193

  15. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants.

  16. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants

    PubMed Central

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-01-01

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. PMID:26907500

  17. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages

    PubMed Central

    Johnson, Deborah A; Hill, Jeffrey P; Thomas, Michael A

    2006-01-01

    Background In plants, tandem, segmental and whole-genome duplications are prevalent, resulting in large numbers of duplicate loci. Recent studies suggest that duplicate genes diverge predominantly through the partitioning of expression and that breadth of gene expression is related to the rate of gene duplication and protein sequence evolution. Here, we utilize expressed sequence tag (EST) data to study gene duplication and expression patterns in the monosaccharide transporter (MST) gene family across the land plants. In Arabidopsis, there are 53 MST genes that form seven distinct subfamilies. We created profile hidden Markov models of each subfamily and searched EST databases representing diverse land plant lineages to address the following questions: 1) Are homologs of each Arabidopsis subfamily present in the earliest land plants? 2) Do expression patterns among subfamilies and individual genes within subfamilies differ across lineages? 3) Has gene duplication within each lineage resulted in lineage-specific expansion patterns? We also looked for correlations between relative EST database representation in Arabidopsis and similarity to orthologs in early lineages. Results Homologs of all seven MST subfamilies were present in land plants at least 400 million years ago. Subfamily expression levels vary across lineages with greater relative expression of the STP, ERD6-like, INT and PLT subfamilies in the vascular plants. In the large EST databases of the moss, gymnosperm, monocot and eudicot lineages, EST contig construction reveals that MST subfamilies have experienced lineage-specific expansions. Large subfamily expansions appear to be due to multiple gene duplications arising from single ancestral genes. In Arabidopsis, one or a few genes within most subfamilies have much higher EST database representation than others. Most highly represented (broadly expressed) genes in Arabidopsis have best match orthologs in early divergent lineages. Conclusion The seven

  18. Bayesian reconstruction of ancestral expression of the LEA gene families reveals propagule-derived desiccation tolerance in resurrection plants.

    PubMed

    Fisher, Kirsten M

    2008-04-01

    Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.

  19. Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants.

    PubMed

    Yuan, Xiaowei; Zhang, Shizhong; Liu, Shiyang; Yu, Mingli; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-01-01

    Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families.

  20. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    PubMed Central

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  1. A comparative analysis of the plant cellulose synthase (CesA) gene family.

    PubMed

    Holland, N; Holland, D; Helentjaris, T; Dhugga, K S; Xoconostle-Cazares, B; Delmer, D P

    2000-08-01

    CesA genes are believed to encode the catalytic subunit of cellulose synthase. Identification of nine distinct CesA cDNAs from maize (Zea mays) has allowed us to initiate comparative studies with homologs from Arabidopsis and other plant species. Mapping studies show that closely related CesA genes are not clustered but are found at different chromosomal locations in both Arabidopsis and maize. Furthermore, sequence comparisons among the CesA-deduced proteins show that these cluster in groups wherein orthologs are often more similar than paralogs, indicating that different subclasses evolved prior to the divergence of the monocot and dicot lineages. Studies using reverse transcriptase polymerase chain reaction with gene-specific primers for six of the nine maize genes indicate that all genes are expressed to at least some level in all of the organs examined. However, when expression patterns for a few selected genes from maize and Arabidopsis were analyzed in more detail, they were found to be expressed in unique cell types engaged in either primary or secondary wall synthesis. These studies also indicate that amino acid sequence comparisons, at least in some cases, may have value for prediction of such patterns of gene expression. Such analyses begin to provide insights useful for future genetic engineering of cellulose deposition, in that identification of close orthologs across species may prove useful for prediction of patterns of gene expression and may also aid in prediction of mutant combinations that may be necessary to generate severe phenotypes.

  2. Molecular cloning and characterization of cDNAs of the superoxide dismutase gene family in the resurrection plant Haberlea rhodopensis.

    PubMed

    Apostolova, Elena; Rashkova, Maya; Anachkov, Nikolay; Denev, Iliya; Toneva, Valentina; Minkov, Ivan; Yahubyan, Galina

    2012-06-01

    Resurrection plants can tolerate almost complete water loss in their vegetative parts. The superoxide dismutases (SODs) are essential enzymes of defense against the oxidative damage caused by water stress. Here, we cloned and characterized cDNAs of the SOD gene family in the resurrection plant Haberlea rhodopensis. Seven full-length cDNAs, and their partial genomic clones, were obtained by combination of degenerate PCR, RT-PCR and RACE. The derived amino acid sequences exhibited a very high degree of similarity to cytosolic Cu,Zn-SODs (HrCSD2, HrCSD3), chloroplastic Cu,Zn-SODs (HrCSD5), other Cu,Zn-SODs (HrCSD4), Mn-SODs (HrMSD) and Fe-SODs (HrFSD). One cDNA turned out to be a pseudogene (HrCSD1). All identified SOD genes were found expressed at transcriptional level--the HrCSD2, HrCSD5, HrMSD and HrFSD were constitutively expressed in all organs, while the HrCSD3 and HrCSD4 were organ-specific. The transcripts of the housekeeping SOD genes were detected at significant levels even in air-dry leaves. The multigene SOD family of H. rhodopensis is the first studied SOD family amongst resurrection plant species. Our finding of well expressed SOD transcripts in fully dehydrated leaves correlates with retention of SOD activity, and with the ability of H. rhodopensis to revive upon rehydration. Because of the endemic relict nature of that species, our findings may help to further elucidate the evolutionary relationships among different SOD isoforms from distinct plant species.

  3. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls

    PubMed Central

    2014-01-01

    Background Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families. Results Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families. Conclusions Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other

  4. Plant ALDH10 Family

    PubMed Central

    Kopečný, David; Končitíková, Radka; Tylichová, Martina; Vigouroux, Armelle; Moskalíková, Hana; Soural, Miroslav; Šebela, Marek; Moréra, Solange

    2013-01-01

    Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development. PMID:23408433

  5. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza

    PubMed Central

    Xu, Zhichao; Ji, Aijia; Chen, Shilin

    2016-01-01

    ABSTRACT Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. PMID:27230647

  6. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  7. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    PubMed

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  8. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    PubMed Central

    Vega-Arreguín, Julio C.; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici – plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance. PMID:28261255

  9. Characterizing gene family evolution

    PubMed Central

    Liberles, David A.

    2008-01-01

    Gene families are widely used in comparative genomics, molecular evolution, and in systematics. However, they are constructed in different manners, their data analyzed and interpreted differently, with different underlying assumptions, leading to sometimes divergent conclusions. In systematics, concepts like monophyly and the dichotomy between homoplasy and homology have been central to the analysis of phylogenies. We critique the traditional use of such concepts as applied to gene families and give examples of incorrect inferences they may lead to. Operational definitions that have emerged within functional genomics are contrasted with the common formal definitions derived from systematics. Lastly, we question the utility of layers of homology and the meaning of homology at the character state level in the context of sequence evolution. From this, we move forward to present an idealized strategy for characterizing gene family evolution for both systematic and functional purposes, including recent methodological improvements. PMID:19461954

  10. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

    PubMed Central

    Ori, N; Eshed, Y; Paran, I; Presting, G; Aviv, D; Tanksley, S; Zamir, D; Fluhr, R

    1997-01-01

    Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions. PMID:9144960

  11. The Insect SNMP Gene Family

    DTIC Science & Technology

    2009-01-01

    The insect SNMP gene family Richard G. Vogt a,*,1, Natalie E. Miller a, Rachel Litvack a, Richard A. Fandino a, Jackson Sparks a, Jon Staples a...Wallace Beltsville Agricultural Research Center Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030...keywords: Pheromone Receptors Olfactory Gustatory Chemosensory Gustatory Mosquito Fly a b s t r a c t SNMPs are membrane proteins observed to associate with

  12. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  13. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants.

    PubMed

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription.

  14. The sulfatase gene family.

    PubMed

    Parenti, G; Meroni, G; Ballabio, A

    1997-06-01

    During the past few years, molecular analyses have provided important insights into the biochemistry and genetics of the sulfatase family of enzymes, identifying the molecular bases of inherited diseases caused by sulfatase deficiencies. New members of the sulfatase gene family have been identified in man and other species using a genomic approach. These include the gene encoding arylsulfatase E, which is involved in X-linked recessive chondrodysplasia punctata, a disorder of cartilage and bone development. Another important breakthrough has been the discovery of the biochemical basis of multiple sulfatase deficiency, an autosomal recessive disorder characterized by a severe of all sulfatase activities. These discoveries, together with the resolution of the crystallographic structure of sulfatases, have improved our understanding of the function and evolution of this fascinating family of enzymes.

  15. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development

    PubMed Central

    Jali, Sathya S; Rosloski, Sarah M; Janakirama, Preetam; Steffen, Joshua G; Zhurov, Vladimir; Berleth, Thomas; Clark, Richard M; Grbic, Vojislava

    2014-01-01

    In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants. PMID:25070081

  16. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs

    PubMed Central

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-01-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs. PMID:26546226

  17. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs.

    PubMed

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-12-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs.

  18. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family.

    PubMed

    Silva, Saura R; Diaz, Yani C A; Penha, Helen Alves; Pinheiro, Daniel G; Fernandes, Camila C; Miranda, Vitor F O; Michael, Todd P; Varani, Alessandro M

    2016-01-01

    Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the

  19. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family

    PubMed Central

    Silva, Saura R.; Diaz, Yani C. A.; Penha, Helen Alves; Pinheiro, Daniel G.; Fernandes, Camila C.; Miranda, Vitor F. O.; Michael, Todd P.

    2016-01-01

    Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the

  20. Four transthyretin-like genes of the migratory plant-parasitic nematode Radopholus similis: members of an extensive nematode-specific family.

    PubMed

    Jacob, Joachim; Vanholme, Bartel; Haegeman, Annelies; Gheysen, Godelieve

    2007-11-01

    Screening 1154 ESTs from the plant-parasitic nematode Radopholus similis resulted in seven tags coding for proteins holding a transthyretin-like domain (PF01060). The seven ESTs corresponded to four different genes which were cloned from a cDNA library (accession numbers AM691117, AM691118, AM691119, AM691120). Transthyretin-like genes belong to a large family, different from the transthyretin and the transthyretin-related genes with whom they share some sequence similarity at the protein level. This similarity has caused an inconsistent use of different names and abbreviations in the past. To avoid further confusion, we introduce a standardized nomenclature for this gene family, and chose to name this barely characterized gene family ttl (as for transthyretin-like). Further examination of the identified genes, named Rs-ttl-1 to -4, showed that they are expressed in both juveniles and adults, but not in young embryos. Whole mount in situ hybridization revealed a distinct spatial expression pattern for two of the genes: Rs-ttl-1 is expressed in the tissues surrounding the vulva, whereas Rs-ttl-2 is expressed in the ventral nerve cord. The deduced protein sequences contain a putative signal peptide for secretion, pointing to an extracellular function of the mature proteins. Database screens showed that the ttl family is restricted to nematodes. Moreover, a HMMER search revealed that ESTs derived from ttl genes are more abundant in parasitic nematode libraries, with a bias towards the parasitic stages. Despite their abundance in nematodes, including the extensively studied model organism Caenorhabditis elegans, the function of TTL proteins remains obscure. Our data suggest a role in the nervous system. Even without insight into their biological function, the nematode-specific nature of this gene family makes it a promising target for nematicides or RNAi mediated control strategies against parasitic nematodes.

  1. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba

    PubMed Central

    Galián, J A; Rosato, M; Rosselló, J A

    2012-01-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S–5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S–5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S–5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S–5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary. PMID:22354111

  2. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner

    PubMed Central

    Seo, Young-Su; Rojas, Maria R.; Lee, Jung-Youn; Lee, Sang-Won; Jeon, Jong-Seong; Ronald, Pamela; Lucas, William J.; Gilbertson, Robert L.

    2006-01-01

    Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens. PMID:16880399

  3. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice

    PubMed Central

    Kurotani, Ken-Ich; Hattori, Tsukaho; Takeda, Shin

    2015-01-01

    Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down. PMID:26251886

  4. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants.

    PubMed

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  5. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    PubMed Central

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding. PMID:27559340

  6. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants

    PubMed Central

    2010-01-01

    Background The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. Results We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome

  7. Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family.

    PubMed

    Schuler, Mara; Bauer, Petra

    2011-01-01

    Understanding the regulated inter- and intra-cellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA) is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS). NA is involved in mobilization, uptake, transport, storage, and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes.

  8. Testing Times for Plant Family Recognition

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2010-01-01

    Plant families are the level of the taxonomic hierarchy that many biologists use to organise their understanding of plant diversity. Consequently, from many perspectives, it is very useful to be able to recognise the major plant families "on sight". To this end numerous books and web sites have described and illustrated plant families,…

  9. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants.

    PubMed

    Zhou, Ying; Xia, Hui; Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling.

  10. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax.

    PubMed

    Walder, Florian; Brulé, Daphnée; Koegel, Sally; Wiemken, Andres; Boller, Thomas; Courty, Pierre-Emmanuel

    2015-03-01

    In a preceding microcosm study, we found huge differences in phosphorus (P) acquisition in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) sharing a common mycorrhizal network (CMN). Is the transcriptional regulation of arbuscular mycorrhizal (AM)-induced inorganic orthophosphate (Pi) transporters responsible for these differences? We characterized and analyzed the expression of Pi transporters of the Pht1 family in both plant species, and identified two new AM-inducible Pi transporters in flax. Mycorrhizal Pi acquisition was strongly affected by the combination of plant and AM fungal species. A corresponding change in the expression of two AM-inducible Pht1 transporters was noticed in both plants (SbPT9, SbPT10, LuPT5 and LuPT8), but the effect was very weak. Overall, the expression level of these genes did not explain why flax took up more Pi from the CMN than did sorghum. The post-transcriptional regulation of the transporters and their biochemical properties may be more important for their function than the fine-tuning of their gene expression.

  11. Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors

    PubMed Central

    Zhang, Meiping; Wu, Yen-Hsuan; Lee, Mi-Kyung; Liu, Yun-Hua; Rong, Ying; Santos, Teofila S.; Wu, Chengcang; Xie, Fangming; Nelson, Randall L.; Zhang, Hong-Bin

    2010-01-01

    Many genes exist in the form of families; however, little is known about their size variation, evolution and biology. Here, we present the size variation and evolution of the nucleotide-binding site (NBS)-encoding gene family and receptor-like kinase (RLK) gene family in Oryza, Glycine and Gossypium. The sizes of both families vary by numeral fold, not only among species, surprisingly, also within a species. The size variations of the gene families are shown to correlate with each other, indicating their interactions, and driven by natural selection, artificial selection and genome size variation, but likely not by polyploidization. The numbers of genes in the families in a polyploid species are similar to those of one of its diploid donors, suggesting that polyploidization plays little roles in the expansion of the gene families and that organisms tend not to maintain their ‘surplus’ genes in the course of evolution. Furthermore, it is found that the size variations of both gene families are associated with organisms’ phylogeny, suggesting their roles in speciation and evolution. Since both selection and speciation act on organism’s morphological, physiological and biological variation, our results indicate that the variation of gene family size provides a source of genetic variation and evolution. PMID:20542917

  12. The CBF gene family in apple (malus x domestica Borkh.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many vascular plants have evolved mechanisms for protecting themselves from freeze damage. One of the key pathways controlling higher plant responses to low temperature involves a family of genes which belong to the AP2 domain class of transcription factors. The promoters of many genes involved in...

  13. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  14. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    PubMed

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  15. Genome-Wide Identification of Calcium Dependent Protein Kinase Gene Family in Plant Lineage Shows Presence of Novel D-x-D and D-E-L Motifs in EF-Hand Domain

    PubMed Central

    Mohanta, Tapan K.; Mohanta, Nibedita; Mohanta, Yugal K.; Bae, Hanhong

    2015-01-01

    Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca2+ concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca2+ ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins. PMID:26734045

  16. Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür)

    PubMed Central

    An, Xing-Kui; Sun, Liang; Liu, Hang-Wei; Liu, Dan-Feng; Ding, Yu-Xiao; Li, Le-Mei; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-01-01

    Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes. PMID:27892490

  17. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  18. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations.

    PubMed

    Jupe, Florian; Witek, Kamil; Verweij, Walter; Sliwka, Jadwiga; Pritchard, Leighton; Etherington, Graham J; Maclean, Dan; Cock, Peter J; Leggett, Richard M; Bryan, Glenn J; Cardle, Linda; Hein, Ingo; Jones, Jonathan D G

    2013-11-01

    RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.

  19. Evolutionary history of the Asr gene family.

    PubMed

    Frankel, Nicolás; Carrari, Fernando; Hasson, Esteban; Iusem, Norberto D

    2006-08-15

    The Asr gene family is widespread in higher plants. Most Asr genes are up-regulated under different environmental stress conditions and during fruit ripening. ASR proteins are localized in the nucleus and their likely function is transcriptional regulation. In cultivated tomato, we identified a novel fourth family member, named Asr4, which maps close to its sibling genes Asr1-Asr2-Asr3 and displays an unshared region coding for a domain containing a 13-amino acid repeat. In this work we were able to expand our previous analysis for Asr2 and investigated the coding regions of the four known Asr paralogous genes in seven tomato species from different geographic locations. In addition, we performed a phylogenetic analysis on ASR proteins. The first conclusion drawn from this work is that tomato ASR proteins cluster together in the tree. This observation can be explained by a scenario of concerted evolution or birth and death of genes. Secondly, our study showed that Asr1 is highly conserved at both replacement and synonymous sites within the genus Lycopersicon. ASR1 protein sequence conservation might be associated with its multiple functions in different tissues while the low rate of synonymous substitutions suggests that silent variation in Asr1 is selectively constrained, which is probably related to its high expression levels. Finally, we found that Asr1 activation under water stress is not conserved between Lycopersicon species.

  20. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  1. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species.

  2. The Arabidopsis Cyclophilin Gene Family1

    PubMed Central

    Romano, Patrick G.N.; Horton, Peter; Gray, Julie E.

    2004-01-01

    Database searching has allowed the identification of a number of previously unreported single and multidomain isoform members of the Arabidopsis cyclophilin gene family. In addition to the cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, the latter contain a variety of other domains with characterized functions. Transcriptional analysis showed they are expressed throughout the plant, and different isoforms are present in all parts of the cell including the cytosol, nucleus, mitochondria, secretory pathway, and chloroplast. The abundance and diversity of cyclophilin isoforms suggests that, like their animal counterparts, plant cyclophilins are likely to be important proteins involved in a wide variety of cellular processes. As well as fulfilling the basic role of protein folding, they may also play important roles in mRNA processing, protein degradation, and signal transduction and thus may be crucial during both development and stress responsiveness. PMID:15051864

  3. A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants

    PubMed Central

    He, Yuan; Zhang, Yang; Chen, Lihong; Wu, Chunlai; Luo, Qingchen; Zhang, Fan; Wei, Qiuhui; Li, Kexiu; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    Plant 14-3-3 proteins are involved in diverse biological processes, but for the model monocotyledonous species, Brachypodium distachyon, their roles in abiotic stress tolerance are not well understood. In this study, a total of eight Bd14-3-3 genes were identified from B. distachyon and these were designated respectively as BdGF14a–BdGF14g. The qRT-PCR analyses of 3-month-old plants of B. distachyon showed that these genes were all expressed in the stems, leaves, and spikelets. By contrast, most of the plants had relatively lower transcriptional levels in their roots, except for the BdGF14g gene. The different expression profiles of the Bd14-3-3s under various stress treatments, and the diverse interaction patterns between Bd14-3-3s and BdAREB/ABFs, suggested that these gene products probably had a range of functions in the stress responses. The NaCl-induced Bd14-3-3 gene, BdGF14d, was selected for overexpression in tobacco. BdGF14d was found to be localized throughout the cell and it conferred enhanced tolerance to salt in the transgenic plants. Lowered contents of malondialdehyde, H2O2, and Na+, and lower relative electronic conductance (Rec%), yet greater activities of catalase and peroxidase, were observed in the overexpressing plants. Higher photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were measured in the transgenic lines. Following abscisic acid (ABA) or NaCl treatment, stomatal aperture in leaves of the BdGF14d-overexpression plants was significantly lower than in leaves of the wild type (WT) controls. The stress-related marker genes involved in the ABA signaling pathway, the reactive oxygen species (ROS)-scavenging system, and the ion transporters were all up-regulated in the BdGF14d-overexpressing plants as compared with WT. Taken together, these results demonstrate that the Bd14-3-3 genes play important roles in abiotic stress tolerance. The ABA signaling pathway, the ROS-scavenging system, and ion

  4. JGI Plant Genomics Gene Annotation Pipeline

    SciTech Connect

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  5. Out of the Water: Origin and Diversification of the LBD Gene Family.

    PubMed

    Chanderbali, Andre S; He, Fengmei; Soltis, Pamela S; Soltis, Douglas E

    2015-08-01

    LBD (lateral organ boundaries domain) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land.

  6. Out of the Water: Origin and Diversification of the LBD Gene Family

    PubMed Central

    Chanderbali, Andre S.; He, Fengmei; Soltis, Pamela S.; Soltis, Douglas E.

    2015-01-01

    LBD (LATERAL ORGAN BOUNDARIES DOMAIN) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land. PMID:25839188

  7. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  8. Gene regulation: ancient microRNA target sequences in plants.

    PubMed

    Floyd, Sandra K; Bowman, John L

    2004-04-01

    MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.

  9. From plant genomes to protein families: computational tools

    PubMed Central

    Martinez, Manuel

    2013-01-01

    The development of new high-throughput sequencing technologies has increased dramatically the number of successful genomic projects. Thus, draft genomic sequences of more than 60 plant species are currently available. Suitable bioinformatics tools are being developed to assemble, annotate and analyze the enormous number of sequences produced. In this context, specific plant comparative genomic databases are become powerful tools for gene family annotation in plant clades. In this mini-review, the current state-of-art of genomic projects is glossed. Besides, the computational tools developed to compare genomic data are compiled. PMID:24688740

  10. Heterochronic genes in plant evolution and development

    PubMed Central

    Geuten, Koen; Coenen, Heleen

    2013-01-01

    Evolution of morphology includes evolutionary shifts of developmental processes in space or in time. Heterochronic evolution is defined as a temporal shift. The concept of heterochrony has been very rewarding to investigators of both animal and plant developmental evolution, because it has strong explanatory power when trying to understand morphological diversity. While for animals, extensive literature on heterochrony developed along with the field of evolution of development, in plants the concept has been applied less often and is less elaborately developed. Yet novel genetic findings highlight heterochrony as a developmental and evolutionary process in plants. Similar to what has been found for the worm Caenorhabditis, a heterochronic gene pathway controlling developmental timing has been elucidated in flowering plants. Two antagonistic microRNA’s miR156 and miR172 target two gene families of transcription factors, SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE and APETALA2-like, respectively. Here, we propose that this finding now allows the molecular investigation of cases of heterochronic evolution in plants. We illustrate this point by examining microRNA expression patterns in the Antirrhinum majus incomposita and choripetala heterochronic mutants. Some of the more beautiful putative cases of heterochronic evolution can be found outside flowering plants, but little is known about the extent of conservation of this flowering plant pathway in other land plants. We show that the expression of an APETALA2-like gene decreases with age in a fern species. This contributes to the idea that ferns share some heterochronic gene functions with flowering plants. PMID:24093023

  11. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies.

    PubMed

    Ahrazem, Oussama; Trapero, Almudena; Gómez, M Dolores; Rubio-Moraga, Angela; Gómez-Gómez, Lourdes

    2010-10-01

    The plastoglobule-targeted enzyme carotenoid cleavage dioxygenase (CCD4) mediates the formation of volatile C13 ketones, such as β-ionone, by cleaving the C9-C10 and C9'-C10' double bonds of cyclic carotenoids. Here, we report the isolation and analysis of CCD4 genomic DNA regions in Crocus sativus. Different CCD4 alleles have been identified: CsCCD4a which is found with and without an intron and CsCCD4b that showed the presence of a unique intron. The presence of different CCD4 alleles was also observed in other Crocus species. Furthermore, comparison of the locations of CCD4 introns within the coding region with CCD4 genes from other plant species suggests that independent gain/losses have occurred. The comparison of the promoter region of CsCCD4a and CsCCD4b with available CCD4 gene promoters from other plant species highlighted the conservation of cis-elements involved in light response, heat stress, as well as the absence and unique presence of cis-elements involved in circadian regulation and low temperature responses, respectively. Functional characterization of the Crocus sativus CCD4a promoter using Arabidopsis plants stably transformed with a DNA fragment of 1400 base pairs (P-CsCCD4a) fused to the β-glucuronidase (GUS) reporter gene showed that this sequence was sufficient to drive GUS expression in the flower, in particular high levels were detected in pollen.

  12. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  13. 7 CFR 201.56-12 - Miscellaneous plant families.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Miscellaneous plant families. 201.56-12 Section 201.56... Miscellaneous plant families. Kinds of seed by family: Carrot family, Apiaceae (Umbelliferae)—carrot, celery, celeriac, dill, parsley, parsnip; Hemp family, Cannabaceae—hemp; Dichondra family,...

  14. Significance of galactinol and raffinose family oligosaccharide synthesis in plants

    PubMed Central

    Sengupta, Sonali; Mukherjee, Sritama; Basak, Papri; Majumder, Arun L.

    2015-01-01

    Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway. PMID:26379684

  15. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family

    PubMed Central

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  16. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  17. Identification and characterization of TIFY family genes in Brachypodium distachyon.

    PubMed

    Zhang, Lihua; You, Jun; Chan, Zhulong

    2015-11-01

    The TIFY family is a plant-specific gene family encoding proteins characterized by a conserved TIFY domain. This family encodes four subfamilies of proteins, including ZIM-like (ZML), TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. TIFY proteins play important roles in plant development and stress responses. In this study, 21 BdTIFYs were identified in Brachypodium distachyon through genome-wide analysis, including 15 JAZ and 6 ZML genes. Analysis of the distribution of conserved domains showed that there are three additional domains (CCT domain, GATA domain and Jas domain) in the BdTIFY proteins besides the TIFY domain. Phylogenetic analysis indicated that these 21 proteins were classified into two major groups. Expression profile of BdTIFY genes in response to abiotic stresses and phytohormones was analyzed using quantitative real-time RT-PCR. Among 21 BdTIFY genes, 12 of them were induced by JA treatment, and 4 of them were induced by ABA treatment. Most of BdTIFY genes were responsive to one or more abiotic stresses including drought, salinity, low temperature and heat. Especially, BdTIFY5, 9a, 9b, 10c and 11a were significantly up-regulated by multiple abiotic stresses. These results provided important clues for functional analysis of TIFY family genes in B. distachyon.

  18. Genome-Wide Analysis of Homeobox Gene Family in Legumes: Identification, Gene Duplication and Expression Profiling

    PubMed Central

    Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development. PMID:25745864

  19. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  20. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    PubMed

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.

  1. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  2. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation.

    PubMed

    Duan, Ke; Yi, Keke; Dang, Lei; Huang, Hongjie; Wu, Wei; Wu, Ping

    2008-06-01

    Four genes of Arabidopsis (At5g20150, At2g26660, At2g45130 and At5g15330) encoding no conservative region other than an SPX domain (SYG1, Pho81 and XPR1) were named AtSPX1-AtSPX4. The various subcellular localizations of their GFP fusion proteins implied function variations for the four genes. Phosphate starvation strongly induced expression of AtSPX1 and AtSPX3 with distinct dynamic patterns, while AtSPX2 was weakly induced and AtSPX4 was suppressed. Expression of the four AtSPX genes was reduced to different extents in the Arabidopsis phr1 and siz1 mutants under phosphate starvation, indicating that they are part of the phosphate-signaling network that involves SIZ1/PHR1. Over-expression of AtSPX1 increased the transcript levels of ACP5, RNS1 and PAP2 under both phosphate-sufficient and phosphate-deficient conditions, suggesting a potential transcriptional regulation role of AtSPX1 in response to phosphate starvation. Partial repression of AtSPX3 by RNA interference led to aggravated phosphate-deficiency symptoms, altered P allocation and enhanced expression of a subset od phosphate-responsive genes including AtSPX1. Our results indicate that both AtSPX1 and AtSPX3 play positive roles in plant adaptation to phosphate starvation, and AtSPX3 may have a negative feedback regulatory role in AtSPX1 response to phosphate starvation.

  3. PIECE: A database for plant gene structure comparison and evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene families often show degrees of differences in terms of exon-intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a com...

  4. Structure and regulation of the Asr gene family in banana.

    PubMed

    Henry, Isabelle M; Carpentier, Sebastien C; Pampurova, Suzana; Van Hoylandt, Anais; Panis, Bart; Swennen, Rony; Remy, Serge

    2011-10-01

    Abscisic acid, stress, ripening proteins (ASR) are a family of plant-specific small hydrophilic proteins. Studies in various plant species have highlighted their role in increased resistance to abiotic stress, including drought, but their specific function remains unknown. As a first step toward their potential use in crop improvement, we investigated the structure and regulation of the Asr gene family in Musa species (bananas and plantains). We determined that the Musa Asr gene family contained at least four members, all of which exhibited the typical two exons, one intron structure of Asr genes and the "ABA/WDS" (abscisic acid/water deficit stress) domain characteristic of Asr genes. Phylogenetic analyses determined that the Musa Asr genes were closely related to each other, probably as the product of recent duplication events. For two of the four members, two versions corresponding to the two sub-genomes of Musa, acuminata and balbisiana were identified. Gene expression and protein analyses were performed and Asr expression could be detected in meristem cultures, root, pseudostem, leaf and cormus. In meristem cultures, mAsr1 and mAsr3 were induced by osmotic stress and wounding, while mAsr3 and mAsr4 were induced by exposure to ABA. mASR3 exhibited the most variation both in terms of amino acid sequence and expression pattern, making it the most promising candidate for further functional study and use in crop improvement.

  5. Ribozyme genes protecting transgenic melon plants against potyviruses.

    PubMed

    Huttner, E; Tucker, W; Vermeulen, A; Ignart, F; Sawyer, B; Birch, R

    2001-04-01

    Potyviruses are the most important viral pathogens of crops worldwide. Under a contract with Gene Shears Pty Limited, we are using ribozyme genes to protect melon plants against two potyviruses: WMV2 and ZYMV. Different polyribozyme genes were designed, built and introduced into melons plants. Transgenic melon plants containing a resistance gene were obtained and their progeny was challenged by the appropriate virus. Most of the genes tested conferred some degree of resistance to the viruses in glasshouse trials. Melon plants from one family containing one gene directed against WMV2 were also field-trialed on small plots under natural infection pressure and were found immune to WMV2. Field trial is in progress for plants containing genes against ZYMV. Some of the ribozyme genes used in the plants were also assayed in a transient expression system in tobacco cells. This enabled us to study the sequence discrimination capacity of the ribozyme in the case of one ribozyme target site. We found that a mutated target GUG (non cleavable) was less susceptible to inhibition by the ribozyme gene than the corresponding wild type target GUA (cleavable). Work is now in progress to incorporate multiple resistance genes in melon plants, in constructs designed in compliance with the evolving European regulations concerning transgenic plants. The use of ribozyme genes to protect plants against viruses provides an alternative to the technologies currently used for protecting crops against viruses, based on the concept of Pathogen Derived Resistance (see for example 14). In the light of concerns expressed by some plant virologists (13) about the use of viral genes in transgenic plants, it may be that ribozyme genes will find many uses in this area of agricultural biotechnology.

  6. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  7. PIECE: a database for plant gene structure comparison and evolution

    PubMed Central

    Wang, Yi; You, Frank M.; Lazo, Gerard R.; Luo, Ming-Cheng; Thilmony, Roger; Gordon, Sean; Kianian, Shahryar F.; Gu, Yong Q.

    2013-01-01

    Gene families often show degrees of differences in terms of exon–intron structures depending on their distinct evolutionary histories. Comparative analysis of gene structures is important for understanding their evolutionary and functional relationships within plant species. Here, we present a comparative genomics database named PIECE (http://wheat.pw.usda.gov/piece) for Plant Intron and Exon Comparison and Evolution studies. The database contains all the annotated genes extracted from 25 sequenced plant genomes. These genes were classified based on Pfam motifs. Phylogenetic trees were pre-constructed for each gene category. PIECE provides a user-friendly interface for different types of searches and a graphical viewer for displaying a gene structure pattern diagram linked to the resulting bootstrapped dendrogram for each gene family. The gene structure evolution of orthologous gene groups was determined using the GLOOME, Exalign and GECA software programs that can be accessed within the database. PIECE also provides a web server version of the software, GSDraw, for drawing schematic diagrams of gene structures. PIECE is a powerful tool for comparing gene sequences and provides valuable insights into the evolution of gene structure in plant genomes. PMID:23180792

  8. Beta-glucuronidase of family-2 glycosyl hydrolase: a missing member in plants.

    PubMed

    Arul, Loganathan; Benita, George; Sudhakar, Duraialagaraja; Thayumanavan, Balsamy; Balasubramanian, Ponnusamy

    2008-01-01

    Glycosyl hydrolases hydrolyze the glycosidic bond in carbohydrates or between a carbohydrate and a non-carbohydrate moiety. beta-glucuronidase (GUS) is classified under two glycosyl hydrolase families (2 and 79) and the family-2 beta-glucuronidase is reported in a wide range of organisms, but not in plants. The family-79 endo-beta-glucuronidase (heparanase) is reported in microorganisms, vertebrates and plants. The E. coli family-2 beta-glucuronidase (uidA) had been successfully devised as a reporter gene in plant transformation on the basis that plants do not have homologous GUS activity. On the contrary, histochemical staining with X-Gluc was reported in wild type (non-transgenic) plants. Data shows that, family-2 beta-glucuronidase homologous sequence is not found in plants. Further, beta-glucuronidases of family-2 and 79 lack appreciable sequence similarity. However, the catalytic site residues, glutamic acid and tyrosine of the family-2 beta-glucuronidase are found to be conserved in family-79 beta-glucuronidase of plants. This led to propose that the GUS staining reported in wild type plants is largely because of the broad substrate specificity of family-79 beta-glucuronidase on X-Gluc and not due to the family-2 beta-glucuronidase, as the latter has been found to be missing in plants.

  9. 7 CFR 201.56-12 - Miscellaneous plant families.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Miscellaneous plant families. 201.56-12 Section 201.56-12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Miscellaneous plant families. Kinds of seed by family: Carrot family, Apiaceae (Umbelliferae)—carrot,...

  10. The ubiquilin gene family: evolutionary patterns and functional insights

    PubMed Central

    2014-01-01

    Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues. PMID:24674348

  11. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants

    PubMed Central

    Liu, Di; Sun, Wei; Yuan, Yaowu; Zhang, Ning; Hayward, Alice; Liu, Yongliang; Wang, Ying

    2014-01-01

    Background and Aims The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. Methods Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. Key Results Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. Conclusions This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants. PMID:24812252

  12. Family reunion--the ZIP/prion gene family.

    PubMed

    Ehsani, Sepehr; Huo, Hairu; Salehzadeh, Ashkan; Pocanschi, Cosmin L; Watts, Joel C; Wille, Holger; Westaway, David; Rogaeva, Ekaterina; St George-Hyslop, Peter H; Schmitt-Ulms, Gerold

    2011-03-01

    Prion diseases are fatal neurodegenerative diseases of humans and animals which, in addition to sporadic and familial modes of manifestation, can be acquired via an infectious route of propagation. In disease, the prion protein (PrP(C)) undergoes a structural transition to its disease-causing form (PrP(Sc)) with profoundly different physicochemical properties. Surprisingly, despite intense interest in the prion protein, its function in the context of other cellular activities has largely remained elusive. We recently employed quantitative mass spectrometry to characterize the interactome of the prion protein in a murine neuroblastoma cell line (N2a), an established cell model for prion replication. Extensive bioinformatic analyses subsequently established an evolutionary link between the prion gene family and the family of ZIP (Zrt-, Irt-like protein) metal ion transporters. More specifically, sequence alignments, structural threading data and multiple additional pieces of evidence placed a ZIP5/ZIP6/ZIP10-like ancestor gene at the root of the PrP gene family. In this review we examine the biology of prion proteins and ZIP transporters from the viewpoint of a shared phylogenetic origin. We summarize and compare available data that shed light on genetics, function, expression, signaling, post-translational modifications and metal binding preferences of PrP and ZIP family members. Finally, we explore data indicative of retropositional origins of the prion gene founder and discuss a possible function for the prion-like (PL) domain within ZIP transporters. While throughout the article emphasis is placed on ZIP proteins, the intent is to highlight connections between PrP and ZIP transporters and uncover promising directions for future research.

  13. The human crystallin gene families

    PubMed Central

    2012-01-01

    Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision. PMID:23199295

  14. Orgenic plants: gene-manipulated plants compatible with organic farming.

    PubMed

    Ryffel, Gerhart U

    2012-11-01

    Based on recent advances in plant gene technology, I propose to develop a new category of GM plants, orgenic plants, that are compatible with organic farming. These orgenic plants do not contain herbicide resistance genes to avoid herbicide application in agriculture. Furthermore, they either contain genes that are naturally exchanged between species, or are sterile to avoid outcrossing if they received a transgene from a different species. These GM plants are likely to be acceptable to most skeptics of GM plants and facilitate the use of innovative new crops.

  15. Genome-wide analysis suggests divergent evolution of lipid phosphotases/phosphotransferase genes in plants.

    PubMed

    Wang, Peng; Chen, Zhenxi; Kasimu, Rena; Chen, Yinhua; Zhang, Xiaoxiao; Gai, Jiangtao

    2016-08-01

    Genes of the LPPT (lipid phosphatase/phosphotransferase) family play important roles in lipid phosphorous transfer and triacylglycerol accumulation in plants. To provide overviews of the plant LPPT family and their overall relationships, here we carried out genome-wide identifications and analyses of plant LPPT family members. A total of 643 putative LPPT genes were identified from 48 sequenced plant genomes, among which 205 genes from 14 plants were chosen for further analyses. Plant LPPT genes belonged to three distinctive groups, namely the LPT (lipid phosphotransfease), LPP (lipid phosphatase), and pLPP (plastidic lipid phosphotransfease) groups. Genes of the LPT group could be further partitioned into three groups, two of which were only identified in terrestrial plants. Genes in the LPP and pLPP groups experienced duplications in early stages of plant evolution. Among 17 Zea mays LPPT genes, divergence of temporal-spatial expression patterns was revealed based on microarray data analysis. Peptide sequences of plant LPPT genes harbored different conserved motifs. A test of Branch Model versus One-ratio Model did not support significant selective pressures acting on different groups of LPPT genes, although quite different nonsynonymous evolutionary rates and selective pressures were observed. The complete picture of the plant LPPT family provided here should facilitate further investigations of plant LPPT genes and offer a better understanding of lipid biosynthesis in plants.

  16. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  17. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  18. Gene-Family Extension Measures and Correlations

    PubMed Central

    Carmi, Gon; Bolshoy, Alexander

    2016-01-01

    The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication. PMID:27527218

  19. The FT/TFL1 gene family in grapevine.

    PubMed

    Carmona, María José; Calonje, Myriam; Martínez-Zapater, José Miguel

    2007-03-01

    The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species.

  20. Identification and distribution of the NBS-LRR gene family in the cassava genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analyzing the genomic organization of resistance genes i...

  1. Phylogenomics of the plant family Araceae.

    PubMed

    Henriquez, Claudia L; Arias, Tatiana; Pires, J Chris; Croat, Thomas B; Schaal, Barbara A

    2014-06-01

    The biogeography, chromosome number evolution, pollination biology and evolutionary history of the plant family Araceae have recently become much clearer (Cabrera et al., 2008; Chartier et al., 2013; Cusimano et al., 2011, 2012; Nauheimer et al., 2012). However, phylogenetic ambiguity near the root of the tree precludes answering questions about the early evolution of the family. We use Illumina sequencing technology and reference based assembly to resolve the remaining questions in the deep phylogeny of Araceae. We sampled 32 genera and obtained 7 from GenBank (including an outgroup), representing 42 of 44 major clades described in Cusimano et al. (2011). A subsequent phylogenomic analysis based on mitochondrial data was performed to test congruence between plastid and mitochondrial data for phylogenetic inference. Plastid sequences produced strongly supported phylogenies. In contrast, mitochondrial phylogenies were weakly supported and incongruent with chloroplast data (Templeton test, p⩽0.0001), although several smaller clades were recovered. New strongly-supported clades seen here are: (1) Anubias and Montrichardia, excluding Calla, form a clade that is sister to the Zantedeschia clade; (2) the South African genus Zantedeschia is sister to the Old World Anchomanes clade; and (3) within the Zantedeschia clade, Philodendron is sister to the rest. Calla and Schismatoglottis form a clade at the base of one of two major clades in Aroideae based on complete chloroplast sequences. Although statistical support is weak, morphological and cytological features support this topology.

  2. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  3. Widespread impact of horizontal gene transfer on plant colonization of land.

    PubMed

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants.

  4. The Maize PIN Gene Family of Auxin Transporters.

    PubMed

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a-d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a-c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots.

  5. The Maize PIN Gene Family of Auxin Transporters

    PubMed Central

    Forestan, Cristian; Farinati, Silvia; Varotto, Serena

    2012-01-01

    Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a–d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a–c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots. PMID:22639639

  6. Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine.

    PubMed

    Parage, Claire; Tavares, Raquel; Réty, Stéphane; Baltenweck-Guyot, Raymonde; Poutaraud, Anne; Renault, Lauriane; Heintz, Dimitri; Lugan, Raphaël; Marais, Gabriel A B; Aubourg, Sébastien; Hugueney, Philippe

    2012-11-01

    Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.

  7. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  8. Clock-associated genes in Arabidopsis: a family affair.

    PubMed Central

    Somers, D E

    2001-01-01

    The identification of components of the plant circadian clock has been advanced recently with the success of two forward genetics approaches. The ZEITLUPE and TOC1 loci were cloned and each was found to be part of two separate, larger gene families with intriguing domain structures. The ZTL family of proteins contains a subclass of the PAS domain coupled to an F box and kelch motifs, suggesting that they play a role in a novel light-regulated ubiquitination mechanism. TOC1 shares similarity to the receiver domain of the well-known two-component phosphorelay signalling systems, combined with a strong similarity to a region of the CONSTANS transcription factor, which is involved in controlling flowering time. When added to the repertoire of previously identified clock-associated genes, it is clear that both similarities and differences with other circadian systems will emerge in the coming years. PMID:11710981

  9. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families.

    PubMed

    De La Torre, Amanda R; Lin, Yao-Cheng; Van de Peer, Yves; Ingvarsson, Pär K

    2015-03-05

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.

  10. NFAT Gene Family in Inflammation and Cancer

    PubMed Central

    Pan, M.-G.; Xiong, Y.; Chen, F.

    2013-01-01

    Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer. PMID:22950383

  11. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  12. Concerted gene recruitment in early plant evolution

    PubMed Central

    Huang, Jinling; Gogarten, J Peter

    2008-01-01

    Background Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. Results Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. Conclusion Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes. PMID:18611267

  13. Molecular characterization of the reniform nematode C-type lectin gene family reveals a likely role in mitigating environmental stresses during plant parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode, Rotylenchulus reniformis, is a damaging semi-endoparasitic pathogen of more than 300 plant species. As a sedentary obligate biotroph, R. reniformis must establish a complex feeding site within the root vasculature that functions as a continuous supply of nutrients. It was re...

  14. The signatures of selection for translational accuracy in plant genes.

    PubMed

    Porceddu, Andrea; Zenoni, Sara; Camiolo, Salvatore

    2013-01-01

    Little is known about the natural selection of synonymous codons within the coding sequences of plant genes. We analyzed the distribution of synonymous codons within plant coding sequences and found that preferred codons tend to encode the more conserved and functionally important residues of plant proteins. This was consistent among several synonymous codon families and applied to genes with different expression profiles and functions. Most of the randomly chosen alternative sets of codons scored weaker associations than the actual sets of preferred codons, suggesting that codon position within plant genes and codon usage bias have coevolved to maximize translational accuracy. All these findings are consistent with the mistranslation-induced protein misfolding theory, which predicts the natural selection of highly preferred codons more frequently at sites where translation errors could compromise protein folding or functionality. Our results will provide an important insight in future studies of protein folding, molecular evolution, and transgene design for optimal expression.

  15. Impact of recurrent gene duplication on adaptation of plant genomes

    PubMed Central

    2014-01-01

    Background Recurrent gene duplication and retention played an important role in angiosperm genome evolution. It has been hypothesized that these processes contribute significantly to plant adaptation but so far this hypothesis has not been tested at the genome scale. Results We studied available sequenced angiosperm genomes to assess the frequency of positive selection footprints in lineage specific expanded (LSE) gene families compared to single-copy genes using a dN/dS-based test in a phylogenetic framework. We found 5.38% of alignments in LSE genes with codons under positive selection. In contrast, we found no evidence for codons under positive selection in the single-copy reference set. An analysis at the branch level shows that purifying selection acted more strongly on single-copy genes than on LSE gene clusters. Moreover we detect significantly more branches indicating evolution under positive selection and/or relaxed constraint in LSE genes than in single-copy genes. Conclusions In this – to our knowledge –first genome-scale study we provide strong empirical support for the hypothesis that LSE genes fuel adaptation in angiosperms. Our conservative approach for detecting selection footprints as well as our results can be of interest for further studies on (plant) gene family evolution. PMID:24884640

  16. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family.

    PubMed

    Rehman, Shazia; Aziz, Ejaz; Akhtar, Wasim; Ilyas, Muhammad; Mahmood, Tariq

    2017-02-09

    Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.

  17. PlantRGDB: A Database of Plant Retrocopied Genes.

    PubMed

    Wang, Yi

    2017-01-22

    RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants.

  18. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.

    PubMed

    Cao, Hui; Liu, Cai-Yun; Liu, Chun-Xiang; Zhao, Yue-Ling; Xu, Rui-Rui

    2016-09-01

    In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in

  19. Dissimilar evolutionary histories of two resistance gene families in the genus Solanum.

    PubMed

    Segura, Diana María; Masuelli, Ricardo Williams; Sanchez-Puerta, M Virginia

    2017-01-01

    Genomic analyses have shown that most genes in eukaryotic lineages belong to families. Gene families vary in terms of number of members, nucleotide similarity, gene integrity, expression, and function. Often, the members of gene families are arranged in clusters, which contribute to maintaining similarity among gene copies and also to generate duplicates through replication errors. Gene families offer us an opportunity to examine the forces involved in the evolution of the genomes and to study recombination events and genomic rearrangements. In this work, we focused on the evolution of two plant resistance gene families, Sw5 and Mi-1, and analyzed the completely sequenced nuclear genomes of potato and tomato. We first noticed that the potato genome carries larger resistance gene families than tomato, but all gene copies are pseudogenes. Second, phylogenetic analyses indicated that Sw5 and Mi-1 gene families had dissimilar evolutionary histories. In contrast to Sw5, Mi-1 homologues suffered repeated gene conversion events among the gene copies, particularly in the tomato genome.

  20. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  1. Divergence pattern of animal gene families and relationship with the Cambrian explosion.

    PubMed

    Miyata, T; Suga, H

    2001-11-01

    There are many gene families that are specific to multicellular animals. These have either diverged from ancestral genes that are shared with fungi and/or plants or evolved from an ancestral gene unique to animals. The evolution of gene families involved in cell-cell communication and developmental control has been studied to establish whether the number of member genes increased dramatically immediately prior to or in concert with the Cambrian explosion. A molecular phylogeny-based analysis of several animal-specific gene families has revealed that gene diversification by duplication occurred during two active periods interrupted by a long intervening quiescent period. Intriguingly, the Cambrian explosion is situated in the silent period, indicating that there is no direct link between the first burst of gene diversification and the Cambrian explosion itself. The importance of gene recruitment as a possible molecular mechanism for morphological diversity, and its possible role for the Cambrian explosion, are discussed.

  2. Selection for Higher Gene Copy Number after Different Types of Plant Gene Duplications

    PubMed Central

    Hudson, Corey M.; Puckett, Emily E.; Bekaert, Michaël; Pires, J. Chris; Conant, Gavin C.

    2011-01-01

    The evolutionary origins of the multitude of duplicate genes in the plant genomes are still incompletely understood. To gain an appreciation of the potential selective forces acting on these duplicates, we phylogenetically inferred the set of metabolic gene families from 10 flowering plant (angiosperm) genomes. We then compared the metabolic fluxes for these families, predicted using the Arabidopsis thaliana and Sorghum bicolor metabolic networks, with the families' duplication propensities. For duplications produced by both small scale (small-scale duplications) and genome duplication (whole-genome duplications), there is a significant association between the flux and the tendency to duplicate. Following this global analysis, we made a more fine-scale study of the selective constraints observed on plant sodium and phosphate transporters. We find that the different duplication mechanisms give rise to differing selective constraints. However, the exact nature of this pattern varies between the gene families, and we argue that the duplication mechanism alone does not define a duplicated gene's subsequent evolutionary trajectory. Collectively, our results argue for the interplay of history, function, and selection in shaping the duplicate gene evolution in plants. PMID:22056313

  3. Evolutionary processes during the formation of the plant-specific Dof transcription factor family.

    PubMed

    Shigyo, Mikao; Tabei, Nobumitsu; Yoneyama, Tadakatsu; Yanagisawa, Shuichi

    2007-01-01

    We found 19 putative genes for plant-specific Dof transcription factors in the moss Physcomitrella patens and one Dof gene in the green alga Chlamydomonas reinhardtii, but no identifiable Dof gene in the red alga Cyanidioschyzon merolae and the diatom Thalassiosira pseudonana, suggesting that the origin of the Dof transcription factors pre-dates the divergence of the green algae and the ancestors of terrestrial plants. The phylogenetic analyses contended that the Dof family in angiosperms formed through a series of evolutionary processes, including intensive duplications of a specific ancestral gene after the divergence of the moss and the angiosperm lineages.

  4. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants.

    PubMed

    Aubourg, S; Boudet, N; Kreis, M; Lecharny, A

    2000-03-01

    In the sequences released by the Arabidopsis Genome Initiative (AGI), we discovered a new and unexpectedly large family of orphan genes (127 genes by 01.08.99), named AtPCMP. The distribution of the AtPCMP genes on the five chromosomes suggests that the genome of Arabidopsis thaliana contains more than 200 genes of this family (1% of the whole genome). The deduced AtPCMP proteins are characterized by a surprising combinatorial organization of sequence motifs. The amino-terminal domain is made of a succession of three conserved motifs which generate an important diversity. These proteins are classified into three subfamilies based on the length and nature of their carboxy-terminal domain constituted by 1-6 motifs. All the motifs characterized have an important level of conservation in both sequence and spacing. A specific signature of this large family is defined. The presence of ESTs in databases and the detection of clones in A. thaliana cDNA libraries indicate that most of the genes of this family are expressed. The absence of similar sequences outside the plant kingdom strongly suggests that this unusually large orphan family is unique to plants. Features, the genesis, the potential function and the evolution of this plant combinatorial and modular protein family are discussed.

  5. Genome-wide analysis of plant-specific Dof transcription factor family in tomato.

    PubMed

    Cai, Xiaofeng; Zhang, Yuyang; Zhang, Chanjuan; Zhang, Tingyan; Hu, Tixu; Ye, Jie; Zhang, Junhong; Wang, Taotao; Li, Hanxia; Ye, Zhibiao

    2013-06-01

    The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors. These transcription factors are involved in a variety of functions of importance for different biological processes in plants. In the current study, we identified 34 Dof family genes in tomato, distributed on 11 chromosomes. A complete overview of SlDof genes in tomato is presented, including the gene structures, chromosome locations, phylogeny, protein motifs and evolution pattern. Phylogenetic analysis of 34 SlDof proteins resulted in four classes constituting six clusters. In addition, a comparative analysis between these genes in tomato, Arabidopsis and rice was also performed. The tomato Dof family expansion has been dated to recent duplication events, and segmental duplication is predominant for the SlDof genes. Furthermore, the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions. This is the first step towards genome-wide analyses of the Dof genes in tomato. Our study provides a very useful reference for cloning and functional analysis of the members of this gene family in tomato and other species.

  6. Phenotypic diversification by gene silencing in Phytophthora plant pathogens.

    PubMed

    Vetukuri, Ramesh R; Asman, Anna Km; Jahan, Sultana N; Avrova, Anna O; Whisson, Stephen C; Dixelius, Christina

    2013-11-01

    Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA "hotspots" originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.

  7. A novel family of plant nuclear envelope-associated proteins.

    PubMed

    Pawar, Vidya; Poulet, Axel; Détourné, Gwénaëlle; Tatout, Christophe; Vanrobays, Emmanuel; Evans, David E; Graumann, Katja

    2016-10-01

    This paper describes the characterisation of a new family of higher plant nuclear envelope-associated proteins (NEAPs) that interact with other proteins of the nuclear envelope. In the model plant Arabidopsis thaliana, the family consists of three genes expressed ubiquitously (AtNEAP1-3) and a pseudogene (AtNEAP4). NEAPs consist of extensive coiled-coil domains, followed by a nuclear localisation signal and a C-terminal predicted transmembrane domain. Domain deletion mutants confirm the presence of a functional nuclear localisation signal and transmembrane domain. AtNEAP proteins localise to the nuclear periphery as part of stable protein complexes, are able to form homo- and heteromers, and interact with the SUN domain proteins AtSUN1 and AtSUN2, involved in the linker of nucleoskeleton and cytoskeleton (LINC) complex. An A. thaliana cDNA library screen identified a putative transcription factor called AtbZIP18 as a novel interactor of AtNEAP1, which suggest a connection between NEAP and chromatin. An Atneap1 Atneap3 double-knockout mutant showed reduced root growth, and altered nuclear morphology and chromatin structure. Thus AtNEAPs are suggested as inner nuclear membrane-anchored coiled-coil proteins with roles in maintaining nuclear morphology and chromatin structure.

  8. The Pax gene family: Highlights from cephalopods

    PubMed Central

    Baratte, Sébastien; Andouche, Aude; Bonnaud-Ponticelli, Laure

    2017-01-01

    Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures. PMID:28253300

  9. MicroSyn: a user friendly tool for detection of microsynteny in a gene family

    SciTech Connect

    Cai, Bin; Yang, Xiaohan; Tuskan, Gerald A; Cheng, Zong-Ming

    2011-01-01

    Background: The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those non-traditional gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results: We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu. cn/microsyn/. Conclusions: Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.

  10. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Song, Xiao-Ming; Liu, Tong-Kun; Duan, Wei-Ke; Ma, Qing-Hua; Ren, Jun; Wang, Zhen; Li, Ying; Hou, Xi-Lin

    2014-01-01

    The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage.

  11. Evolution of Gene Duplication in Plants.

    PubMed

    Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han

    2016-08-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.

  12. Plastid ndh genes in plant evolution.

    PubMed

    Martín, Mercedes; Sabater, Bartolomé

    2010-08-01

    The plastid ndh genes encode components of the thylakoid Ndh complex which purportedly acts as an electron feeding valve to adjust the redox level of the cyclic photosynthetic electron transporters. During the process of evolution from endosymbiosis to modern chloroplast, most cyanobacterial genes were lost or transferred to nucleus. Eleven ndh genes are among the 150-200 genes remaining in higher plant chloroplast DNA, out of some 3000 genes in the original prokaryotic Cyanobacteria in which homologues to ndh genes encode components of the respiratory Complex I and probably other complexes. The ndh genes are absent in all sequenced plastid DNAs of algae except for the Charophyceae and some Prasinophyceae. With the possible exclusion of some Conifers and Gnetales, the plastid DNA of all photosynthetic land plants contains the ndh genes, whereas they are absent in epiphytic plants that have also lost genes for the photosynthetic machinery. Therefore, the functional role of the ndh genes seems closely related to the land adaptation of photosynthesis. Transcripts of several plastid genes require C to U editing. The ndh genes concentrate about 50% of the editing sites of angiosperm plastid transcripts. Editing sites may be remnants from an ancestor in which a number of T to C inactivating mutations took place in the ndh genes which, during evolution, are being corrected back to T. The comparison of homologous editing sites in the mRNAs of angiosperm ndh genes provides a tool to investigate selective and permissive environmental conditions of past evolutionary events.

  13. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  14. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple.

    PubMed

    Xu, Ruirui; Liu, Caiyun; Li, Ning; Zhang, Shizhong

    2016-12-01

    Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.

  15. PLEXdb: gene expression resources for plants and plant pathogens

    PubMed Central

    Dash, Sudhansu; Van Hemert, John; Hong, Lu; Wise, Roger P.; Dickerson, Julie A.

    2012-01-01

    PLEXdb (http://www.plexdb.org), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facilitate the interpretation of structure, function and regulation of genes in economically important plants. A list of Gene Atlas experiments highlights data sets that give responses across different developmental stages, conditions and tissues. Tools at PLEXdb allow users to perform complex analyses quickly and easily. The Model Genome Interrogator (MGI) tool supports mapping gene lists onto corresponding genes from model plant organisms, including rice and Arabidopsis. MGI predicts homologies, displays gene structures and supporting information for annotated genes and full-length cDNAs. The gene list-processing wizard guides users through PLEXdb functions for creating, analyzing, annotating and managing gene lists. Users can upload their own lists or create them from the output of PLEXdb tools, and then apply diverse higher level analyses, such as ANOVA and clustering. PLEXdb also provides methods for users to track how gene expression changes across many different experiments using the Gene OscilloScope. This tool can identify interesting expression patterns, such as up-regulation under diverse conditions or checking any gene’s suitability as a steady-state control. PMID:22084198

  16. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  17. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the auxin/indole-3-acetic acid (Aux/IAA) gene family encode proteins to mediate the responses of auxin gene expression and to regulate various aspects of plant morphological development. In this paper, we report the identification of nine cDNAs that contain complete open reading frame (OR...

  18. PLEXdb: Gene expression resources for plants and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLEXdb (Plant Expression Database), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facili...

  19. 3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING EAST OVER GENE PUMP PLANT AND CAMP; PARKER DAM VILLAGE IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  20. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4 °C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  1. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus.

    PubMed

    Zhou, S J; Jing, Z; Shi, J L

    2013-12-11

    Mildew resistance locus o (MLO) is a plant-specific seven-transmembrane (TM) gene family. Several studies have revealed that certain members of the MLO gene family mediate powdery mildew susceptibility in three plant species, namely, Arabidopsis, barley, and tomato. The sequenced cucumber genome provides an opportunity to conduct a comprehensive overview of the MLO gene family. Fourteen genes (designated CsMLO01 through CsMLO14) have been identified within the Cucumis sativus genome by using an in silico cloning method with the MLO amino acid sequences of Arabidopsis thaliana and rice as probes. Sequence alignment revealed that numerous features of the gene family, such as TMs, a calmodulin-binding domain, peptide domains I and II, and 30 important amino acid residues for MLO function, are well conserved. Phylogenetic analysis of the MLO genes from cucumber and other plant species reveals seven different clades (I through VII). Three of these clades comprised MLO genes from A. thaliana, rice, maize, and cucumber, suggesting that these genes may have evolved after the divergence of monocots and dicots. In silico mapping showed that these CsMLOs were located on chromosomes 1, 2, 3, 4, 5, and 6 without any obvious clustering, except CsMLO01. To our knowledge, this paper is the first comprehensive report on MLO genes in C. sativus. These findings will facilitate the functional characterization of the MLOs related to powdery mildew susceptibility and assist in the development of disease resistance in cucumber.

  2. The tomato cis-prenyltransferase gene family.

    PubMed

    Akhtar, Tariq A; Matsuba, Yuki; Schauvinhold, Ines; Yu, Geng; Lees, Hazel A; Klein, Samuel E; Pichersky, Eran

    2013-02-01

    cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters.

  3. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  4. Tumor suppressor genes in familial adenomatous polyposis

    PubMed Central

    Eshghifar, Nahal; Farrokhi, Naser; Naji, Tahereh; Zali, Mohammadreza

    2017-01-01

    Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action. PMID:28331559

  5. Disease Resistance Gene Analogs (RGAs) in Plants

    PubMed Central

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M.

    2015-01-01

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed. PMID:26287177

  6. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.

  7. Plant antioxidant gene responses to fungal pathogens.

    PubMed

    Williamson, J D; Scandalios, J G

    1993-09-01

    Antioxidant defense systems are a prominent element in plant responses to environmental stress. Activated oxygen species have themselves been implicated as both a part of the plant's defense against pathogen attack as well as the phytotoxic component of photosensitizing fungal toxins. Molecular analyses are just beginning to define how plant oxidant and antioxidant genes might integrate with other defense responses to provide effective protection against pathogen attack.

  8. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation.

    PubMed

    Bemer, Marian; van Dijk, Aalt D J; Immink, Richard G H; Angenent, Gerco C

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger protein complexes. The importance of protein-protein interactions between members of a particular plant TF family has long been recognised; however, a significant number of interfamily TF interactions has recently been reported. The biological implications and the molecular mechanisms involved in cross-family interactions have now started to be elucidated and the examples illustrate potential roles in the bridging of biological processes. Hence, cross-family TF interactions expand the molecular toolbox for plants with additional mechanisms to control and fine-tune robust gene expression patterns and to adapt to their continuously changing environment.

  9. Paleo-evolutionary plasticity of plant disease resistance genes

    PubMed Central

    2014-01-01

    Background The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. Results We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a ‘glue’ for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. Conclusions Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species. PMID:24617999

  10. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.

    PubMed

    Zhang, Xin; Zong, Jie; Liu, Jianhua; Yin, Jinyuan; Zhang, Dabing

    2010-11-01

    WUSCHEL-related homeobox (WOX) genes form a large gene family specifically expressed in plants. They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate. Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants. In the present study, we identified 11 and 21 WOXs from sorghum (Sorghum bicolor) and maize (Zea mays), respectively. The 72 WOX genes from rice (Oryza sativa), sorghum, maize, Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains. Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain. We observed the variation of duplication events among the nine sub-groups between monocots and eudicots, for instance, more gene duplication events of WOXs within subgroup A for monocots, while, less for dicots in this subgroup. Furthermore, we observed the conserved intron/exon structural patterns of WOX genes in rice, sorghum and Arabidopsis. In addition, WUS (Wuschel)-box and EAR (the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants. Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants. This work provides insights into the evolution of the WOX gene family and is useful for future research.

  11. Evolutionarily Dynamic, but Robust, Targeting of Resistance Genes by the miR482/2118 Gene Family in the Solanaceae.

    PubMed

    de Vries, Sophie; Kloesges, Thorsten; Rose, Laura E

    2015-11-19

    Plants are exposed to pathogens around the clock. A common resistance response in plants upon pathogen detection is localized cell death. Given the irreversible nature of this response, multiple layers of negative regulation are present to prevent the untimely or misexpression of resistance genes. One layer of negative regulation is provided by a recently discovered microRNA (miRNA) gene family, miR482/2118. This family targets the transcripts of resistance genes in plants. We investigated the evolutionary history and specificity of this miRNA gene family within the Solanaceae. This plant family includes many important crop species, providing a set of well-defined resistance gene repertoires. Across 14 species from the Solanaceae, we identified eight distinct miR482/2118 gene family members. Our studies show conservation of miRNA type and number in the group of wild tomatoes and, to a lesser extent, throughout the Solanaceae. The eight orthologous miRNA gene clusters evolved under different evolutionary constraints, allowing for individual subfunctionalization of the miRNAs. Despite differences in the predicted targeting behavior of each miRNA, the miRNA-R-gene network is robust due to its high degree of interconnectivity and redundant targeting. Our data suggest that the miR482/2118 gene family acts as an evolutionary buffer for R-gene sequence diversity.

  12. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    PubMed

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.

  13. Modelling the evolution of multi-gene families.

    PubMed

    Nye, Tom M W

    2009-10-01

    A number of biological processes can lead to genes being copied within the genome of some given species. Duplicate genes of this form are called paralogs and such genes share a high degree sequence similarity as well as often having closely related functions. Some genes have become widely duplicated to form multigene families in which the copies are distributed both within the genomes of individual species and across different species. Statistical modelling of gene duplication and the evolution of multi-gene families currently lags behind well-established models of DNA sequence evolution despite an increasing volume of available data, but the analysis of multi-gene families is important as part of a wider effort to understand evolution at the genomic level. This article reviews existing approaches to modelling multi-gene families and presents various challenges and possibilities for this exciting area of research.

  14. The plant heat stress transcription factor (Hsf) family: structure, function and evolution.

    PubMed

    Scharf, Klaus-Dieter; Berberich, Thomas; Ebersberger, Ingo; Nover, Lutz

    2012-02-01

    Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  15. Gene expression from plants grown on the International Space Station

    NASA Astrophysics Data System (ADS)

    Stimpson, Alexander; Pereira, Rhea; Kiss, John Z.; Correll, Melanie

    Three experiments were performed on the International Space Station (ISS) in 2006 as part of the TROPI experiments. These experiments were performed to study graviTROPIsm and photoTROPIsm responses of Arabidopsis in microgravity (µg). Seedlings were grown with a variety of light and gravitational treatments for approximately five days. The frozen samples were returned to Earth during three space shuttle missions in 2007 and stored at -80° C. Due to the limited amount of plant biomass returned, new protocols were developed to minimize the amount of material needed for RNA extraction as a preparation for microarray analysis. Using these new protocols, RNA was extracted from several sets of seedlings grown in red light followed by blue light with one sample from 1.0g treatment and the other at µg. Using a 2-fold change criterion, microarray (Affymetrix, GeneChip) results showed that 613 genes were upregulated in the µg sample while 757 genes were downregulated. Upregulated genes in response to µg included transcription factors from the WRKY (15 genes), MYB (3) and ZF (8) families as well as those that are involved in auxin responses (10). Downregulated genes also included transcription factors such as MYB (5) and Zinc finger (10) but interestingly only two WRKY family genes were down-regulated during the µg treatment. Studies are underway to compare these results with other samples to identify the genes involved in the gravity and light signal transduction pathways (this project is Supported By: NASA NCC2-1200).

  16. Considering Plants.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  17. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  18. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon.

    PubMed

    Wei, Bo; Zhang, Rong-Zhi; Guo, Juan-Juan; Liu, Dan-Mei; Li, Ai-Li; Fan, Ren-Chun; Mao, Long; Zhang, Xiang-Qi

    2014-01-01

    MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKC(c)-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.

  19. Identification and analysis of the metacaspase gene family in tomato.

    PubMed

    Liu, Hui; Liu, Jian; Wei, Yongxuan

    2016-10-21

    Metacaspases play critical roles in developmentally regulated and environmentally induced programmed cell death in plants. In this study, we systematically identified and analyzed metacaspase gene family in tomato (Solanum lycopersicum). The results illustrated that tomato possesses eight metacaspase genes (SlMC1-8) located on chromosomes 1, 3, 5, 9, and 10. SlMC1-6 belonged to type I metacaspases and had 5 exon/4 intron structures. SlMC7 and 8 were type II metacaspases and had 2 and 3 exons, respectively. Expression analysis revealed distinct expression patterns of SlMCs in various tomato tissues. Cis-regulatory element prediction showed that there were many hormone- and stress-related cis-regulatory elements in SlMCs promoter regions. Quantitative real-time PCR analysis further demonstrated that most of the SlMCs were regulated by drought, cold, salt, methyl viologen, and ethephon treatments. This study provides insights into the characteristics of SlMC genes and laid the foundation for further functional analysis of these genes in tomato.

  20. Evolution of fruit development genes in flowering plants

    PubMed Central

    Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A.

    2014-01-01

    The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms. PMID:25018763

  1. Evolution of fruit development genes in flowering plants.

    PubMed

    Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A

    2014-01-01

    The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.

  2. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    PubMed Central

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  3. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  4. Gene duplication event in family 12 glycosyl hydrolase from Phytophthora spp.

    PubMed

    Costanzo, Stefano; Ospina-Giraldo, M D; Deahl, K L; Baker, C J; Jones, Richard W

    2006-10-01

    A total of 18 paralogs of xyloglucan-specific endoglucanases (EGLs) from the glycosyl hydrolase family 12 were identified and characterized in Phytophthora sojae and Phytophthora ramorum. These genes encode predicted extracellular enzymes, with sizes ranging from 189 to 435 amino acid residues, that would be capable of hydrolyzing the xyloglucan component of the host cell wall. In two cases, four and six functional copies of these genes were found in tight succession within a region of 5 and 18 kb, respectively. The overall gene copy number and relative organization appeared well conserved between P. sojae and P. ramorum, with apparent synteny in this region of their respective genomes. Phylogenetic analyses of Phytophthora endoglucanases of family 12 and other known members of EGL 12, revealed a close relatedness with a fairly conserved gene sub-family containing, among others, sequences from the fungi Emericella desertorum and Aspergillus aculeatus. This is the first report of family 12 EGLs present in plant pathogenic eukaryotes.

  5. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

    PubMed

    Noguero, Mélanie; Atif, Rana Muhammad; Ochatt, Sergio; Thompson, Richard D

    2013-08-01

    The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.

  6. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed Central

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-01-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. Images Fig. 1. Fig. 7. PMID:3038523

  7. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization1[OPEN

    PubMed Central

    2017-01-01

    Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events. PMID:28034953

  8. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    PubMed

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  9. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    PubMed Central

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  10. AP2/ERF family transcription factors in plant abiotic stress responses.

    PubMed

    Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    In terrestrial environments, temperature and water conditions are highly variable, and extreme temperatures and water conditions affect the survival, growth and reproduction of plants. To protect cells and sustain growth under such conditions of abiotic stress, plants respond to unfavourable changes in their environments in developmental, physiological and biochemical ways. These responses require expression of stress-responsive genes, which are regulated by a network of transcription factors. The AP2/ERF family is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. This transcription factor family includes DRE-binding proteins (DREBs), which activate the expression of abiotic stress-responsive genes via specific binding to the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element in their promoters. In this review, we discuss the functions of the AP2/ERF-type transcription factors in plant abiotic stress responses, with special emphasis on the regulations and functions of two major types of DREBs, DREB1/CBF and DREB2. In addition, we summarise the involvement of other AP2/ERF-type transcription factors in abiotic stress responses, which has recently become clear. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  11. Duplication of OsHAP family genes and their association with heading date in rice.

    PubMed

    Li, Qiuping; Yan, Wenhao; Chen, Huaxia; Tan, Cong; Han, Zhongmin; Yao, Wen; Li, Guangwei; Yuan, Mengqi; Xing, Yongzhong

    2016-03-01

    Heterotrimeric Heme Activator Protein (HAP) family genes are involved in the regulation of flowering in plants. It is not clear how many HAP genes regulate heading date in rice. In this study, we identified 35 HAP genes, including seven newly identified genes, and performed gene duplication and candidate gene-based association analyses. Analyses showed that segmental duplication and tandem duplication are the main mechanisms of HAP gene duplication. Expression profiling and functional identification indicated that duplication probably diversifies the functions of HAP genes. A nucleotide diversity analysis revealed that 13 HAP genes underwent selection. A candidate gene-based association analysis detected four HAP genes related to heading date. An investigation of transgenic plants or mutants of 23 HAP genes confirmed that overexpression of at least four genes delayed heading date under long-day conditions, including the previously cloned Ghd8/OsHAP3H. Our results indicate that the large number of HAP genes in rice was mainly produced by gene duplication, and a few HAP genes function to regulate heading date. Selection of HAP genes is probably caused by their diverse functions rather than regulation of heading.

  12. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants.

    PubMed

    de Abreu-Neto, João Braga; Turchetto-Zolet, Andreia C; de Oliveira, Luiz Felipe Valter; Zanettini, Maria Helena Bodanese; Margis-Pinheiro, Marcia

    2013-04-01

    Metallochaperones are key proteins for the safe transport of metallic ions inside the cell. HIPPs (heavy metal-associated isoprenylated plant proteins) are metallochaperones that contain a metal binding domain (HMA) and a C-terminal isoprenylation motif. In this study, we provide evidence that proteins of this family are found only in vascular plants and may be separated into five distinct clusters. HIPPs may be involved in (a) heavy metal homeostasis and detoxification mechanisms, especially those involved in cadmium tolerance, (b) transcriptional responses to cold and drought, and (c) plant-pathogen interactions. In particular, our results show that the rice (Oryza sativa) HIPP OsHIPP41 gene is highly expressed in response to cold and drought stresses, and its product is localized in the cytosol and the nucleus. The results suggest that HIPPs play an important role in the development of vascular plants and in plant responses to environmental changes.

  13. Homologs of Breast Cancer Genes in Plants

    PubMed Central

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that – as in animals – BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID

  14. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    PubMed

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression.

  15. Genome-wide identification and phylogenetic analysis of the SBP-box gene family in melons.

    PubMed

    Ma, Y; Guo, J W; Bade, R; Men, Z H; Hasi, A

    2014-10-27

    The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants, including green algae, moss, silver birch, snapdragon, Arabidopsis, rice, and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in melon. Using the highly conserved sequence of the Arabidopsis thaliana SBP-box domain protein as a probe of information sequence, the genome-wide protein database of melon was explored to obtain 13 SBP-box protein sequences, which were further divided into 4 groups, based on phylogenetic analysis. A further analysis centered on the melon SBP-box genetic family's phylogenetic evolution, sequence similarities, gene structure, and miR156 target sequence was also conducted. Analysis of all the expression patterns of melon SBP-box family genes showed that the SBP-box genes were detected in 7 kinds of tissue, and fruit had the highest expression level. CmSBP11 tends to present its specific expression in melon fruit and root. CmSBP09 expression was the highest in flower. Overall, the molecular evolution and expression pattern of the melon SBP-box gene family, revealed by these results, suggest its function differentiation that followed gene duplication.

  16. Functional divergence in the Arabidopsis LOB-domain gene family

    PubMed Central

    Mangeon, Amanda; Lin, Wan-ching; Springer, Patricia S.

    2012-01-01

    The Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes. One plausible explanation for the limited loss-of-function phenotypes observed in this family is that LBD genes exhibit significant functional redundancy. Here we discuss an example of one phylogenetic subgroup of the LBD family, in which genes that are closely related based on phylogeny exhibit distinctly different expression patterns and do not have overlapping functions. We discuss the challenges of using phylogenetic analyses to predict redundancy in gene families. PMID:23073009

  17. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  18. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  19. The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling.

    PubMed

    Huang, Jianyan; Zhao, Xiaobo; Yu, Huihui; Ouyang, Yidan; Wang, Lei; Zhang, Qifa

    2009-10-01

    Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice.

  20. Complexity of the MSG gene family of Pneumocystis carinii

    PubMed Central

    Keely, Scott P; Stringer, James R

    2009-01-01

    Background The relationship between the parasitic fungus Pneumocystis carinii and its host, the laboratory rat, presumably involves features that allow the fungus to circumvent attacks by the immune system. It is hypothesized that the major surface glycoprotein (MSG) gene family endows Pneumocystis with the capacity to vary its surface. This gene family is comprised of approximately 80 genes, which each are approximately 3 kb long. Expression of the MSG gene family is regulated by a cis-dependent mechanism that involves a unique telomeric site in the genome called the expression site. Only the MSG gene adjacent to the expression site is represented by messenger RNA. Several P. carinii MSG genes have been sequenced, which showed that genes in the family can encode distinct isoforms of MSG. The vast majority of family members have not been characterized at the sequence level. Results The first 300 basepairs of MSG genes were subjected to analysis herein. Analysis of 581 MSG sequence reads from P. carinii genomic DNA yielded 281 different sequences. However, many of the sequence reads differed from others at only one site, a degree of variation consistent with that expected to be caused by error. Accounting for error reduced the number of truly distinct sequences observed to 158, roughly twice the number expected if the gene family contains 80 members. The size of the gene family was verified by PCR. The excess of distinct sequences appeared to be due to allelic variation. Discounting alleles, there were 73 different MSG genes observed. The 73 genes differed by 19% on average. Variable regions were rich in nucleotide differences that changed the encoded protein. The genes shared three regions in which at least 16 consecutive basepairs were invariant. There were numerous cases where two different genes were identical within a region that was variable among family members as a whole, suggesting recombination among family members. Conclusion A set of sequences that

  1. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon.

    PubMed

    You, Jun; Zhang, Lihua; Song, Bo; Qi, Xiaoquan; Chan, Zhulong

    2015-01-01

    Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon.

  2. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  3. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  4. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  5. Expression analysis of LIM gene family in poplar, toward an updated phylogenetic classification

    PubMed Central

    2012-01-01

    Background Plant LIM domain proteins may act as transcriptional activators of lignin biosynthesis and/or as actin binding and bundling proteins. Plant LIM genes have evolved in phylogenetic subgroups differing in their expression profiles: in the whole plant or specifically in pollen. However, several poplar PtLIM genes belong to uncharacterized monophyletic subgroups and the expression patterns of the LIM gene family in a woody plant have not been studied. Findings In this work, the expression pattern of the twelve duplicated poplar PtLIM genes has been investigated by semi quantitative RT-PCR in different vegetative and reproductive tissues. As in other plant species, poplar PtLIM genes were widely expressed in the tree or in particular tissues. Especially, PtXLIM1a, PtXLIM1b and PtWLIM1b genes were preferentially expressed in the secondary xylem, suggesting a specific function in wood formation. Moreover, the expression of these genes and of the PtPLIM2a gene was increased in tension wood. Western-blot analysis confirmed the preferential expression of PtXLIM1a protein during xylem differentiation and tension wood formation. Genes classified within the pollen specific PLIM2 and PLIM2-like subgroups were all strongly expressed in pollen but also in cottony hairs. Interestingly, pairs of duplicated PtLIM genes exhibited different expression patterns indicating subfunctionalisations in specific tissues. Conclusions The strong expression of several LIM genes in cottony hairs and germinating pollen, as well as in xylem fibers suggests an involvement of plant LIM domain proteins in the control of cell expansion. Comparisons of expression profiles of poplar LIM genes with the published functions of closely related plant LIM genes suggest conserved functions in the areas of lignin biosynthesis, pollen tube growth and mechanical stress response. Based on these results, we propose a novel nomenclature of poplar LIM domain proteins. PMID:22339987

  6. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    SciTech Connect

    Wang, Shucai; Chang, Ying; Guo, Jianjun; Zeng, Qingning; Ellis, Brian; Chen, Jay

    2011-01-01

    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  7. The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression

    PubMed Central

    Astudillo, Carolina; Fernandez, Andrea C.; Blair, Matthew W.; Cichy, Karen A.

    2013-01-01

    Zinc is an essential mineral for humans and plants and is involved in many physiological and biochemical processes. In humans, Zn deficiency has been associated with retarded growth and reduction of immune response. In plants, Zn is an essential component of more than 300 enzymes including RNA polymerase, alkaline phosphatase, alcohol dehydrogenase, Cu/Zn superoxidase dismutase, and carbonic anhydrase. The accumulation of Zn in plants involves many genes and characterization of the role of these genes will be useful in biofortification. Here we report the identification and phlyogenetic and sequence characterization of the 23 members of the ZIP (ZRT, IRT like protein) family of metal transporters and three transcription factors of the bZIP family in Phaseolus vulgaris L. Expression patterns of seven of these genes were characterized in two bean genotypes (G19833 and DOR364) under two Zn treatments. Tissue analyzed included roots and leaves at vegetative and flowering stages, and pods at 20 days after flowering. Four of the genes, PvZIP12, PvZIP13, PvZIP16, and Pv bZIP1, showed differential expression based on tissue, Zn treatment, and/or genotype. PvZIP12 and PvZIP13 were both more highly expressed in G19833 than DOR364. PvZIP12 was most highly expressed in vegetative leaves under the Zn (−) treatment. PvZIP16 was highly expressed in leaf tissue, especially leaf tissue at flowering stage grown in the Zn (−) treatment. Pv bZIP1 was most highly expressed in leaf and pod tissue. The 23 PvZIP genes and three bZIP genes were mapped on the DOR364 × G19833 linkage map. PvZIP12, PvZIP13, and PvZIP18, Pv bZIP2, and Pv bZIP3 were located near QTLs for Zn accumulation in the seed. Based on the expression and mapping results, PvZIP12 is a good candidate gene for increasing seed Zn concentration and increase understanding of the role of ZIP genes in metal uptake, distribution, and accumulation of zinc in P. vulgaris. PMID:23908661

  8. Evolution of the Class IV HD-Zip Gene Family in Streptophytes

    PubMed Central

    Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.

    2013-01-01

    Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141

  9. Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine1[W

    PubMed Central

    Parage, Claire; Tavares, Raquel; Réty, Stéphane; Baltenweck-Guyot, Raymonde; Poutaraud, Anne; Renault, Lauriane; Heintz, Dimitri; Lugan, Raphaël; Marais, Gabriel A.B.; Aubourg, Sébastien; Hugueney, Philippe

    2012-01-01

    Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed. PMID:22961129

  10. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants.

    PubMed

    Huang, Zhinan; Duan, Weike; Song, Xiaoming; Tang, Jun; Wu, Peng; Zhang, Bei; Hou, Xilin

    2015-12-31

    Auxin/indole acetic acids (Aux/IAAs) and auxin response factors (ARFs), major components of the Aux signaling network, are involved in many developmental processes in plants. Investigating their evolution will provide new sight on the relationship between the molecular evolution of these genes and the increasing morphotypes of plants. We constructed comparative analyses of the retention, structure, expansion, and expression patterns of Aux/IAAs and ARFs in Brassica rapa and their evolution in eight other plant species, including algae, bryophytes, lycophytes, and angiosperms. All 33 of the ARFs, including 1 ARF-like (AL) (a type of ARF-like protein) and 53 Aux/IAAs, were identified in the B. rapa genome. The genes mainly diverged approximately 13 Ma. After the split, no Aux/IAA was completely lost, and they were more preferentially retained than ARFs. In land plants, compared with ARFs, which increased in stability, Aux/IAAs expanded more rapidly and were under more relaxed selective pressure. Moreover, BraIAAs were expressed in a more tissue-specific fashion than BraARFs and demonstrated functional diversification during gene duplication under different treatments, which enhanced the cooperative interaction of homologs to help plants adapt to complex environments. In addition, ALs existed widely and had a closer relationship with ARFs, suggesting that ALs might be the initial structure of ARFs. Our results suggest that the rapid expansion and preferential retention of Aux/IAAs are likely paralleled by the increasingly complex morphotypes in Brassicas and even in land plants. Meanwhile, the data support the hypothesis that the PB1 domain plays a key role in the origin of both Aux/IAAs and ARFs.

  11. Differential expression of the ras gene family in mice.

    PubMed Central

    Leon, J; Guerrero, I; Pellicer, A

    1987-01-01

    We compared the expression of the ras gene family (H-ras, K-ras, and N-ras) in adult mouse tissues and during development. We found substantial variations in expression among different organs and in the amounts of the different transcripts originating from each gene, especially for the N-ras gene. The expression patterns were consistent with the reported preferential tissue activation of ras genes and suggested different cellular functions for each of the ras genes. Images PMID:3600635

  12. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  13. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage.

  14. Molecular characterization of edestin gene family in Cannabis sativa L.

    PubMed

    Docimo, Teresa; Caruso, Immacolata; Ponzoni, Elena; Mattana, Monica; Galasso, Incoronata

    2014-11-01

    Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs.

  15. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  16. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  17. Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra.

    PubMed

    Yao, Wenjing; Zhang, Xuemei; Zhou, Boru; Zhao, Kai; Li, Renhua; Jiang, Tingbo

    2017-01-01

    Identification of gene expression patterns of key genes across multiple abiotic stresses is critical for mechanistic understanding of stress resistance in plant. In the present study, we identified differentially expressed genes (DEGs) in di-haploid Populus simonii × P. nigra under respective stresses of NaCl, KCl, CdCl2, and PEG. On the basis of RNA-Seq, we detected 247 DEGs that are shared by the four stresses in wild type poplar, and mRNA abundance of the DEGs were validated in transgenic poplar overexpressing ERF76 gene by RNA-Seq and RT-qPCR. Results from gene ontology analysis indicated that these genes are enriched in significant pathways, such as phenylpropanoid biosynthesis, phenylalanine metabolism, starch and sucrose metabolism, and plant hormone signal transduction. Ethylene response factor (ERF) gene family plays significant role in plant abiotic stress responses. We also investigated expression pattern of ERF gene family under the four stresses. The ERFs and DEGs share similar expression pattern across the four stresses. The transgenic poplar is superior to WT in morphologic, physiological and biochemical traits, which demonstrated the ERF76 gene plays a significant role in stress resistance. These studies will give a rise in understanding the stress response mechanisms in poplar.

  18. Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra

    PubMed Central

    Yao, Wenjing; Zhang, Xuemei; Zhou, Boru; Zhao, Kai; Li, Renhua; Jiang, Tingbo

    2017-01-01

    Identification of gene expression patterns of key genes across multiple abiotic stresses is critical for mechanistic understanding of stress resistance in plant. In the present study, we identified differentially expressed genes (DEGs) in di-haploid Populus simonii × P. nigra under respective stresses of NaCl, KCl, CdCl2, and PEG. On the basis of RNA-Seq, we detected 247 DEGs that are shared by the four stresses in wild type poplar, and mRNA abundance of the DEGs were validated in transgenic poplar overexpressing ERF76 gene by RNA-Seq and RT-qPCR. Results from gene ontology analysis indicated that these genes are enriched in significant pathways, such as phenylpropanoid biosynthesis, phenylalanine metabolism, starch and sucrose metabolism, and plant hormone signal transduction. Ethylene response factor (ERF) gene family plays significant role in plant abiotic stress responses. We also investigated expression pattern of ERF gene family under the four stresses. The ERFs and DEGs share similar expression pattern across the four stresses. The transgenic poplar is superior to WT in morphologic, physiological and biochemical traits, which demonstrated the ERF76 gene plays a significant role in stress resistance. These studies will give a rise in understanding the stress response mechanisms in poplar. PMID:28265277

  19. Flavonoid Properties in Plant Families Synthesizing Betalain Pigments (Review).

    PubMed

    Iwashina, Tsukasa

    2015-06-01

    The anthocyanin pigments are contained in the flowers, fruits, leaves and roots of almost plant species. On the other hand, distribution of the betacyanins are limited in eight families of the order Caryophyllales, i.e. Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae. However, other flavonoids, i.e. flavones, C-glycosylflavones, flavonols, flavanones, dihydroflavonols, chalcones, aurones, and flavan and proanthocyanidins, are synthesized in betalain-containing families. In this review, distribution and properties of the flavonoids in eight betalain-containing families are described.

  20. Folk medicinal uses of Verbenaceae family plants in Bangladesh.

    PubMed

    Rahmatullah, Mohammed; Jahan, Rownak; Azam, F M Safiul; Hossan, S; Mollik, M A H; Rahman, Taufiq

    2011-01-01

    Folk medicinal practitioners form the first tier of primary health-care providers to most of the rural population of Bangladesh. They are known locally as Kavirajes and rely almost solely on oral or topical administration of whole plants or plant parts for treatment of various ailments. Also about 2% of the total population of Bangladesh are scattered among more than twenty tribes residing within the country's borders. The various tribes have their own tribal practitioners, who use medicinal plants for treatment of diseases. The objective of the present survey was to conduct an ethnomedicinal survey among the Kavirajes and tribal practitioners to determine which species of plants belonging to the Verbenaceae family are used by the practitioners. The Verbenaceae family plants are well known for constituents having important bio-active properties. The present survey indicated that 13 species belonging to 8 genera are used by the folk and tribal medicinal practitioners of Bangladesh. A comparison of their folk medicinal uses along with published reports in the scientific literature suggests that the Verbenaceae family plants used in Bangladesh can potentially be important sources of lead compounds or novel drugs for treatment of difficult to cure debilitating diseases like malaria and rheumatoid arthritis.

  1. The Expansion of the PRAME Gene Family in Eutheria

    PubMed Central

    Chang, Ti-Cheng; Yang, Yang; Yasue, Hiroshi; Bharti, Arvind K.; Retzel, Ernest F.; Liu, Wan-Sheng

    2011-01-01

    The PRAME gene family belongs to the group of cancer/testis genes whose expression is restricted primarily to the testis and a variety of cancers. The expansion of this gene family as a result of gene duplication has been observed in primates and rodents. We analyzed the PRAME gene family in Eutheria and discovered a novel Y-linked PRAME gene family in bovine, PRAMEY, which underwent amplification after a lineage-specific, autosome-to-Y transposition. Phylogenetic analyses revealed two major evolutionary clades. Clade I containing the amplified PRAMEYs and the unamplified autosomal homologs in cattle and other eutherians is under stronger functional constraints; whereas, Clade II containing the amplified autosomal PRAMEs is under positive selection. Deep-sequencing analysis indicated that eight of the identified 16 PRAMEY loci are active transcriptionally. Compared to the bovine autosomal PRAME that is expressed predominantly in testis, the PRAMEY gene family is expressed exclusively in testis and is up-regulated during testicular maturation. Furthermore, the sense RNA of PRAMEY is expressed specifically whereas the antisense RNA is expressed predominantly in spermatids. This study revealed that the expansion of the PRAME family occurred in both autosomes and sex chromosomes in a lineage-dependent manner. Differential selection forces have shaped the evolution and function of the PRAME family. The positive selection observed on the autosomal PRAMEs (Clade II) may result in their functional diversification in immunity and reproduction. Conversely, selective constraints have operated on the expanded PRAMEYs to preserve their essential function in spermatogenesis. PMID:21347312

  2. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    PubMed

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  3. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses

    PubMed Central

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1–3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses. PMID:24614623

  4. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.

    PubMed

    Belbahri, Lassaad; Calmin, Gautier; Mauch, Felix; Andersson, Jan O

    2008-01-31

    Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.

  5. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica).

    PubMed

    Song, Z Z; Ma, R J; Yu, M L

    2015-01-30

    The KT/HAK/KUP family members encoding high-affinity potassium (K(+)) transporters mediate K(+) transport across the plasma membranes of plant cells to maintain plant normal growth and metabolic activities. In this paper, we identified 16 potassium transporter genes in the peach (Prunus persica) using the Hidden Markov model scanning strategy and searching the peach genome database. Utilizing the Arabidopsis KT/HAK/KUP family as a reference, phylogenetic analysis indicates that the KT/HAK/KUP family in the peach can be classified into 3 groups. Genomic localization indicated that 16 KT/HAK/KUP family genes were well distributed on 7 scaffolds. Gene structure analysis showed that the KT/HAK/KUP family genes have 6-9 introns. In addition, all of the KT/HAK/KUP family members were hydrophobic proteins; they exhibited similar secondary structure patterns and homologous tertiary structures. Putative cis-elements involved in abiotic stress adaption, Ca(2+) response, light and circadian rhythm regulation, and seed development were observed in the promoters of the KT/HAK/KUP family genes. Subcellular localization prediction indicated that the KT/HAK/KUP members were mainly located in the plasma membrane. Expression levels of the KT/HAK/ KUP family genes were much higher in the fruit and flower than those in the other 7 tissues examined, indicating that the KT/HAK/KUP family genes may have important roles in K(+) uptake and transport, which mainly contribute to flower formation and fruit development in the peach.

  6. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  7. Morphological evolution in land plants: new designs with old genes

    PubMed Central

    Pires, Nuno D.; Dolan, Liam

    2012-01-01

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763

  8. Horizontal gene transfer in parasitic plants.

    PubMed

    Davis, Charles C; Xi, Zhenxiang

    2015-08-01

    Horizontal gene transfer (HGT) between species has been a major focus of plant evolutionary research during the past decade. Parasitic plants, which establish a direct connection with their hosts, have provided excellent examples of how these transfers are facilitated via the intimacy of this symbiosis. In particular, phylogenetic studies from diverse clades indicate that parasitic plants represent a rich system for studying this phenomenon. Here, HGT has been shown to be astonishingly high in the mitochondrial genome, and appreciable in the nuclear genome. Although explicit tests remain to be performed, some transgenes have been hypothesized to be functional in their recipient species, thus providing a new perspective on the evolution of novelty in parasitic plants.

  9. Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis.

    PubMed

    Wickett, Norman J; Honaas, Loren A; Wafula, Eric K; Das, Malay; Huang, Kan; Wu, Biao; Landherr, Lena; Timko, Michael P; Yoder, John; Westwood, James H; dePamphilis, Claude W

    2011-12-20

    Parasitism in flowering plants has evolved at least 11 times [1]. Only one family, Orobanchaceae, comprises all major nutritional types of parasites: facultative, hemiparasitic (partially photosynthetic), and holoparasitic (nonphotosynthetic) [2]. Additionally, the family includes Lindenbergia, a nonparasitic genus sister to all parasitic Orobanchaceae [3-6]. Parasitic Orobanchaceae include species with severe economic impacts: Striga (witchweed), for example, affects over 50 million hectares of crops in sub-Saharan Africa, causing more than $3 billion in damage annually [7]. Although gene losses and increased substitution rates have been characterized for parasitic plant plastid genomes [5, 8-11], the nuclear genome and transcriptome remain largely unexplored. The Parasitic Plant Genome Project (PPGP; http://ppgp.huck.psu.edu/) [2] is leveraging the natural variation in Orobanchaceae to explore the evolution and genomic consequences of parasitism in plants through a massive transcriptome and gene discovery project involving Triphysaria versicolor (facultative hemiparasite), Striga hermonthica (obligate hemiparasite), and Phelipanche aegyptiaca (Orobanche [12]; holoparasite). Here we present the first set of large-scale genomic resources for parasitic plant comparative biology. Transcriptomes of above-ground tissues reveal that, in addition to the predictable loss of photosynthesis-related gene expression in P. aegyptiaca, the nonphotosynthetic parasite retains an intact, expressed, and selectively constrained chlorophyll synthesis pathway.

  10. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution

  11. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    PubMed

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  12. Cystatins, serpins and other families of protease inhibitors in plants.

    PubMed

    Volpicella, Mariateresa; Leoni, Claudia; Costanza, Alessandra; De Leo, Francesca; Gallerani, Raffaele; Ceci, Luigi R

    2011-08-01

    Plant protease inhibitors (PIs) are generally small proteins present in high concentrations in storage tissues (tubers and seeds), and to a lower level in leaves. Even if most of them are active against serine and cysteine proteases, PIs active against aspartic proteases and carboxypeptidases have also been identified. Inhibitors of serine proteases are further classifiable in several families on the basis of their structural features. They comprise the families known as Bowman-Birk, Kunitz, Potato I and Potato II, which are the subject of review articles included in this special issue. In the present article we aim to give an overview of other families of plant PIs, active either against serine proteases or other class of proteases, describing their distribution, activity and main structural characteristics.

  13. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Alok, Anshu; Kaur, Navneet; Sharma, Shivani; Lakhwani, Deepika; Asif, Mehar H.; Tiwari, Siddharth; Trivedi, Prabodh K.

    2016-01-01

    The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs. PMID:26870050

  14. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    PubMed

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  15. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes.

  16. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  17. Cloning and characterisation of JAZ gene family in Hevea brasiliensis.

    PubMed

    Hong, H; Xiao, H; Yuan, H; Zhai, J; Huang, X

    2015-05-01

    Mechanical wounding or treatment with exogenous jasmonates (JA) induces differentiation of the laticifer in Hevea brasiliensis. JA is a key signal for latex biosynthesis and wounding response in the rubber tree. Identification of JAZ (jasmonate ZIM-domain) family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid-derived hormone controls gene expression and related physiological processes in plants. In this work, the full-length cDNAs of six JAZ genes were cloned from H. brasiliensis (termed HbJAZ). These HbJAZ have different lengths and sequence diversity, but all of them contain Jas and ZIM domains, and two of them contain an ERF-associated amphiphilic repression (EAR) motif in the N-terminal. Real-time RT-PCR analyses revealed that HbJAZ have different expression patterns and tissue specificity. Four HbJAZ were up-regulated, one was down-regulated, while two were less effected by rubber tapping treatment, suggesting that they might play distinct roles in the wounding response. A yeast two-hybrid assay revealed that HbJAZ proteins interact with each other to form homologous or heterogeneous dimer complexes, indicating that the HbJAZ proteins may expand their function through diverse JAZ-JAZ interactions. This work lays a foundation for identification of the JA signalling pathway and molecular mechanisms of latex biosynthesis in rubber trees.

  18. [Regulatory functions of Pax gene family in Drosophila development].

    PubMed

    Li, Li; Yang, Yang; Xue, Lei

    2010-02-01

    The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.

  19. The phylogeny and evolutionary history of the Lesion Simulating Disease (LSD) gene family in Viridiplantae.

    PubMed

    Cabreira, Caroline; Cagliari, Alexandro; Bücker-Neto, Lauro; Margis-Pinheiro, Márcia; de Freitas, Loreta B; Bodanese-Zanettini, Maria Helena

    2015-12-01

    The Lesion Simulating Disease (LSD) genes encode a family of zinc finger proteins that play a role in programmed cell death (PCD) and other biological processes, such as plant growth and photosynthesis. In the present study, we report the reconstruction of the evolutionary history of the LSD gene family in Viridiplantae. Phylogenetic analysis revealed that the monocot and eudicot genes were distributed along the phylogeny, indicating that the expansion of the family occurred prior to the diversification between these clades. Sequences encoding proteins that present one, two, or three LSD domains formed separate groups. The secondary structure of these different LSD proteins presented a similar composition, with the β-sheets being their main component. The evolution by gene duplication was identified only to the genes that contain three LSD domains, which generated proteins with equal structure. Moreover, genes encoding proteins with one or two LSD domains evolved as single-copy genes and did not result from loss or gain in LSD domains. These results were corroborated by synteny analysis among regions containing paralogous/orthologous genes in Glycine max and Populus trichocarpa. The Ka/Ks ratio between paralogous/orthologous genes revealed that a subfunctionalization process possibly could be occurring with the LSD genes, explaining the involvement of LSD members in different biological processes, in addition to the negative regulation of PCD. This study presents important novelty in the evolutionary history of the LSD family and provides a basis for future research on individual LSD genes and their involvement in important pathway networks in plants.

  20. Organisation and structural evolution of the rice glutathione S-transferase gene family.

    PubMed

    Soranzo, N; Sari Gorla, M; Mizzi, L; De Toma, G; Frova, C

    2004-06-01

    Glutathione S-transferases (GSTs) comprise a large family of key defence enzymes against xenobiotic toxicity. Here we describe the comprehensive characterisation of this important multigene family in the model monocot species rice [ Oryza sativa(L.)]. Furthermore, we investigate the molecular evolution of the family based on the analysis of (1) the patterns of within-genome duplication, and (2) the phylogenetic relationships and evolutionary divergence among rice, Arabidopsis, maize and soybean GSTs. By in-silico screening of the EST and genome divisions of the Genbank/EMBL/DDBJ database we have isolated 59 putative genes and two pseudogenes, making this the largest plant GST family characterised to date. Of these, 38 (62%) are represented by genomic and EST sequences and 23 (38%) are known only from their genomic sequences. A preliminary survey of EST collections shows a large degree of variability in gene expression between different tissues and environmental conditions, with a small number of genes (13) accounting for 80% of all ESTs. Rice GSTs are organised in four main phylogenetic classes, with 91% of all rice genes belonging to the two plant-specific classes Tau (40 genes) and Phi (16 genes). Pairwise identity scores range between 17 and 98% for proteins of the same class, and 7 and 21% for interclass comparisons. Rapid evolution by gene duplication is suggested by the discovery of two large clusters of 7 and 23 closely related genes on chromosomes 1 and 10, respectively. A comparison of the complete GST families in two monocot and two dicot species suggests a monophyletic origin for all Theta and Zeta GSTs, and no more than three common ancestors for all Phi and Tau genes.

  1. Comparative Genome-Wide Analysis of the Malate Dehydrogenase Gene Families in Cotton

    PubMed Central

    Imran, Muhammad; Tang, Kai; Liu, Jin-Yuan

    2016-01-01

    Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development. PMID:27829020

  2. Evolution and Function of the Sucrose-Phosphate Synthase Gene Families in Wheat and Other Grasses[w

    PubMed Central

    Castleden, C. Kate; Aoki, Naohiro; Gillespie, Vanessa J.; MacRae, Elspeth A.; Quick, W. Paul; Buchner, Peter; Foyer, Christine H.; Furbank, Robert T.; Lunn, John E.

    2004-01-01

    Suc-phosphate synthase (SPS) is a key regulatory enzyme in the pathway of Suc biosynthesis and has been linked to quantitative trait loci controlling plant growth and yield. In dicotyledonous plants there are three SPS gene families: A, B, and C. Here we report the finding of five families of SPS genes in wheat (Triticum aestivum) and other monocotyledonous plants from the family Poaceae (grasses). Three of these form separate subfamilies within the previously described A, B, and C gene families, but the other two form a novel and distinctive D family, which on present evidence is only found in the Poaceae. The D-type SPS proteins lack the phosphorylation sites associated with 14-3-3 protein binding and osmotic stress activation, and the linker region between the N-terminal catalytic glucosyltransferase domain and the C-terminal Suc-phosphatase-like domain is 80 to 90 amino acid residues shorter than in the A, B, or C types. The D family appears to have arisen after the divergence of mono- and dicotyledonous plants, with a later duplication event resulting in the two D-type subfamilies. Each of the SPS gene families in wheat showed different, but overlapping, spatial and temporal expression patterns, and in most organs at least two different SPS genes are expressed. Analysis of expressed sequence tags indicated similar expression patterns to wheat for each SPS gene family in barley (Hordeum vulgare) but not in more distantly related grasses. We identified an expressed sequence tag from rice (Oryza sativa) that appears to be derived from an endogenous antisense SPS gene, and this might account for the apparently low level of expression of the related OsSPS11 sense gene, adding to the already extensive list of mechanisms for regulating the activity of SPS in plants. PMID:15247374

  3. Expression of ets family genes in hematopoietic-cells.

    PubMed

    Romanospica, V; Suzuki, H; Georgiou, P; Chen, S; Ascione, R; Papas, T; Bhat, N

    1994-03-01

    We have examined the expression of the ets family of transcription factors in different types of hematopoietic cells. Our results demonstrate that several members of the ets gene family are expressed differentially in hematopoietic cells. During phorbol ester induced differentiation of HL60 cells, ETS2, PEA3, as well as GABPalpha and GABPbeta mRNAs are coordinately induced. During the activation of T-cells, ETS2 proteins are induced; however, the expression of the ETS1 and ERGB gene products are reduced. These results demonstrate that the regulation of ets family of genes is complex and depends on cell type. This observation leads to the conclusion that the regulation of ets target genes, will be dependent, in part, upon the type of ets genes expressed in each particular cell type.

  4. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    PubMed

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-12-29

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut.

  5. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  6. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula.

    PubMed

    Shu, Y J; Song, L L; Zhang, J; Liu, Y; Guo, C H

    2015-09-09

    The DNA-binding one zinc finger (Dof) family is a classic plant-specific zinc-finger transcription factor family, which is involved in many important processes, including seed maturation and germination, plant growth and development, and light responses. Investigation of the Medicago truncatula genome revealed 42 putative Dof genes, each of which holds one Dof domain. These genes were classified into four groups based on phylogenetic analysis, which are similar to the groups reported for Arabidopsis and rice. Based on genome duplication analysis, it was found that the MtDof genes were distributed on all chromosomes and had expanded through tandem gene duplication and segmental duplication events. Two main duplication regions were identified, one from tandem duplication and another from segmental duplication. By analyzing high-throughput sequencing data from M. truncatula, we found that most of the MtDof genes showed specific expression patterns in different tissues. According to cis-regulatory element analysis, these MtDof genes are regulated by different cis-acting motifs, which are important for the functional divergence of the MtDof genes in different processes. Thus, using genome-wide identification, evolution, and expression pattern analysis of the Dof genes in M. truncatula, our study provides valuable information for understanding the potential function of the Dof genes in regulating the growth and development of M. truncatula.

  7. Plant Biofilm Inhibitors to Discover Biofilm Genes

    DTIC Science & Technology

    2011-04-08

    REPORT Final Report for Plant Biofilm Inhibitors to Discover Biofilm Genes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: To control biofilms , we have...synthesized the natural biofilm inhibitor (5Z)-4-bromo-5-(bromomethylene) -3-butyl-2(5H)-furanone from the red alga Delisea pulchra and determined that...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS biofilms , biofilm inhibitors Thomas K. Wood Texas Engineering

  8. Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants

    PubMed Central

    Devis, Deborah; Firth, Sue M.; Liang, Zhe; Byrne, Mary E.

    2015-01-01

    The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes. PMID:26734020

  9. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    NASA Astrophysics Data System (ADS)

    Yanai, Itai; Camacho, Carlos J.; Delisi, Charles

    2000-09-01

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications.

  10. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  11. [Review on hrp genes of plant pathogenic bacteria].

    PubMed

    Yang, Jun; Yin, Qi-Sheng; Song, Ji-Zhen; Hou, Ming-Sheng

    2005-09-01

    The hrp genes exist in 4 kinds of Gram-negative plant pathogenic bacteria and are responsible for the pathogenicity of bacteria. They can induce hypersensitive response on non-host and resistant plants. In the present paper, we summarized the hrp genes clusters, the relationship between hrp and avr genes, harpin proteins encoded by hrp genes, modulation and function of hrp genes, and plant-bacteria interactions mediated by hrp genes in more details. Moreover, trends in future research of plant pathogenic bacteria hrp genes have also been analyzed.

  12. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  13. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.

    PubMed

    Tiley, George P; Ané, Cécile; Burleigh, J Gordon

    2016-04-11

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses.

  14. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  15. Evolutionary History of the Cancer Immunity Antigen MAGE Gene Family

    PubMed Central

    Katsura, Yukako; Satta, Yoko

    2011-01-01

    The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes. PMID:21695252

  16. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  17. Identification of ARF and AUX/IAA gene families in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Elias, Nur Atiqah Mohd; Goh, Hoe-Han; Isa, Nurulhikma Md; Wan, Kiew-Lian

    2016-11-01

    Rafflesia is a unique plant that produces the largest flowers in the world. It has a short blooming period of 6 to 7 days. Due to its rarity and limited accessibility, little is known about the growth and developmental process in the Rafflesia plant. In all plant species, auxin is the key hormone that is involved in growth and development. The auxin signal transduction involves members of the ARF transcription factor and AUX/IAA regulator families, which activate or inhibit the regulation of auxin response genes, thereby control the developmental process in plants. To gain a better understanding of molecular regulations in the Rafflesia plant development during flowering, members of the ARF and AUX/IAA gene families were identified from the transcriptome data of flower blooming stages in Rafflesia cantleyi. Based on Rafflesia unique transcripts (UTs) against the Arabidopsis TAIR database using BLASTX search, a total of nine UTs were identified as ARF transcription factors, while another seven UTs were identified as AUX/IAA regulators. These genes were found to be expressed in all three R. cantleyi flower stages i.e. days 1 (F1), 3 (F2), and 5 (F3). Gene expression analysis identified three genes that are differentially expressed in stage F1 vs. F2 i.e. IAA4 is upregulated while IAA8 and ARF3 are downregulated. These genes may be involved in the activation and/or inhibition of the auxin signal transduction pathway. Further analysis of these genes may unravel their function in the phenotypic development of the Rafflesia plant.

  18. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

  19. Mutation in δ-Sg Gene in Familial Dilated Cardiomyopathy

    PubMed Central

    Asadi, Marzieh; Foo, Roger; Salehi, Ahmad Reza; Salehi, Rasoul; Samienasab, Mohammad Reza

    2017-01-01

    Background: Mutations in different genes including dystrophin-associated glycoprotein complex caused familial dilated cardiomyopathy which is a genetically heterogeneous disease. The δ-SG gene contains nine exons spanning a 433-kb region of genomic DNA. It encodes a 35-kDa, singlepass, and type II transmembrane glycoprotein. Materials and Methods: In this study for the first time in Iran we screened 6 patients of a large family that they had positive family history of MI or sudden death by next generation sequencing method. Results: By employing NGS method we found missense mutation (p.R97Q) of δ-SG gene in 2 of 6 patients. Conclusions: The missense mutation (p.R97Q) in familial DCM patients is reported for the first time in Iranian patients with cardiac disease. Although this mutation is already known in other populations in Iran, it is not reported before.

  20. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  1. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  2. Complexity, polymorphism, and connectivity of mouse Vk gene families.

    PubMed

    Kofler, R; Duchosal, M A; Dixon, F J

    1989-01-01

    To define the polymorphism and extent of the mouse immunoglobulin kappa (Igk) gene complex, we have analyzed restriction-enzyme digested genomic DNA from 33 inbred strains of mice with labeled DNA probes corresponding to 16 Vk protein groups (1 of them previously undescribed) and the Jk/Ck region (V, variable; J, joining; C, constant). These probes detected between 1 and 25 distinct restriction enzyme fragments (REF) that appeared in up to eight polymorphic patterns, thus defining eight mouse Igk haplotypes. The investigated portion of the Vk repertoire was estimated to encompass between 60 and 120 discernable Vk gene-containing REFs. In contrast to mouse VH gene families, several Vk gene families defined by these probes appeared to overlap. This observation has implications for Vk gene analyses by nucleic acid hybridization and raises the possibility that the Vk gene complex is a continuum of related sequences.

  3. Rubisco gene expression in C4 plants.

    PubMed

    Patel, Minesh; Berry, James O

    2008-01-01

    In leaves of most C(4) plants, ribulose 1,5 bisphosphate carboxylase (Rubisco) accumulates only in bundle sheath (bs) cells that surround the vascular centres, and not in mesophyll (mp) cells. It has been shown previously that in the C(4) dicots amaranth and Flaveria bidentis, post-transcriptional control of mRNA translation and stability mediate the C(4) expression patterns of genes encoding the large and small Rubisco subunits (chloroplast rbcL and nuclear RbcS, respectively). Translational control appears to regulate bs cell-specific Rubisco gene expression during early dicot leaf development, while control of mRNA stability appears to mediate bs-specific accumulation of RbcS and rbcL transcripts in mature leaves. Post-transcriptional control is also involved in the regulation of Rubisco gene expression by light, and in response to photosynthetic activity. Transgenic and transient expression studies in F. bidentis provide direct evidence for post-transcriptional control of bs cell-specific RbcS expression, which is mediated by the 5' and 3' untranslated regions (UTRs) of the mRNA. Comparisons of Rubisco gene expression in these dicots and in the monocot maize indicates possible commonalities in the regulation of RbcS and rbcL genes in these divergent C(4) species. Now that the role of post-transcriptional regulation in C(4) gene expression has been established, it is likely that future studies of mRNA-protein interactions will address long-standing questions about the establishment and maintenance of cell type-specificity in these plants. Some of these regulatory mechanisms may have ancestral origins in C(3) species, through modification of pre-existing factors, or by the acquisition of novel C(4) processes.

  4. Characterizations of 9p21 candidate genes in familial melanoma

    SciTech Connect

    Walker, G.J.; Flores, J.F.; Glendening, J.M.

    1994-09-01

    We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplastic nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.

  5. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  6. Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice

    PubMed Central

    Jung, Ki-Hong; Lee, Jinwon; Dardick, Chris; Seo, Young-Su; Cao, Peijian; Canlas, Patrick; Phetsom, Jirapa; Xu, Xia; Ouyang, Shu; An, Kyungsook; Cho, Yun-Ja; Lee, Geun-Cheol; Lee, Yoosook; An, Gynheung; Ronald, Pamela C.

    2008-01-01

    Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families. PMID:18725934

  7. Evolution of the Sox gene family within the chordate phylum.

    PubMed

    Heenan, Phoebe; Zondag, Lisa; Wilson, Megan J

    2016-01-10

    The ancient Sox gene family is a group of related transcription factors that perform a number of essential functions during embryonic development. During evolution, this family has undergone considerable expansion, particularly within the vertebrate lineage. In vertebrates SOX proteins are required for the specification, development and/or morphogenesis of most vertebrate innovations. Tunicates and lancelets are evolutionarily positioned as the closest invertebrate relatives to the vertebrate group. By identifying their Sox gene complement we can begin to reconstruct the gene set of the last common chordate ancestor before the split into invertebrates and vertebrate groups. We have identified core SOX family members from the genomes of six invertebrate chordates. Using phylogenetic analysis we determined their evolutionary relationships. We propose that the last common ancestor of chordates had at least seven Sox genes, including the core suite of SoxB, C, D, E and F as well as SoxH.

  8. The KP4 killer protein gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Killer protein 4 (KP4) is a well studied toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth. This small, cysteine rich protein is encoded by a virus that depends on host survival for replication. KP4 functi...

  9. Evolution of the multifaceted eukaryotic akirin gene family

    PubMed Central

    Macqueen, Daniel J; Johnston, Ian A

    2009-01-01

    Background Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes. Results akirin genes are present throughout the metazoa and arose before the separation of animal, plant and fungi lineages. Using comprehensive phylogenetic analysis, coupled with comparisons of conserved synteny and genomic organisation, we show that the intron-exon structure of metazoan akirin genes was established prior to the bilateria and that a single proto-orthologue duplicated in the vertebrates, before the gnathostome-agnathan separation, producing akirin1 and akirin2. Phylogenetic analyses of seven vertebrate gene families with members in chromosomal proximity to both akirin1 and akirin2 were compatible with a common duplication event affecting the genomic neighbourhood of the akirin proto-orthologue. A further duplication of akirins occurred in the teleost lineage and was followed by lineage-specific patterns of paralogue loss. Remarkably, akirins have been independently characterised by five research groups under different aliases and a comparison of the available literature revealed diverse functions, generally in regulating gene expression. For example, akirin was characterised in arthropods as subolesin, an important growth factor and in Drosophila as bhringi, which has an essential myogenic role. In vertebrates, akirin1 was named mighty in mice and was shown to regulate myogenesis, whereas akirin2 was characterised as FBI1 in rats and promoted carcinogenesis, acting as a transcriptional repressor when bound to a 14-3-3 protein. Both vertebrate Akirins have evolved under comparably strict constraints of purifying selection, although a likelihood ratio test predicted that functional divergence has occurred between paralogues. Bayesian and maximum likelihood tests identified amino-acid positions where the rate of

  10. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    PubMed Central

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  11. Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa).

    PubMed

    Wang, Likai; Zhang, Hua

    2014-04-01

    Metacaspases (MCs), which are cysteine-dependent proteases found in plants, fungi, and protozoa, may be involved in programmed cell death processes, being distant relatives of metazoan caspases. In this study, we analysed the structures, phylogenetic relationship, genome localizations, expression patterns and domestic selections of eight MC genes identified in rice (OsMC). Alignment analysis of the corresponding protein sequences suggested OsMC proteins can be classified into two subtypes. The expression profiles of eight OsMC genes were analysed in 27 tissues covering the whole life cycle of rice. There are four OsMC genes uniquely expressed in mature tissues, indicating that these genes might play certain roles in senescence. Under abiotic and biotic stresses, four OsMC genes were expressed with treatments of one or more of Magnaporthe oryzae (M. oryzae) infected, pest damaged, cold stress and drought stress, indicating they might be involved in plant defense. In addition, gene trees and genetic diversity (π) were performed to measure whether candidate genes were selected during rice domestication. The results suggested that all the type I genes could not be domestication genes. However, two of five type II OsMC genes showed strong evidence for selective sweep, suggesting that these genes might be involved in cultivated rice domestication. These results provide a foundation for future functional genomic studies of this family in rice.

  12. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    PubMed

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-07-14

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato.

  13. Genome-wide analysis of SAUR gene family in Solanaceae species.

    PubMed

    Wu, Jian; Liu, Songyu; He, Yanjun; Guan, Xiaoyan; Zhu, Xiangfei; Cheng, Lin; Wang, Jie; Lu, Gang

    2012-11-01

    The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.

  14. Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis

    PubMed Central

    Soanes, Darren M.; Alam, Intikhab; Cornell, Mike; Wong, Han Min; Hedeler, Cornelia; Paton, Norman W.; Rattray, Magnus; Hubbard, Simon J.; Oliver, Stephen G.; Talbot, Nicholas J.

    2008-01-01

    Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis. PMID:18523684

  15. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    PubMed Central

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  16. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  17. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.

    PubMed

    Chen, Lihong; Hu, Wei; Tan, Shenglong; Wang, Min; Ma, Zhanbing; Zhou, Shiyi; Deng, Xiaomin; Zhang, Yang; Huang, Chao; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.

  18. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  19. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  20. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    PubMed

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses.

  1. Reproduction on orbit by plants in the Brassicaceae family

    NASA Astrophysics Data System (ADS)

    Musgrave, Mary E.; Kuang, Anxiu; Xiao, Ying; Matthews, Sharon W.

    1999-01-01

    Previous studies on growth and development during spaceflight had indicated that the transition from vegetative to reproductive growth was particularly difficult for plants. Our objective has been to study how the spaceflight environment impacts the different steps in plant reproduction. This goal has been pursued in two general ways: by using plants that had been pre-grown to the flowering stage on earth, and by using plants that developed completely on orbit. Our objectives have been met by a combination of experiments that required essentially no crew time on orbit, and those that required an extensive commitment of crew time. The plants chosen for the studies were closely related members of the family Brassicaceae: Arabidopsis thaliana and Brassica rapa. In a series of short-duration experiments with Arabidopsis on the space shuttle we found that depletion of carbon dioxide in closed chambers resulted in aborted development of both the male and female reproductive apparatus in microgravity. Normal development was restored by addition of carbon dioxide or by providing air flow. A subsequent shuttle experiment with Brassica utilizing hardware that provides a vigorous air flow confirmed embryo development following pollination on orbit. Brassica plants grown from seed on the Mir space station produced seed that germinated and grew when replanted on orbit. Future experiments will determine effects of multiple generations in space.

  2. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.

    PubMed

    Arroyo, José Ignacio; Hoffmann, Federico G; Opazo, Juan C

    2012-06-01

    The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case

  3. Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes

    PubMed Central

    Sun, Quan; Wang, Guanghao; Zhang, Xiao; Zhang, Xiangrui; Qiao, Peng; Long, Lu; Yuan, Youlu; Cai, Yingfan

    2017-01-01

    TIFY proteins are plant-specific proteins containing TIFY, JAZ, PPD and ZML subfamilies. A total of 50, 54 and 28 members of the TIFY gene family in three cultivated cotton species—Gossypium hirsutum, Gossypium barbadense and Gossypium arboretum—were identified, respectively. The results of phylogenetic analysis showed that these TIFY genes were divided into eight clusters. The different clusters of gene family members often have similar gene structures, including the number of exons. The results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that different JAZ genes displayed distinct expression patterns in the leaves of upland cotton under treatment with Gibberellin (GA), methyl jasmonate (MeJA), Jasmonic acid (JA) and abscisic acid (ABA). Different groups of JAZ genes exhibited different expression patterns in cotton leaves infected with Verticillium dahliae. The results of the comparative analysis of TIFY genes in the three cultivated species will be useful for understanding the involvement of these genes in development and stress resistance in cotton. PMID:28186193

  4. Evolution of xyloglucan-related genes in green plants

    PubMed Central

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan

  5. BranchClust: a phylogenetic algorithm for selecting gene families

    PubMed Central

    Poptsova, Maria S; Gogarten, J Peter

    2007-01-01

    Background Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known rooted species tree; a limitation of this approach, especially in case of prokaryotes, is that the species tree is often unknown, and that from the analyses of single gene families the branching order between related organisms frequently is unresolved. Results Here we describe an algorithm for the automated selection of orthologous genes that recognizes orthologous genes from different species in a phylogenetic tree for any number of taxa. The algorithm is capable of distinguishing complete (containing all taxa) and incomplete (not containing all taxa) families and recognizes in- and outparalogs. The BranchClust algorithm is implemented in Perl with the use of the BioPerl module for parsing trees and is freely available at . Conclusion BranchClust outperforms the Reciprocal Best Blast hit method in selecting more sets of putatively orthologous genes. In the test cases examined, the correctness of the selected families and of the identified in- and outparalogs was confirmed by inspection of the pertinent phylogenetic trees. PMID:17425803

  6. Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family.

    PubMed

    Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A

    2011-07-01

    The flavin monooxygenases (FMO) encoded by plant YUCCA genes are thought to catalyze a rate-limiting step in the tryptamine pathway for indole-3-acetic acid biosynthesis. Recent experiments with different plant models have indicate that YUCCA genes play essential roles in growth and development through their contribution to the local pool of free auxin. In this study we have characterized five new genes that encode YUCCA-like FMOs in the tomato genome (ToFZY2 to ToFZY6), including gene structure, conserved motifs and phylogenetic analyses. As a first step towards clarifying the individual functions of ToFZY genes, we have used quantitative real-time RT-PCR to conduct a systematic comparison of the steady-state mRNA levels of 6 ToFZY genes, in 33 samples representing major organs and the entire tomato life cycle. We followed an absolute quantification strategy which allowed us to cross-compare transcript levels among different ToFZY genes in a given spatiotemporal coordinate. Our results indicate that expression of ToFZY genes is temporally and spatially regulated, and that the distinctive expression pattern of each ToFZY gene partially overlaps with other members of the multigenic family. We compare our data with previous results in other plant species and make some predictions about the role of tryptamine pathway in tomato growth and development.

  7. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  8. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  9. Gene enrichment in plant genomic shotgun libraries.

    PubMed

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  10. Genes for host-plant selection in Drosophila.

    PubMed

    Matsuo, Takashi

    2008-01-01

    Interactions between herbivorous insects and their host plants are rich in diversity. How such interactions evolved has been a central issue in ecology. A series of analyses on an example of host-plant adaptation in a Drosophila species suggest that neurogenetics can be a powerful tool for understanding how insects' ability to select a specific host plant has evolved. Drosophila sechellia is a specialist species that exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other Drosophila species, including D. melanogaster and D. simulans, which are phylogenetically close to D. sechellia. Genetic analyses have revealed that multiple loci are involved in the physiological and behavioral adaptations of D. sechellia to the Morinda fruit. The behavioral adaptation includes the loss of avoidance of the host toxin and the enhanced sensitivity to the host odor. Two odorant-binding protein genes, Obp57d and Obp57e, are involved in the perception of the host toxin. D. sechellia has lost several putative bitter-taste receptor genes, which might also be involved in the loss of avoidance of the host toxin. The available genetic data support an evolutionary scenario, in which the shift in the host-plant selection was not achieved by the acquisition of novel abilities, but by the loss of already existing abilities. It is also suggested that the size of chemosensory gene families has a potential to be an index of complexity in insect-environment interaction, providing an opportunity to reexamine the longstanding "specialization as an evolutionary dead end" hypothesis.

  11. The role of CCN family genes in haematological malignancies.

    PubMed

    Wells, J E; Howlett, M; Cheung, L C; Kees, Ursula R

    2015-09-01

    Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.

  12. Dichotomy in the NRT Gene Families of Dicots and Grass Species

    PubMed Central

    Plett, Darren; Toubia, John; Garnett, Trevor; Tester, Mark; Kaiser, Brent N.; Baumann, Ute

    2010-01-01

    A large proportion of the nitrate (NO3−) acquired by plants from soil is actively transported via members of the NRT families of NO3− transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO3− transporters and NO3− transport in grass crop species. PMID:21151904

  13. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior

  14. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    PubMed Central

    Mendonça-Mattos, Patricia Jeanne de Souza; Harada, Maria Lúcia

    2016-01-01

    Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions. PMID:28044107

  15. Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family

    PubMed Central

    Büssis, Dirk; Stintzi, Annick; Schaller, Andreas; Kopka, Joachim; Altmann, Thomas

    2005-01-01

    The gene family of subtilisin-like serine proteases (subtilases) in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i) control of development, (ii) protein turnover, and (iii) action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB) (http://csbdb.mpimp-golm.mpg.de/psdb.html) , as well as from the CSB.DB (http

  16. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals

    PubMed Central

    Danchin, Etienne GJ; Gouret, Philippe; Pontarotti, Pierre

    2006-01-01

    Background Gene losses played a role which may have been as important as gene and genome duplications and rearrangements, in modelling today species' genomes from a common ancestral set of genes. The set and diversity of protein-coding genes in a species has direct output at the functional level. While gene losses have been reported in all the major lineages of the metazoan tree of life, none have proposed a focus on specific losses in the vertebrates and mammals lineages. In contrast, genes lost in protostomes (i.e. arthropods and nematodes) but still present in vertebrates have been reported and extensively detailed. This probable over-anthropocentric way of comparing genomes does not consider as an important phenomena, gene losses in species that are usually described as "higher". However reporting universally conserved genes throughout evolution that have recently been lost in vertebrates and mammals could reveal interesting features about the evolution of our genome, particularly if these losses can be related to losses of capability. Results We report 11 gene families conserved throughout eukaryotes from yeasts (such as Saccharomyces cerevisiae) to bilaterian animals (such as Drosophila melanogaster or Caenorhabditis elegans). This evolutionarily wide conservation suggests they were present in the last common ancestors of fungi and metazoan animals. None of these 11 gene families are found in human nor mouse genomes, and their absence generally extends to all vertebrates. A total of 8 out of these 11 gene families have orthologs in plants, suggesting they were present in the Last Eukaryotic Common Ancestor (LECA). We investigated known functional information for these 11 gene families. This allowed us to correlate some of the lost gene families to loss of capabilities. Conclusion Mammalian and vertebrate genomes lost evolutionary conserved ancestral genes that are probably otherwise not dispensable in eukaryotes. Hence, the human genome, which is generally

  17. Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data

    PubMed Central

    Hartmann, Stefanie; Helm, Conrad; Nickel, Birgit; Meyer, Matthias; Struck, Torsten H.; Tiedemann, Ralph; Selbig, Joachim; Bleidorn, Christoph

    2012-01-01

    Background In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. Methodology Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. PMID:22276131

  18. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family.

    PubMed

    Soltani, Jalal; Moghaddam, Mahdieh S Hosseyni

    2014-09-01

    Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.

  19. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana

    DOE PAGES

    Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; ...

    2016-02-17

    Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less

  20. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana

    SciTech Connect

    Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; Yang, Xiaohan; Cheng, Zong-Ming; Chen, Jin-Gui; Tuskan, Gerald A.

    2016-02-17

    Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs or multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.

  1. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    PubMed

    Zhu, Chong; Luo, Nana; He, Miao; Chen, Guanxing; Zhu, Jiantang; Yin, Guangjun; Li, Xiaohui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2014-01-01

    Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene

  2. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  3. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    PubMed

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development.

  4. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).

    PubMed

    Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping

    2013-09-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development.

  5. An integrated database of wood-formation related genes in plants.

    PubMed

    Xu, Ting; Ma, Tao; Hu, Quanjun; Liu, Jianquan

    2015-06-16

    Wood, which consists mainly of plant cell walls, is an extremely important resource in daily lives. Genes whose products participate in the processes of cell wall and wood formation are therefore major subjects of plant science research. The Wood-Formation Related Genes database (WFRGdb, http://me.lzu.edu.cn/woodformation/) serves as a data resource center for genes involved in wood formation. To create this database, we collected plant genome data published in other online databases and predicted all cell wall and wood formation related genes using BLAST and HMMER. To date, 47 gene families and 33 transcription factors from 57 genomes (28 herbaceous, 22 woody and 7 non-vascular plants) have been covered and more than 122,000 genes have been checked and recorded. To provide easy access to these data, we have developed several search methods, which make it easy to download targeted genes or groups of genes free of charge in FASTA format. Sequence and phylogenetic analyses are also available online. WFRGdb brings together cell wall and wood formation related genes from all available plant genomes, and provides an integrative platform for gene inquiry, downloading and analysis. This database will therefore be extremely useful for those who focuses on cell wall and wood research.

  6. Runx Family Genes in Tissue Stem Cell Dynamics.

    PubMed

    Wang, Chelsia Qiuxia; Mok, Michelle Meng Huang; Yokomizo, Tomomasa; Tergaonkar, Vinay; Osato, Motomi

    2017-01-01

    The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.

  7. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    PubMed

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.

  8. Evolution of an expanded mannose receptor gene family.

    PubMed

    Staines, Karen; Hunt, Lawrence G; Young, John R; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.

  9. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  10. Fuzzy clustering of CPP family in plants with evolution and interaction analyses

    PubMed Central

    2013-01-01

    Background Transcription factors have been studied intensively because they play an important role in gene expression regulation. However, the transcription factors in the CPP family (cystein-rich polycomb-like protein), compared with other transcription factor families, have not received sufficient attention, despite their wide prevalence in a broad spectrum of species, from plants to animals. The total number of known CPP transcription factors in plants is 111 from 16 plants, but only 2 of them have been studied so far, namely TSO1 and CPP1 in Arabidopsis thaliana and soybean, respectively. Methods In this work, to study their functions, we applied the fuzzy clustering method to all plant CPP transcription factors. The feature vector of each protein sequence for the fuzzy clustering method is encoded by the short length peptides and the combination of functional domain models. Results and conclusions With the fuzzy clustering method, all plant CPP transcription factors are grouped into two subfamilies. A systems approach, including Expressed Sequence Tag analysis, evolutionary analysis, protein-protein interaction network analysis and co-expression analysis, is employed to validate the clustering results, the results of which also indicates that the transcription factors from different subfamilies show uncorrelated responses. PMID:24268301

  11. The fate of tandemly duplicated genes assessed by the expression analysis of a group of Arabidopsis thaliana RING-H2 ubiquitin ligase genes of the ATL family.

    PubMed

    Aguilar-Hernández, Victor; Guzmán, Plinio

    2014-03-01

    Gene duplication events exert key functions on gene innovations during the evolution of the eukaryotic genomes. A large portion of the total gene content in plants arose from tandem duplications events, which often result in paralog genes with high sequence identity. Ubiquitin ligases or E3 enzymes are components of the ubiquitin proteasome system that function during the transfer of the ubiquitin molecule to the substrate. In plants, several E3s have expanded in their genomes as multigene families. To gain insight into the consequences of gene duplications on the expansion and diversification of E3s, we examined the evolutionary basis of a cluster of six genes, duplC-ATLs, which arose from segmental and tandem duplication events in Brassicaceae. The assessment of the expression suggested two patterns that are supported by lineage. While retention of expression domains was observed, an apparent absence or reduction of expression was also inferred. We found that two duplC-ATL genes underwent pseudogenization and that, in one case, gene expression is probably regained. Our findings provide insights into the evolution of gene families in plants, defining key events on the expansion of the Arabidopsis Tóxicos en Levadura family of E3 ligases.

  12. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis.

    PubMed

    Vandesteene, Lies; López-Galvis, Lorena; Vanneste, Kevin; Feil, Regina; Maere, Steven; Lammens, Willem; Rolland, Filip; Lunn, John E; Avonce, Nelson; Beeckman, Tom; Van Dijck, Patrick

    2012-10-01

    Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-β-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.

  13. Genome-wide identification and comparison of legume MLO gene family.

    PubMed

    Rispail, Nicolas; Rubiales, Diego

    2016-09-06

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species.

  14. Genome-wide identification and comparison of legume MLO gene family

    PubMed Central

    Rispail, Nicolas; Rubiales, Diego

    2016-01-01

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species. PMID:27596925

  15. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  16. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

  17. Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae.

    PubMed

    Ellison, Aaron M; Butler, Elena D; Hicks, Emily Jean; Naczi, Robert F C; Calie, Patrick J; Bell, Charles D; Davis, Charles C

    2012-01-01

    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44-53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25-44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14-32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2-7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya

  18. Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    PubMed Central

    Ellison, Aaron M.; Butler, Elena D.; Hicks, Emily Jean; Naczi, Robert F. C.; Calie, Patrick J.; Bell, Charles D.; Davis, Charles C.

    2012-01-01

    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25–44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene

  19. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.

    PubMed

    Huang, Zejun; Van Houten, Jason; Gonzalez, Geoffrey; Xiao, Han; van der Knaap, Esther

    2013-04-01

    Members of the plant-specific gene families IQD/SUN, OFP and YABBY are thought to play important roles in plant growth and development. YABBY family members are involved in lateral organ polarity and growth; OFP members encode transcriptional repressors, whereas the role of IQD/SUN members is less clear. The tomato fruit shape genes SUN, OVATE, and FASCIATED belong to IQD/SUN, OFP and the YABBY gene family, respectively. A gene duplication resulting in high expression of SUN leads to elongated fruit, whereas a premature stop codon in OVATE and a large inversion within FASCIATED control fruit elongation and a flat fruit shape, respectively. In this study, we identified 34 SlSUN, 31 SlOFP and 9 SlYABBY genes in tomato and identified their position on 12 chromosomes. Genome mapping analysis showed that the SlSUN, SlOFP, and SlYABBY genes were enriched on the top and bottom segments of several chromosomes. In particular, on chromosome 10, a cluster of SlOFPs were found to originate from tandem duplication events. We also constructed three phylogenetic trees based on the protein sequences of the IQ67, OVATE and YABBY domains, respectively, from members of these families in Arabidopsis and tomato. The closest putative orthologs of the Arabidopsis and tomato genes were determined by the position on the phylogenetic tree and sequence similarity. Furthermore, expression analysis showed that some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Also, certain family members overlapped with known QTLs controlling fruit shape in Solanaceous plants. Combined, these results may help elucidate the roles of SUN, OFP and YABBY family members in plant growth and development.

  20. The d4 gene family in the human genome

    SciTech Connect

    Chestkov, A.V.; Baka, I.D.; Kost, M.V.

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at low stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.

  1. An evolutionary screen highlights canonical and noncanonical candidate antiviral genes within the primate TRIM gene family.

    PubMed

    Malfavon-Borja, Ray; Sawyer, Sara L; Wu, Lily I; Emerman, Michael; Malik, Harmit S

    2013-01-01

    Recurrent viral pressure has acted on host-encoded antiviral genes during primate and mammalian evolution. This selective pressure has resulted in dramatic episodes of adaptation in host antiviral genes, often detected via positive selection. These evolutionary signatures of adaptation have the potential to highlight previously unrecognized antiviral genes (also called restriction factors). Although the TRIM multigene family is recognized for encoding several bona fide restriction factors (e.g., TRIM5alpha), most members of this expansive gene family remain uncharacterized. Here, we investigated the TRIM multigene family for signatures of positive selection to identify novel candidate antiviral genes. Our analysis reveals previously undocumented signatures of positive selection in 17 TRIM genes, 10 of which represent novel candidate restriction factors. These include the unusual TRIM52 gene, which has evolved under strong positive selection despite its encoded protein lacking a putative viral recognition (B30.2) domain. We show that TRIM52 arose via gene duplication from the TRIM41 gene. Both TRIM52 and TRIM41 have dramatically expanded RING domains compared with the rest of the TRIM multigene family, yet this domain has evolved under positive selection only in primate TRIM52, suggesting that it represents a novel host-virus interaction interface. Our evolutionary-based screen not only documents positive selection in known TRIM restriction factors but also highlights candidate novel restriction factors, providing insight into the interfaces of host-pathogen interactions mediated by the TRIM multigene family.

  2. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves.

    PubMed

    Christiansen, Michael W; Gregersen, Per L

    2014-07-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription-PCR (qRT-PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47 studied NAC genes to be important for signalling processes and for the execution of degradation processes during leaf senescence in barley. Seven models for DNA-binding motifs for NAC transcription factors were designed based on published motifs, and available promoter sequences of barley genes were screened for the motifs. Genes up-regulated during senescence showed a significant over-representation of the motifs, suggesting regulation by the NAC transcription factors. Furthermore, co-regulation studies showed that genes possessing the motifs in the promoter in general were highly co-expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71 senescence-associated genes that are potential target genes for these NAC transcription factors is presented.

  3. The Glutathione Peroxidase Gene Family in Gossypium hirsutum: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis

    PubMed Central

    Chen, Mingyang; Li, Kun; Li, Haipeng; Song, Chun-Peng; Miao, Yuchen

    2017-01-01

    The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations, tissue-specific expression patterns and environmental stress responses. In this study, 13 putative GPXs from the genome of Gossypium hirsutum (GhGPXs) were identified and a conserved pattern among plant GPXs were exhibited, besides this they also responded to multiple environmental stresses and we predicted that they had hormone responsive cis-elements in their promoter regions. Most of the GhGPXs on expression in yeast can scavenge H2O2. Our results showed that different members of the GhGPX gene family were co-ordinately regulated under specific environmental stress conditions, and suggested the importance of GhGPXs in hormone treatments and abiotic stress responses. PMID:28300195

  4. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots

    PubMed Central

    Christie, Nanette; Tobias, Peri A.; Naidoo, Sanushka; Külheim, Carsten

    2016-01-01

    Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience. PMID:26793216

  5. A phylotranscriptomic analysis of gene family expansion and evolution in the largest order of pleurocarpous mosses (Hypnales, Bryophyta).

    PubMed

    Johnson, Matthew G; Malley, Claire; Goffinet, Bernard; Shaw, A Jonathan; Wickett, Norman J

    2016-05-01

    The pleurocarpous mosses (i.e., Hypnanae) are a species-rich group of land plants comprising about 6,000 species that share the development of female sex organs on short lateral branches, a derived trait within mosses. Many of the families within Hypnales, the largest order of pleurocarpous mosses, trace their origin to a rapid radiation less than 100 million years ago, just after the rise of the angiosperms. As a result, the phylogenetic resolution among families of Hypnales, necessary to test evolutionary hypotheses, has proven difficult using one or few loci. We present the first phylogenetic inference from high-throughput sequence data (transcriptome sequences) for pleurocarpous mosses. To test hypotheses of gene family evolution, we built a species tree of 21 pleurocarpous and six acrocarpous mosses using over one million sites from 659 orthologous genes. We used the species tree to investigate the genomic consequences of the shift to pleurocarpy and to identify whether patterns common to other plant radiations (gene family expansion, whole genome duplication, or changes in the molecular signatures of selection) could be observed. We found that roughly six percent of all gene families have expanded in the pleurocarpous mosses, relative to acrocarpous mosses. These gene families are enriched for several gene ontology (GO) terms, including interaction with other organisms. The increase in copy number coincident with the radiation of Hypnales suggests that a process such as whole genome duplication or a burst of small-scale duplications occurred during the diversification. In over 500 gene families we found evidence of a reduction in purifying selection. These gene families are enriched for several terms in the GO hierarchy related to "tRNA metabolic process." Our results reveal candidate genes and pathways that may be associated with the transition to pleurocarpy, illustrating the utility of phylotranscriptomics for the study of molecular evolution in non

  6. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Yu, Rong; Han, Meng; Wu, Zhongyi

    2015-10-01

    TIFY, previously known as ZIM, comprises a plant-specific family annotated as transcription factors that might play important roles in stress response. Despite TIFY proteins have been reported in Arabidopsis and rice, a comprehensive and systematic survey of ZmTIFY genes has not yet been conducted. To investigate the functions of ZmTIFY genes in this family, we isolated and characterized 30 ZmTIFY (1 TIFY, 3 ZML, and 26 JAZ) genes in an analysis of the maize (Zea mays L.) genome in this study. The 30 ZmTIFY genes were distributed over eight chromosomes. Multiple alignment and motif display results indicated that all ZmTIFY proteins share two conserved TIFY and Jas domains. Phylogenetic analysis revealed that the ZmTIFY family could be divided into two groups. Putative cis-elements, involved in abiotic stress response, phytohormones, pollen grain, and seed development, were detected in the promoters of maize TIFY genes. Microarray data showed that the ZmTIFY genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmTIFY4, 5, 8, 26, and 28 were induced, while ZmTIFY16, 13, 24, 27, 18, and 30 were suppressed, by drought stress in the maize inbred lines Han21 and Ye478. ZmTIFY1, 19, and 28 were upregulated after infection by three pathogens, whereas ZmTIFY4, 13, 21, 23, 24, and 26 were suppressed. These results indicate that the ZmTIFY family may have vital roles in response to abiotic and biotic stresses. The data presented in this work provide vital clues for further investigating the functions of the genes in the ZmTIFY family.

  7. Use of NAP gene to manipulate leaf senescence in plants

    DOEpatents

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  8. New Genes Originated via Multiple Recombinational Pathways in the β-Globin Gene Family of Rodents

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2008-01-01

    Species differences in the size or membership composition of multigene families can be attributed to lineage-specific additions of new genes via duplication, losses of genes via deletion or inactivation, and the creation of chimeric genes via domain shuffling or gene fusion. In principle, it should be possible to infer the recombinational pathways responsible for each of these different types of genomic change by conducting detailed comparative analyses of genomic sequence data. Here, we report an attempt to unravel the complex evolutionary history of the β-globin gene family in a taxonomically diverse set of rodent species. The main objectives were: 1) to characterize the genomic structure of the β-globin gene cluster of rodents; 2) to assign orthologous and paralogous relationships among duplicate copies of β-like globin genes; and 3) to infer the specific recombinational pathways responsible for gene duplications, gene deletions, and the creation of chimeric fusion genes. Results of our comparative genomic analyses revealed that variation in gene family size among rodent species is mainly attributable to the differential gain and loss of later expressed β-globin genes via unequal crossing-over. However, two distinct recombinational mechanisms were implicated in the creation of chimeric fusion genes. In muroid rodents, a chimeric γ/ε fusion gene was created by unequal crossing-over between the embryonic ε- and γ-globin genes. Interestingly, this γ/ε fusion gene was generated in the same fashion as the “anti-Lepore” 5′-δ-(β/δ)-β-3′ duplication mutant in humans (the reciprocal exchange product of the pathological hemoglobin Lepore deletion mutant). By contrast, in the house mouse, Mus musculus, a chimeric β/δ fusion pseudogene was created by a β-globin → δ-globin gene conversion event. Although the γ/ε and β/δ fusion genes share a similar chimeric gene structure, they originated via completely different recombinational pathways. PMID

  9. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  10. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  11. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  12. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    PubMed

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  13. Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Giani, Vincent C.; Seaver, Elaine C.; Weisblat, David A.

    2010-01-01

    The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215–R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073–1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896–1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121–131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1–17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol. 18:1624–1629.]), but little is known from the third major bilaterian group, the lophotrochozoans (e.g., mollusks and annelids [Prud'homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M. 2002. Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr Biol. 12:1395.]). To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron–exon structure, and embryonic

  14. Genome-wide identification and expression analysis of SBP-box gene family in Sorghum bicolor L.

    PubMed

    Jianzhong, Chang; Fengxia, Yan; Linyi, Qiao; Jun, Zheng; Fuyao, Zhang; Qingshan, Liu

    2016-06-20

    SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box) family genes encoding plant-specific transcription factors are involved in many aspects of crop genetic improvement such as yield, plant-type and stress-resistance. The SBP-box gene family have important practical applications. In this study, 18 SBP-box genes were identified from the reference genome of sorghum (Sorghum bicolor L.) using bioinformatics. These genes distributed on nine chromosomes while eight of them located in the segmental duplication region. Phylogenetic reconstruction resulted in six subfamilies of SBP-box genes, among which SbSBP12, SbSBP3 and SbSBP15 are orthologous to ZmLG1, ZmTGA1 and ZmUB2/3 in corn, respectively. RNA-seq data analysis indicated that SbSBP-box genes show the highest expression level in primordial inflorescences. Moreover, SbSBP9 and SbSBP17 exhibited a tissue specific expression in primordial inflorescences. The expression levels of SbSBP5, SbSBP8 and SbSBP18 were increased in response to exogenous ABA and PEG,indicating that SbSBP-box genes are involved in the defense response against abiotic stresses in sorghum. This research provides references for cloning important genes in SbSBP-box gene family. Genes identified in this study could be considered as candidate genes for genetic improvement of sorghum.

  15. Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization.

    PubMed

    Liu, Shengrui; Khan, Muhammad Rehman Gul; Li, Yongping; Zhang, Jinzhi; Hu, Chungen

    2014-10-01

    The CCCH-type zinc finger proteins comprise a large gene family of regulatory proteins and are widely distributed in eukaryotic organisms. The CCCH proteins have been implicated in multiple biological processes and environmental responses in plants. Little information is available, however, about CCCH genes in plants, especially in woody plants such as citrus. The release of the whole-genome sequence of citrus allowed us to perform a genome-wide analysis of CCCH genes and to compare the identified proteins with their orthologs in model plants. In this study, 62 CCCH genes and a total of 132 CCCH motifs were identified, and a comprehensive analysis including the chromosomal locations, phylogenetic relationships, functional annotations, gene structures and conserved motifs was performed. Distribution mapping revealed that 54 of the 62 CCCH genes are unevenly dispersed on the nine citrus chromosomes. Based on phylogenetic analysis and gene structural features, we constructed 5 subfamilies of 62 CCCH members and integrative subfamilies from citrus, Arabidopsis, and rice, respectively. Importantly, large numbers of SNPs and InDels in 26 CCCH genes were identified from Poncirus trifoliata and Fortunella japonica using whole-genome deep re-sequencing. Furthermore, citrus CCCH genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various stress conditions. Our comprehensive analysis of CleC3Hs is a valuable resource that further elucidates the roles of CCCH family members in plant growth and development. In addition, variants and comparative genomics analyses deepen our understanding of the evolution of the CCCH gene family and will contribute to further genetics and genomics studies of citrus and other plant species.

  16. 11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, CENTRIFUGAL PUMPS DESIGNED BY BYRON JACKSON CO., MANUFACTURED BY PELTON WATER WHEEL CO. OF SAN FRANCISCO. POWERED BY G.E. SYNCHRONOUS MOTOR 9000 HP, 6900 VOLTS, 612 AMPS, 7320 KVA, 3 PHASE, 60 CYCLES, 400 RPM, EXCITATION AT 125 VOLTS, 540 AMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  17. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS

  18. Identification of WOX Family Genes in Selaginella kraussiana for Studies on Stem Cells and Regeneration in Lycophytes

    PubMed Central

    Ge, Yachao; Liu, Jie; Zeng, Minhuan; He, Jianfeng; Qin, Peng; Huang, Hai; Xu, Lin

    2016-01-01

    Plant stem cells give rise to all tissues and organs and also serve as the source for plant regeneration. The organization of plant stem cells has undergone a progressive change from simple to complex during the evolution of vascular plants. Most studies on plant stem cells have focused on model angiosperms, the most recently diverged branch of vascular plants. However, our knowledge of stem cell function in other vascular plants is limited. Lycophytes and euphyllophytes (ferns, gymnosperms, and angiosperms) are two existing branches of vascular plants that separated more than 400 million years ago. Lycophytes retain many of the features of early vascular plants. Based on genome and transcriptome data, we identified WUSCHEL-RELATED HOMEOBOX (WOX) genes in Selaginella kraussiana, a model lycophyte that is convenient for in vitro culture and observations of organ formation and regeneration. WOX genes are key players controlling stem cells in plants. Our results showed that the S. kraussiana genome encodes at least eight members of the WOX family, which represent an early stage of WOX family evolution. Identification of WOX genes in S. kraussiana could be a useful tool for molecular studies on the function of stem cells in lycophytes. PMID:26904063

  19. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.)

    PubMed Central

    2013-01-01

    Background The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality. Results We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic) bond at the Δ12 position

  20. Origin and evolution of laminin gene family diversity.

    PubMed

    Fahey, Bryony; Degnan, Bernard M

    2012-07-01

    Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were

  1. Genome-wide characterization and comparative analysis of the MLO gene family in cotton.

    PubMed

    Wang, Xiaoyan; Ma, Qifeng; Dou, Lingling; Liu, Zhen; Peng, Renhai; Yu, Shuxun

    2016-06-01

    In plants, MLO (Mildew Locus O) gene encodes a plant-specific seven transmembrane (TM) domain protein involved in several cellular processes, including susceptibility to powdery mildew (PM). In this study, a genome-wide characterization of the MLO gene family in G. raimondii L., G. arboreum L. and G. hirsutum L. was performed. In total, 22, 17 and 38 homologous sequences were identified for each species, respectively. Gene organization, including chromosomal location, gene clustering and gene duplication, was investigated. Homologues related to PM susceptibility in upland cotton were inferred by phylogenetic relationships with functionally characterized MLO proteins. To conduct a comparative analysis between MLO candidate genes from G. raimondii L., G. arboreum L. and G. hirsutum L., orthologous relationships and conserved synteny blocks were constructed. The transcriptional variation of 38 GhMLO genes in response to exogenous application of salt, mannitol (Man), abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA) and salicylic acid (SA) was monitored. Further studies should be conducted to elucidate the functions of MLO genes in PM susceptibility and phytohormone signalling pathways.

  2. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora.

    PubMed

    Balestrini, Raffaella; Nerva, Luca; Sillo, Fabiano; Girlanda, Mariangela; Perotto, Silvia

    2014-01-01

    Little is known on the molecular bases of plant-fungal interactions in orchid mycorrhiza. We developed a model system to investigate gene expression in mycorrhizal protocorms of Serapias vomeracea colonised by Tulasnella calospora. Our recent results with a small panel of genes as indicators of plant response to mycorrhizal colonization indicate that genes related with plant defense were not significantly up-regulated in mycorrhizal tissues. Here, we used laser microdissection to investigate whether expression of some orchid genes was restricted to specific cell types. Results showed that SvNod1, a S. vomeracea nodulin-like protein containing a plastocyanin-like domain, is expressed only in protocorm cells containing intracellular fungal hyphae. In addition, we investigated a family of fungal zinc metallopeptidases (M36). This gene family has expanded in the T. calospora genome and RNA-Seq experiments indicate that some members of the M36 metallopeptidases family are differentially regulated in orchid mycorrhizal protocorms.

  3. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  4. CHD7 Gene Polymorphisms and Familial Idiopathic Scoliosis

    PubMed Central

    Tilley, Mera K.; Justice, Cristina M.; Swindle, Kandice; Marosy, Beth; Wilson, Alexander F.; Miller, Nancy H.

    2013-01-01

    Study Design Model-independent linkage analysis and tests of association were performed for 22 single nucleotide polymorphisms (SNPs) in the CHD7 gene in 244 families of European descent with familial idiopathic scoliosis (FIS). Objective To replicate an association between FIS and the CHD7 gene on 8q12.2 in an independent sample of families of European descent. Summary of Background Data The CHD7 gene on chromosome 8, responsible for the CHARGE syndrome, was previously associated with FIS in an independent study that included 52 families of European descent. Methods Model-independent linkage analysis and intra-familial tests of association were performed on the degree of lateral curvature considered as a qualitative trait (with thresholds of ≥10°, ≥15°, ≥20° and ≥30°) and as a quantitative trait (degree of lateral curvature). Results from the tests of associations from this study and the previous study were combined in a weighted meta-analysis. Results No significant results (P< 0.01) were found for linkage analysis or tests of association between genetic variants of the CHD7 and FIS in this study sample, failing to replicate the findings from the previous study. Furthermore, no significant results (P< 0.01) were found from meta-analysis of the results from the tests of association from this sample and from the previous sample. Conclusion No association between the 22 genotyped SNPs in the CHD7 gene and FIS within this study sample was found, failing to replicate the earlier findings. Further investigation of the CHD7 gene and its potential association to FIS may be required. PMID:23883829

  5. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  6. Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197)

    PubMed Central

    Mansur, Mariana; Suárez, Teresa; González, Aldo E.

    1998-01-01

    A family of genes encoding laccases has recently been described for the basidiomycete I-62 (CECT 20197). Transcript levels of genes lcc1, lcc2, and lcc3 were analyzed under four different culture conditions to study their expression patterns. Two of the laccase genes were clearly inducible by veratryl alcohol: the lcc1 gene is inducible in early stages of growth, and the lcc2 gene is also inducible but only when the organism reaches the stationary phase. Transcript levels for the third gene, lcc3, were uninduced by veratryl alcohol and repressed by glucose. PMID:16349507

  7. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  8. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.

  9. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks.

    PubMed

    Farré, Eva M; Liu, Tiffany

    2013-10-01

    Circadian clocks are internal time-keeping mechanisms that provide an adaptive advantage by enabling organisms to anticipate daily changes and orchestrate biological processes accordingly. Circadian regulated pseudo-response regulators are key components of transcription/translation circadian networks in green alga and plants. Recent studies in Arabidopsis thaliana have shown that most of them act as transcriptional repressors and directly regulate output pathways suggesting a close relationship between the central oscillator and circadian regulated processes. Moreover, phylogenetic studies on this small gene family have shed light on the evolution of circadian clocks in the green lineage.

  10. Effects of the Family Environment: Gene-Environment Interaction and Passive Gene-Environment Correlation

    ERIC Educational Resources Information Center

    Price, Thomas S.; Jaffee, Sara R.

    2008-01-01

    The classical twin study provides a useful resource for testing hypotheses about how the family environment influences children's development, including how genes can influence sensitivity to environmental effects. However, existing statistical models do not account for the possibility that children can inherit exposure to family environments…

  11. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    SciTech Connect

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-09-18

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society.

  12. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    ERIC Educational Resources Information Center

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  13. Molecular Characterization of Maize Acetylcholinesterase. A Novel Enzyme Family in the Plant Kingdom1

    PubMed Central

    Sagane, Yoshimasa; Nakagawa, Tomoyuki; Yamamoto, Kosuke; Michikawa, Soichi; Oguri, Suguru; Momonoki, Yoshie S.

    2005-01-01

    Acetylcholinesterase (AChE) has been increasingly recognized in plants by indirect evidence of its activity. Here, we report purification and cloning of AChE from maize (Zea mays), thus providing to our knowledge the first direct evidence of the AChE molecule in plants. AChE was identified as a mixture of disulfide- and noncovalently linked 88-kD homodimers consisting of 42- to 44-kD polypeptides. The AChE hydrolyzed acetylthiocholine and propyonylthiocholine, but not S-butyrylthiocholine, and the AChE-specific inhibitor neostigmine bromide competitively inhibited its activity, implying that maize AChE functions in a similar manner as the animal enzyme. However, kinetic analyses indicated that maize AChE showed a lower affinity to substrates and inhibitors than animal AChE. The full-length cDNA of maize AChE gene is 1,471 nucleotides, which encode a protein having 394 residues, including a signal peptide. The deduced amino acid sequence exhibited no apparent similarity with that of the animal enzyme, although the catalytic triad was the same as in the animal AChE. In silico screening indicated that maize AChE homologs are widely distributed in plants but not in animals. These findings lead us to propose that the AChE family, as found here, comprises a novel family of the enzymes that is specifically distributed in the plant kingdom. PMID:15980188

  14. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    PubMed Central

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araújo, Welington Luiz

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  15. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    PubMed

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.

  16. A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies

    PubMed Central

    Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.

    2008-01-01

    Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969

  17. Overview of OVATE FAMILY PROTEINS, A Novel Class of Plant-Specific Growth Regulators

    PubMed Central

    Wang, Shucai; Chang, Ying; Ellis, Brian

    2016-01-01

    OVATE FAMILY PROTEINS (OFPs) are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs) in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper, and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox). Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants. PMID:27065353

  18. Expansion Mechanisms and Functional Divergence of the Glutathione S-Transferase Family in Sorghum and Other Higher Plants

    PubMed Central

    Chi, Yunhua; Cheng, Yansong; Vanitha, Jeevanandam; Kumar, Nadimuthu; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan; Jiang, Shu-Ye

    2011-01-01

    Glutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the major expansion mechanism and both monocot and dicot plants may have practiced different expansion and evolutionary history. Non-synonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that N- and C-terminal functional domains of GSTs (GST_N and GST_C) seem to have evolved under a strong purifying selection (Ka/Ks < 1) under different selective pressures. Differential evolutionary rates between GST_N and GST_C and high degree of expression divergence have been regarded as the major drivers for the retention of duplicated genes and the adaptability to various stresses. Expression profiling also indicated that the gene family plays a role not only in stress-related biological processes but also in the sugar-signalling pathway. Our survey provides additional annotation of the plant GST gene family and advance the understanding of plant GSTs in lineage-specific expansion and species diversification. PMID:21169340

  19. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  20. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  1. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family.

    PubMed

    Zhao, Chaoyang; Shukle, Richard; Navarro-Escalante, Lucio; Chen, Mingshun; Richards, Stephen; Stuart, Jeffrey J

    2016-01-01

    The genetic tractability of the Hessian fly (HF, Mayetiola destructor) provides an opportunity to investigate the mechanisms insects use to induce plant gall formation. Here we demonstrate that capacity using the newly sequenced HF genome by identifying the gene (vH24) that elicits effector-triggered immunity in wheat (Triticum spp.) seedlings carrying HF resistance gene H24. vH24 was mapped within a 230-kb genomic fragment near the telomere of HF chromosome X1. That fragment contains only 21 putative genes. The best candidate vH24 gene in this region encodes a protein containing a secretion signal and a type-2 serine/threonine protein phosphatase (PP2C) domain. This gene has an H24-virulence associated insertion in its promoter that appears to silence transcription of the gene in H24-virulent larvae. Candidate vH24 is a member of a small family of genes that encode secretion signals and PP2C domains. It belongs to the fraction of genes in the HF genome previously predicted to encode effector proteins. Because PP2C proteins are not normally secreted, our results suggest that these are PP2C effectors that HF larvae inject into wheat cells to redirect, or interfere, with wheat signal transduction pathways.

  2. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    PubMed

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.

  3. GJB2 gene mutations causing familial hereditary deafness in Turkey.

    PubMed

    Bayazit, Yildirim A; Cable, Benjamin B; Cataloluk, Osman; Kara, Cengiz; Chamberlin, Parker; Smith, Richard J H; Kanlikama, Muzaffer; Ozer, Enver; Cakmak, Ecir Ali; Mumbuc, Semih; Arslan, Ahmet

    2003-12-01

    Mutations in Connexin 26 (Cx26) play an important role in autosomal non-syndromic hereditary hearing loss. In this study, our objective was to find out the significance of Cx26 mutations in Turkish families who had hereditary deafness. Fourteen families who had at least two prelingually deaf children per family were included in the study. One affected child from each of the 14 families was selected for single-stranded conformational polymorphism SSCP analysis. Three PCR reactions were used for each subject to amplify the entire Cx26 coding region with overlap. PCR products were sequenced on an Applied Biosystems (ABI) model 3700 automated sequencer. Six of the 14 representative family members (42.9%) demonstrated shifts on SSCP and were subsequently sequenced for Exons 1 and 2 of GJB2 and were tested for the 432 kb upstream deletion. No mutations were found in Exon 1 and no 432 kb deletions were noted. Three different GJB2 mutations were found in Exon 2 of the probands, which were 35delG, 299-300delAT, and 487G > A (M163V). GJB2 mutations were detected in 21.4% of the families. Two patients were homozygous for 35delG and 299-300delAT mutations, and were given a diagnosis of DFNB1 deafness (14.3%). Two different polymorphisms, 457G > A (V153I) and 380G > AG (R127H) were also found. In conclusion, although GJB2 mutations were detected in 21.4% of the families tested, only 14.3% of subject representatives were homozygous and therefore deafness caused by Cx26 mutation segregated with DFNB1. Thus, contribution of GJB2 mutations appears less significant in familial deafness. This necessitates further assessment for the other known gene regions as well as a search for new genetic factors in familial type of genetic deafness.

  4. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    PubMed

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  5. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses

    PubMed Central

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  6. Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family.

    PubMed Central

    Gillaspy, G E; Keddie, J S; Oda, K; Gruissem, W

    1995-01-01

    myo-Inositol monophosphatase (IMP) is a soluble, Li(+)-sensitive protein that catalyzes the removal of a phosphate from myo-inositol phosphate substrates. IMP is required for de novo inositol synthesis from glucose 6-phosphate and for breakdown of inositol trisphosphate, a second messenger generated by the phosphatidylinositol signaling pathway. We cloned the IMP gene from tomato (LeIMP) and show that the plant enzyme is encoded by a small gene family. Three different LeIMP cDNAs encode distinct but highly conserved IMP enzymes that are catalytically active in vitro. Similar to the single IMP from animals, the activities of all three LeIMPs are inhibited by low concentrations of LiCl. LeIMP mRNA levels are developmentally regulated in seedlings and fruit and in response to light. Immunoblot analysis detected three proteins of distinct molecular masses (30, 29, and 28 kD) in tomato; these correspond to the predicted molecular masses of the LeIMPs encoded by the genes. Immunoreactive proteins in the same size range are also present in several other plants. Immunolocalization studies indicated that many cell types within seedlings accumulate LeIMP proteins. In particular, cells associated with the vasculature express high levels of LeIMP protein; this may indicate a coordinate regulation between phloem transport and synthesis of inositol. The presence of three distinct enzymes in tomato most likely reflects the complexity of inositol utilization in higher plants. PMID:8718627

  7. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  8. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species.

    PubMed

    Tomalova, Iva; Iachia, Cathy; Mulet, Karine; Castagnone-Sereno, Philippe

    2012-01-01

    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions.

  9. Mutation Analysis of HTRA2 Gene in Chinese Familial Essential Tremor and Familial Parkinson's Disease.

    PubMed

    He, Ya-Chao; Huang, Pei; Li, Qiong-Qiong; Sun, Qian; Li, Dun-Hui; Wang, Tian; Shen, Jun-Yi; Du, Juan-Juan; Cui, Shi-Shuang; Gao, Chao; Fu, Rao; Chen, Sheng-Di

    2017-01-01

    Background. HTRA2 has already been nominated as PARK13 which may cause Parkinson's disease, though there are still discrepancies among these results. Recently, Gulsuner et al.'s study found that HTRA2 p.G399S is responsible for hereditary essential tremor and homozygotes of this allele develop Parkinson's disease by examining a six-generation family segregating essential tremor and essential tremor coexisting with Parkinson's disease. We performed this study to validate the condition of HTRA2 gene in Chinese familial essential tremor and familial Parkinson's disease patients, especially essential tremor. Methods. We directly sequenced all eight exons, exon-intron boundaries, and part of the introns in 101 familial essential tremor patients, 105 familial Parkinson's disease patients, and 100 healthy controls. Results. No exonic variant was identified, while one exon-intron boundary variant (rs2241028) and one intron variant (rs2241027) were detected, both with no clinical significance and uncertain function. There was no difference in allele, genotype, and haplotype between groups. Conclusions. HTRA2 exonic variant might be rare among Chinese Parkinson's disease and essential tremor patients with family history, and HTRA2 may not be the cause of familial Parkinson's disease and essential tremor in China.

  10. Mutation Analysis of HTRA2 Gene in Chinese Familial Essential Tremor and Familial Parkinson's Disease

    PubMed Central

    Li, Qiong-Qiong; Fu, Rao

    2017-01-01

    Background. HTRA2 has already been nominated as PARK13 which may cause Parkinson's disease, though there are still discrepancies among these results. Recently, Gulsuner et al.'s study found that HTRA2 p.G399S is responsible for hereditary essential tremor and homozygotes of this allele develop Parkinson's disease by examining a six-generation family segregating essential tremor and essential tremor coexisting with Parkinson's disease. We performed this study to validate the condition of HTRA2 gene in Chinese familial essential tremor and familial Parkinson's disease patients, especially essential tremor. Methods. We directly sequenced all eight exons, exon-intron boundaries, and part of the introns in 101 familial essential tremor patients, 105 familial Parkinson's disease patients, and 100 healthy controls. Results. No exonic variant was identified, while one exon-intron boundary variant (rs2241028) and one intron variant (rs2241027) were detected, both with no clinical significance and uncertain function. There was no difference in allele, genotype, and haplotype between groups. Conclusions. HTRA2 exonic variant might be rare among Chinese Parkinson's disease and essential tremor patients with family history, and HTRA2 may not be the cause of familial Parkinson's disease and essential tremor in China. PMID:28243480

  11. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families.

    PubMed

    Vyas, Valmik K; Barrasa, M Inmaculada; Fink, Gerald R

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.

  12. MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing#

    PubMed Central

    Moissiard, Guillaume; Cokus, Shawn J.; Cary, Joshua; Feng, Suhua; Billi, Allison C.; Stroud, Hume; Husmann, Dylan; Zhan, Ye; Lajoie, Bryan R.; McCord, Rachel Patton; Hale, Christopher J.; Feng, Wei; Michaels, Scott D.; Frand, Alison R.; Pellegrini, Matteo; Dekker, Job; Kim, John K.; Jacobsen, Steve

    2012-01-01

    Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause de-repression of DNA-methylated genes and TEs, but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes. PMID:22555433

  13. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava

    PubMed Central

    Yan, Yan; Tie, Weiwei; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Hu, Wei; Zhang, Jiaming

    2017-01-01

    Homeodomain-leucine zipper (HD-Zip) gene family plays important roles in various abiotic stresses and hormone signaling in plants. However, no information is currently available regarding this family in cassava (Manihot esculenta), an important drought-tolerant crop in tropical and sub-tropical areas. Here, 57 HD-Zip genes (MeHDZ01-57) were identified in the cassava genome, and they were classified into four subfamilies based on phylogenetic analysis, which was further supported by their gene structure and conserved motif characteristics. Of which five gene pairs were involved in segmental duplication but none for tandem duplication, suggesting that segmental duplication was the main cause for the expansion of MeHDZ gene family in cassava. Global expression profiles revealed that MeHDZ genes were constitutively expressed, or not expressed, or tissue-specific expressed in examined tissues in both cultivated and wild subspecies. Transcriptomic analysis of three genotypes showed that most of MeHDZ genes responded differently to drought and polyethylene glycol treatments. Subsequently, quantitative RT-PCR analysis revealed comprehensive responses of twelve selected MeHDZ genes to various stimuli including cold, salt, and ABA treatments. These findings will increase our understanding of HD-Zip gene family involved in abiotic stresses and signaling transduction, and will provide a solid base for further functional characterization of MeHDZ genes in cassava. PMID:28249019

  14. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    PubMed

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize.

  15. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants.

    PubMed

    Rabinowicz, P D; Braun, E L; Wolfe, A D; Bowen, B; Grotewold, E

    1999-09-01

    Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residue-long sequence spanning the region between the conserved DNA-recognition helices (Myb(BRH)) of R2R3 Myb domains. We determined that maize expresses >80 different R2R3 Myb genes, and evolutionary distances among maize Myb(BRH) sequences indicate that most of the amplification of the R2R3 Myb gene family occurred after the origin of land plants but prior to the separation of monocots and dicots. In addition, evidence is provided for the very recent duplication of particular classes of R2R3 Myb genes in the grasses. Together, these findings render a novel line of evidence for the amplification of the R2R3 Myb gene family in the early history of land plants and suggest that maize provides a possible model system to examine the hypothesis that the expansion of Myb genes is associated with the regulation of novel plant cellular functions.

  16. Duplication and functional diversification of HAP3 genes leading to the origin of the seed-developmental regulatory gene, LEAFY COTYLEDON1 (LEC1), in nonseed plant genomes.

    PubMed

    Xie, Zengyan; Li, Xia; Glover, Beverley J; Bai, Shunong; Rao, Guang-Yuan; Luo, Jingchu; Yang, Ji

    2008-08-01

    The HAP3 gene encodes a subunit of the CCAAT-box-binding factor (CBF), a highly conserved trimeric activator that recognizes and binds the ubiquitous CCAAT promoter element with high affinity. Two types of HAP3 gene have been identified in plant genomes. The LEAFY COTYLEDON1 (LEC1)-type HAP3 genes encode a functionally specialized subunit of CBF, which is expressed specifically in developing seeds. In contrast, most non-LEC1-type HAP3 genes are expressed in various tissues. It has been proposed that the LEC1-type HAP3 genes originated from the duplication and functional divergence of non-LEC1-type HAP3 genes. However, it is not yet known when this duplication event took place or whether the LEC1-type HAP3 genes appeared at the same time as the origin of seed plants. Here we describe a comprehensive comparison of the duplication patterns of HAP3 genes in different plant genomes. We recognize a major expansion of the HAP3 gene family accompanying the origin and early diversification of land plants and postulate that retrotransposition and other mechanisms of gene duplication have been involved in the expansion of the plant HAP3 gene family. We provide evidence that the LEC1-type HAP3 genes originated in nonseed vascular plant genomes and demonstrate that they are inductively expressed under drought stress in nonseed plants. These genes, however, were recruited to a novel regulatory network in the early stages of seed plant evolution and steadily expressed during seed development and maturation.

  17. Chromosomal evolution of the PKD1 gene family in primates

    PubMed Central

    2008-01-01

    Background The autosomal dominant polycystic kidney disease (ADPKD) is mostly caused by mutations in the PKD1 (polycystic kidney disease 1) gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative transposition of the PKD1 gene and

  18. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants.

    PubMed

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies-CYP93A-K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution-CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS) analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis.

  19. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    PubMed Central

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies—CYP93A–K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution—CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS) analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis. PMID:27760179

  20. Transposable element influences on gene expression in plants.

    PubMed

    Hirsch, Cory D; Springer, Nathan M

    2017-01-01

    Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  1. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  2. Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2012-01-01

    The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ~10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens.

  3. NDP gene mutations in 14 French families with Norrie disease.

    PubMed

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype.

  4. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by str...

  5. Identification and Characterization of Multi-gene Family Encoding Germin-like Proteins in Cultivated Peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germins and germin-like proteins (GLPs) play diversified roles in plant development and basic defense. In this study, 36 EST-clones encoding GLPs were identified. Sequence similarity analysis demonstrated that the peanut genome possessed multi-gene family encoding at least 8 GLPs, named AhGLP1 to Ah...

  6. Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CONSTANS (CO) plays a central role in photoperiodic flowering control of plants. However, much remains unknown about the function of the CO gene family in soybean and the molecular mechanisms underlying the short-day photoperiodic flowering of soybean. We identified 26 CO homologs (GmCOLs) in the so...

  7. Epigenetic balance of gene expression by Polycomb and COMPASS families.

    PubMed

    Piunti, Andrea; Shilatifard, Ali

    2016-06-03

    Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.

  8. Trichoderma genes in plants for stress tolerance- status and prospects.

    PubMed

    Nicolás, Carlos; Hermosa, Rosa; Rubio, Belén; Mukherjee, Prasun K; Monte, Enrique

    2014-11-01

    Many filamentous fungi from the genus Trichoderma are well known for their anti-microbial properties. Certain genes from Trichoderma spp. have been identified and transferred to plants for improving biotic and abiotic stress tolerance, as well for applications in bioremediation. Several Trichoderma genomes have been sequenced and many are in the pipeline, facilitating high throughput gene analysis and increasing the availability of candidate transgenes. This, coupled with improved plant transformation systems, is expected to usher in a new era in plant biotechnology where several genes from these antagonistic fungi can be transferred into plants to achieve enhanced stress tolerance, bioremediation activity, herbicide tolerance, and reduction of phytotoxins. In this review, we illustrate the major achievements made by transforming plants with Trichoderma genes as well as their possible mode of action. Moreover, examples of efficient application of genetically modified plants as biofactories to produce active Trichoderma enzymes are indicated.

  9. Large scale in silico identification of MYB family genes from wheat expressed sequence tags.

    PubMed

    Cai, Hongsheng; Tian, Shan; Dong, Hansong

    2012-10-01

    The MYB proteins constitute one of the largest transcription factor families in plants. Much research has been performed to determine their structures, functions, and evolution, especially in the model plants, Arabidopsis, and rice. However, this transcription factor family has been much less studied in wheat (Triticum aestivum), for which no genome sequence is yet available. Despite this, expressed sequence tags are an important resource that permits opportunities for large scale gene identification. In this study, a total of 218 sequences from wheat were identified and confirmed to be putative MYB proteins, including 1RMYB, R2R3-type MYB, 3RMYB, and 4RMYB types. A total of 36 R2R3-type MYB genes with complete open reading frames were obtained. The putative orthologs were assigned in rice and Arabidopsis based on the phylogenetic tree. Tissue-specific expression pattern analyses confirmed the predicted orthologs, and this meant that gene information could be inferred from the Arabidopsis genes. Moreover, the motifs flanking the MYB domain were analyzed using the MEME web server. The distribution of motifs among wheat MYB proteins was investigated and this facilitated subfamily classification.

  10. Variation in the RAD51 gene and familial breast cancer

    PubMed Central

    Lose, Felicity; Lovelock, Paul; Chenevix-Trench, Georgia; Mann, Graham J; Pupo, Gulietta M; Spurdle, Amanda B

    2006-01-01

    Introduction Human RAD51 is a homologue of the Escherichia coli RecA protein and is known to function in recombinational repair of double-stranded DNA breaks. Mutations in the lower eukaryotic homologues of RAD51 result in a deficiency in the repair of double-stranded DNA breaks. Loss of RAD51 function would therefore be expected to result in an elevated mutation rate, leading to accumulation of DNA damage and, hence, to increased cancer risk. RAD51 interacts directly or indirectly with a number of proteins implicated in breast cancer, such as BRCA1 and BRCA2. Similar to BRCA1 mice, RAD51-/- mice are embryonic lethal. The RAD51 gene region has been shown to exhibit loss of heterozygosity in breast tumours, and deregulated RAD51 expression in breast cancer patients has also been reported. Few studies have investigated the role of coding region variation in the RAD51 gene in familial breast cancer, with only one coding region variant – exon 6 c.449G>A (p.R150Q) – reported to date. Methods All nine coding exons of the RAD51 gene were analysed for variation in 46 well-characterised, BRCA1/2-negative breast cancer families using denaturing high-performance liquid chromatography. Genotyping of the exon 6 p.R150Q variant was performed in an additional 66 families. Additionally, lymphoblastoid cell lines from breast cancer patients were subjected to single nucleotide primer extension analysis to assess RAD51 expression. Results No coding region variation was found, and all intronic variation detected was either found in unaffected controls or was unlikely to have functional consequences. Single nucleotide primer extension analysis did not reveal any allele-specific changes in RAD51 expression in all lymphoblastoid cell lines tested. Conclusion Our study indicates that RAD51 is not a major familial breast cancer predisposition gene. PMID:16762046

  11. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  12. CAPRICE family genes control flowering time through both promoting and repressing CONSTANS and FLOWERING LOCUS T expression.

    PubMed

    Wada, Takuji; Tominaga-Wada, Rumi

    2015-12-01

    CAPRICE (CPC) and six additional CPC family genes encode R3-type MYB transcription factors involved in epidermal cell fate determination, including Arabidopsis root hair and trichome differentiation. Previously, we reported that the CPC and CPC family genes TRIPTYCHON (TRY) and CAPRICE LIKE MYB3 (CPL3) also affect flowering time. The cpl3 mutant plants flower earlier, with fewer but larger leaves, than do wild type plants, and mutations in CPC or TRY delay flowering in the cpl3 mutant. In this study, we examined flowering time, leaf number, and fresh weight for CPC family gene double and triple mutants. Mutation in ENHANCER OF TRY AND CPC1 (ETC1) shortened the flowering time of the cpl3 single mutant. Mutation in ETC2 significantly reduced fresh weight in the cpl3 mutant. Expression levels of the flowering-related genes CONSTANS (CO) and FLOWERING LOCUS T (FT) were higher in the cpl3 mutant than in wild type plants. The high expression levels of CO and FT in cpl3 were significantly reduced by mutations in CPC, TRY, ETC1, or ETC2. Our results suggest that CPC family genes antagonistically regulate flowering time through CO and FT expression.

  13. The Classical Arabinogalactan Protein Gene Family of Arabidopsis

    PubMed Central

    Schultz, Carolyn J.; Johnson, Kim L.; Currie, Graeme; Bacic, Antony

    2000-01-01

    Arabinogalactan proteins (AGPs) are extracellular proteoglycans implicated in plant growth and development. We searched for classical AGPs in Arabidopsis by identifying expressed sequence tags based on the conserved domain structure of the predicted protein backbone. To confirm that these genes encoded bona fide AGPs, we purified native AGPs and then deglycosylated and deblocked them for N-terminal protein sequencing. In total, we identified 15 genes encoding the protein backbones of classical AGPs, including genes for AG peptides—AGPs with very short backbones (10 to 13 amino acid residues). Seven of the AGPs were verified as AGPs by protein sequencing. A gene encoding a putative cell adhesion molecule with AGP-like domains was also identified. This work provides a firm foundation for beginning functional analysis by using a genetic approach. PMID:11006345

  14. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  15. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  16. In-silico analysis and expression profiling implicate diverse role of EPSPS family genes in regulating developmental and metabolic processes

    PubMed Central

    2014-01-01

    Background The EPSPS, EC 2.5.1.19 (5-enolpyruvylshikimate −3-phosphate synthase) is considered as one of the crucial enzyme in the shikimate pathway for the biosynthesis of essential aromatic amino acids and secondary metabolites in plants, fungi along with microorganisms. It is also proved as a specific target of broad spectrum herbicide glyphosate. Results On the basis of structure analysis, this EPSPS gene family comprises the presence of EPSPS I domain, which is highly conserved among different plant species. Here, we followed an in-silico approach to identify and characterize the EPSPS genes from different plant species. On the basis of their phylogeny and sequence conservation, we divided them in to two groups. Moreover, the interacting partners and co-expression data of the gene revealed the importance of this gene family in maintaining cellular and metabolic functions in the cell. The present study also highlighted the highest accumulation of EPSPS transcript in mature leaves followed by young leaves, shoot and roots of tobacco. In order to gain the more knowledge about gene family, we searched for the previously reported motifs and studied its structural importance on the basis of homology modelling. Conclusions The results presented here is a first detailed in-silico study to explore the role of EPSPS gene in forefront of different plant species. The results revealed a great deal for the diversification and conservation of EPSPS gene family across different plant species. Moreover, some of the EPSPS from different plant species may have a common evolutionary origin and may contain same conserved motifs with related and important molecular function. Most importantly, overall analysis of EPSPS gene elucidated its pivotal role in immense function within the plant, both in regulating plant growth as well its development throughout the life cycle of plant. Since EPSPS is a direct target of herbicide glyphosate, understanding its mechanism for regulating

  17. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    PubMed

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  18. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa).

    PubMed

    Leng, Xiangpeng; Liu, Dan; Zhao, Mizhen; Sun, Xin; Li, Yu; Mu, Qian; Zhu, Xudong; Li, Pengyu; Fang, Jinggui

    2014-01-25

    The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.

  19. Mechanisms of Functional and Physical Genome Reduction in Photosynthetic and Nonphotosynthetic Parasitic Plants of the Broomrape Family[W][OPEN

    PubMed Central

    Wicke, Susann; Müller, Kai F.; de Pamphilis, Claude W.; Quandt, Dietmar; Wickett, Norman J.; Zhang, Yan; Renner, Susanne S.; Schneeweiss, Gerald M.

    2013-01-01

    Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants. PMID:24143802

  20. Genome-Wide Analysis of the Sucrose Synthase Gene Family in Grape (Vitis vinifera): Structure, Evolution, and Expression Profiles.

    PubMed

    Zhu, Xudong; Wang, Mengqi; Li, Xiaopeng; Jiu, Songtao; Wang, Chen; Fang, Jinggui

    2017-03-28

    Sucrose synthase (SS) is widely considered as the key enzyme involved in the plant sugar metabolism that is critical to plant growth and development, especially quality of the fruit. The members of SS gene family have been identified and characterized in multiple plant genomes. However, detailed information about this gene family is lacking in grapevine (Vitis vinifera L.). In this study, we performed a systematic analysis of the grape (V. vinifera) genome and reported that there are five SS genes (VvSS1-5) in the grape genome. Comparison of the structures of grape SS genes showed high structural conservation of grape SS genes, resulting from the selection pressures during the evolutionary process. The segmental duplication of grape SS genes contributed to this gene family expansion. The syntenic analyses between grape and soybean (Glycine max) demonstrated that these genes located in corresponding syntenic blocks arose before the divergence of grape and soybean. Phylogenetic analysis revealed distinct evolutionary paths for the grape SS genes. VvSS1/VvSS5, VvSS2/VvSS3 and VvSS4 originated from three ancient SS genes, which were generated by duplication events before the split of monocots and eudicots. Bioinformatics analysis of publicly available microarray data, which was validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct temporal and spatial expression patterns of VvSS genes in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. Taken together, our results will be beneficial for further investigations into the functions of SS gene in the processes of grape resistance to environmental stresses.

  1. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members.

    PubMed

    Agalou, Adamantia; Purwantomo, Sigit; Overnäs, Elin; Johannesson, Henrik; Zhu, Xiaoyi; Estiati, Amy; de Kam, Rolf J; Engström, Peter; Slamet-Loedin, Inez H; Zhu, Zhen; Wang, Mei; Xiong, Lizhong; Meijer, Annemarie H; Ouwerkerk, Pieter B F

    2008-01-01

    The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and III from rice and compares these gene families with Arabidopsis in a phylogeny reconstruction. Orthologous pairs of rice and Arabidopsis HD-Zip genes were predicted based on neighbour joining and maximum parsimony (MP) trees with support of conserved intron-exon organization. Additionally, a number of HD-Zip genes appeared to be unique to rice. Searching of EST and cDNA databases and expression analysis using RT-PCR showed that 30 out of 31 predicted rice HD-Zip genes are expressed. Most HD-Zip genes were broadly expressed in mature plants and seedlings, but others showed more organ specific patterns. Like in Arabidopsis and other dicots, a subset of the rice HD-Zip I and II genes was found to be regulated by drought stress. We identified both drought-induced and drought-repressed HD-Zip genes and demonstrate that these genes are differentially regulated in drought-sensitive versus drought-tolerant rice cultivars. The drought-repressed HD-Zip family I gene, Oshox4, was selected for promoter-GUS analysis, showing that drought-responsiveness of Oshox4 is controlled by the promoter and that Oshox4 expression is predominantly vascular-specific. Loss-of-function analysis of Oshox4 revealed no specific phenotype, but overexpression analysis suggested a role for Oshox4 in elongation and maturation processes.

  2. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.

    PubMed Central

    Kirchgessner, T G; Chuat, J C; Heinzmann, C; Etienne, J; Guilhot, S; Svenson, K; Ameis, D; Pilon, C; d'Auriol, L; Andalibi, A

    1989-01-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning approximately equal to 30 kilobases. The first exon encodes the 5'-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3'-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5'-flanking region were also determined. We compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events. Images PMID:2602366

  3. Evolution of Gene Duplication in Plants1[OPEN

    PubMed Central

    2016-01-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  4. Recent advances of flowering locus T gene in higher plants.

    PubMed

    Xu, Feng; Rong, Xiaofeng; Huang, Xiaohua; Cheng, Shuiyuan

    2012-01-01

    Flowering Locus T (FT) can promote flowering in the plant photoperiod pathway and also facilitates vernalization flowering pathways and other ways to promote flowering. The expression of products of the FT gene is recognized as important parts of the flowering hormone and can induce flowering by long-distance transportation. In the present study, many FT-like genes were isolated, and the transgenic results show that FT gene can promote flowering in plants. This paper reviews the progress of the FT gene and its expression products to provide meaningful information for further studies of the functions of FT genes.

  5. The Evolution of Novelty in Conserved Gene Families

    PubMed Central

    Markov, Gabriel V.; Sommer, Ralf J.

    2012-01-01

    One of the major aims of contemporary evolutionary biology is the understanding of the current pattern of biological diversity. This involves, first, the description of character distribution at various nodes of the phylogenetic tree of life and, second, the functional explanation of such changes. The analysis of character distribution is a powerful tool at both the morphological and molecular levels. Recent high-throughput sequencing approaches provide new opportunities to study the genetic architecture of organisms at the genome-wide level. In eukaryotes, one overarching finding is the absence of simple correlations of gene count and biological complexity. Instead, the domain architecture of proteins is becoming a central focus for large-scale evolutionary innovations. Here, we review examples of the evolution of novelty in conserved gene families in insects and nematodes. We highlight how in the absence of whole-genome duplications molecular novelty can arise, how members of gene families have diversified at distinct mechanistic levels, and how gene expression can be maintained in the context of multiple innovations in regulatory mechanisms. PMID:22779028

  6. Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

  7. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa).

    PubMed

    Zuo, Ran; Hu, Ruibo; Chai, Guohua; Xu, Meiling; Qi, Guang; Kong, Yingzhen; Zhou, Gongke

    2013-03-01

    Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.

  8. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora

    PubMed Central

    Balestrini, Raffaella; Nerva, Luca; Sillo, Fabiano; Girlanda, Mariangela; Perotto, Silvia

    2014-01-01

    Little is known on the molecular bases of plant–fungal interactions in orchid mycorrhiza. We developed a model system to investigate gene expression in mycorrhizal protocorms of Serapias vomeracea colonised by Tulasnella calospora. Our recent results with a small panel of genes as indicators of plant response to mycorrhizal colonization indicate that genes related with plant defense were not significantly up-regulated in mycorrhizal tissues. Here, we used laser microdissection to investigate whether expression of some orchid genes was restricted to specific cell types. Results showed that SvNod1, a S. vomeracea nodulin-like protein containing a plastocyanin-like domain, is expressed only in protocorm cells containing intracellular fungal hyphae. In addition, we investigated a family of fungal zinc metallopeptidases (M36). This gene family has expanded in the T. calospora genome and RNA-Seq experiments indicate that some members of the M36 metallopeptidases family are differentially regulated in orchid mycorrhizal protocorms. PMID:25482758

  9. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire.

    PubMed

    Aguilera, Felipe; McDougall, Carmel; Degnan, Bernard M

    2014-09-01

    Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome.

  10. PRODH gene is associated with executive function in schizophrenic families.

    PubMed

    Li, Tao; Ma, Xiaohong; Hu, Xun; Wang, Yingcheng; Yan, Chengying; Meng, Huaqing; Liu, Xiehe; Toulopoulou, Timothea; Murray, Robin M; Collier, David A

    2008-07-05

    The aim of this study was to investigate the relationship between polymorphisms in the PRODH and COMT genes and selected neurocognitive functions. Six SNPs in PRODH and two SNPs in COMT were genotyped in 167 first-episode schizophrenic families who had been assessed by a set of 14 neuropsychological tests. Neuropsychological measures were selected as quantitative traits for association analysis. The haplotype of SNPs PRODH 1945T/C and PRODH 1852G/A was associated with impaired performance on the Tower of Hanoi, a problem-solving task mainly reflecting planning capacity. There was no significant evidence for association with any other neuropsychological traits for other SNPs or haplotypes of paired SNPs in the two genes. This study takes previous findings of association between PRODH and schizophrenia further by associating variation within the gene with performance on a neurocognitive trait characteristic of the illness. It fails to confirm previous reports of an association between COMT and cognitive function.

  11. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  12. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  13. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum.

    PubMed

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perfo