Science.gov

Sample records for plant growth-promoting rhizobacteria

  1. Plant-growth-promoting rhizobacteria.

    PubMed

    Lugtenberg, Ben; Kamilova, Faina

    2009-01-01

    Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

  2. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    PubMed

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  3. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  4. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  5. Seed biopriming with plant growth promoting rhizobacteria: a review.

    PubMed

    Mahmood, Ahmad; Turgay, Oğuz Can; Farooq, Muhammad; Hayat, Rifat

    2016-08-01

    Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds.

  6. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.

  7. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

    PubMed Central

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2012-01-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems. PMID:23411488

  8. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents.

    PubMed

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M P

    2012-12-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  9. Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes.

    PubMed

    Schwachtje, Jens; Karojet, Silke; Kunz, Sabine; Brouwer, Stephan; van Dongen, Joost T

    2012-06-01

    Various rhizobacteria are known for their beneficial effects on plants, i. e. promotion of growth and induction of systemic resistance against pathogens. These bacteria are categorized as plant growth promoting rhizobacteria (PGPR) and are associated with plant roots. Knowledge of the underlying mechanisms of plant growth promotion in vivo is still very limited, but interference of bacteria with plant hormone metabolism is suggested to play a major role. To obtain new growth promoting bacteria, we started a quest for rhizobacteria that are naturally associated to Arabidopsis thaliana. A suite of native root-associated bacteria were isolated from surface-sterilized roots of the Arabidopsis ecotype Gol-1 derived from a field site near Golm (Berlin area, Germany). We found several Pseudomonas and a Microbacterium species and tested these for growth promotion effects on the Arabidopsis ecotypes Gol-1 and Col-0, and for growth-promotion associated traits, such as auxin production, ACC deaminase activity and phosphate solubilization capacity. We showed that two of the bacteria strains promote plant growth with respect to rosette diameter, stalk length and accelerate development and that the effects were greater when bacteria were applied to Col-0 compared with Gol-1. Furthermore, the capability of promoting growth was not explained by the tested metabolic properties of the bacteria, suggesting that further bacterial traits are required. The natural variation of growth effects, combined with the extensive transgenic approaches available for the model plant Arabidopsis, will build a valuable tool to augment our understanding of the molecular mechanisms involved in the natural Arabidopsis - PGPR association.

  10. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria.

    PubMed

    Ahmed, Ambreen; Hasnain, Shahida

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

  11. Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata).

    PubMed

    Jorquera, Milko A; Shaharoona, Baby; Nadeem, Sajid M; de la Luz Mora, María; Crowley, David E

    2012-11-01

    Plant growth-promoting rhizobacteria (PGPR) are common components of the rhizosphere, but their role in adaptation of plants to extreme environments is not yet understood. Here, we examined rhizobacteria associated with ancient clones of Larrea tridentata in the Mohave desert, including the 11,700-year-old King Clone, which is oldest known specimen of this species. Analysis of unculturable and culturable bacterial community by PCR-DGGE revealed taxa that have previously been described on agricultural plants. These taxa included species of Proteobacteria, Bacteroidetes, and Firmicutes that commonly carry traits associated with plant growth promotion, including genes encoding aminocyclopropane carboxylate deaminase and β-propeller phytase. The PGPR activities of three representative isolates from L. tridentata were further confirmed using cucumber plants to screen for plant growth promotion. This study provides an intriguing first view of the mutualistic bacteria that are associated with some of the world's oldest living plants and suggests that PGPR likely contribute to the adaptation of L. tridentata and other plant species to harsh environmental conditions in desert habitats.

  12. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  13. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions.

    PubMed

    Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl

    2012-06-01

    Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.

  14. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone.

    PubMed

    Dutta, Swarnalee; Podile, Appa Rao

    2010-08-01

    Interaction of plant growth promoting rhizobacteria (PGPR) with host plants is an intricate and interdependent relationship involving not only the two partners but other biotic and abiotic factors of the rhizosphere region. Survival and establishment of PGPR in the rhizosphere is a major concern of agricultural microbiologists. Various factors that play a determining role include the composition of root exudates, properties of bacterial strain, soil status, and activities of other soil microbes. This review focuses on the different components that affect root colonization of PGPR and the underlying principles behind the success of these bugs to tide over the unfavorable conditions.

  15. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria.

    PubMed

    Barriuso, Jorge; Ramos Solano, Beatriz; Fray, Rupert G; Cámara, Miguel; Hartmann, Anton; Gutiérrez Mañero, F Javier

    2008-06-01

    Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.

  16. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation.

    PubMed

    Huang, Junli; Liu, Zhaobing; Li, Shiyu; Xu, Bo; Gong, Yahui; Yang, Yan; Sun, Hanxiao

    2016-11-25

    Although many bacteria are tolerant to heavy metals and play important roles in the immobilization of heavy metals, they cannot always be dependably reproduced under field conditions. In this work, a cadmium (Cd)-resistant bacterium was isolated from a Cd-contaminated oil field and identified as Pseudomonas aeruginosa (Pse-w). We then determined various plant growth promoting features such as the solubilization of phosphate, and the production of indole-3-acetic acid and siderophores. Lastly, we engineered the strain Pse-w-MT by targeting metallothioneins to the cell surface of Pse-w to immobilize Cd(2+) and promote plant growth. Our data revealed that Pse-w exhibited high levels of resistance to Cd(2+) (4 mM) and showed various plant growth promoting features. The engineered strain Pse-w-MT was found to adsorb Cd(2+) mainly via extracellular deposition, and had an enhanced ability for immobilizing Cd(2+) ions from the external media. Furthermore, the inoculation of Cd-polluted soil with Pse-w-MT significantly elevated the shoot and root biomass and leaf chlorophyll content. Similarly, plants inoculated with Pse-w-MT demonstrated markedly lower Cd(2+) accumulation in the root and shoot system. It was concluded that plant growth promoting rhizobacteria with a high Cd(2+) tolerance was an ideal candidate to be engineered for bioremediation and plant growth promotion against Cd-induced stress.

  17. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 μl seed⁻¹ of BM 1, 30 μl seed⁻¹ of BM 2 and 70 μl seed⁻¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives.

  18. Efficiency of plant growth promoting rhizobacteria isolated from sand dunes of Chennai coastal area.

    PubMed

    Muthezhilan, R; Sindhuja, B S; Hussain, A Jaffar; Jayaprakashvel, M

    2012-08-15

    Plant Growth Promoting Rhizobacteria (PGPR) are beneficial bacteria that colonize the plant root and enhance the plant growth. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides and supplements. In the present study, PGPR were isolated from 18 different rhizosphere soil samples of coastal sand dune plants, belonging to the genus Ipomoea sp. collected from the Chennai coastal area. For isolation of bacteria from soil samples, pour plate technique was followed. The rhizobacterial population was ranged from 4.4 x 10(6)-7.5 x 10(7) CFU g(-1). From that, 46 morphologically different bacterial strains were isolated. Among 46, 18 strains exhibited the production of Indole Acetic Acid. (IAA). When screened for phosphate solubilzing activity, six strains showed maximum activity. All these selected six strains were screened for seed germination among which these two strains (AMET1136 and AMET 1148) showed remarkable increase in the seed germination of black gram and green gram. For plant growth promotion, three types of treatments namely, seed bacterization, soil drenching and mixed (seed+soil) were carried out to check the potential of these two strains. Among that one strain which was identified as Pseudomonas sp. AMET1148 showed remarkable and significant increase in shoot length and root length of the tested plants. The study concluded that PGPR from coastal sand dund plants can be developed as plant growth promoters in agricultural crops.

  19. Anatomical, morphological, and phytochemical effects of inoculation with plant growth- promoting rhizobacteria on peppermint (Mentha piperita).

    PubMed

    del Rosario Cappellari, Lorena; Santoro, Maricel Valeria; Reinoso, Herminda; Travaglia, Claudia; Giordano, Walter; Banchio, Erika

    2015-02-01

    Plant growth-promoting rhizobacteria (PGPR) generally exert their effects through enhancement of plant nutrient status and/or phytohormone production. The effects of PGPR on aromatic plant species are poorly known. We measured plant growth parameters, chlorophyll content, trichome density, stomatal density, and levels of secondary metabolites in peppermint (Mentha piperita) seedlings inoculated with PGPR strains Bacillus subtilis GB03, Pseudomonas fluorescens WCS417r, P. putida SJ04, or a combination of WCS417r + SJ04. The treated plants, in comparison with controls, showed increases in shoot biomass, root biomass, leaf area, node number, trichome density, and stomatal density, and marked qualitative and quantitative changes in monoterpene content. Improved knowledge of the factors that control or affect biosynthesis of secondary metabolites and monoterpene accumulation will lead to strategies for improved cultivation and productivity of aromatic plants and other agricultural crops without the use of chemical fertilizers or pesticides.

  20. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils

    PubMed Central

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-01-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. Growth-promoting rhizobacteria in polluted soils PMID:25219642

  1. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria.

    PubMed

    Ahn, Tae-Seok; Ka, Jong-Ok; Lee, Geon-Hyoung; Song, Hong-Gyu

    2007-04-01

    The growth stimulation of wild plants by several bacterial species showing plant growth-promoting capabilities was examined in a barren lakeside area at Lake Paro, Korea. Microbial numbers and activities in the field soil were monitored for 73 days after inoculation of the bacteria. The acridine orange direct counts for the total soil bacterial populations ranged between 2.0-2.3x10(9) cells/g soil and 1.4-1.8x10(9) cells/g soil in the inoculated and uninoculated soils, respectively. The numbers of Pseudomonas spp., which is known as a typical plant growth-promoting rhizobacteria, and the total microbial activity were higher in the inoculated soil compared to those in the uninoculated soil. The average shoot and root lengths of the wild plants grown in the inoculated soil were 17.3 cm and 12.4 cm, respectively, and longer than those of 11.4 cm and 8.5 cm in the uninoculated soil. The total dry weight of the harvested wild plants was also higher in the inoculated soil (42.0 g) compared to the uninoculated soil (35.1 g). The plant growth-promoting capabilities of the inoculated bacteria may be used for the rapid revegetation of barren or disturbed land, and as biofertilizer in agriculture.

  2. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    PubMed

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  3. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    PubMed Central

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress. PMID:26951880

  4. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria.

    PubMed

    Vurukonda, Sai Shiva Krishna Prasad; Vardharajula, Sandhya; Shrivastava, Manjari; SkZ, Ali

    2016-03-01

    Drought is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with drought stress. Plant growth promoting rhizobacteria (PGPR) could play a significant role in alleviation of drought stress in plants. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds, inducing accumulation of osmolytes, antioxidants, upregulation or down regulation of stress responsive genes and alteration in root morphology in acquisition of drought tolerance. The term Induced Systemic Tolerance (IST) was coined for physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses. In the present review we elaborate on the role of PGPR in helping plants to cope with drought stress.

  5. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens.

    PubMed

    Saraf, Meenu; Pandya, Urja; Thakkar, Aarti

    2014-01-20

    Soil borne fungal diseases pose serious constraints on agro-productivity. Biological control is non-hazardous strategy to control plant pathogens and improve crop productivity. PGPR (plant growth promoting rhizobacteria) have long been used as plant disease control agents. PGPR produced a wide range of secondary compounds that may act as signals--that is, allelochemicals that include metabolites, siderophores, antibiotics, volatile metabolites, enzymes and others. Their mode of action and molecular mechanisms provide a great awareness for their application for crop disease management. The present review highlights the role of PGPR strains, specifically referring to allelochemicals produced and molecular mechanisms. Further research to fine tune combinations of allelochemicals, plant-microbe-pathogen interaction will ultimately lead to better disease control.

  6. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria.

    PubMed

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    2016-04-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arabidopsis accessions were tested for root architecture characteristics and shoot fresh weight in response to exposure to WCS417r. Although virtually all Arabidopsis accessions tested responded positively to WCS417r, there was a large variation between accessions in the increase in shoot fresh weight, the extra number of lateral roots formed, and the effect on primary root length. Correlation analyses revealed that the bacterially-mediated increase in shoot fresh weight is related to alterations in root architecture. GWA mapping for WCS417r-stimulated changes in root and shoot growth characteristics revealed 10 genetic loci highly associated with the responsiveness of Arabidopsis to the plant growth-promoting activity of WCS417r. Several of the underlying candidate genes have been implicated in important plant growth-related processes. These results demonstrate that plants possess natural genetic variation for the capacity to profit from the plant growth-promoting function of a beneficial rhizobacterium in their rhizosphere. This knowledge is a promising starting point for sustainable breeding strategies for future crops that are better able to maximize profitable functions from their root microbiome.

  7. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea.

    PubMed

    Kim, Won-Il; Cho, Won Kyong; Kim, Su-Nam; Chu, Hyosub; Ryu, Kyoung-Yul; Yun, Jong-Chul; Park, Chang-Seuk

    2011-08-01

    To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: alpha-proteobacteria, beta- proteobacteria, and gamma-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

  8. Isolation and screening of phlD (+) plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum.

    PubMed

    Ramadasappa, Srinivasamurthy; Rai, Ashwani K; Jaat, Ranjeet Singh; Singh, Aqbal; Rai, Rhitu

    2012-04-01

    Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD (+) bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD (+) antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92-5.33%), 25 produced indole acetic acid (1.63-7.78 μg ml(-1)) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD (+)) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD (+) bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD (+)) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant(-1) respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD (+) isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.

  9. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    PubMed

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  10. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  11. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean.

    PubMed

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G; Ahmad, Shakeel; Madkour, Mohamed H; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha(-1)), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m(-1)). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha(-1) resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  12. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens.

    PubMed

    Raupach, G S; Kloepper, J W

    1998-11-01

    ABSTRACT Plant growth-promoting rhizobacteria (PGPR) strains INR7 (Bacillus pumilus), GB03 (Bacillus subtilis), and ME1 (Curtobacterium flaccumfaciens) were tested singly and in combinations for biological control against multiple cucumber pathogens. Investigations under greenhouse conditions were conducted with three cucumber pathogens-Colletotrichum orbiculare (causing anthracnose), Pseudomonas syringae pv. lachrymans (causing angular leaf spot), and Erwinia tracheiphila(causing cucurbit wilt disease)-inoculated singly and in all possible combinations. There was a general trend across all experiments toward greater suppression and enhanced consistency against multiple cucumber pathogens using strain mixtures. The same three PGPR strains were evaluated as seed treatments in two field trials over two seasons, and two strains, IN26 (Burkholderia gladioli) and INR7 also were tested as foliar sprays in one of the trials. In the field trials, the efficacy of induced systemic resistance activity was determined against introduced cucumber pathogens naturally spread within plots through placement of infected plants into the field to provide the pathogen inoculum. PGPR-mediated disease suppression was observed against angular leaf spot in 1996 and against a mixed infection of angular leaf spot and anthracnose in 1997. The three-way mixture of PGPR strains (INR7 plus ME1 plus GB03) as a seed treatment showed intensive plant growth promotion and disease reduction to a level statistically equivalent to the synthetic elicitor Actigard applied as a spray.

  13. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas

    PubMed Central

    2013-01-01

    Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome

  14. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  15. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  16. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2.

    PubMed

    Silini-Chérif, H; Silini, A; Ghoul, M; Yadav, S

    2012-03-15

    The use of microbial technology in agriculture is expanding quickly with the identification of new bacterial strains which are more effective in promoting the growth of plants. The rhizobacteria that promote the growth of plants can have a positive effect on the productivity of crops especially when subjected to salt stress. A nitrogen-fixing bacterium was isolated from the wheat rhizosphere of an arid region. The strain was identified on the basis of tests API20E and 16S rRNA sequencing, as Pantoea agglomerans lma2. This strain degraded several carbon sources: sugars (fructose, ribose, dextrin, salicin...), lipids (lecithin, tributyrin and tween 80), proteins (gelatin, casein), grew on KCN and could grow from pH 4 to 8 and had an optimum at pH 7. The growth temperature showed a maximum at 30 degrees C and the bacteria could tolerate from 4 to 41 degrees C and the growth rate was higher when the NaCl concentration was between 100 and 300 mM. The performance of activities enhancing the growth of plants of P. agglomerans lma2 was significantly better in the presence of salt. Rates of Indole Acetic Acid (IAA), siderophores production and solubilization of phosphate increased between 100 and 400 mM NaCl compared to the control without salt. The maximum values were saved to 300 mM for the production of siderophores (18.32%) and solubilization of phosphate (1061.49 microg mL(-1)) and 100 mM for the production of IAA (161 microg mL(-1)). A significant correlation existed between these three activities. These results showed that P. agglomerans lma2 with its Plant Growth Promoting Rhizobacteria (PGPR) and halophilic properties could constitute a good fertilizer in arid and saline zone.

  17. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  18. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria.

    PubMed

    Gontia-Mishra, I; Sapre, S; Sharma, A; Tiwari, S

    2016-11-01

    Drought stress adversely affects the growth and yield of wheat. The present study was planned to investigate the effect of inoculation of plant-growth promoting rhizobacteria (PGPR) strains IG 3 (Klebsiella sp.), IG 10 (Enterobacter ludwigii) and IG 15 (Flavobacterium sp.) in improving drought tolerance in wheat. These PGPR strains were screened for drought tolerance in nutrient broth supplemented with different concentrations (0-25%) of polyethylene glycol (PEG6000). Effect of PGPR inoculation on various physiological, biochemical parameters and gene expression of stress responsive genes were studied under drought stress. Root colonization at the surface and interiors of roots was demonstrated using scanning electron microscopy (SEM) and tetrazolium staining, respectively. Drought stress significantly affected various growth parameters, water status, membrane integrity, osmolyte accumulation and stress-responsive gene expressions, which were positively altered by PGPR-inoculation in wheat. Quantitative real-time (qRT)-PCR analysis revealed the up regulation of some stress-related genes (DREB2A and CAT1) in un-inoculated wheat plants exposed to drought stress. PGPR-inoculated plants showed attenuated transcript levels suggesting improved drought tolerance due to interaction of PGPRs. The PGPR strain IG 3 was found to be the best in terms of influencing biochemical and physiological status of the seedlings under drought stress. Our report demonstrates the role of PGPRs Enterobacter ludwigii and Flavobacterium sp. in plant growth promotion of wheat plants under drought stress. The study reports the potential of PGPR in alleviating drought stress in wheat which could be used as potent biofertilizers.

  19. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    PubMed Central

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry. PMID:27379151

  20. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-05-01

    Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.

  1. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

    PubMed

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-05-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.

  2. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition.

    PubMed

    Upadhyay, Sudhir K; Singh, Devendra P; Saikia, Ratul

    2009-11-01

    In this study, a total of 130 rhizobacteria was isolated from a saline infested zone of wheat rhizosphere, and screened for plant growth promoting (PGP) traits at higher salt (NaCl) concentrations (2, 4, 6, and 8%). The results revealed that 24 rhizobacterial isolates were tolerant at 8% NaCl. Although all the 24 salt tolerable isolates produced indole-3-acetic acid (IAA), while 10 isolates solubilized phosphorus, eight produced siderophore, and six produced gibberellin. However, only three isolates showed the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Diversity was analyzed through 16S rDNA-RFLP, and of these isolates with three tetra cutter restriction enzymes (HaeIII, AluI, and MspI), the representative cluster groups were identified by 16S rDNA sequencing. Bacillus and Bacillus-derived genera were dominant which showed PGP attributes at 8% NaCl concentration. Out of 24 isolates, nitrogen fixing ability (nif H gene) was detected in the two isolates, SU18 (Arthrobacter sp.) and SU48.

  3. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    PubMed

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols.

  4. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd_Allah, Elsayed F.; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria. PMID:26941730

  5. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd Allah, Elsayed F; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

  6. [Lead uptake by plants inoculated with plant growth-promoting rhizobacteria in heavy metal-contaminated soil].

    PubMed

    Shabaev, V P

    2014-01-01

    The effects of plant growth-promoting rhizobacteria of the genus Pseudomonas on the growth and elemental composition of barley plants were examined in pot experiments under artificial contamination of soil with water-soluble Pb compounds. Bacterial inoculation reduced Pb uptake by plants at the beginning and in the first half of the growing season due to the binding of the heavy metal in organic compounds and stable complexes in the rhizosphere soil without changes in the soil medium reaction. The bacterium P. fluorescens 21 had a maximum capacity for Pb immobilization and contributed to the minimum metal uptake into plants. Application of bacterium P. fluorescens 21 eliminated Pb toxicity and increased the plant weight to the level characteristic of the uncontaminated soil.

  7. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Zahir, Zahir Ahmad; Javaid, Arshad; Ashraf, Muhammad

    2014-01-01

    Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for

  8. Complete genome sequence of Bacillus amyloliquefaciens L-H15, a plant growth promoting rhizobacteria isolated from cucumber seedling substrate.

    PubMed

    Qin, Yuxuan; Han, Yuzhu; Shang, QingMao; Li, Pinglan

    2015-04-20

    Bacillus amyloliquefaciens L-H15 is a plant growth promoting rhizobacteria (PGPR) isolated from the cucumber seedling substrate collected in Beijing, China. The complete genome of B. amyloliquefaciens L-H15 consists of one single circular chromosome (3,864,316 bp) without any plasmid. From the genome, we identified clusters responsible for non-ribosomal synthesis of secondary metabolites, and genes related to the plant growth promotion hormone such as indole-3-acetic acid (IAA) and acetoin secretion. In addition, genes that contribute to biofilm formation were also found on the genome of L-H15. Complete genome information enables further study on the beneficial interactions between B. amyloliquefaciens L-H15 and host plants, and the future application of B. amyloliquefaciens L-H15 as biofertilizer and biocide.

  9. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

    PubMed

    Kamran, Muhammad Aqeel; Eqani, Syed Ali Musstjab Akber Shah; Bibi, Sadia; Xu, Ren-kou; Amna; Monis, Muhammad Farooq Hussain; Katsoyiannis, Athanasios; Bokhari, Habib; Chaudhary, Hassan Javed

    2016-04-01

    Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa.

  10. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression

    PubMed Central

    Islam, Shaikhul; Akanda, Abdul M.; Prova, Ananya; Islam, Md. T.; Hossain, Md. M.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78–51.28 μg mL-1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79–4.9 μmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides. PMID:26869996

  11. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression.

    PubMed

    Islam, Shaikhul; Akanda, Abdul M; Prova, Ananya; Islam, Md T; Hossain, Md M

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78-51.28 μg mL(-1)) of indole-3-acetic acid, while significant acetylene reduction activities (1.79-4.9 μmole C2H4 mg(-1) protein h(-1)) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides.

  12. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria.

    PubMed

    Ahn, Tae-Seok; Ka, Jong-Ok; Lee, Geon-Hyoung; Song, Hong-Gyu

    2007-01-01

    Growth promotion of wild plants by some plant growth-promoting rhizobacteria (PGPR) was examined in the microcosms composed of soils collected separately from a grass-covered site and a nongrass-covered site in a lakeside barren area at Lake Paro, Korea. After sowing the seeds of eight kinds of wild plants and inoculation of several strains of PGPR, the total bacterial number and microbial activity were measured during 5 months of study period, and the plant biomasses grown were compared at the end of the study. Acridine orange direct counts in the inoculated microcosms, 1.3-9.8 x 10(9) cells x g soil(-1) in the soil from the grass-covered area and 0.9-7.2 x 10(9) cells x g soil(-1) in the soil from the nongrass-covered site, were almost twice higher than those in the uninoculated microcosms. The number of Pseudomonas sp., well-known bacteria as PGPR, and the soil dehydrogenase activity were also higher in the inoculated soils than the uninoculated soils. The first germination of sowed seeds in the inoculated microcosm was 5 days earlier than the uninoculated microcosm. Average lengths of all plants grown during the study period were 26% and 29% longer in the inoculated microcosms starting with the grass-covered soil and the nongrass-covered soil, respectively, compared with those in the uninoculated microcosms. Dry weights of whole plants grown were 67-82% higher in the inoculated microcosms than the uninoculated microcosms. Microbial population and activity and growth promoting effect by PGPR were all higher in the soils collected from the grass-covered area than in the nongrass-covered area. The growth enhancement of wild plants seemed to occur by the activities of inoculated microorganisms, and this capability of PGPR may be utilized for rapid revegetation of some barren lands.

  13. Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria.

    PubMed

    Bruto, Maxime; Prigent-Combaret, Claire; Muller, Daniel; Moënne-Loccoz, Yvan

    2014-09-02

    The positive effects of root-colonizing bacteria cooperating with plants lead to improved growth and/or health of their eukaryotic hosts. Some of these Plant Growth-Promoting Rhizobacteria (PGPR) display several plant-beneficial properties, suggesting that the accumulation of the corresponding genes could have been selected in these bacteria. Here, this issue was targeted using 23 genes contributing directly or indirectly to established PGPR effects, based on genome sequence analysis of 304 contrasted Alpha- Beta- and Gammaproteobacteria. Most of the 23 genes studied were also found in non-PGPR Proteobacteria and none of them were common to all 25 PGPR genomes studied. However, ancestral character reconstruction indicated that gene transfers -predominantly ancient- resulted in characteristic gene combinations according to taxonomic subgroups of PGPR strains. This suggests that the PGPR-plant cooperation could have established separately in various taxa, yielding PGPR strains that use different gene assortments. The number of genes contributing to plant-beneficial functions increased along the continuum -animal pathogens, phytopathogens, saprophytes, endophytes/symbionts, PGPR- indicating that the accumulation of these genes (and possibly of different plant-beneficial traits) might be an intrinsic PGPR feature. This work uncovered preferential associations occurring between certain genes contributing to phytobeneficial traits and provides new insights into the emergence of PGPR bacteria.

  14. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in pakistan.

    PubMed

    Mehnaz, Samina; Baig, Deeba Noreen; Lazarovits, George

    2010-12-01

    Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to 41degrees C and at pH 11.

  15. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    PubMed

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  16. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    PubMed Central

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  17. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought.

    PubMed

    Kavamura, Vanessa Nessner; Santos, Suikinai Nobre; Silva, João Luiz da; Parma, Márcia Maria; Avila, Luciana Aparecida; Visconti, Alexandre; Zucchi, Tiago Domingues; Taketani, Rodrigo Gouvêa; Andreote, Fernando Dini; Melo, Itamar Soares de

    2013-05-06

    Drought is one of the major problems worldwide. The search for new and efficient microorganisms, from unexplored environments, to be used in association with plants to alleviate the negative effects imposed by water stress, is an interesting alternative. Thus, cacti-associated bacteria from the Brazilian semi-arid region were isolated based on their ability to grow in medium with reduced water availability. Strains were tested for the production of exopolysaccharides (EPS), as well as in vitro plant growth promotion traits. A great proportion of the isolates belong to the genus Bacillus. From a total of forty-eight bacteria, 65% were able to grow in medium with reduced water availability (0.919Aw), exopolysaccharide production was observed for 65% of the strains. The production of indole acetic acid (IAA) exceeding 51μgmL(-1) was observed for 4% and the high solubilization of Ca-P was verified for 6% of the isolates. No strain was able to produce hydrogen cyanide (HCN), 71% produced ammonia and 79% showed a halo of carboxymethyl cellulose (CMC) degradation. Zea mays L. growth promotion under water stress (30% of field capacity) was achieved by two strains of Bacillus spp. This is the first report to describe cacti-associated bacteria from Brazilian semi-arid with plant growth-promoting abilities.

  18. Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima.

    PubMed

    Mesa, J; Mateos-Naranjo, E; Caviedes, M A; Redondo-Gómez, S; Pajuelo, E; Rodríguez-Llorente, I D

    2015-01-15

    Spartina maritima is a native endangered heavy metal rhizoaccumulator cordgrass naturally growing in southwest coasts of Spain, where is used as a biotool to rehabilitate degraded salt marshes. Fifteen bacterial strains were isolated from the rhizosphere of S. maritima growing in the estuary of the Tinto River, one of the most polluted areas in the world. A high proportion of bacteria were resistant towards several heavy metals. They also exhibited multiple plant growth promoting (PGP) properties, in the absence and the presence of Cu. Bacillus methylotrophicus SMT38, Bacillusaryabhattai SMT48, B. aryabhattai SMT50 and Bacilluslicheniformis SMT51 were selected as the best performing strains. In a gnobiotic assay, inoculation of Medicago sativa seeds with the selected isolates induced higher root elongation. The inoculation of S. maritima with these indigenous metal-resistant PGP rhizobacteria could be an efficient method to increase plant adaptation and growth in contaminated estuaries during restoration programs.

  19. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.

  20. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities

    PubMed Central

    Kasa, Parameswari; Modugapalem, Hemalatha; Battini, Kishori

    2015-01-01

    Objectives: The present study was conducted for isolation, screening, and identification of Azotobacter and Trichoderma from different soil samples. Methods: A total of 10 isolates of Azotobacter and Trichoderma were isolated from rhizospheric soils. The test isolates were biochemically characterized and screened in in-vitro conditions for their plant growth promoting properties. DNA polymorphism of isolates was studied using randomly amplified polymorphic DNA analysis. Results: A total of 41 bands were scored, out of which 35 bands were found to be 85.59% polymorphic in Azotobacter and in Trichoderma among total 37 bands scored of which 29 were found to be 78.37% polymorphic. The influence of isolated plant growth promoting rhizobacteria (PGPR) strains on plant growth was studied using different parameters such as height of the plant, number of leaves, and number of branches, and bio-control activity was studied. Conclusion: The present results concluded that the multiple beneficial activities of PGPR traits increase the plant growth and bio-control activity. PMID:26283830

  1. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Prabu, Periyasamy; Kannan, Narayanasamy

    2013-09-01

    The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil.

  2. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings.

    PubMed

    Erturk, Yasar; Ercisli, Sezai; Haznedar, Ayhan; Cakmakci, Ramazan

    2010-01-01

    The effects of plant growth promoting rhizobacteria (PGPR) on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA) producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA) replacement by organic management based on PGPR.

  3. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  4. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate.

    PubMed

    Zhang, Jian; Liu, Jingyang; Meng, Liyuan; Ma, Zhongyou; Tang, Xinyun; Cao, Yuanyuan; Sun, Leni

    2012-04-01

    Thirty-two isolates were obtained from wheat rhizosphere by wheat germ agglutinin (WGA) labeled with fluorescein isothiocyanate (FITC). Most isolates were able to produce indole acetic acid (65.6%) and siderophores (59.3%), as well as exhibited phosphate solubilization (96.8%). Fourteen isolates displayed three plant growth-promoting traits. Among these strains, two phosphate-dissolving ones, WS29 and WS31, were evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum Wan33). Strain WS29 and WS31 significantly promoted the development of lateral roots by 34.9% and 27.6%, as well as increased the root dry weight by 25.0% and 25.6%, respectively, compared to those of the control. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, both isolates were determined to belong to the genus Bacillus. The proportion of isolates showing the properties of plant growth-promoting rhizobacteria (PGPR) was higher than in previous reports. The efficiency of the isolation of PGPR strains was also greatly increased by WGA labeled with FITC. The present study indicated that WGA could be used as an effective tool for isolating PGPR strains with high affinity to host plants from wheat roots. The proposed approach could facilitate research on biofertilizers or biocontrol agents.

  5. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.

  6. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress

    PubMed Central

    Bharti, Nidhi; Pandey, Shiv Shanker; Barnawal, Deepti; Patel, Vikas Kumar; Kalra, Alok

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the involvement of ABA-signalling cascade, as TaABARE and TaOPR1 were upregulated in PGPR inoculated plants leading to induction of TaMYB and TaWRKY expression followed by stimulation of expression of a plethora of stress related genes. Enhanced expression of TaST, a salt stress-induced gene, associated with promoting salinity tolerance was observed in PGPR inoculated plants in comparison to uninoculated control plants. Expression of SOS pathway related genes (SOS1 and SOS4) was modulated in PGPR-applied wheat shoots and root systems. Tissue-specific responses of ion transporters TaNHX1, TaHAK, and TaHKT1, were observed in PGPR-inoculated plants. The enhanced gene expression of various antioxidant enzymes such as APX, MnSOD, CAT, POD, GPX and GR and higher proline content in PGPR-inoculated wheat plants contributed to increased tolerance to salinity stress. Overall, these results indicate that halotolerant PGPR-mediated salinity tolerance is a complex phenomenon that involves modulation of ABA-signalling, SOS pathway, ion transporters and antioxidant machinery. PMID:27708387

  7. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment.

    PubMed

    Fahad, Shah; Hussain, Saddam; Bano, Asghari; Saud, Shah; Hassan, Shah; Shan, Darakh; Khan, Faheem Ahmed; Khan, Fahad; Chen, Yutiao; Wu, Chao; Tabassum, Muhammad Adnan; Chun, Ma Xiao; Afzal, Muhammad; Jan, Amanullah; Jan, Mohammad Tariq; Huang, Jianliang

    2015-04-01

    Plants are sessile beings, so the need of mechanisms to flee from unfavorable circumstances has provided the development of unique and sophisticated responses to environmental stresses. Depending on the degree of plasticity, many morphological, cellular, anatomical, and physiological changes occur in plants in response to abiotic stress. Phytohormones are small molecules that play critical roles in regulating plant growth and development, as well as stress tolerance to promote survival and acclimatize to varying environments. To congregate the challenges of salinity, temperature extremes, and osmotic stress, plants use their genetic mechanism and different adaptive and biological approaches for survival and high production. In the present attempt, we review the potential role of different phytohormones and plant growth-promoting rhizobacteria in abiotic stresses and summarize the research progress in plant responses to abiotic stresses at physiological and molecular levels. We emphasized the regulatory circuits of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene, and triazole on exposure to abiotic stresses. Current progress is exemplified by the identification and validation of several significant genes that enhanced crop tolerance to stress in the field. These findings will make the modification of hormone biosynthetic pathways for the transgenic plant generation with augmented abiotic stress tolerance and boosting crop productivity in the coming decades possible.

  8. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  9. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  10. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  11. Effect of Compost on Rhizosphere Microflora of the Tomato and on the Incidence of Plant Growth-Promoting Rhizobacteria

    PubMed Central

    de Brito, Alvarez M. A.; Gagne, S.; Antoun, H.

    1995-01-01

    Four commercial composts were added to soil to study their effect on plant growth, total rhizosphere microflora, and incidence of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of tomato plants. Three of the compost treatments significantly improved plant growth, while one compost treatment significantly depressed it. Compost amendments caused only small variations in the total numbers of bacteria, actinomycetes, and fungi in the rhizosphere of tomato plants. A total of 709 bacteria were isolated from the four compost treatments and the soil control to determine the percentage of PGPR in each treatment. The PGPR tests measured antagonism to soilborne root pathogens, production of indoleacetic acid, cyanide, and siderophores, phosphate solubilization, and intrinsic resistance to antibiotics. Our results show that the addition of some composts to soil increased the incidence in the tomato rhizosphere of bacteria exhibiting antagonism towards Fusarium oxysporum f. sp. radicis-lycopersici, Pyrenochaeta lycopersici, Pythium ultimum, and Rhizoctonia solani. The antagonistic effects observed were associated with marked increases in the percentage of siderophore producers. No significant differences were observed in the percentage of cyanogens, whereas the percentages of phosphate solubilizers and indoleacetic acid producers were affected, respectively, by one and two compost treatments. Intrinsic resistance to antibiotics was only marginally different among the rhizobacterial populations. Our results suggest that compost may stimulate the proliferation of antagonists in the rhizosphere and confirm previous reports indicating that the use of composts in container media has the potential to protect plants from soilborne root pathogens. PMID:16534902

  12. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    PubMed

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  13. Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties.

    PubMed

    Ghyselinck, Jonas; Velivelli, Siva L S; Heylen, Kim; O'Herlihy, Eileen; Franco, Javier; Rojas, Mercy; De Vos, Paul; Prestwich, Barbara Doyle

    2013-03-01

    The Central Andean Highlands are the center of origin of the potato plant (Solanum tuberosum). Ages of mutualism between potato plants and soil bacteria in this region support the hypothesis that Andean soils harbor interesting plant growth-promoting (PGP) bacteria. Therefore, the aim of this study was to isolate rhizobacteria from Andean ecosystems, and to identify those with PGP properties. A total of 585 bacterial isolates were obtained from eight potato fields in the Andes and they were screened for suppression of Phytophthora infestans and Rhizoctonia solani. Antagonistic mechanisms were determined and antagonistic isolates were further tested for phosphate solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and production of NH3- and indole-3-acetic acid (IAA). PGP was studied in healthy and R. solani diseased plantlets under growth room conditions. Performance was compared to the commercial strain B. subtilis FZB24(®) WG. Isolates were dereplicated with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), and identified with 16S rRNA gene sequencing and multi locus sequence analysis (MLSA). A total of 10% of the isolates were effective antagonists, of which many were able to solubilize phosphate, and produce IAA, ACC deaminase, NH3 and hydrogen cyanide (HCN). During growth room experiments, 23 antagonistic isolates were associated with plant growth-promotion and/or disease suppression. Ten isolates had a statistically significant impact on test parameters compared to the uninoculated control. Three isolates significantly promoted plant growth in healthy plantlets compared to the commercial strain, and seven isolates outperformed the commercial strain in in vitro R. solani diseased plantlets.

  14. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions

    PubMed Central

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H.

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated

  15. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    PubMed

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  16. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria

    PubMed Central

    Naqqash, Tahir; Hameed, Sohail; Imran, Asma; Hanif, Muhammad Kashif; Majeed, Afshan; van Elsas, Jan Dirk

    2016-01-01

    Rhizosphere engineering with beneficial plant growth promoting bacteria offers great promise for sustainable crop yield. Potato is an important food commodity that needs large inputs of nitrogen and phosphorus fertilizers. To overcome high fertilizer demand (especially nitrogen), five bacteria, i.e., Azospirillum sp. TN10, Agrobacterium sp. TN14, Pseudomonas sp. TN36, Enterobacter sp. TN38 and Rhizobium sp. TN42 were isolated from the potato rhizosphere on nitrogen-free malate medium and identified based on their 16S rRNA gene sequences. Three strains, i.e., TN10, TN38, and TN42 showed nitrogen fixation (92.67–134.54 nmol h-1mg-1 protein), while all showed the production of indole-3-acetic acid (IAA), which was significantly increased by the addition of L-tryptophan. Azospirillum sp. TN10 produced the highest amount of IAA, as measured by spectrophotometry (312.14 μg mL-1) and HPLC (18.3 μg mL-1). Inoculation with these bacteria under axenic conditions resulted in differential growth responses of potato. Azospirillum sp. TN10 incited the highest increase in potato fresh and dry weight over control plants, along with increased N contents of shoot and roots. All strains were able to colonize and maintain their population densities in the potato rhizosphere for up to 60 days, with Azospirillum sp. and Rhizobium sp. showing the highest survival. Plant root colonization potential was analyzed by transmission electron microscopy of root sections inoculated with Azospirillum sp. TN10. Of the five test strains, Azospirillum sp. TN10 has the greatest potential to increase the growth and nitrogen uptake of potato. Hence, it is suggested as a good candidate for the production of potato biofertilizer for integrated nutrient management. PMID:26925072

  17. Isolation of N2 -fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Palau, Josep; Bedmar, Eulogio J

    2016-01-01

    Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance.

  18. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana.

    PubMed

    Barriuso, J; Solano, B Ramos; Gutiérrez Mañero, F J

    2008-06-01

    The ability of four plant growth-promoting rhizobacteria, isolated in a previous study, to induce systemic resistance on Arabidopsis thaliana Col 0 against biotic and abiotic stress was evaluated. All the bacteria enhanced protection against the foliar pathogen Pseudomonas syringae DC3000 and increased plant tolerance to salt stress (NaCl 60 mM). Bacillus sp. strain L81 and Arthrobacter oxidans strain BB1 performed best with a decrease in the disease index of 61.2 and 52.3%, respectively, and a reduction in the mortality due to salt stress of 72.4 and 57.8%, respectively. Additionally, significant differences were found in growth and photosynthesis, again, L81 and BB1 performed best either in normal or under stress conditions. In order to elucidate the pathway elicited by these two strains to induce systemic resistance, experiments with the transgenic line of Arabidopsis thaliana NahG (defective in salicylic acid [SA]) and with the jar1 mutant (defective in jasmonic acid) were carried out. Results showed that the SA-dependent pathway was involved in the defense response induced by strains L81 and BB1. Results from quantitative reverse transcription-polymerase chain reaction analysis of the PR1 gene, related to the SA-dependent pathway and the PDF1.2 gene related to the SA-independent pathway, showed an increased expression of PR1 in BB1-treated plants, confirming involvement of the SA-dependent pathway in the defensive response.

  19. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Naveed, Muhammad; Imran, Muhammad; Zahir, Zahir Ahmad; Crowley, David E

    2016-05-01

    Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for three PGPR strains (Pseudomonas fluorescens, Bacillus megaterium and Variovorax paradoxus) at two salinity levels [2 and 5 % NaCl (w/v)]. Among the three strains, growth of B. megaterium was the least affected by high salinity. However, P. fluorescens was the best strain for maintaining ACC-deaminase activity, siderophore and IAA production under stressed conditions. V. paradoxus was the least tolerant to salts and had minimal growth and low PGPR trait expression under salt stress. Results of experiment examining the impact of bacterial inoculation on cucumber growth at three salinity levels [1 (normal), 7 and 10 dS m(-1)] revealed that P. fluorescens also had good rhizosphere competence and was the most effective for alleviating the negative impacts of salinity on cucumber growth. The results suggest that in addition to screening the PGPR regarding their effect on growth under salinity, PGPR trait expression is also an important aspect that may be useful for selecting the most promising PGPR bacterial strains for improving plant tolerance to salinity stress.

  20. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    PubMed

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments.

  1. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors.

    PubMed

    Ramos Solano, B; Barriuso Maicas, J; Pereyra de la Iglesia, M T; Domenech, J; Gutiérrez Mañero, F J

    2008-04-01

    A study of plant defensive systemic responses induced by three plant growth promoting rhizobacteria (PGPR) on Arabidopsis thaliana Col 0 against Pseudomonas syringae pv. tomato DC3000 at the biochemical and transcriptional levels is reported in this paper. All three strains decreased disease severity when applied to A. thaliana prior to pathogen inoculation. At the biochemical level, each of the three strains induced ethylene (ET) when incubated with 1-amino-cyclopropane-1-carboxylic acid, and salicylic acid (SA) production in the plant. Plants treated with each of the three strains were also reduced in salicylic acid production after pathogen challenge compared to untreated controls. This effect was more marked in plants treated with Chryseobacterium balustinum AUR9, the strain most effective in decreasing disease severity. The expression level of PR1, a transcriptional marker of the SA-dependent pathway in C. balustinum AUR9-treated plants, is fourfold that of controls while the expression of PDF1.2, a transcriptional marker for the SA-independent pathway, is not induced. C. balustinum cell wall lipopolysaccharides, being putative bacterial elicitor molecules, are able to reproduce this systemic induction effect at low doses. From these observations, we hypothesize that certain PGPR strains are capable of stimulating different systemic responses in host plants. With C. balustinum AUR9, the SA-dependent pathway is stimulated first, as indicated by increases in SA levels and PR1 expression, followed by induction of the SA-independent pathway, as indicated by the increases in ET concentrations. The effects of both pathways combined with respect to disease suppression appear to be additive.

  2. Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat.

    PubMed

    Billah, Motsim; Bano, Asghari

    2015-01-01

    The present study was aimed to evaluate the role of Plant Growth Promoting Rhizobacteria (PGPR) in P solubilisation from rock phosphate through composting with poultry litter, and further to study the effects of prepared enriched composts on growth, yield, and phosphorus uptake of wheat crop. Various phosphorus-enriched composts were prepared from rock phosphate and poultry litter (1:10) with and without inoculation of plant growth promoting rhizobacterias (Pseudomonas sp. and Proteus sp.). Results showed that the rock-phosphate-added poultry litter had higher total phosphorus, available (Mehlic-3 extracted) phosphorus, microbial biomass (carbon and phosphorus), and lower total organic carbon, total nitrogen, and carbon/nitrogen ratio over poultry litter alone. Inoculation of Pseudomonas sp. with rock phosphate-added poultry litter showed maximum increase in available phosphorus (41% of total phosphorus) followed by Proteus sp. inoculation (30% of total phosphorus) over uninoculated treatment (23% of total phosphorus) on the 120th day of composting. Microbial biomass (carbon and phosphorus) increased up to Day 45 and tended to decrease till the 120th day of composting, irrespective of the treatments. However, in pot experiments, wheat seeds receiving inoculation with plant growth promoting rhizobacterias, subsequently treated with rock phosphate-enriched compost proved highly stimulatory to plant height, phosphorus uptake, grain yield, and seed phosphorus content over uninoculated untreated control. The plant growth promoting rhizobacterias inoculation can be a sustainable source releasing phosphorus from low grade rock phosphate through composting and application of rock phosphate-enriched compost can be an alternative to chemical fertilisers for better crop production.

  3. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2013-05-01

    Two hundred and six phosphate-solubilizing rhizobacteria (PSB) were isolated from rhizosphere soil (RS) and root endosphere (ER) of apple trees from different sites of four locations viz., Chamba, Shimla, Kinnaur and Kullu of Himachal Pradesh, Northern India, and were screened for plant growth promoting traits (PGPTs) by using culture dependent procedures. Indole acetic acid (IAA) production was detected in 50 isolates (24.2 %), siderophore synthesis in 53 isolates (25.7 %), hydrocyanic acid (HCN) in 40 isolates (19.4 %) and percentage growth inhibition against Dematophora necatrix in 61 isolates (29.6 %). Overall, 54.3 % of PSB isolates from RS and 64.4 % from ER showed none of the PGPTs tested. Among the PSB showing PGPTs, 10.6 % had single trait and 30.6 % had multiple traits showing two (10.7 %), three (14.1 %) and four (5.8 %) types of PGPTs. The Shannon-Weaver diversity index (H') revealed that PGPT-possessing PSBs in RS were more abundant than ER. Clustering analysis by principal component analysis showed that ER was most important factor influencing the ecological distribution and physiological characterization of PGPT-possessing PSB. There was a positive correlation (0.94, p < 0.05) between HCN and antifungal activity producers, and IAA and antifungal activity producers (0.99, p < 0.05). Significant positive correlation (0.42, p < 0.05) between HCN producers and altitude was also noted.

  4. Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var. Osumi.

    PubMed

    Ramos-Solano, Beatriz; Algar, Elena; García-Villaraco, Ana; García-Cristóbal, Jorge; Lucas García, J Antonio; Gutierrez-Mañero, F Javier

    2010-02-10

    Nine plant growth-promoting rhizobacteria from different backgrounds were assayed on Glycine max var. Osumi to evaluate their potential as biotic elicitors to increase isoflavone (IF) levels. Strains were inoculated on 2 day old pregerminated seeds. Six days after inoculation, the seedlings were harvested. Biometric parameters were registered, and IFs were determined. Although only one strain (N21.4) increased total IF contents and only one (M84) caused significant decreases in total IF, five different behaviors were detected when the daidzein and genistein families were analyzed separately. All strains triggered IF metabolism so further studies have to be developed since the different beneficial effects of IF through the diet may be due to the different IF profiles. These are encouraging results from two points of view: (1) N21.4 increases IF in seedlings, and (2) all other beneficial strains trigger IF metabolism differentially; hence, both facts could be used to prepare food supplements or as enriched standardized foods after full development of the biotechnological procedure.

  5. Impact of plant growth-promoting rhizobacteria and natural enemies on Myzus persicae (Hemiptera: Aphididae) infestations in pepper.

    PubMed

    Boutard-Hunt, Caroline; Smart, Christine D; Thaler, Jennifer; Nault, Brian A

    2009-12-01

    Management of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in bell pepper, Capsicum annuum L., was explored through a combination of plant growth-promoting rhizobacteria (PGPR) and endemic biological control in New York in 2006 and 2007. We hypothesized that by using PGPR-treated peppers 1) M. persicae infestations would be reduced via induced resistance, 2) natural enemies would be lured to plants through the elicitation of volatile organic compounds, and 3) yield amount and quality would be improved. Pepper seed was planted in soil containing the PGPR formulation BioYield or untreated soil. Plants were transplanted to field plots and then treated with an insecticide regimen designed to remove or conserve populations of natural enemies. Apterous aphids and natural enemies were counted weekly on plants and pepper fruit were harvested, graded and weighed three times. PGPR did not directly or indirectly reduce aphid densities in either year. In 2006, there were more natural enemies in PGPR-treated plots than untreated ones, but this was probably a density-dependent response to aphid densities rather than a response of natural enemies to volatiles from PGPR-treated plants. For the first harvest date in 2006, yield of all fruit grades, especially the premium Fancy Grade, was 1.7-2.3 times greater in PGPR-treated plots than in untreated plots. However, no differences in yield were observed for the other two harvest dates or overall yield in 2006; no differences in yield among treatments were detected in 2007. Our results suggest that PGPR will not significantly impact M. persicae infestations or natural enemy populations but could enhance yield and quality of pepper fruit in some years.

  6. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.

  7. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  8. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil.

    PubMed

    El-Sayed, Wael S; Akhkha, Abdellah; El-Naggar, Moustafa Y; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils.

  9. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil

    PubMed Central

    El-Sayed, Wael S.; Akhkha, Abdellah; El-Naggar, Moustafa Y.; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils

  10. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.

  11. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.

    PubMed

    Tak, Hamid Iqbal; Ahmad, Faheem; Babalola, Olubukola Oluranti

    2013-01-01

    In this review, we briefly describe the biological application of PGPR for purposes of phytoremediating heavy metals. We address the agronomic practices that can be used to maximize the remediation potential of plants. Plant roots have limited ability ability mental from soil, mainly because metals have low solubility in the soil solution. The phytoavailability of metal is closely tired to the soil properties and the metabolites that are released by PGPR (e.g., siderophores, organ acids, and plant growth regulators). The role played by PGPR may be accomplished by their direct effect on plant growth dynamics, or indirectly by acidification, chelation, precipitation, or immobilization of heavy metals in the rhizosphere. From performing this review we have formed the following conclusions: The most critical factor is determining how efficient phytoremediation of metal-contaminated soil will be is the rate of uptake of the metal by plants. In turn, this depends on the rate of bioavailability. We know from our review that beneficial bacteria exist tha can alter metal bioavailability of plants. Using these beneficial bacteria improves the performance of phytoremediation of the metal-contaminated sites. Contaminated sites are often nutrient poor. Such soil can be nutrient enriched by applying metal-tolerant microbes that provide key needed plant nutrients. Applying metal-tolerant microbes therefore may be vital in enhancing the detoxification of heavy-metal-contaminated soils (Glick 2003). Plant stress generated by metal-contaminated soils can be countered by enhancing plant defense responses. Responses can be enhanced by alleviating the stress-mediated impact on plants by enzymatic hydrolysis of ACC, which is intermediate in the biosynthetic pathway of ethylene. These plant-microbe partnerships can act as decontaminators by improving phytoremediation. Soil microorganisms play a central role in maintaining soil structure, fertility and in remediating contaminated soils

  12. Plant Growth-Promoting Rhizobacteria (PGPR) in Transplant Mixes - Benefits for Nematode Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many high-value crops including vegetables, melons, and strawberries are propagated from transplants. In the U.S., plug transplants are typically used for vegetables and melons, while strawberries are predominantly planted from bare-root material. However, use of strawberry plug transplants has the ...

  13. Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488.

    PubMed

    Nautiyal, Chandra Shekhar; Govindarajan, Raghavan; Lavania, Meeta; Pushpangadan, Palpu

    2008-06-25

    The significance of plant growth-promoting rhizobacteria (PGPR) mediated increase in antioxidant potential in vegetables is yet unknown. The plant growth-promoting bacterium Bacillus lentimorbus NRRL B-30488 (B-30488) mediated induction of dietary antioxidant in vegetables ( Trigonella foenum-graecum, Lactuca sativa, Spinacia oleracea, and Daucus carota) and fruit ( Citrus sinensis) after minimal processing (fresh, boiled, and frozen) was tested by estimating the total phenol content, level of antioxidant enzymes, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide scavenging activities along with integral radical scavenging capacity by photochemiluminescence assay and inhibition of lipid peroxidation. Minimal processing of vegetables showed that T. foenum-graecum had the highest phenol content in B-30488-treated plants followed by L. sativa, D. carota, and S. oleracea. Thermally treated vegetables T. foenum-graecum (26-114.5 GAE microg mg (-1)) had an exceptionally high total phenolic content, followed by D. carota (25.27-101.32 GAE microg mg (-1)), L. sativa (23.22-101.10 GAE microg mg (-1)), and S. oleracea (21.87-87.57 GAE microg mg (-1)). Among the vegetables and fruit used in this study for enzymatic estimation, induction of antioxidant enzymes, namely, polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and superoxidase dismutase (SOD), was observed in edible parts of T. foenum-graecum, L. sativa, S. oleracea, and D. carota, after inoculation with B-30488. The scavenging capacity of the vegetables treated with B-30488 against DPPH and superoxide anion radical activity was found to be significantly high as compared to nontreated control. Mild food processing had no adverse effect on radical scavenging capacity. Photochemiluminescence also ascertains the above findings. The ability of the plant extracts to protect against lipid peroxidation and its ability to prevent oxidation of reduced glutathione (GSH) was measured in rat liver

  14. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil.

    PubMed

    Korir, Hezekiah; Mungai, Nancy W; Thuita, Moses; Hamba, Yosef; Masso, Cargele

    2017-01-01

    Nitrogen (N) fixation through legume-Rhizobium symbiosis is important for enhancing agricultural productivity and is therefore of great economic interest. Growing evidence indicates that other soil beneficial bacteria can positively affect symbiotic performance of rhizobia. Nodule endophytic plant growth promoting rhizobacteria (PGPR) were isolated from common bean nodules from Nakuru County in Kenya and characterized 16S rDNA partial gene sequencing. The effect of co-inoculation of rhizobium and PGPR, on nodulation and growth of common bean (Phaseolus vulgaris L.) was also investigated using a low phosphorous soil under greenhouse conditions. Gram-positive nodule endophytic PGPR belonging to the genus Bacillus were successfully isolated and characterized. Two PGPR strains (Paenibacillus polymyxa and Bacillus megaterium), two rhizobia strains (IITA-PAU 987 and IITA-PAU 983) and one reference rhizobia strain (CIAT 899) were used in the co-inoculation study. Two common bean varieties were inoculated with Rhizobium strains singly or in a combination with PGPR to evaluate the effect on nodulation and growth parameters. Co-inoculation of IITA-PAU 987 + B. megaterium recorded the highest nodule weight (405.2 mg) compared to IITA-PAU 987 alone (324.8 mg), while CIAT 899 + B. megaterium (401.2 mg) compared to CIAT 899 alone (337.2 mg). CIAT 899 + B. megaterium recorded a significantly higher shoot dry weight (7.23 g) compared to CIAT 899 alone (5.80 g). However, there was no significant difference between CIAT 899 + P. polymyxa and CIAT 899 alone. Combination of IITA-PAU 987 and B. megaterium led to significantly higher shoot dry weight (6.84 g) compared to IITA-PAU 987 alone (5.32 g) but no significant difference was observed when co-inoculated with P. polymyxa. IITA-PAU 983 in combination with P. polymyxa led to significantly higher shoot dry weight (7.15 g) compared to IITA-PAU 983 alone (5.14 g). Plants inoculated with IITA-PAU 987 and B. megaterium received 24.0 % of

  15. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil

    PubMed Central

    Korir, Hezekiah; Mungai, Nancy W.; Thuita, Moses; Hamba, Yosef; Masso, Cargele

    2017-01-01

    Nitrogen (N) fixation through legume-Rhizobium symbiosis is important for enhancing agricultural productivity and is therefore of great economic interest. Growing evidence indicates that other soil beneficial bacteria can positively affect symbiotic performance of rhizobia. Nodule endophytic plant growth promoting rhizobacteria (PGPR) were isolated from common bean nodules from Nakuru County in Kenya and characterized 16S rDNA partial gene sequencing. The effect of co-inoculation of rhizobium and PGPR, on nodulation and growth of common bean (Phaseolus vulgaris L.) was also investigated using a low phosphorous soil under greenhouse conditions. Gram-positive nodule endophytic PGPR belonging to the genus Bacillus were successfully isolated and characterized. Two PGPR strains (Paenibacillus polymyxa and Bacillus megaterium), two rhizobia strains (IITA-PAU 987 and IITA-PAU 983) and one reference rhizobia strain (CIAT 899) were used in the co-inoculation study. Two common bean varieties were inoculated with Rhizobium strains singly or in a combination with PGPR to evaluate the effect on nodulation and growth parameters. Co-inoculation of IITA-PAU 987 + B. megaterium recorded the highest nodule weight (405.2 mg) compared to IITA-PAU 987 alone (324.8 mg), while CIAT 899 + B. megaterium (401.2 mg) compared to CIAT 899 alone (337.2 mg). CIAT 899 + B. megaterium recorded a significantly higher shoot dry weight (7.23 g) compared to CIAT 899 alone (5.80 g). However, there was no significant difference between CIAT 899 + P. polymyxa and CIAT 899 alone. Combination of IITA-PAU 987 and B. megaterium led to significantly higher shoot dry weight (6.84 g) compared to IITA-PAU 987 alone (5.32 g) but no significant difference was observed when co-inoculated with P. polymyxa. IITA-PAU 983 in combination with P. polymyxa led to significantly higher shoot dry weight (7.15 g) compared to IITA-PAU 983 alone (5.14 g). Plants inoculated with IITA-PAU 987 and B. megaterium received 24.0 % of

  16. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger.

    PubMed

    Dinesh, Raghavan; Anandaraj, Muthuswamy; Kumar, Aundy; Bini, Yogiyar Kundil; Subila, Kizhakke Purayil; Aravind, Ravindran

    2015-04-01

    In this study, 100 PGPR strains isolated from different varieties of ginger (Zingiber officinale Rosc.) were first characterized for their morphological, biochemical, and nutrient mobilization traits in vitro. The PGPR were also screened in vitro for inhibition of Pythium myriotylum causing soft rot in ginger. Results revealed that only five PGPR showed >70% suppression of P. myriotylum. These 5 PGPR viz., GRB (Ginger rhizobacteria) 25--Burkholderia cepacia, GRB35--Bacillus amyloliquefaciens; GRB58--Serratia marcescens; GRB68--S. marcescens; GRB91--Pseudomonas aeruginosa were used for further growth promotion and biocontrol studies in the green house and field. The green house study revealed that GRB35 (B. amyloliquefaciens) and GRB68 (S. marcescens) registered markedly higher sprouting (96.3%) and lower disease incidence (48.1%) and greater rhizome yield (365.6 g pot(-1) and 384.4 g pot(-1), respectively), while control registered the lowest sprouting (66%), maximum soft rot incidence (100%) and lowest rhizome yield (134.4 g pot(-1)). In the field experiments also, GRB68 (S. marcescens) and GRB35 (B. amyloliquefaciens) registered the greatest sprouting (80% each), markedly lower soft rot incidence (5.2% and 7.3%, respectively) and higher yield (5.0 and 4.3 kg(3)m(-2), respectively) compared to chemicals like Streptomycin sulphate (73.0%, 18.5% and 2.3 kg(3)m(-2), respectively), Metalaxyl-Mancozeb (73.0%, 14.0% and 3.8 kg(3)m(-2), respectively) and control (73.0%, 25.1% and 2.2 kg 3m(-2), respectively). Overall, the results suggested that for growth promotion and management of soft rot disease in ginger, GRB35 B. amyloliquefaciens and GRB68 S. marcescens could be good alternatives to chemical measures. Since, the latter has been reported to be an opportunistic human pathogen, we recommend the use of B. amyloliquefaciens for integration into nutrient and disease management schedules for ginger cultivation.

  17. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D.; Pendall, Elise

    2015-03-01

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO2, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO2 (eCO2) through optimizing functioning of the root-soil interface. By using a labeling technique with 13C and 15N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO2. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO2 effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO2. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management.

  18. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO₂.

    PubMed

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D; Pendall, Elise

    2015-03-18

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO₂, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO₂ (eCO₂) through optimizing functioning of the root-soil interface. By using a labeling technique with (13)C and (15)N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO₂. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO₂ effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO₂. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management.

  19. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2

    PubMed Central

    Nie, Ming; Bell, Colin; Wallenstein, Matthew D.; Pendall, Elise

    2015-01-01

    Increased plant productivity and decreased microbial respiratory C loss can potentially mitigate increasing atmospheric CO2, but we currently lack effective means to achieve these goals. Soil microbes may play critical roles in mediating plant productivity and soil C/N dynamics under future climate scenarios of elevated CO2 (eCO2) through optimizing functioning of the root-soil interface. By using a labeling technique with 13C and 15N, we examined the effects of plant growth-promoting Pseudomonas fluorescens on C and N cycling in the rhizosphere of a common grass species under eCO2. These microbial inoculants were shown to increase plant productivity. Although strong competition for N between the plant and soil microbes was observed, the plant can increase its capacity to store more biomass C per unit of N under P. fluorescens addition. Unlike eCO2 effects, P. fluorescens inoculants did not change mass-specific microbial respiration and accelerate soil decomposition related to N cycling, suggesting these microbial inoculants mitigated positive feedbacks of soil microbial decomposition to eCO2. The potential to mitigate climate change by optimizing soil microbial functioning by plant growth-promoting Pseudomonas fluorescens is a prospect for ecosystem management. PMID:25784647

  20. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  1. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress.

    PubMed

    Bharti, Nidhi; Yadav, Deepti; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2013-02-01

    Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri. The effects of two salt tolerant PGPR, Bacillus pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) on the growth and content of bacoside-A, an important pharmaceutical compound in B. monnieri, were investigated under primary and secondary salinity conditions. The herb yields of un-inoculated plants decreased by 48 % under secondary salinization and 60 % under primary salinization than the non salinised plants. Among the rhizobacteria treated plants, E. oxidotolerans recorded 109 and 138 %, higher herb yield than non-inoculated plants subjected to primary and secondary salinity respectively. E. oxidotolerans inoculated plants recorded 36 and 76 % higher bacoside-A content under primary and secondary salinity respectively. Higher levels of proline content and considerably lower levels of lipid peroxidation were noticed when the plants were inoculated with PGPR under all salinity regimes. From the results of this investigation, it can be concluded that, the treatments with salt tolerant PGPR can be a useful strategy in the enhancement of biomass yield and saponin contents in B. monnieri, as besides being an eco-friendly approach; it can also be instrumental in cultivation of B. monnieri in salt stressed environments.

  2. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L.

    PubMed

    Sarathambal, Chinnathambi; Khankhane, Premraj Jagoji; Gharde, Yogita; Kumar, Bhumesh; Varun, Mayank; Arun, Sellappan

    2017-04-03

    In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.

  3. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum.

    PubMed

    Walker, Vincent; Bertrand, Cédric; Bellvert, Floriant; Moënne-Loccoz, Yvan; Bally, René; Comte, Gilles

    2011-01-01

    Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and/or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. After 10d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain×plant cultivar combination. Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize.

  4. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    PubMed

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress.

  5. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil.

    PubMed

    Liu, Wuxing; Hou, Jinyu; Wang, Qingling; Ding, Linlin; Luo, Yongming

    2014-12-01

    This study aimed to isolate promising halotolerant and alkalotolerant plant growth-promoting rhizobacteria and to study their effects on the growth of tall fescue and phytodegradation efficiency in a petroleum-contaminated saline-alkaline soil. A total of 115 PGPR strains were isolated from the rhizosphere of tall fescue grown in petroleum-contaminated saline-alkaline soils. Of these, 5 strains indicating 1-aminocyclopropane-l-carboxylic acid deaminase activity>1.0M α-KB mg(-1)h(-1) were selected for further studies. The isolate D5A presented the highest plant-growth-promoting activity and was identified as Klebsiella sp. It grew well on the Luria-Bertani medium containing 9% NaCl and at a pH range of 4-10. A pot experiment was then conducted to study the effect of isolates on phytoremediation. The results showed that inoculation of D5A promoted tall fescue growth and enhanced remediation efficiency in petroleum-contaminated saline-alkaline soil.

  6. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    PubMed

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10(7) cfu g(-1)) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  7. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    PubMed Central

    Agbodjato, Nadège A.; Noumavo, Pacôme A.; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  8. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO4 amended soils.

  9. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    PubMed

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.

  10. Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora.

    PubMed

    Andrades-Moreno, L; Del Castillo, I; Parra, R; Doukkali, B; Redondo-Gómez, S; Pérez-Palacios, P; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D

    2014-03-01

    In the salt marshes of the joint estuary of Tinto and Odiel rivers (SW Spain), one of the most polluted areas by heavy metals in the world, Spartina densiflora grows on sediments with high concentrations of heavy metals. Furthermore, this species has shown to be useful for phytoremediation. The total bacterial population of the rhizosphere of S. densiflora grown in two estuaries with different levels of metal contamination was analyzed by PCR denaturing gradient gel electrophoresis. Results suggested that soil contamination influences bacterial population in a greater extent than the presence of the plant. Twenty-two different cultivable bacterial strains were isolated from the rhizosphere of S. densiflora grown in the Tinto river estuary. Seventy percent of the strains showed one or more plant growth-promoting (PGP) properties, including phosphate solubilization and siderophores or indolacetic acid production, besides a high resistance towards Cu. A bacterial consortium with PGP properties and very high multiresistance to heavy metals, composed by Aeromonas aquariorum SDT13, Pseudomonas composti SDT3, and Bacillus sp. SDT14, was selected for further experiments. This consortium was able to two-fold increase seed germination and to protect seeds against fungal contamination, suggesting that it could facilitate the establishment of the plant in polluted estuaries.

  11. Plant growth promoting potential of free-living diazotrophs and other rhizobacteria isolated from Northern Indian soil.

    PubMed

    Ahmad, Farah; Ahmad, Iqbal; Aqil, Farrukh; Ahmed Wani, Aijaz; Sousche, Yogesh S

    2006-10-01

    The viable count of free-living diazotrophic bacteria in different crop rhizospheres varied from 1.11 x 10(4) to 8.5 x 10(5) CFU/g of soil. The majority of the diazotrophs phenotypically belong to either Azotobacter chroococcum, non-A. chroococcum type and to a heterogenous group tentatively named putative nitrogen-fixing (PNF) bacteria. In this study, 25 isolates of the PNF group were screened for their multiple plant growth-promoting (PGP) traits and grouped into 5 PGP types. An isolate, PNF(11) showed promising PGP potential in vitro and was characterized as a species of Achromobacter by 16S rRNA analysis. The isolate PNF(11) along with three other previously isolated PGP bacteria, Azotobacter sp. (AZS(3)), fluorescent pseudomonas (Ps(5)), Bacillus sp. (Bc(1)) were selected for crop inoculation response in green house experiment on Vigna radiata var.T44. Plants from inoculated and control pots were sampled and analyzed at 30, 45 and 60 days after sowing for various vegetative, nodule-related data and yield parameters. The findings indicated that selected isolate of PNF bacteria, and other PGP isolates with multiple activities significantly improve the plant growth parameters, yield parameters of Vigna radiata T44 over control and also show good compatibility with Bradyrhizobium inoculation.

  12. Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge.

    PubMed

    García-Cristobal, J; García-Villaraco, A; Ramos, B; Gutierrez-Mañero, J; Lucas, J A

    2015-09-01

    Two plant growth promoting rhizobacteria (PGPR) were tested to evaluate their capacity to prime rice seedlings against stress challenge (salt and Xanthomonas campestris infection). As is accepted that plants respond to biotic and abiotic stresses by generation of reactive oxygen species (ROS), enzyme activities related to oxidative stress (ascorbate peroxidase (APX, EC 1.11.1.11), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1)) as well as the pathogenesis-related proteins (PRs) ß-1,3-glucanase (PR2, EC 3.2.1.6) and chitinase (PR3, EC 3.2.1.14) were measured at 3 time points after stress challenge. In addition, photosynthetic parameters related with fluorescence emission of photosystem II (F0, Fv/Fm, ΦPSII and NPQ) were also measured although they were barely affected. Both strains were able to protect rice seedlings against salt stress. AMG272 reduced the salt symptoms over 47% with regard to control, and L81 over 90%. Upon pathogen challenge, 90% protection was achieved by both strains. All enzyme activities related to oxidative stress were modified by the two PGPR, especially APX and SOD upon salinity stress challenge, and APX and GR upon pathogen presence. Both bacteria induced chitinase activity 24 and 48 h after pathogen inoculation, and L81 induced ß-1,3-Glucanase activity 48 h after pathogen inoculation, evidencing the priming effect. These results indicate that these strains could be used as bio-fortifying agents in biotechnological inoculants in order to reduce the effects of different stresses, and indirectly reduce the use of agrochemicals.

  13. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    PubMed

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.

  14. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Ahmad, Maqshoof; Zahir, Zahir A; Asghar, H Naeem; Asghar, M

    2011-07-01

    Twenty-five strains of plant-growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and 10 strains of rhizobia were isolated from rhizosphere soil samples and nodules of mung bean. They were screened in separate trials under salt-stressed axenic conditions. The three most effective strains of PGPR (Mk1, Pseudomonas syringae ; Mk20, Pseudomonas fluorescens ; and Mk25, Pseudomonas fluorescens biotype G) and Rhizobium phaseoli strains M1, M6, and M9 were evaluated in coinoculation for their growth-promoting activity at three salinity levels (original, 4 dS·m(-1), and 6 dS·m(-1)) under axenic conditions. The results showed that salinity stress significantly reduced plant growth but inoculation with PGPR containing ACC deaminase and rhizobia enhanced plant growth, thus reducing the inhibitory effect of salinity. However, their combined application was more effective under saline conditions, and the combination Mk20 × M6 was the most efficient for improving seedling growth and nodulation. The effect of high ethylene concentrations on plant growth and the performance of these strains for reducing the negative impact of saline stress was also evaluated by conducting a classical triple-response bioassay. The intensity of the classical triple response decreased owing to inoculation with these strains, with the root and shoot lengths of inoculated mung bean seedlings increasing and stem diameter decreasing, which is a typical response to the dilution in a classical triple response bioassay. Thus, coinoculation with PGPR containing ACC deaminase and Rhizobium spp. could be a useful approach for inducing salt tolerance and thus improving growth and nodulation in mung bean under salt-affected conditions.

  15. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria.

    PubMed

    Liu, Runjin; Dai, Mei; Wu, Xia; Li, Min; Liu, Xingzhong

    2012-05-01

    Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.

  16. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation.

    PubMed

    Khan, Naeem; Bano, Asghari

    2016-01-01

    The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.

  17. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops.

  18. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion.

  19. [Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition].

    PubMed

    Liu, Fang-Chun; Xing, Shang-Jun; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao

    2014-05-01

    Effects of four plant growth-promoting rhizobacteria (PGPR) , namely Pseudomonas sp. YT3, Bacillus subtilis DZ1, B. cereus L90 and B. fusiformis L13 on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought stress were investigated. Results showed that drought stress had little effect on available nutrients of walnut rhizosphere soil, but significantly decreased the activity of organic carbon by 18.4% and increased the pH from 7.34 to 7.79. Under drought stress condition, the inoculation of Bacillus cereus L90 significantly increased high-labile organic carbon in walnut rhizosphere by 14.5% relative to the un-inoculated control, and decreased the pH to 7.41. Compared with the irrigated control, the total microbial populations, root exudates, microbial biomass carbon, and microbial biomass nitrogen in walnut rhizosphere soil were significantly decreased by 36.0%, 20.7%, 33.5% and 30.7%, respectively, because of drought stress. However, L90 inoculation decreased these deficits to 14.1%, 10.3%, 12.1% and 12.7%, respectively. Some terminal restriction fragments (T-RFs) disappeared under the drought condition and PGPR inoculation had great influence on T-RFs according to Terminal Restriction Fragment Length Polymorphism profiles. The Margalef index and the Shannon index of walnut rhizosphere soil significantly decreased, but the Simpson index increased relative to the irrigated control. Compared with the un-inoculated control, the Margalef index significantly increased from 0.42 to 0.99, as well as the Shannon index increased from 0.52 to 0.98. However, the Simpson index de- creased from 0.60 to 0.39. Inoculating YT3, DZ1 and L13 had weaker effects on the biological characteristics of walnut rhizosphere soil compared to inoculating L90, suggesting L90 inoculation could interfere with the suppression of drought stress to the biological characteristics of walnut rhizosphere soil.

  20. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress.

    PubMed

    Cardinale, Massimiliano; Ratering, Stefan; Suarez, Christian; Zapata Montoya, Ana Maria; Geissler-Plaum, Rita; Schnell, Sylvia

    2015-12-01

    From the rhizosphere of two salt tolerant plant species, Hordeum secalinum and Plantago winteri growing in a naturally salt meadow, 100 strains were isolation on enrichment media for various plant growth-promoting (PGP) functions (ACC deaminase activity, auxin synthesis, calcium phosphate mobilization and nitrogen fixation). Based on the taxonomic affiliation of the isolated bacteria and their enrichment medium 22 isolates were selected to test their growth promotion effect on the crop barley (Hordeum vulgare) under salt stress in pot experiment. In parallel the isolates were characterized in pure culture for their plant growth-promoting activities. Surprisingly the best promotors did not display a promising set of PGP activities. Isolates with multiple PGP-activities in pure culture like Microbacterium natoriense strain E38 and Pseudomonas brassicacearum strain E8 did not promote plant growth. The most effective isolate was strain E108 identified as Curtobacterium flaccumfaciens, which increased barley growth up to 300%. In pure culture strain E108 showed only two out of six plant growth promoting activities and would have been neglected. Our results highlight that screening based on pure culture assays may not be suitable for recognition of best plant growth promotion candidates and could preclude the detection of both new PGPR and new plant promotion mechanisms.

  1. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    PubMed

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  2. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.

    PubMed

    Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

    2013-01-01

    According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism.

  3. Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres.

    PubMed

    Monteiro, Juliana Mendes; Vollú, Renata Estebanez; Coelho, Marcia Reed Rodrigues; Alviano, Celuta Sales; Blank, Arie Fitzgerald; Seldin, Lucy

    2009-08-01

    Molecular approaches [PCR-denaturing gradient gel electrophoresis (DGGE)] were used to determine whether three different vetiver (Chrysopogon zizanioides) genotypes, commercially used in Brazil and considered economically important over the world, select specific bacterial populations to coexist in their rhizospheres. DGGE profiles revealed that the predominant rhizospheric bacterial community hardly varies regarding the vetiver genotype. Moreover, using traditional cultivation methods, bacterial strains were isolated from the different rhizospheres. Colonies presenting different morphologies (83) were selected for determining their potential for plant growth promotion. More than half of the strains tested (57.8%) were amplified by PCR using nifH-based primers, specific for the enzyme nitrogenase reductase. The production of siderophores was observed in 88% of the strains, while the production of antimicrobial substances was detected in only 14.5% of the isolates when Micrococcus sp. was used as the indicator strain. Production of indole-3-acetic acid and the solubilization of phosphate were observed in 55.4% and 59% of the isolates, respectively. In total, 44 strains (53%) presented at least three characteristics of plant growth promotion and were submitted to amplified ribosomal DNA restriction analysis. Twenty-four genetic groups were formed at 100% similarity and one representative of each group was selected for their identification by partial 16S rRNA gene sequencing. They were affiliated with the genera Acinetobacter, Comamonas, Chryseobacterium, Klebsiella, Enterobacter, Pantoea, Dyella, Burkholderia, or Pseudomonas. These strains can be considered of great importance as possible biofertilizers in vetiver.

  4. Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sharma, Alok; Pathak, Ashutosh; Sahgal, Manvika; Meyer, Jean-Marie; Wray, Victor; Johri, Bhavdish N

    2007-11-01

    Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP(3 )were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.

  5. Plant growth promoting rhizobacterium

    DOEpatents

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  6. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi.

    PubMed

    Moreira, Helena; Pereira, Sofia I A; Marques, Ana P G C; Rangel, António O S S; Castro, Paula M L

    2016-04-01

    The use of heavy metals (HM) contaminated soils to grow energy crops can diminish the negative impact of HM in the environment improving land restoration. The effect of two PGPR (B1--Chryseobacterium humi ECP37(T) and B2--Pseudomonas reactans EDP28) and an AMF (F--Rhizophagus irregularis) on growth, Cd and Zn accumulation, and nutritional status of energy maize plants grown in a soil collected from an area adjacent to a Portuguese mine was assessed in a greenhouse experiment. Both bacterial strains, especially when co-inoculated with the AMF, acted as plant growth-promoting inoculants, increasing root and shoot biomass as well as shoot elongation. Cadmium was not detected in the maize tissues and a decrease in Zn accumulation was observed for all microbial treatments in aboveground and belowground tissues--with inoculation of maize with AMF and strain B2 leading to maximum reductions in Zn shoot and root accumulation of up to 48 and 43%, respectively. Although microbial single inoculation generally did not increase N and P levels in maize plants, co-inoculation of the PGPR and the AMF improved substantially P accumulation in roots. The DGGE analysis of the bacterial rhizosphere community showed that the samples inoculated with the AMF clustered apart of those without the AMF and the Shannon-Wiener Index (H') increased over the course of the experiment when both inoculants were present. This work shows the benefits of combined inoculation of AMF and PGPR for the growth energy maize in metal contaminated soils and their potential for the application in phytomanagement strategies.

  7. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury.

    PubMed

    Panwar, Meenu; Tewari, Rupinder; Nayyar, Harsh

    2016-10-01

    The beneficial microbial-plant interaction plays important role in the soil health, crop growth and productivity. Plant growth promoting rhizobacteria (PGPR) are such beneficial microorganisms, which in association with plant roots not only promote their growth but also help in counteracting the detrimental effects of soil stresses. Salt stress is one such stress, frequently confronted by the plants. The present study aimed at isolation and identification of PGPR inhabiting the mungbean rhizosphere, testing them for salt (NaCl) tolerance and subsequently in salt-supplemented mungbean crop. For this purpose, two salt-tolerant bacterial strains belonging to genus Pantoea and Enterococcus, characterized for their P-solubilization ability, indole acetic acid and siderophore production were selected. These two PGPR were further evaluated for their effect on the salt-stressed mungbean plants, grown at two salt concentrations (5 and 10 dS/m). The plants treated with the combination of PGPR showed better performance in growth (16-37 %) and yield (22-32 %), under salt stress, as compared with control. The increasing salt concentration was found to increase the membrane damage, Na(+) concentration in the plants. PGPR treatments effectively reduced the Na(+) concentration (17-41 %), membrane damage (1.1-1.5 folds) and enhanced the antioxidants i.e. ascorbic acid (8-26 %) and glutathione (10-30 %) in salt-stressed plants, in comparison to uninoculated stressed plants. Overall, the results indicated that both PGPR were effective as stress mitigators however, in combination they showed relatively better improvement in growth, yield as well as oxidative parameters of the salt-affected plants. These findings about the effects of native salt-tolerant PGPR Pantoea and Enterococcus sp. in mungbean crop are novel.

  8. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    PubMed Central

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the

  9. Plant growth promoting bacteria from Crocus sativus rhizosphere.

    PubMed

    Ambardar, Sheetal; Vakhlu, Jyoti

    2013-12-01

    Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October-November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1-V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.

  10. Alleviation of of heavy metals toxicity by the application of plant growth promoting rhizobacteria(PGPR) and effects on wheat grown in saline sodic field.

    PubMed

    Ul Hassan, Tamoor; Bano, Asghari; Naz, Irum

    2016-12-12

    The study was aimed to determine tolerance of PGPR in different concentration of Cu, Cr, Co, Cd, Ni, Mn and Pb and to evaluate the PGPR modulated bio-availability of different heavy metals, in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in Khewra salt range. Seven days old cultures of PGPR were applied on wheat as single inoculum, co- inoculation and carrier based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, survivals of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% Co and Ni, Cr and Mn in the rhizosphere soil. Co-inoculation of PGPR and biofertilzer treatment further augmented the decrease by 15% over single inoculation except Pb and Co where decreases were higher by 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) were observed for Cd, Co, Cr, Mn. P. moraviensis inoculation decreases the BAC as well as TF translocation factor (TF) for Cd, Cr, Cu Mn and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals and addition of carriers further assisted the PGPR.

  11. Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigna mungo.

    PubMed

    Kumar, Vinod; Sarma, M V R K; Saharan, Krishna; Srivastava, Rashmi; Kumar, Lalit; Sahai, Vikram; Bisaria, V S; Sharma, A K

    2012-02-01

    In the present investigation, the effect of three beneficial organisms (root endophytic fungus Piriformospora indica (Pi) and pseudomonads strains R62 and R81) and their four different consortia (Pi+R62, Pi+R81, R62+R81, Pi+R62+R81) was investigated on the plant Vigna mungo through their inorganic carrier-based (talcum powder and vermiculite) formulations. All the treatments resulted in significant increase in growth parameters under glasshouse as well as field conditions and showed a consistency in their performance on moving from glasshouse to field conditions. In glasshouse conditions, a maximum increase of 4.5-fold in dry root weight and 3.9-fold in dry shoot weight compared to control was obtained with vermiculite-based consortium formulation of Pi+R81. In field studies using vermiculite as carrier, a maximum enhancement of 3.2-fold in dry root weight, 3.0-fold in dry shoot weight, 8.4-fold in number of nodules and 4.0-fold in number of pods in comparison to control was obtained with the bio-inoculant formulation containing consortium of Pi+R81. The same treatment also caused the highest improvement of 1.9-fold in nitrogen content and 1.7-fold in phosphorus content, while the highest increase of 1.4-fold in potassium content was obtained with Pi alone.

  12. Plant growth promotion by Bacillus megaterium involves cytokinin signaling

    PubMed Central

    Ortíz-Castro, Randy; Valencia-Cantero, Eduardo

    2008-01-01

    Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complimentary role in plant growth promotion by B. megaterium. PMID:19704649

  13. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  14. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  15. 22-Oxocholestanes as plant growth promoters.

    PubMed

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters.

  16. [Plant growth promoting microorganisms as alternative to chemical protection from pathogens (review)].

    PubMed

    Maksimov, I V; Abizgil'dina, R R; Pusenkova, L I

    2011-01-01

    The review analyses data on physiological and biochemical influence of rhizospheric and endophytic microorganisms promoting plant growth (PGPR-plant growth promoting rhizobacteria) on induced resistance of plants and the possibility of its use in plant cultivation to protect crops from pathogens and phytophages. Resistance of plants provided by PGPR due to their endosymbiotic interrelationships is directly achieved because they produce peptide antibiotics and hydrolases ofchitin and glucan and also because plants form their own system of induced resistance, followed by changes in the balance of defensive proteins, phytohormones, and pro-/antioxidant status.

  17. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here.

  18. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  19. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    PubMed

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.

  20. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables

    PubMed Central

    Adesemoye, A.O.; Obini, M.; Ugoji, E.O.

    2008-01-01

    Our objective was to compare some plant growth promoting rhizobacteria (PGPR) properties of Bacillus subtilis and Pseudomonas aeruginosa as representatives of their two genera. Solanum lycopersicum L. (tomato), Abelmoschus esculentus (okra), and Amaranthus sp. (African spinach) were inoculated with the bacterial cultures. At 60 days after planting, dry biomass for plants treated with B. subtilis and P. aeruginosa increased 31% for tomato, 36% and 29% for okra, and 83% and 40% for African spinach respectively over the non-bacterized control. Considering all the parameters tested, there were similarities but no significant difference at P < 0.05 between the overall performances of the two organisms. PMID:24031240

  1. Plant perceptions of plant growth-promoting Pseudomonas.

    PubMed Central

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol. PMID:15306406

  2. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105.

    PubMed

    Xie, Shan-Shan; Wu, Hui-Jun; Zang, Hao-Yu; Wu, Li-Ming; Zhu, Qing-Qing; Gao, Xue-Wen

    2014-07-01

    The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.

  3. Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis.

    PubMed

    Arun, B; Gopinath, B; Sharma, Shilpi

    2012-09-01

    Plant growth promoting rhizobacteria (PGPR) are an attractive eco-friendly alternative to chemicals in agriculture. While the rhizospheres of crop plants have been well studied with the objective of screening PGPR, weeds, which play an important role in maintaining ecological balance, have largely been ignored. The rhizosphere of a luxuriantly growing, medicinal weed, Cassia occidentalis was analysed by enumerating PGPR on N free media from the most diverse stage of plant (determined by profiles obtained on denaturing gradient gel electrophoresis). Each isolate was tested for other plant growth promotion assays including production of cellulase, indole acetic acid (IAA), ammonia, HCN, siderophore and chitinase to select for ones possessing multi-trait plant growth promoting (PGP) properties. Selected isolates were used for bacterization of Vigna radiata and Vigna mungo to evaluate their efficacy in promoting plant's growth in seedling germination and axenic pot conditions. Thirty five isolates were analysed further for the array of PGP properties they exhibit. A total of 6 isolates were shortlisted on the basis of maximum traits positive, amount of phosphate solubilized and IAA produced. V. radiata responded well to seed bacterization during seedling germination. A maximum increase of approximately 36 and 60 % was observed for shoot and root length, respectively in V. radiata in axenic pot culture over control plants. Extensive branching of roots was also observed with isolate NL, which produced the maximum amount of IAA. Present study investigated the plant growth promoting isolates obtained on N free media in the rhizosphere of C. occidentalis, which have the potential to be used as inoculants for other crops. This provides a new dimension to the significance of weeds in agricultural ecosystems. The study opens up possibilities for utilization of this property of weeds in plant growth promotion, and subsequent enhancement of yield for agricultural crops.

  4. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  5. Soil-agrochemical aspects of remediation of a gray forest soil polluted with Pb upon the application of growth-promoting rhizobacteria

    NASA Astrophysics Data System (ADS)

    Shabaev, V. P.

    2012-05-01

    The effect of inoculation with growth-promoting rhizobacteria of the Pseudomonas genus on the growth and elemental composition of barley was examined in pot experiments with an artificially Pb-contaminated gray forest soil. The application of the bacteria to the contaminated soil enhanced the plant growth, increased the yield (including the grain yield) by 1.5 times, and considerably reduced the concentration of Pb in the plants without altering the soil reaction. The maximum effect was found upon the inoculation with the bacterium P. fluorescens 21, which ensures the same yield as that in the unpolluted soil without the application of bacteria and without changes in the grain quality (the protein content and the elemental composition). The positive effect of the bacteria was manifested to the greatest degree at the beginning and in the first half of the growing period and was associated with considerable binding of Pb in the soil compounds extractable with an ammonium acetate buffer solution. The elimination of the toxic effect and weakening of the Pb translocation in the barley plants after the inoculation with bacteria occurred due to the improvement in the mineral nutrition of the plants, the intensification of their barrier functions at the shoot-root and root-soil interfaces, the biological dilution caused by an increase in the plant biomass, and changes in the bioavailability of the metal (probably, under the influence of exometabolites produced by bacteria). The application of bacteria did not affect the removal of Pb from the soil by the plants (the biological remediation of the soil via phytoextraction of the toxicants).

  6. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.

    PubMed

    Chiboub, Manel; Saadani, Omar; Fatnassi, Imen Challougui; Abdelkrim, Souhir; Abid, Ghassen; Jebara, Moez; Jebara, Salwa Harzalli

    2016-01-01

    The inoculation of plants with plant-growth-promoting rhizobacteria has become a priority in the phytoremediation of heavy-metal-contaminated soils. A total of 82 bacteria were isolated from Sulla coronaria root nodules cultivated on four soil samples differently contaminated by heavy metals. The phenotypic characterization of these isolates demonstrated an increased tolerance to cadmium reaching 4.1mM, and to other metals, including Zn, Cu and Ni. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) analysis showed a large diversity represented by genera related to Agrobacterium sp., R. leguminosarum, Sinorhizobium sp., Pseudomonas sp., and Rhizobium sp. Their symbiotic effectiveness was evaluated by nodulation tests. Taking into consideration efficiency and cadmium tolerance, four isolates were chosen; their 16SrRNA gene sequence showed that they belonged to Pseudomonas sp. and the Rhizobium sullae. The selected consortium of soil bacteria had the ability to produce plant-growth-promoting substances such as indole acetic acid and siderophore. The intracellular Cd accumulation was enhanced by increasing the time of incubation of the four soil bacteria cultivated in a medium supplemented with 0.1mM Cd. The existence of a cadmium-resistant gene was confirmed by PCR. These results suggested that Sulla coronaria in symbiosis with the consortium of plant-growth-promoting rhizobacteria (PGPR) could be useful in the phytoremediation of cadmium-contaminated soils.

  7. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  8. Plant growth-promoting bacteria as inoculants in agricultural soils.

    PubMed

    Souza, Rocheli de; Ambrosini, Adriana; Passaglia, Luciane M P

    2015-12-01

    Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  9. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils.

    PubMed

    Kumar, Vijay; Singh, Simranjeet; Singh, Joginder; Upadhyay, Niraj

    2015-06-01

    Rhizobacteria can enhance biomass production and heavy metal tolerance of plants under the stress environment. The aim of this study was to collect soil samples from different industrial sites followed by their heavy metal analysis. After performing the ICP-AES analysis of soil samples from seven different sites, bacterial strains were isolated from the soil samples of most polluted (heavy metal) site. Phylogenetic analysis of isolates based on 16S rDNA sequences showed that the isolates belonged to four species: Bacillus thuringiensis, Azotobacter chroococcum, Paenibacillus ehimensis and Pseudomonas pseudoalcaligenes. Plant growth promoting activities; siderophore production, indole acetic acid production, HCN production, and phosphate solubilisation were assayed in vitro, and statistically analysis done by using ANOVA analysis and Tukey's Honestly Significant Difference test (p ≤ 0.05). Plant growth-promoting characteristics of isolated strains were higher compared to the control Pseudomonas fluorescens (NICM 5096). In vitro study was performed to check resistance against two heavy metals of isolates. It was observed that isolated bacterial strains have higher heavy metal resistance as compared to control E. coli (NICM 2563). These isolates may cause pathogenic effects, so to avoid this risk, their antibacterial susceptibility was checked against eight antibiotics. Among the eight antibiotics, Ciprofloxacin-1 has shown higher inhibition against all the isolated bacterial strains.

  10. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  11. Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates.

    PubMed

    Brígido, Clarisse; Glick, Bernard R; Oliveira, Solange

    2017-05-01

    Rhizobia may possess other plant growth-promoting mechanisms besides nitrogen fixation. These mechanisms and the tolerance to different environmental factors, such as metals, may contribute to the use of rhizobia inocula to establish a successful legume-rhizobia symbiosis. Our goal was to characterize a collection of native Portuguese chickpea Mesorhizobium isolates in terms of plant growth-promoting (PGP) traits and tolerance to different metals as well as to investigate whether these characteristics are related to the biogeography of the isolates. The occurrence of six PGP mechanisms and tolerance to five metals were evaluated in 61 chickpea Mesorhizobium isolates previously obtained from distinct provinces in Portugal and assigned to different species clusters. Chickpea microsymbionts show high diversity in terms of PGP traits as well as in their ability to tolerate different metals. All isolates synthesized indoleacetic acid, 50 isolates produced siderophores, 19 isolates solubilized phosphate, 12 isolates displayed acid phosphatase activity, and 22 exhibited cytokinin activity. Most isolates tolerated Zn or Pb but not Ni, Co, or Cu. Several associations between specific PGP mechanisms and the province of origin and species clusters of the isolates were found. Our data suggests that the isolate's tolerance to metals and ability to solubilize inorganic phosphate and to produce IAA may be responsible for the persistence and distribution of the native Portuguese chickpea Mesorhizobium species. Furthermore, this study revealed several chickpea microsymbionts with potential as PGP rhizobacteria as well as for utilization in phytoremediation strategies.

  12. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  13. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    PubMed Central

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise. PMID:24278762

  14. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina.

    PubMed

    Viruel, Emilce; Lucca, María E; Siñeriz, Faustino

    2011-07-01

    The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application.

  15. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.

    PubMed

    Haiyambo, D H; Chimwamurombe, P M; Reinhold-Hurek, B

    2015-11-01

    A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals.

  16. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.

    PubMed

    Santoro, M V; Cappellari, L R; Giordano, W; Banchio, E

    2015-11-01

    Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains.

  17. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species

    PubMed Central

    Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng

    2016-01-01

    Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413

  18. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    SciTech Connect

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  19. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  20. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.

    PubMed

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K; Singh, Rakshapal; Verma, Rajesh K; Kalra, Alok

    2015-10-27

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants.

  1. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  2. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain.

    PubMed

    Ahemad, Munees; Khan, Mohammad Saghir

    2012-10-01

    This study was designed to explore beneficial plant-associated rhizobacteria exhibiting substantial tolerance against fungicide tebuconazole vis-à-vis synthesizing plant growth regulators under fungicide stressed soils and to evaluate further these multifaceted rhizobacteria for protection and growth promotion of greengram [Vigna radiata (L.) Wilczek] plants against phytotoxicity of tebuconazole. Tebuconazole-tolerant and plant growth promoting bacterial strain PS1 was isolated from mustard (Brassica compestris) rhizosphere and identified as Pseudomonas aeruginosa following 16S rRNA gene sequencing. The P. aeruginosa strain PS1 solubilized phosphate significantly and produced indole acetic acid, siderophores, exo-polysaccharides, hydrogen cyanide and ammonia even under tebuconazole stress. Generally, tebuconazole at the recommended, two and three times the recommended field rate adversely affected the growth, symbiosis, grain yield and nutrient uptake in greengram in a concentration dependent manner. In contrast, the P. aeruginosa strain PS1 along with tebuconazole significantly, increased the growth parameters of the greengram plants. The inoculant strain PS1 increased appreciably root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, and seed yield of greengram plants at all tested concentrations of tebuconazole when compared to the uninoculated plants treated with tebuconazole. The results suggested that the P. aeruginosa strain PS1, exhibiting novel plant growth regulating physiological features, can be applied as an eco-friendly and plant growth catalyzing bio-inoculant to ameliorate the performance of greengram in fungicide stressed soils.

  3. Root Exudate-Induced Alterations in Bacillus cereus Cell Wall Contribute to Root Colonization and Plant Growth Promotion

    PubMed Central

    Dutta, Swarnalee; Rani, T. Swaroopa; Podile, Appa Rao

    2013-01-01

    The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion. PMID:24205213

  4. Effects of the Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN throughout the Life Cycle of Arabidopsis thaliana

    PubMed Central

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  5. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  6. Bioprospecting glacial ice for plant growth promoting bacteria.

    PubMed

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture.

  7. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    PubMed Central

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  8. Genome sequence of Enterobacter radicincitans DSM16656(T), a plant growth-promoting endophyte.

    PubMed

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent; Ruppel, Silke

    2012-10-01

    Enterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.

  9. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    PubMed Central

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148. PMID:28254977

  10. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  11. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci

    PubMed Central

    Shavit, Roee; Ofek-Lalzar, Maya; Burdman, Saul; Morin, Shai

    2013-01-01

    In their natural environment, plants experience multiple biotic interactions and respond to this complexity in an integrated manner. Therefore, plant responses to herbivory are flexible and depend on the context and complexity in which they occur. For example, plant growth promoting rhizobacteria (PGPR) can enhance plant growth and induce resistance against microbial pathogens and herbivorous insects by a phenomenon termed induced systemic resistance (ISR). In the present study, we investigated the effect of tomato (Solanum lycopersicum) pre-inoculation with the PGPR Pseudomonas fluorescens WCS417r, on the performance of the generalist phloem-feeding insect Bemisia tabaci. Based on the ability of P. fluorescens WCS417r to prime for ISR against generalists chewing insects and necrotrophic pathogens, we hypothesized that pre-inoculated plants will strongly resist B. tabaci infestation. In contrast, we discovered that the pre-inoculation treatment increased the tomato plant suitability for B. tabaci which was emphasized both by faster developmental rate and higher survivability of nymph stages on pre-inoculated plants. Our molecular and chemical analyses suggested that the phenomenon is likely to be related to: (I) the ability of the bacteria to reduce the activity of the plant induced defense systems; (II) a possible manipulation by P. fluorescens of the plant quality (in terms of suitability for B. tabaci) through an indirect effect on the rhizosphere bacterial community. The contribution of our study to the pattern proposed for other belowground rhizobacteria and mycorrhizal fungi and aboveground generalist phloem-feeders is discussed. PMID:23964283

  12. Draft Genome Sequence of Multitrait Plant Growth-Promoting Bacillus sp. Strain RZ2MS9

    PubMed Central

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Almeida, Jaqueline Raquel; Azevedo, João Lúcio

    2016-01-01

    Bacillus sp. strain RZ2MS9 is a multitrait soybean and maize growth-promoting bacterium isolated in Brazil from guarana’s rhizosphere. Here, we present the draft genome sequence of RZ2MS9 and its genes involved in many features related to plant growth promotion. PMID:28007854

  13. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    PubMed

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.

  14. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions.

  15. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition.

    PubMed

    Pangesti, N; Pineda, A; Dicke, M; van Loon, J J A

    2015-03-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using Arabidopsis thaliana Col-0-Pseudomonas fluorescens WCS417r as a model system, we investigated the performance and the molecular mechanisms underlying plant-mediated effects of rhizobacteria on the generalist caterpillar Mamestra brassicae and the specialist Pieris brassicae. Rhizobacteria colonisation of Arabidopsis roots resulted in decreased larval weight of M. brassicae, whereas no effect was observed on larval weight of P. brassicae. Using a jasmonic acid (JA)-impaired mutant (dde2-2), we confirmed the importance of JA in rhizobacteria-mediated ISR against M. brassicae. Interestingly, in some experiments we also observed rhizobacteria-induced systemic susceptibility to M. brassicae. The role of soil composition in the variable outcomes of microbe-plant-insect interactions was then assessed by comparing M. brassicae performance and gene transcription in plants grown in potting soil or a mixture of potting soil and sand in a 1:1 ratio. In a mixture of potting soil and sand, rhizobacteria treatment had a consistent negative effect on M. brassicae, whereas the effect was more variable in potting soil. Interestingly, at 24 h post-infestation (hpi) rhizobacteria treatment primed plants grown in a mixture of potting soil and sand for stronger expression of the JA- and ethylene-regulated genes PDF1.2 and HEL, respectively. Our study shows that soil composition can modulate rhizobacteria-plant-insect interactions, and is a factor that should be considered when studying these belowground-aboveground interactions.

  16. Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases.

    PubMed

    Phirke, Niteen V; Kothari, Raman M; Chincholkar, Sudhir B

    2008-12-01

    The corporate R&D banana orchards of Musa paradisiaca (dwarf Cavendish AAA, var. shrimanti) on a medium black alluvial soil with low nutrients harboured diversified species of vesicular-arbuscular mycorrhizal (VAM) fungi. These fungi infected the roots severely (69.2%), showed elevated (69.8 g(-1) soil) spore density, increased soil bacterial density (245 x 10(8) cfu g(-1)), produced siderophores (58.2%) and reduced nematode population (2.3 g(-1)) in the mycorrhizosphere of plants for integrated plant nutrition management (IPNM) system as compared to traditional treatment of applying chemical fertilisers alone and other test treatments. The interactions of plant roots with native VAM and local and applied rhizobacteria in the matrix of soil conditioner enabled proper nourishment and protection of crop in IPNM treatment as compared to traditional way. Hence, exploitation of plant growth promoting rhizobacteria through judiciously designed IPNM system revealed the (a) relatively increased banana productivity (21.6%, 76 MT ha(-1)), (b) least occurrence of fusarial wilt and negligible evidence of Sigatoka, (c) saving of 50% chemical fertilisers and (d) permitted control over soil fertility in producer's favour over traditional cultivation practices. These findings are discussed in detail.

  17. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  18. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    PubMed

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  19. Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion.

    PubMed

    Anitha, G; Kumudini, B S

    2014-07-01

    Seven isolates of fluorescent pseudomonads were evaluated for their effect on plant growth promoting traits, both under normal and saline conditions using tomato plants. Fifteen rhizosphere samples from crop fields' of rice, chilly, ragi, beans and garden soils from different regions of India were collected and used for further study. They were characterized morphologically and biochemically which led to a conclusion that they may belong to genus Pseudomonas. They were also analyzed for their plant growth promoting activities such as production of indole acetic acid, siderophore, hydrogen cyanide and ammonia. It was observed that all the isolates were able to produce these compounds, but to varying extent. But, isolate JUPF37 produced highest followed by JUPF32. Study showed that out of seven isolates of fluorescent pseudomonads, JUPF37 showed highest plant growth promoting traits both under normal and saline conditions.

  20. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.

    PubMed

    Armendariz, Ana L; Talano, Melina A; Wevar Oller, Ana L; Medina, María I; Agostini, Elizabeth

    2015-07-01

    Bacterial ability to colonize the rhizosphere of plants in arsenic (As) contaminated soils is highly important for symbiotic and free-living plant growth-promoting rhizobacteria (PGPR) used as inoculants, since they can contribute to enhance plant As tolerance and limit metalloid uptake by plants. The aim of this work was to study the effect of As on growth, exopolysaccharide (EPS) production, biofilm formation and motility of two strains used as soybean inoculants, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39. The metabolism of arsenate (As(V)) and arsenite (As(III)) and their removal and/or possible accumulation were also evaluated. The behavior of both bacteria under As treatment was compared and discussed in relation to their potential for colonizing plant rhizosphere with high content of the metalloid. B. japonicum E109 growth was reduced with As(III) concentration from 10 μM while A. brasilense Az39 showed a reduction of growth with As(III) from 500 μM. EPS and biofilm production increased significantly under 25 μM As(III) for both strains. Moreover, this was more notorious for Azospirillum under 500 μM As(III), where motility was seriously affected. Both bacterial strains showed a similar ability to reduce As(V). However, Azospirillum was able to oxidize more As(III) (around 53%) than Bradyrhizobium (17%). In addition, both strains accumulated As in cell biomass. The behavior of Azospirillum under As treatments suggests that this strain would be able to colonize efficiently As contaminated soils. In this way, inoculation with A. brasilense Az39 would positively contribute to promoting growth of different plant species under As treatment.

  1. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana.

    PubMed

    Kwon, Young Sang; Lee, Dong Yeol; Rakwal, Randeep; Baek, Seong-Bum; Lee, Jeom Ho; Kwak, Youn-Sig; Seo, Jong-Su; Chung, Woo Sik; Bae, Dong-Won; Kim, Sang Gon

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) facilitate the plant growth and enhance their induced systemic resistance (ISR) against a variety of environmental stresses. In this study, we carried out integrative analyses on the proteome, transcriptome, and metabolome to investigate Arabidopsis root and shoot responses to the well-known PGPR strain Paenibacillus polymyxa (P. polymyxa) E681. Shoot fresh and root dry weights were increased, whereas root length was decreased by treatment with P. polymyxa E681. 2DE approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 41 (17 spots in root, 24 spots in shoot) that were differentially expressed in response to P. polymyxa E681. Biological process- and molecular function-based bioinformatics analysis resulted in their classification into seven different protein groups. Of these, 36 proteins including amino acid metabolism, antioxidant, defense and stress response, photosynthesis, and plant hormone-related proteins were up-regulated, whereas five proteins including three carbohydrate metabolism- and one amino acid metabolism-related, and one unknown protein were down-regulated, respectively. A good correlation was observed between protein and transcript abundances for the 12 differentially expressed proteins during interactions as determined by qPCR analysis. Metabolite analysis using LC-MS/MS revealed highly increased levels of tryptophan, indole-3-acetonitrile (IAN), indole-3-acetic acid (IAA), and camalexin in the treated plants. Arabidopsis plant inoculated P. polymyxa E681 also showed resistance to Botrytis cinerea infection. Taken together these results suggest that P. polymyxa E681 may promote plant growth by induced metabolism and activation of defense-related proteins against fungal pathogen.

  2. Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS.

    PubMed

    Song, Ju Yeon; Kim, Hyun A; Kim, Ji-Seoung; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su; Kim, Beom Seok; Kim, Sun-Hyung; Kwon, Suk Yoon; Kim, Jihyun F

    2012-07-01

    Volatile and nonvolatile compounds emitted from the plant growth-promoting rhizobacterium Bacillus sp. strain JS enhance the growth of tobacco and lettuce. Here, we report the high-quality genome sequence of this bacterium. Its 4.1-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.

  3. Bio-control and plant growth promotion potential of Salicaceae endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial endophytes are important for growth benefits in a variety of plant species. Microbial communities of the poplar (Populus sp.) and willow (Salix sp.) endosphere have been demonstrated to be important for plant growth promotion, protection from abiotic stresses, and degradation of toxic subs...

  4. Genome Sequence of the Plant Growth-Promoting Bacterium Enterobacter cloacae GS1

    PubMed Central

    Shankar, Manoharan; Ponraj, Paramasivan; Ilakiam, Devaraj; Rajendhran, Jeyaprakash

    2012-01-01

    Here, we present the genome sequence of Enterobacter cloacae GS1. This strain proficiently colonizes rice roots and promotes plant growth by improving plant nutrition. Analyses of the E. cloacae GS1 genome will throw light on the genetic factors involved in root colonization, growth promotion, and ecological success of this rhizobacterium. PMID:22843603

  5. Complete Genome of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida BIRD-1

    SciTech Connect

    Matilla, M.A.; van der Lelie, D.; Pizarro-Tobias, P.; Roca, A.; Fernandez, M.; Duque, E.; Molina, L.; Wu, X.; Gomez, M. J.; Segura, A.; Ramos, J.-L.

    2011-03-01

    We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.

  6. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth promoter bacteria (PGPB) can be used to reduce fertilizer inputs to crops. Seed inoculation is the main method of PGPB application, but competition with rhizosphere microorganisms reduces their effectiveness. Here we propose a new biotechnological tool for plant stimulation using endoph...

  7. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray.

    PubMed

    Francis, Isolde M; Stes, Elisabeth; Zhang, Yucheng; Rangel, Diana; Audenaert, Kris; Vereecke, Danny

    2016-09-25

    Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.

  8. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana.

    PubMed

    Ryu, Choong-Min; Murphy, John F; Reddy, M S; Kloepper, Joseph W

    2007-02-01

    We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (BioYield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.

  9. Plant growth promoting bacteria from cow dung based biodynamic preparations.

    PubMed

    Radha, T K; Rao, D L N

    2014-12-01

    Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 μg ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains.

  10. Different Growth Promoting Effects of Endophytic Bacteria on Invasive and Native Clonal Plants

    PubMed Central

    Dai, Zhi-Cong; Fu, Wei; Wan, Ling-Yun; Cai, Hong-Hong; Wang, Ning; Qi, Shan-Shan; Du, Dao-Lin

    2016-01-01

    The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP) effects of endophytic bacteria Bacillus sp. on aseptic seedlings of Wedelia trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets’ growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion. PMID:27252722

  11. Draft Genome Sequence of a Diazotrophic, Plant Growth-Promoting Rhizobacterium of the Pseudomonas syringae Complex.

    PubMed

    Patten, Cheryl L; Jeong, Haeyoung; Blakney, Andrew J C; Wallace, Natalie

    2016-09-22

    We report here the draft genome sequence of Pseudomonas syringae GR12-2, a nitrogen-fixing, plant growth-promoting bacterium, isolated from the rhizosphere of an Arctic grass. The 6.6-Mbp genome contains 5,676 protein-coding genes, including a nitrogen-fixation island similar to that in P. stutzeri.

  12. Genome of the Root-Associated Plant Growth-Promoting Bacterium Variovorax paradoxus Strain EPS.

    PubMed

    Han, Jong-In; Spain, Jim C; Leadbetter, Jared R; Ovchinnikova, Galina; Goodwin, Lynne A; Han, Cliff S; Woyke, Tanja; Davenport, Karen W; Orwin, Paul M

    2013-10-24

    Variovorax paradoxus is a ubiquitous betaproteobacterium involved in plant growth promotion, the degradation of xenobiotics, and quorum-quenching activity. The genome of V. paradoxus strain EPS consists of a single circular chromosome of 6,550,056 bp, with a 66.48% G+C content.

  13. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    PubMed Central

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  14. Survival and Plant Growth Promotion of Detergent-Adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2.

    PubMed

    Devliegher, W; Arif, M; Verstraete, W

    1995-11-01

    Four detergents were tested as selective C sources for the plant growth-promoting rhizobacteria Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15. CO-720 (Igepal CO-720) or DOS (dioctyl sulfosuccinate), applied at 0.2% to the soil, increased the number of detergent-adapted, inoculated strains by almost 1.5 log units after 25 days, accounting for virtually the entire increase in total bacteria. The same dose of Tween 80 or N-laurylsarcosine, on the other hand, increased the indigenous populations by almost 2.5 log units, with only minor increases in the number of detergent-adapted inoculated strains. When CO-720 or DOS was initially supplied, the number of detergent-adapted 7NSK2 organisms was about 2 log units higher after 3 months of incubation than for the detergent-unadapted strain. This better survival resulted in a significantly higher root colonization of maize in a pot experiment with soil inoculation, with a significantly (P <= 0.05) higher shoot dry weight (18 to 33%). In a first field experiment with rhizosphere inoculation of 1-month-old maize plants, no effects on the height of two maize cultivars could be observed 1 month after inoculation. In a second field experiment, leaf and stem dry weights of yellow mustard and grass dry weight were increased in the treatments with seed and soil inoculation of the detergent-adapted 7NSK2 in combination with CO-720 application by, respectively, 7 to 8%, 19 to 23%, and 20 to 31%, although only the increases in grass dry weight were statistically significant at P <= 0.1. To some extent, 7NSK2 and DOS application also positively affected the mineral content of yellow mustard.

  15. Survival and Plant Growth Promotion of Detergent-Adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2

    PubMed Central

    Devliegher, W.; Arif, M.; Verstraete, W.

    1995-01-01

    Four detergents were tested as selective C sources for the plant growth-promoting rhizobacteria Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15. CO-720 (Igepal CO-720) or DOS (dioctyl sulfosuccinate), applied at 0.2% to the soil, increased the number of detergent-adapted, inoculated strains by almost 1.5 log units after 25 days, accounting for virtually the entire increase in total bacteria. The same dose of Tween 80 or N-laurylsarcosine, on the other hand, increased the indigenous populations by almost 2.5 log units, with only minor increases in the number of detergent-adapted inoculated strains. When CO-720 or DOS was initially supplied, the number of detergent-adapted 7NSK2 organisms was about 2 log units higher after 3 months of incubation than for the detergent-unadapted strain. This better survival resulted in a significantly higher root colonization of maize in a pot experiment with soil inoculation, with a significantly (P <= 0.05) higher shoot dry weight (18 to 33%). In a first field experiment with rhizosphere inoculation of 1-month-old maize plants, no effects on the height of two maize cultivars could be observed 1 month after inoculation. In a second field experiment, leaf and stem dry weights of yellow mustard and grass dry weight were increased in the treatments with seed and soil inoculation of the detergent-adapted 7NSK2 in combination with CO-720 application by, respectively, 7 to 8%, 19 to 23%, and 20 to 31%, although only the increases in grass dry weight were statistically significant at P <= 0.1. To some extent, 7NSK2 and DOS application also positively affected the mineral content of yellow mustard. PMID:16535159

  16. Plant powder teabags: a novel and practical approach to resolve culturability and diversity of rhizobacteria.

    PubMed

    Sarhan, Mohamed S; Mourad, Elhussein F; Hamza, Mervat A; Youssef, Hanan H; Scherwinski, Ann-Christin; El-Tahan, Mahmoud; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2016-08-01

    We have developed teabags packed with dehydrated plant powders, without any supplements, for preparation of plant infusions necessary to develop media for culturing rhizobacteria. These bacteria are efficiently cultivated on such plant teabag culture media, with better progressive in situ recoverability compared to standard chemically synthetic culture media. Combining various plant-based culture media and incubation conditions enabled us to resolve unique denaturing gradient gel electrophoresis (DGGE) bands that were not resolved by tested standard culture media. Based on polymerase chain reaction PCR-DGGE of 16S rDNA fingerprints and sequencing, the plant teabag culture media supported higher diversity and significant increases in the richness of endo-rhizobacteria, namely Gammaproteobacteria (Enterobacteriaceae) and predominantly Alphaproteobacteria (Rhizobiaceae). This culminated in greater retrieval of the rhizobacteria taxa associated with the plant roots. We conclude that the plant teabag culture medium by itself, without any nutritional supplements, is sufficient and efficient for recovering and mirroring the complex and diverse communities of rhizobacteria. Our message to fellow microbial ecologists is: simply dehydrate your plant canopy, teabag it and soak it to prepare your culture media, with no need for any additional supplementary nutrients.

  17. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  18. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

    PubMed Central

    Sumayo, Marilyn; Hahm, Mi-Seon; Ghim, Sa-Youl

    2013-01-01

    The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens. PMID:25288944

  19. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves.

    PubMed

    Sumayo, Marilyn; Hahm, Mi-Seon; Ghim, Sa-Youl

    2013-06-01

    The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

  20. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion.

    PubMed

    Kannan, Vijayaragahavan; Sureendar, Raman

    2009-04-01

    Biological systems are getting more relevance than chemical control of plant pathogens as they are not only eco-friendly and economic in approach but are also involved in improving the soil consistency and maintenance of natural soil flora. Plant growth promoting rhizosphere microorganisms were isolated from three different tree rhizospheres using selective culture media. Five microorganisms were selected from each rhizosphere soil based on their efficiency and screened for their ability to promote plant growth as a consortium. Each of the developed consortium has a phosphate solubilizer, nitrogen fixer, growth hormone producer, heterotrophic member and an antagonist. The plant growth promoting ability of the microbial members present in the consortium was observed by estimating the IAA production level and also by the nitrogenase activity of the nitrogen fixers. The biocontrol potentiality of the consortium and the antagonist present in the consortium were checked by both dual plate assay and cross-streaking technique. Consortial treatments effected very good growth promotion in Lycopersicon esculentum Mill and the treated plants also developed resistance against wilt pathogen, Fusarium oxysporum f. sp. lycopersici though the effect was well pronounced with consortium developed from Santalum album.

  1. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    PubMed

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  2. Pseudomonas fluorescens Transportome Is Linked to Strain-Specific Plant Growth Promotion in Aspen Seedlings under Nutrient Stress

    PubMed Central

    Shinde, Shalaka; Cumming, Jonathan R.; Collart, Frank R.; Noirot, Philippe H.; Larsen, Peter E.

    2017-01-01

    Diverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates. PGP activities have been characterized for a variety of forest tree species and are important in C cycling and sequestration in terrestrial ecosystems. The molecular mechanisms of these PGP activities, however, are less well-known. In a previous analysis of Pseudomonas genomes, we found that the bacterial transportome, the aggregate activity of a bacteria's transmembrane transporters, was most predictive for the ecological niche of Pseudomonads in the rhizosphere. Here, we used Populus tremuloides Michx. (trembling aspen) seedlings inoculated with one of three Pseudomonas fluorescens strains (Pf0-1, SBW25, and WH6) and one Pseudomonas protegens (Pf-5) as a laboratory model to further investigate the relationships between the predicted transportomic capacity of a bacterial strain and its observed PGP effects in laboratory cultures. Conditions of low nitrogen (N) or low phosphorus (P) availability and the corresponding replete media conditions were investigated. We measured phenotypic and biochemical parameters of P. tremuloides seedlings and correlated P. fluorescens strain-specific transportomic capacities with P. tremuloides seedling phenotype to predict the strain and nutrient environment-specific transporter functions that lead to experimentally observed, strain, and media-specific PGP activities and the capacity to protect plants against nutrient stress. These predicted transportomic functions fall in three groups: (i) transport of compounds that modulate aspen seedling root

  3. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Harikesh Bahadur

    2015-08-01

    The beneficial plant-microbe interactions play crucial roles in protection against large number of plant pathogens causing disease. The present study aims to investigate the growth promoting traits induced by beneficial microbes namely Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 treated singly and in combinations under greenhouse and field conditions to control Sclerotinia sclerotiorum. Plants treated with three microbe consortium enhanced plant growth maximally both in the presence and absence of the pathogen. Increase in plant length, total biomass, number of leaves, nodules and secondary roots, total chlorophyll and carotenoid content, and yield were recorded in plants treated with microbial consortia. Also, a decrease in plant mortality was observed in plants treated with microbial consortia in comparison to untreated control plants challenged with S. sclerotiorum. Furthermore, the decrease in disease of all the treatments can be associated with differential improvement of growth induced in pea.

  4. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    PubMed

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea.

  5. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    PubMed Central

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  6. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  7. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper.

    PubMed

    Islam, Md Rashedul; Sultana, Tahera; Joe, M Melvin; Yim, Woojong; Cho, Jang-Cheon; Sa, Tongmin

    2013-12-01

    As a suitable alternative to chemical fertilizers, the application of plant growth-promoting rhizobacteria has been increasing in recent years due to their potential to be used as biofertilizers. In the present work, 13 nitrogen-fixing bacterial strains belonging to 11 different genera were tested for their PGP attributes. All of the strains were positive for 1-aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), salicylic acid, and ammonia production while negative for cellulase, pectinase, and hydrocyanic acid production. The strains Pseudomonas sp. RFNB3 and Serratia sp. RFNB14 were the most effective in solubilizing both tri-calcium phosphate and zinc oxide. In addition, all strains except Pseudomonas sp. RFNB3 were able to oxidize sulfur, and six strains were positive for siderophore synthesis. Each strain tested in this study possesses at least four PGP properties in addition to nitrogen fixation. Nine strains were selected based on their multiple PGP potential, particularly ACCD and IAA production, and evaluated for their effects on early growth of tomato and red pepper under gnotobiotic conditions. Bacterial inoculation considerably influenced root and shoot length, seedling vigor, and dry biomass of the two crop plants. Three strains that demonstrated substantial effects on plant performance were further selected for greenhouse trials with red pepper, and among them Pseudomonas sp. RFNB3 resulted in significantly higher plant height (26%) and dry biomass (28%) compared to control. The highest rate of nitrogen fixation, as determined by acetylene reduction assay, occurred in Novosphingobium sp. RFNB21 inoculated red pepper root (49.6 nM of ethylene/h/g of dry root) and rhizosphere soil (41.3 nM of ethylene/h/g of dry soil). Inoculation with nitrogen-fixing bacteria significantly increased chlorophyll content, and the uptake of different macro- and micro-nutrient contents enhancing also in red pepper shoots, in comparison with

  8. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes.

    PubMed

    Kandel, Shyam L; Firrincieli, Andrea; Joubert, Pierre M; Okubara, Patricia A; Leston, Natalie D; McGeorge, Kendra M; Mugnozza, Giuseppe S; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

  9. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes

    PubMed Central

    Kandel, Shyam L.; Firrincieli, Andrea; Joubert, Pierre M.; Okubara, Patricia A.; Leston, Natalie D.; McGeorge, Kendra M.; Mugnozza, Giuseppe S.; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L.

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition. PMID:28348550

  10. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  11. Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans.

    PubMed

    Park, Jae Min; Lazarovits, George

    2014-06-01

    Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.

  12. Insights from the draft genome of Paenibacillus lentimorbus NRRL B-30488, a promising plant growth promoting bacterium.

    PubMed

    Chaudhry, Vasvi; Chauhan, Puneet S; Mishra, Aradhana; Goel, Ridhi; Asif, Mehar H; Mantri, Shrikant S; Bag, Sumit K; Singh, Sunil K; Sawant, Samir V; Nautiyal, Chandra Shekhar

    2013-12-01

    Paenibacillus lentimorbus NRRL B-30488, a plant growth-promoting bacterium was isolated from Sahiwal cow's milk. The strain shows antagonism against phytopathogens, Fusarium oxysporum f. sp. ciceri and Alternaria solani. Its genome contains gene clusters involved in nonribosomal synthesis of secondary metabolites involved in antimicrobial activities. The genome sequence of P. lentimorbus NRRL B-30488 provides the genetic basis for application of this bacterial strain in plant growth promotion, plant protection and degradation of organic pollutants.

  13. The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth-promoting properties of the cultured isolates.

    PubMed

    Zhou, Guang-Can; Wang, Ying; Ma, Yuan; Zhai, Shan; Zhou, Ling-Yan; Dai, Yi-Jun; Yuan, Sheng

    2014-01-01

    A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L(-1) neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth-promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO-tri. In addition, 16S rRNA gene-denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX-23 and Agromyces mediolanus TMX-25 produced indole-3-acetic acid, whereas E. adhaerens TMX-23 and Mesorhizobium alhagi TMX-36 are N2-fixing bacteria. The six-isolated microbes were tolerant to 200 mg L(-1) TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX-5 and Microbacterium sp.TMX-6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor.

  14. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    PubMed

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency.

  15. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.

  16. Whole Genome Sequencing and Analysis of Plant Growth Promoting Bacteria Isolated from the Rhizosphere of Plantation Crops Coconut, Cocoa and Arecanut

    PubMed Central

    Thomas, George V.; Manikandan, Vinu; Gajewski, John; Thomas, George; Seshagiri, Somasekar; Schuster, Stephan C.

    2014-01-01

    Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified. PMID:25162593

  17. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut.

    PubMed

    Gupta, Alka; Gopal, Murali; Thomas, George V; Manikandan, Vinu; Gajewski, John; Thomas, George; Seshagiri, Somasekar; Schuster, Stephan C; Rajesh, Preeti; Gupta, Ravi

    2014-01-01

    Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified.

  18. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9.

    PubMed

    Neupane, Saraswoti; Högberg, Nils; Alström, Sadhna; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Lu, Megan; Han, Cliff; Detter, John C; Tapia, Roxanne; Fiebig, Anne; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C; Ivanova, Natalia; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D

    2012-03-19

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled "Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  19. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    SciTech Connect

    Neupane, Saraswoti; Hogberg, Nils; Alstrom, Sadhna; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Lu, Megan; Han, Cliff; Detter, J. Chris; Tapia, Roxanne; Fiebig, Anne; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  20. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    PubMed Central

    Högberg, Nils; Alström, Sadhna; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Lu, Megan; Han, Cliff; Detter, John C.; Tapia, Roxanne; Fiebig, Anne; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled “Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010). PMID:22675598

  1. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.

    PubMed

    Gamalero, Elisa; Lingua, Guido; Berta, Graziella; Glick, Bernard R

    2009-05-01

    Heavy metal pollution is a major worldwide environmental concern that has recently motivated researchers to develop a variety of novel approaches towards its cleanup. As an alternative to traditional physical and chemical methods of environmental cleanup, scientists have developed phytoremediation approaches that include the use of plants to remove or render harmless a range of compounds. Both plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can be used to facilitate the process of phytoremediation and the growth of plants in metal-contaminated soils. This review focuses on the recent literature dealing with the effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress and points the way to strategies that may facilitate the practical realization of this technology.

  2. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol

    PubMed Central

    Vílchez, Juan I.; Navas, Alfonso; González-López, Jesús; Arcos, Susana C.; Manzanera, Maximino

    2016-01-01

    Plant growth-promoting bacteria (PGPB) colonize plants and enhance their growth by different mechanisms. Some of these microorganisms may represent a potential threat to human, animal or plant health; however, their use might be approved in parts of Europe if they have been recommended as plant growth enhancers. The current regulatory framework has resulted in a fragmented, contradictory system, and there is an urgent need to establish harmonized protocols for the predictability, efficiency, consistency and especially the safety of PGPB for human and animal health and for the environment. In response to current efforts to update biosafety policies and provide alternative methods to replace the use of vertebrate animals, we propose a panel of tests and an evaluation system to reliably determine the biosafety of bacterial strains used as PGPB. Based on the results of different tests, we propose a scoring system to evaluate the safety of candidates for PGPB within the limitations of the assays used. PMID:26779168

  3. [The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula].

    PubMed

    Aviles-Garcia, Maria Elizabeth; Flores-Cortez, Idolina; Hernández-Soberano, Christian; Santoyo, Gustavo; Valencia-Cantero, Eduardo

    Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available.

  4. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  5. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    SciTech Connect

    Burd, G.I.; Dixon, D.G.; Glick, B.R.

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  6. Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential.

    PubMed

    Souza, Mayara S T; de Baura, Valter A; Santos, Sandra A; Fernandes-Júnior, Paulo Ivan; Reis Junior, Fábio B; Marques, Maria Rita; Paggi, Gecele Matos; da Silva Brasil, Marivaine

    2017-04-01

    A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL(-1) and 107-1038 µmol L(-1), respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.

  7. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4.

    PubMed

    Neupane, Saraswoti; Goodwin, Lynne A; Högberg, Nils; Kyrpides, Nikos C; Alström, Sadhna; Bruce, David; Quintana, Beverly; Munk, Christine; Daligault, Hajnalka; Teshima, Hazuki; Davenport, Karen; Reitenga, Krista; Green, Lance; Chain, Patrick; Erkkila, Tracy; Gu, Wei; Zhang, Xiaojing; Xu, Yan; Kunde, Yulia; Chertkov, Olga; Han, James; Han, Cliff; Detter, John C; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Szeto, Ernest; Mavromatis, Kostas; Huntemann, Marcel; Nolan, Matt; Pitluck, Sam; Deshpande, Shweta; Markowitz, Victor; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D

    2013-07-30

    Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project "Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI's Community Sequencing Program.

  8. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4

    PubMed Central

    Goodwin, Lynne A.; Högberg, Nils; Kyrpides, Nikos C.; Alström, Sadhna; Bruce, David; Quintana, Beverly; Munk, Christine; Daligault, Hajnalka; Teshima, Hazuki; Davenport, Karen; Reitenga, Krista; Green, Lance; Chain, Patrick; Erkkila, Tracy; Gu, Wei; Zhang, Xiaojing; Xu, Yan; Kunde, Yulia; Chertkov, Olga; Han, James; Han, Cliff; Detter, John C.; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Szeto, Ernest; Mavromatis, Kostas; Huntemann, Marcel; Nolan, Matt; Pitluck, Sam; Deshpande, Shweta; Markowitz, Victor; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D.

    2013-01-01

    Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project “Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI’s Community Sequencing Program. PMID:24501629

  9. Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain.

    PubMed

    Rinu, K; Sati, Priyanka; Pandey, Anita

    2014-05-01

    An endophytic fungus has been isolated from the lateral roots of lentil (Lens esculenta Moench), growing under mountain ecosystem of Indian Himalayan Region (IHR). While the fungus was observed as fast growing with white scanty mycelium turning to turmeric brown in 5 days of incubation at 25 °C, it also produced a unique odor. The fungus exhibited growth between 4 and 30 °C (optimum 25 °C) and tolerated pH between 2.0 and 13.5 (optimum 4-6). Based on phenotypic (colony morphology and microscopy) and genotypic (18S rRNA analysis) characters, the fungus was identified as Trichoderma gamsii (99% similarity). The fungus was evaluated for its plant growth promotion and biocontrol properties. The fungus was found to be positive for phosphate solubilization, chitinase activity, and production of ammonia and salicylic acid, while the results for production of IAA, HCN, and siderophores were negative. Out of the seven phytopathogenic fungi tested, it showed antagonism against six. Bioassays conducted under green house using four test crops (two cereals and two legumes) showed its potential in plant growth promotion. The fungus has potential to be developed as a bioformulation for application under mountain ecosystem.

  10. Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Saxena, Anil Kumar

    2016-02-01

    The plant growth promoting psychrotrophic Bacilli were investigated from different sites in north western Indian Himalayas. A total of 247 morphotypes were obtained from different soil and water samples and were grouped into 43 clusters based on 16S rDNA-RFLP analysis with three restriction endonucleases. Sequencing of representative isolates has revealed that these 43 Bacilli belonged to different species of 11 genera viz., Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus and Virgibacillus. With an aim to develop microbial inoculants that can perform efficiently at low temperatures, all representative isolates were screened for different plant growth promoting traits at low temperatures (5-15 degrees C). Among the strains, variations were observed for production (%) of indole-3-acetic acid (20), ammonia (19), siderophores (11), gibberellic acid (4) and hydrogen cyanide (2); solubilisation (%) of zinc (14), phosphate (13) and potassium (7); 1-aminocyclopropane-1-carboxylate deaminase activity (6%) and biocontrol activity (4%) against Rhizoctonia solani and Macrophomina phaseolina. Among all the strains, Bacillus licheniformis, Bacillus muralis, Desemzia incerta, Paenibacillus tylopili and Sporosarcina globispora were found to be potent candidates to be developed as inoculants as they exhibited multiple PGP traits at low temperature.

  11. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  12. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    PubMed Central

    Achari, Gauri A.

    2014-01-01

    Eggplant (Solanum melongena L.) is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA) grouped these xylem residing bacteria (XRB) into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant. PMID:24963298

  13. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants.

    PubMed

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-12-21

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool-a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL(-1) of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  14. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants

    NASA Astrophysics Data System (ADS)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-11-01

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool--a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL-1 of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  15. Complete Genome Sequence of the Plant Growth-Promoting Endophyte Burkholderia phytofirmans Strain PsJN▿

    PubMed Central

    Weilharter, Alexandra; Mitter, Birgit; Shin, Maria V.; Chain, Patrick S. G.; Nowak, Jerzy; Sessitsch, Angela

    2011-01-01

    Burkholderia phytofirmans PsJNT is able to efficiently colonize the rhizosphere, root, and above-ground plant tissues of a wide variety of genetically unrelated plants, such as potatoes, canola, maize, and grapevines. Strain PsJN shows strong plant growth-promoting effects and was reported to enhance plant vigor and resistance to biotic and abiotic stresses. Here, we report the genome sequence of this strain, which indicates the presence of multiple traits relevant for endophytic colonization and plant growth promotion. PMID:21551308

  16. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  17. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum

    PubMed Central

    Dodd, Ian C.

    2012-01-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40–60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil. PMID:23136167

  18. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum.

    PubMed

    Jiang, Fan; Chen, Lin; Belimov, Andrey A; Shaposhnikov, Alexander I; Gong, Fan; Meng, Xu; Hartung, Wolfram; Jeschke, Dieter W; Davies, William J; Dodd, Ian C

    2012-11-01

    Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40-60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil.

  19. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria.

    PubMed

    Kielak, Anna M; Cipriano, Matheus A P; Kuramae, Eiko E

    2016-12-01

    Acidobacteria is one of the most abundant phyla in soils and has been detected in rhizosphere mainly based on cultivation-independent approaches such as 16S rRNA gene survey. Although putative interaction of Acidobacteria with plants was suggested, so far no plant-bacterial interactions were shown. Therefore, we performed several in vitro tests to evaluate Acidobacteria-plant interactions and the possible mechanisms involved in such interaction. We observed that Arabidopsis thaliana inoculated with three strains belonging to Acidobacteria subdivision 1 showed increase in biomass of roots and shoots as well as morphological changes in root system. Our results indicate that the plant hormone indole-3-acetic acid production and iron acquisition are plausibly involved in the plant and Acidobacteria interactions. Here, we confirm for the first time that Acidobacteria can actively interact with plants and act as plant growth-promoting bacteria. In addition, we show that Acidobacteria strains produce exopolysaccharide which supports the adhesion of bacteria to the root surfaces.

  20. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  1. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  2. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.

    PubMed

    Singh, Namrata; Marwa, Naina; Mishra, Shashank K; Mishra, Jyoti; Verma, Praveen C; Rathaur, Sushma; Singh, Nandita

    2016-03-01

    Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant.

  3. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  4. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    PubMed Central

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  5. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea.

    PubMed

    Rahi, P; Vyas, P; Sharma, S; Gulati, Ashu; Gulati, Arvind

    2009-06-01

    The ITS region sequence of a phosphate-solubilizing fungus isolated from the rhizosphere of tea growing in Kangra valley of Himachal Pradesh showed 96% identity with Discosia sp. strain HKUCC 6626 ITS 1, 5.8S rRNA gene and ITS 2 complete sequence, and 28S rRNA gene partial sequence. The fungus exhibited the multiple plant growth promoting attributes of solubilization of inorganic phosphate substrates, production of phytase and siderophores, and biosynthesis of indole acetic acid (IAA)-like auxins. The fungal inoculum significantly increased the root length, shoot length and dry matter in the test plants of maize, pea and chickpea over the uninoculated control under the controlled environment. The plant growth promoting attributes have not been previously studied for the fungus. The fungal strain with its multiple plant growth promoting activities appears attractive towards the development of microbial inoculants.

  6. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation

    PubMed Central

    Du, Nanshan; Shi, Lu; Yuan, Yinghui; Li, Bin; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-01-01

    Plant-growth-promoting rhizobacteria (PGPR) can both improve plant growth and enhance plant resistance against a variety of environmental stresses. To investigate the mechanisms that PGPR use to protect plants under pathogenic attack, transmission electron microscopy analysis and a proteomic approach were designed to test the effects of the new potential PGPR strain Paenibacillus polymyxa NSY50 on cucumber seedling roots after they were inoculated with the destructive phytopathogen Fusarium oxysporum f. sp. cucumerinum (FOC). NSY50 could apparently mitigate the injury caused by the FOC infection and maintain the stability of cell structures. The two-dimensional electrophoresis (2-DE) approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 56 proteins that were differentially expressed in response to NSY50 and/or FOC. The application of NSY50 up-regulated most of the identified proteins that were involved in carbohydrate metabolism and amino acid metabolism under normal conditions, which implied that both energy generation and the production of amino acids were enhanced, thereby ensuring an adequate supply of amino acids for the synthesis of new proteins in cucumber seedlings to promote plant growth. Inoculation with FOC inhibited most of the proteins related to carbohydrate and energy metabolism and to protein metabolism. The combined inoculation treatment (NSY50+FOC) accumulated abundant proteins involved in defense mechanisms against oxidation and detoxification as well as carbohydrate metabolism, which might play important roles in preventing pathogens from attacking. Meanwhile, western blotting was used to analyze the accumulation of enolase (ENO) and S-adenosylmethionine synthase (SAMs). NSY50 further increased the expression of ENO and SAMs under FOC stress. In addition, NSY50 adjusted the transcription levels of genes related to those proteins. Taken together, these results suggest that P. polymyxa NSY50 may promote plant growth and alleviate

  7. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  8. NMR analysis of fractionated irradiated κ-carrageenan oligomers as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, L. V.; Saiki, S.; Nagasawa, N.; Kudo, H.; Katsumura, Y.; De La Rosa, A. M.

    2011-09-01

    The optimum plant growth promoting effect in irradiated κ-carrageenan is known to be of Mw<10,000. This is obtained by irradiating κ-carrageenan at a dose of 100 kGy in solid and at 2 kGy in 1% aqueous solution. Kappa carrageenan irradiated at these doses was fractionated at different Mw ranges. The isolated fraction with a Mw of 3-10 kDa was analyzed by NMR. The chemical shifts of 13C and 1H spectra indicated that the basic functional structure of κ-carrageenan (alternating D-galactose-4-sulfate and 3,6-anhydro- D-galactose dimer) remains intact at a Mw of 3-10 kDa. No radiolytic products were detected at this range.

  9. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria.

    PubMed

    Castanheira, Nádia L; Dourado, Ana Catarina; Pais, Isabel; Semedo, José; Scotti-Campos, Paula; Borges, Nuno; Carvalho, Gilda; Barreto Crespo, Maria Teresa; Fareleira, Paula

    2017-05-01

    Multi-strain inoculants have increased potential to accomplish a diversity of plant needs, mainly attributed to its multi-functionality. This work evaluated the ability of a mixture of three bacteria to colonize and induce a beneficial response on the pasture crop annual ryegrass. Pseudomonas G1Dc10 and Paenibacillus G3Ac9 were previously isolated from annual ryegrass and were selected for their ability to perform multiple functions related to plant growth promotion. Sphingomonas azotifigens DSMZ 18530(T) was included due to nitrogen fixing ability. The effects of the bacterial mixture were assessed in gnotobiotic plant inoculation assays and compared with single and dual inoculation treatments. Triple inoculation with 3×10(8) bacteria significantly increased plant dry weight and leaf pigments, indicating improved photosynthetic performance. Plant lipid biosynthesis was enhanced by 65%, mainly due to the rise of linolenic acid, an omega-3 fatty acid with high dietary value. Electrolyte leakage, an indicator of plant membrane stability under stress, was decreased pointing to a beneficial effect by inoculation. Plants physiological condition was more favoured by triple inoculation than by single, although benefits on biomass were only evident relative to non-inoculated plants. The colonization behaviour and coexistence in plant tissues were assessed using FISH and GFP-labelling, combined with confocal microscopy and a cultivation-based approach for quantification. The three strains occupied the same sites, localizing preferentially along root hairs and in stem epidermis. Endophytic colonization was observed as bacteria entered root and stem inner tissues. This study reveals the potential of this mixture of strains for biofertilization, contributing to improve crop productivity and nutritional value.

  10. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds

    PubMed Central

    Anwar, Sumaira; Ali, Basharat; Sajid, Imran

    2016-01-01

    In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically, and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP) traits. About 30% of the isolates screened were found to be the promising PGP rhizobacteria (PGPRs), which exhibited maximum genetic similarity (up to 98–99%) with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA) producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3, and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23, and 69.26 μg/ml IAA respectively at 500 μg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100 ml) and S. djakartensis TB-4 (70.36 mg/100 ml). All rhizobacterial isolates were positive for siderophore, ammonia, and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l). For in-vivo screening, seed germination, and plant growth experiment were conducted by inoculating wheat (Triticum aestivum) seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65%), increased root length was recorded in case of S. nobilis WA-3 (81%) as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84%), increased plant dry weight was recorded in case of S. nobilis WA-3 (85%) as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27%) and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30%) as compared to control plants. Over all the study revealed that these rhizospheric PGP Streptomyces are good candidates to be developed as

  11. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Safronova, Vera I; Dumova, Valentina A; Shaposhnikov, Alexander I; Ladatko, Alexander G; Davies, William J

    2014-01-01

    Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.

  12. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  13. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    SciTech Connect

    Koeberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activities against plant pathogenic fungi, bacteria and nematodes, consists of a single 3.9 Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  14. Complete Genome Sequence of Bacillus amyloliquefaciens Strain Co1-6, a Plant Growth-Promoting Rhizobacterium of Calendula officinalis

    PubMed Central

    White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-01-01

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. PMID:26272562

  15. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

  16. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  17. Congolese Rhizospheric Soils as a Rich Source of New Plant Growth-Promoting Endophytic Piriformospora Isolates

    PubMed Central

    Venneman, Jolien; Audenaert, Kris; Verwaeren, Jan; Baert, Geert; Boeckx, Pascal; Moango, Adrien M.; Dhed’a, Benoît D.; Vereecke, Danny; Haesaert, Geert

    2017-01-01

    In the last decade, there has been an increasing focus on the implementation of plant growth-promoting (PGP) organisms as a sustainable option to compensate for poor soil fertility conditions in developing countries. Trap systems were used in an effort to isolate PGP fungi from rhizospheric soil samples collected in the region around Kisangani in the Democratic Republic of Congo. With sudangrass as a host, a highly conducive environment was created for sebacinalean chlamydospore formation inside the plant roots resulting in a collection of 51 axenically cultured isolates of the elusive genus Piriformospora (recently transferred to the genus Serendipita). Based on morphological data, ISSR fingerprinting profiles and marker gene sequences, we propose that these isolates together with Piriformospora williamsii constitute a species complex designated Piriformospora (= Serendipita) ‘williamsii.’ A selection of isolates strongly promoted plant growth of in vitro inoculated Arabidopsis seedlings, which was evidenced by an increase in shoot fresh weight and a strong stimulation of lateral root formation. This isolate collection provides unprecedented opportunities for fundamental as well as translational research on the Serendipitaceae, a family of fungal endophytes in full expansion. PMID:28261171

  18. Annual ryegrass-associated bacteria with potential for plant growth promotion.

    PubMed

    Castanheira, Nádia; Dourado, Ana Catarina; Alves, Paula Isabel; Cortés-Pallero, Alícia Maria; Delgado-Rodríguez, Ana Isabel; Prazeres, Ângela; Borges, Nuno; Sánchez, Claudia; Barreto Crespo, Maria Teresa; Fareleira, Paula

    2014-01-01

    Annual ryegrass is a fast-growing cool-season grass broadly present in the Portuguese "montado", a typically Mediterranean agro-forestry-pastoral ecosystem. A culture-dependent approach was used to investigate natural associations of this crop with potentially beneficial bacteria, aiming to identify strains suitable for biofertilization purposes. Annual ryegrass seedlings were used to trap bacteria from three different soils in laboratory conditions. Using a nitrogen-free microaerophilic medium, 147 isolates were recovered from the rhizosphere, rhizoplane, and surface-sterilized plant tissues, which were assigned to 12 genera in classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. All isolates were able to grow in the absence of nitrogen and several of them were able to perform in vitro activities related to plant growth promotion. Isolates of the genera Sphingomonas and Achromobacter were found to be the most effective stimulators of annual ryegrass growth under nitrogen limitation (47-92% biomass increases). Major enhancements were obtained with isolates G3Dc4 (Achromobacter sp.) and G2Ac10 (Sphingomonas sp.). The latest isolate was also able to increment plant growth in nitrogen-supplemented medium, as well as the phosphate solubilizer and siderophore producer, G1Dc10 (Pseudomonas sp.), and the cellulose/pectin hydrolyser, G3Ac9 (Paenibacillus sp.). This study represents the first survey of annual ryegrass-associated bacteria in the "montado" ecosystem and unveiled a set of strains with potential for use as inoculants.

  19. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    PubMed

    Yasmin, Sumera; Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1) and produced indole acetic acid (0.48-1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  20. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria

    PubMed Central

    Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1–19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82–116 μg mL-1) and produced indole acetic acid (0.48–1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice. PMID:27532545

  1. Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China

    PubMed Central

    Lin, Li; Li, Zhengyi; Hu, Chunjin; Zhang, Xincheng; Chang, Siping; Yang, Litao; Li, Yangrui; An, Qianli

    2012-01-01

    The current nitrogen fertilization for sugarcane production in Guangxi, the major sugarcane-producing area in China, is very high. We aim to reduce nitrogen fertilization and improve sugarcane production in Guangxi with the help of indigenous sugarcane-associated nitrogen-fixing bacteria. We initially obtained 196 fast-growing bacterial isolates associated with the main sugarcane cultivar ROC22 plants in fields using a nitrogen-deficient minimal medium and screened out 43 nitrogen-fixing isolates. Analysis of 16S rRNA gene sequences revealed that 42 of the 43 nitrogen-fixing isolates were affiliated with the genera Enterobacter and Klebsiella. Most of the nitrogen-fixing enterobacteria possessed two other plant growth-promoting activities of IAA production, siderophore production and phosphate solubilization. Two Enterobacter spp. strains of NN145S and NN143E isolated from rhizosphere soil and surface-sterilized roots, respectively, of the same ROC22 plant were used to inoculate micropropagated sugarcane plantlets. Both strains increased the biomass and nitrogen content of the sugarcane seedlings grown with nitrogen fertilization equivalent to 180 kg urea ha−1, the recommended nitrogen fertilization for ROC22 cane crops at the seedling stage. 15N isotope dilution assays demonstrated that biological nitrogen fixation contributed to plant growth promotion. These results suggested that indigenous nitrogen-fixing enterobacteria have the potential to fix N2 associated with sugarcane plants grown in fields in Guangxi and to improve sugarcane production. PMID:22510648

  2. Tools for genetic manipulation of the plant growth-promoting bacterium Azospirillum amazonense

    PubMed Central

    2011-01-01

    Background Azospirillum amazonense has potential to be used as agricultural inoculant since it promotes plant growth without causing pollution, unlike industrial fertilizers. Owing to this fact, the study of this species has gained interest. However, a detailed understanding of its genetics and physiology is limited by the absence of appropriate genetic tools for the study of this species. Results Conjugation and electrotransformation methods were established utilizing vectors with broad host-replication origins (pVS1 and pBBR1). Two genes of interest - glnK and glnB, encoding PII regulatory proteins - were isolated. Furthermore, glnK-specific A. amazonense mutants were generated utilizing the pK19MOBSACB vector system. Finally, a promoter analysis protocol based on fluorescent protein expression was optimized to aid genetic regulation studies on this bacterium. Conclusion In this work, genetic tools that can support the study of A. amazonense were described. These methods could provide a better understanding of the genetic mechanisms of this species that underlie its plant growth promotion. PMID:21575234

  3. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  4. Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils

    PubMed Central

    Mosimann, Carla; Oberhänsli, Thomas; Ziegler, Dominik; Nassal, Dinah; Kandeler, Ellen; Boller, Thomas; Mäder, Paul; Thonar, Cécile

    2017-01-01

    TaqMan-based quantitative PCR (qPCR) assays were developed to study the persistence of two well-characterized strains of plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens Pf153 and Pseudomonas sp. DSMZ 13134, in the root and rhizoplane of inoculated maize plants. This was performed in pot experiments with three contrasting field soils (Buus, Le Caron and DOK-M). Potential cross-reactivity of the qPCR assays was assessed with indigenous Pseudomonas and related bacterial species, which had been isolated from the rhizoplane of maize roots grown in the three soils and then characterized by Matrix-Assisted Laser Desorption Ionization (MALDI) Time-of-Flight (TOF) mass spectrometry (MS). Sensitivity of the qPCR expressed as detection limit of bacterial cells spiked into a rhizoplane matrix was 1.4 × 102 CFU and 1.3 × 104 CFU per gram root fresh weight for strain Pf153 and DSMZ 13134, respectively. Four weeks after planting and inoculation, both strains could readily be detected in root and rhizoplane, whereas only Pf153 could be detected after 8 weeks. The colonization rate of maize roots by strain Pf153 was significantly influenced by the soil type, with a higher colonization rate in the well fertile and organic soil of Buus. Inoculation with strain DSMZ 13134, which colonized roots and rhizoplane to the same degree, independently of the soil type, increased yield of maize, in terms of biomass accumulation, only in the acidic soil of Le Caron, whereas inoculation with strain Pf153 reduced yield in the soil Buus, despite of its high colonization rate and persistence. These results indicate that the colonization rate and persistence of inoculated Pseudomonas strains can be quantitatively assessed by the TaqMan-based qPCR technique, but that it cannot be taken for granted that inoculation with a well-colonizing and persistent Pseudomonas strain has a positive effect on yield of maize. PMID:28119675

  5. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    PubMed

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  6. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome.

    PubMed

    Kavamura, Vanessa Nessner; Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-02-02

    The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought.

  7. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome

    PubMed Central

    Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-01-01

    ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. PMID:28153893

  8. Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Saxena, Anil Kumar

    2015-06-01

    Microbial communities in different samples collected from cold deserts of north western Himalayas, India, were analyzed using 16S rRNA gene sequencing and phospholipid fatty acids (PLFA) analysis. A total of 232 bacterial isolates were characterized employing 16S rDNA-Amplified Ribosomal DNA Restriction Analysis with the three restriction endonucleases Alu I, Msp I and Hae III, which led to formation of 29-54 groups for the different sites, adding up to169 groups. 16S rRNA gene based phylogenetic analysis, revealed that 82 distinct species of 31 different genera, belonged to four phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. PLFA profiling was performed for concerned samples which gave an estimate of microbial communities without cultivating the microorganisms. PLFA analysis led to characterization of diverse group of microbes in different samples such as gram-negative, gram-positive bacteria, actinomycetes, cyanobacteria, anaerobic bacteria, sulphate reducing bacteria and fungi. The representative strains were screened for their plant growth promoting attributes, which included production of ammonia, HCN, gibberellic acid, IAA and siderophore; solubilization of phosphorus and activity of ACC deaminase. In vitro antifungal activity assay was performed against Rhizoctonia solani and Macrophomina phaseolina. Cold adapted microorganisms may serve as inoculants for crops growing under cold climatic conditions. To our knowledge, this is the first report for the presence of Arthrobacter nicotianae, Brevundimonas terrae, Paenibacillus tylopili and Pseudomonas cedrina in cold deserts and exhibit multifunctional PGP attributes at low temperatures.

  9. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae.

    PubMed

    Kämpfer, Peter; Ruppel, Silke; Remus, Rainer

    2005-04-01

    A plant growth promoting bacterial isolate (D5/23T) from the phyllosphere of winter wheat, able to fix atmospheric nitrogen and to produce auxines and cytokinins was investigated in a polyphasic taxonomy approach. Phylogenetic analyses using the 16S rRNA gene sequence of the strain clearly indicated that the strain belonged to the family Enterobacteriaceae, most closely related to Enterobacter cloacae with 99.0% and Enterobacter dissolvens with 98.5% sequence similarity. Phylogenetic analysis derived from the sequence of the rpoB gene showed the highest sequence similarities to Enterobacter cowanii (93.0%) but supported the distinct position of strain D5/23T. The isolate produced a fatty acid pattern typical for members of the family Enterobacteriaceae. On the basis of the phylogenetic analyses, DNA-DNA hybridizations, and the unique physiological and biochemical characteristics, we propose that strain D5/23T represents a new species of the genus Enterobacter for which we propose the name Enterobacter radicincitans sp. nov.

  10. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    PubMed

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically.

  11. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium

    PubMed Central

    Chen, Yawen; Shen, Xuemei; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2015-01-01

    Pseudomonas chlororaphis HT66, a plant growth-promoting rhizobacterium that produces phenazine-1-carboxamide with high yield, was compared with three genomic sequenced P. chlororaphis strains, GP72, 30–84 and O6. The genome sizes of four strains vary from 6.66 to 7.30 Mb. Comparisons of predicted coding sequences indicated 4833 conserved genes in 5869–6455 protein-encoding genes. Phylogenetic analysis showed that the four strains are closely related to each other. Its competitive colonization indicates that P. chlororaphis can adapt well to its environment. No virulence or virulence-related factor was found in P. chlororaphis. All of the four strains could synthesize antimicrobial metabolites including different phenazines and insecticidal protein FitD. Some genes related to the regulation of phenazine biosynthesis were detected among the four strains. It was shown that P. chlororaphis is a safe PGPR in agricultural application and could also be used to produce some phenazine antibiotics with high-yield. PMID:26484173

  12. Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability

    PubMed Central

    Illakkiam, Devaraj; Shankar, Manoharan; Ponraj, Paramasivan; Rajendhran, Jeyaprakash

    2014-01-01

    Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases) achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified. PMID:25184130

  13. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice.

    PubMed

    Verma, S C; Ladha, J K; Tripathi, A K

    2001-10-04

    A study of the diversity of endophytic bacteria present in seeds of a deepwater rice variety revealed the presence of seven types of BOX-PCR fingerprints. In order to evaluate the plant growth promoting potential the presence of nitrogenase, indole acetic acid production and mineral phosphate solubilization were estimated in the representative BOX-PCR types. The seven representatives of BOX-PCR types produced indole acetic acid, reduced acetylene and showed specific immunological cross-reaction with anti-dinitrogenase reductase antibody. Only four types showed mineral phosphate solubilizing ability. Comparison of cellulase and pectinase activities showed differences among different BOX-PCR types. PCR fingerprinting data showed that one strain isolated from the surface sterilized seeds as well as the aerial parts of the seedlings of rice variety showed low cellulase and pectinase but relatively high ARA. On the basis of 16S rDNA nucleotide sequence and BIOLOG system of bacterial identification, this strain was identified as Pantoea agglomerans. For studying the endophytic colonization this strain was genetically tagged with the reporter gene, gusA. Histochemical analysis of the seedling grown in hydroponics showed that the tagged strain colonized the root surface, root hairs, root cap, points of lateral root emergence, root cortex and the stelar region. Treatment of the roots with 2,4-D produced short thickened lateral roots which showed better colonization by P. agglomerans.

  14. Evaluation of Streptomyces spp. for their plant-growth-promotion traits in rice.

    PubMed

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Apparla, Shravya; Bandikinda, Prakash; Vijayabharathi, Rajendran; Bhimineni, Ratna Kumari; Rupela, Om

    2013-08-01

    Five strains of Streptomyces (CAI-17, CAI-68, CAI-78, KAI-26, and KAI-27) were previously reported to have potential for charcoal rot control and plant growth promotion (PGP) in sorghum. In this study, those 5 Streptomyces strains were characterized for their enzymatic activities and evaluated for their PGP capabilities on rice. All the Streptomyces strains were able to produce lipase and β-1,3-glucanase; grew in NaCl (up to 8%), at pH 5-13, and at temperatures 20-40 °C; and were resistant to ampicillin, sensitive to nalidixic acid, and highly sensitive to chloramphenicol, kanamycin, streptomycin, and tetracycline. They were highly tolerant to the fungicide bavistin but were highly sensitive to benlate, benomyl, and radonil. When evaluated on rice in the field, Streptomyces significantly enhanced tiller and panicle numbers, stover and grain yields, dry matter, root length, volume and dry weight, compared with the control. In the rhizosphere at harvest, microbial biomass carbon and nitrogen, dehydrogenase activity, total nitrogen, available phosphorus, and % organic carbon were also found significantly higher in Streptomyces-treated plots than in the control plots. This study further confirms that the selected Streptomyces have PGP activities.

  15. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria.

    PubMed

    Bent, E; Tuzun, S; Chanway, C P; Enebak, S

    2001-09-01

    The presence of other soil microorganisms might influence the ability of rhizobacterial inoculants to promote plant growth either by reducing contact between the inoculant and the plant root or by interfering with the mechanism(s) involved in rhizobacterially mediated growth promotion. We conducted the following experiments to determine whether reductions in the extent of growth promotion of lodgepole pine mediated by Paenibacillus polymyxa occur in the presence of a forest soil isolate (Pseudomonas fluorescens M20) and whether changes in plant growth promotion mediated by P. polymyxa (i) are related to changes in P. polymyxa density in the rhizosphere or (ii) result from alterations in root hormone levels. The extent of plant growth, P. polymyxa rhizosphere density, and root hormone concentrations were determined for lodgepole pine treated with (i) a single growth-promoting rhizobacterial strain (P. polymyxa L6 or Pw-2) or (ii) a combination of bacteria: strain L6 + strain M20 or strain Pw-2 + strain M20. There was no difference in the growth of pines inoculated with strain L6 and those inoculated with strain L6 + strain M20. However, seedlings inoculated with strain Pw-2 had more lateral roots and greater root mass at 12 weeks after inoculation than plants inoculated with strain Pw-2 + strain M20. The extent of growth promotion mediated by P. polymyxa L6 and Pw-2 in each treatment was not correlated to the average population density of each strain in the rhizosphere. Bacterial species-specific effects were observed in root hormone levels: indole-3-acetic acid concentration was elevated in roots inoculated with P. polymyxa L6 or Pw-2, while dihydrozeatin riboside concentration was elevated in roots inoculated with P. fluorescens M20.

  16. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition.

    PubMed

    Santoro, Maricel V; Bogino, Pablo C; Nocelli, Natalia; Cappellari, Lorena Del Rosario; Giordano, Walter F; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present.

  17. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition

    PubMed Central

    Santoro, Maricel V.; Bogino, Pablo C.; Nocelli, Natalia; Cappellari, Lorena del Rosario; Giordano, Walter F.; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  18. [The effect of tryptophan of plant root metabolites on the phyto stimulating activity of rhizobacteria ].

    PubMed

    Kravchenko, L V; Azarova, T S; Makarova, N M; Tikhonovich, I A

    2004-01-01

    Aseptic tomato and radish roots were found to exude 2.8-5.3 and 290-390 ng tryptophan per seedling per day. The inoculation of radish plants with rhizosphere pseudomonads increased the root biomass by 1.4 times. The inoculation of tomato plants with the same pseudomonads was ineffective. The beneficial effect of bacterial inoculation on the radish plants can be explained by the fact that the introduced rhizobacteria produce the plant growth-stimulating hormone indole-3-acetic acid. In pot experiments, the addition of this phytohormone to the soil increased the mass of radish roots by 36%. The phytohormonal action of the rhizosphere microflora was found to be efficient provided that the concentration of tryptophan in the rhizosphere is sufficiently high.

  19. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    PubMed

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  20. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    PubMed

    De La Torre-Ruiz, Neyser; Ruiz-Valdiviezo, Víctor Manuel; Rincón-Molina, Clara Ivette; Rodríguez-Mendiola, Martha; Arias-Castro, Carlos; Gutiérrez-Miceli, Federico Antonio; Palomeque-Dominguez, Héctor; Rincón-Rosales, Reiner

    2016-01-01

    The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p<0.05) on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  1. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat.

  2. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides.

  3. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    PubMed

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  4. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGES

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; ...

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  5. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  6. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  7. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  8. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains.

    PubMed

    Wang, Chun-Juan; Yang, Wei; Wang, Chao; Gu, Chun; Niu, Dong-Dong; Liu, Hong-Xia; Wang, Yun-Peng; Guo, Jian-Hua

    2012-01-01

    Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA) content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD) activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco) large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels.

  9. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  10. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    PubMed

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  11. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16.

    PubMed

    Kaur, Talwinder; Manhas, Rajesh Kumari

    2014-11-01

    In the present study, an actinobacterium strain, possessing antagonistic activity against different fungal phytopathogens viz. Colletotrichum acutatum, Cladosporium herbarum, Alternaria brassicicola, Exserohilum sp., Alternaria mali, Colletotrichum gleospoiroides, Alternaria alternata, Cercospora sp., Fusarium oxysporum f.sp. dianthi and Fusarium moniliformae, was isolated from soil and identified as Streptomyces hydrogenans DH16. Application of culture supernatant (5%)/cells (10(7)  cfu ml(-1) ), 2 h post inoculation with A. brassicicola (10(5)  spores ml(-1) ), resulted in 85.95 and 93.75% suppression of black leaf spot of Raphanus sativus, respectively on detached leaves. Whereas cells/culture supernatant (above 5%) completely suppressed the disease incidence when co inoculated with fungal pathogen. The crude extract containing antifungal components was completely stable at 70 °C for 1 h retaining 90 and 67.67% activity after boiling (for 1 h) and autoclaving (121 °C for 30 min), respectively. No loss in activity was observed when treated with proteinase K and on exposure to sun and UV light and found to be active over a wide range of pH (2 to 14). Bioautography of the solvent extract against test phytopathogens revealed the presence of three active components. Ethyl acetate extract of DH16 also demonstrated insecticidal activity against Spodoptera litura, causing 40% larval mortality and extension of larval period. In addition, it produced 30 µg ml(-1) of Indole Acetic Acid (IAA) in a medium containing tryptophan which promoted lateral root formation in Vigna radiata (green gram). These results indicate that Streptomyces hydrogenans holds the potential to be used as antifungal, insecticidal, and plant growth promoting agent.

  12. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    PubMed

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  13. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites.

  14. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    PubMed

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications.

  15. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this study was to evaluate effects of PGPR (Plant Growth Promoting Rhizobacteria) isolated from rainforest on different plants under limited nitrogen conditions. Methods and Results: Bacterial isolates from a Peruvian rainforest soil were screened for plant growth promoting effects...

  16. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    SciTech Connect

    Wu, C.H.; Bernard, S.; Andersen, G.L.; Chen, W.

    2009-03-01

    Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.

  17. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris.

    PubMed

    Lafi, Feras F; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B; Hirt, Heribert; Saad, Maged M

    2016-07-28

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.

  18. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    PubMed Central

    Lafi, Feras F.; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B.

    2016-01-01

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity. PMID:27469951

  19. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    PubMed

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

  20. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    PubMed

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.

  1. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity

    PubMed Central

    Youssef, Hanan H.; Hamza, Mervat A.; Fayez, Mohamed; Mourad, Elhussein F.; Saleh, Mohamed Y.; Sarhan, Mohamed S.; Suker, Ragab M.; Eltahlawy, Asmaa A.; Nemr, Rahma A.; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A.

    2015-01-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >106–108 cfu g−1 were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium. PMID:26966571

  2. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    SciTech Connect

    Isa, Mohd Hafez Mohd Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman; Yasir, Muhamad Samudi

    2016-01-22

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  3. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    NASA Astrophysics Data System (ADS)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  4. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites.

    PubMed

    Silambarasan, Sivagnanam; Vangnai, Alisa S

    2016-01-25

    4-nitroaniline (4-NA) is one of the major priority pollutants generated from industrial productions and pesticide transformation; however very limited biodegradation details have been reported. This work is the first to report 4-NA biodegradation kinetics and toxicity reduction using a newly isolated plant-growth promoting bacterium, Acinetobacter sp. AVLB2. The 4-NA-dependent growth kinetics parameters: μmax, Ks and Ki, were determined to be 0.039 h(-1), 6.623 mg L(-1) and 25.57 mg L(-1), respectively using Haldane inhibition model, while the maximum biodegradation rate (Vmax) of 4-NA was at 0.541 mg L(-1) h(-1) and 0.551 mg L(-1) h(-1), following Michaelis-Menten and Hanes-Woolf models, respectively. Biodegradation pathway of 4-NA by Acinetobacter sp. AVLB2 was proposed, and successfully led to the reduction of 4-NA toxicity according to the following toxicity assessments: microbial toxicity using Escherichia coli DH5α, phytotoxicity with Vigna radiata and Crotalaria juncea, and cytogenotoxicity with Allium cepa root-tip cells. In addition, Acinetobacter sp. AVLB2 possess important plant-growth promoting traits, both in the presence and absence of 4-NA. This study has provided a new insight into 4-NA biodegradation ability and concurrent plant-growth promoting activities of Acinetobacter sp. AVLB2, which may indicate its potential role for rhizoremediation, while sustaining crop production even under 4-NA stressed environment.

  5. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants.

    PubMed

    Sipahutar, Merry Krisdawati; Vangnai, Alisa S

    2017-05-05

    Triclocarban (TCC) is an emerging and persistent pollutant once released into environment. In this study, TCC-degrading Ochrobactrum sp. MC22, was isolated and characterized. This is the first report on plant-growth promoting bacterium with versatile capability of TCC degradation under aerobic and anaerobic conditions. The aerobic degradation of TCC occurred completely of which the kinetic analysis revealed a non-self-inhibitive substrate effect, and broad-concentration-range degradation efficiency (ranging from 0.16-30mgL(-1)). Anaerobic TCC degradation was feasible, but was significantly enhanced up to 40-50% when ferric, or acetate was provided as electron donor, or acceptor, respectively. TCC biodegradation under both conditions was proposed to initially occur through hydrolysis leading to transient accumulation of chloroanilines, which could be completely metabolized and detoxified. With concern on TCC adverse effect to plants, role of MC22 on toxicity mitigation was investigated using two legume plants: Vigna radiata and Glycine max (L.) Merr. Upon TCC exposure, damage of both plant structures, especially root system was observed, but was substantially mitigated by MC22 bioaugmentation. This study not only provides thorough TCC degradation characteristic and kinetics of MC22, but also suggests a potential role of this bacterial strain for a rhizoremediation in crop area with TCC contamination.

  6. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  7. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings.

    PubMed

    de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2010-12-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings.

  8. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains

    PubMed Central

    Wang, Chao; Gu, Chun; Niu, Dong-Dong; Liu, Hong-Xia; Wang, Yun-Peng; Guo, Jian-Hua

    2012-01-01

    Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA) content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD) activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco) large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels. PMID:23285089

  9. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”

    PubMed Central

    Cavello, Ivana A.; Crespo, Juan M.; García, Sabrina S.; Zapiola, José M.; Luna, María F.; Cavalitto, Sebastián F.

    2015-01-01

    Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P. lilacinum when it is grown in a medium containing hair waste. The growth of several plant-pathogenic fungi, Alternaria alternata, Aspergillus niger, and Fusarium culmorum, was considerably affected by the presence of P. lilacinum's supernatant. Besides antifungal activity, P. lilacinum demonstrates the capability to produce indoleacetic acid and ammonia during time cultivation on hair waste medium. Plant growth-promoting activity by cell-free supernatant was evidenced through the increase of the percentage of tomato seed germination from 71 to 85% after 48 hours. A 21-day plant growth assay using tomato plants indicates that crude supernatant promotes the growth of the plants similar to a reference fertilizer (p > 0.05). These results suggest that both strain and the supernatant may have potential to be considered as a potent biocontrol agent with multiple plant growth-promoting properties. To our knowledge, this is the first report on the antifungal, IAA production and tomato growth enhancing compounds produced by P. lilacinum LPSC #876. PMID:26697226

  10. Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot.

    PubMed

    Mishra, A K; Morang, P; Deka, M; Nishanth Kumar, S; Dileep Kumar, B S

    2014-09-01

    Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. In this regard, individual application of two strains of Pseudomonas, RRLJ 134 and RRLJ 04, exhibited development of induced systemic resistance in tea plants against brown root rot and charcoal stump rot under split root experiments. The experimental findings also confirmed that the cuttings treated with fungal test pathogen and plant growth-promoting rhizobacteria (PGPR) strains survived longer as compared with pathogen-alone-treated cuttings. The enzyme level studies revealed that the presence of PGPR strains reduced the viscosity loss of cellulose and pectin by both the pathogens to a significant level. The activity of defense-related enzymes like L-phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase were also recorded higher in tea cuttings treated with PGPR strains in presence of pathogen. Crude bioactive metabolites isolated from these strains also showed in vitro antagonism against the test pathogens besides reducing the number of diseased plants under gnotobiotic conditions. These findings confirm the utilization of these two strains for induction of systemic resistance against two major root diseases in tea plants under plantation conditions.

  11. Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation

    PubMed Central

    Rangjaroen, Chakrapong; Sungthong, Rungroch; Rerkasem, Benjavan; Teaumroong, Neung; Noisangiam, Rujirek; Lumyong, Saisamorn

    2017-01-01

    With the aim of searching for potent diazotrophic bacteria that are free of public health concerns and optimize rice cultivation, the endophytic colonization and plant growth-promoting activities of some endophytic diazotrophic bacteria isolated from rice were evaluated. Among these bacteria, the emerging diazotrophic strains of the genus Novosphingobium effectively associated with rice plant interiors and consequently promoted the growth of rice, even with the lack of a nitrogen source. These results suggest that diazotrophic Novosphingobium is an alternative microbial resource for further development as a safe biological enhancer in the optimization of organic rice cultivation. PMID:28228608

  12. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.

    PubMed

    Praburaman, Loganathan; Park, Sung-Hee; Cho, Min; Lee, Kui-Jae; Ko, Jeong-Ae; Han, Sang-Sub; Lee, Sang-Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2017-01-01

    Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.

  13. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    PubMed

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions.

  14. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR's) on medicinal plant Solanum viarum seedlings.

    PubMed

    Hemashenpagam, N; Selvaraj, T

    2011-09-01

    A green house nursery study was conducted to assess the interaction between arbuscular mycorrhizal (AM) fungus, Glomus aggregatum and some plant growth promoting rhizomicrooganisms (PGPR's), Bacillus coagulans and Trichoderma harzianum, in soil and their consequent effect on growth, nutrition and content of secondary metabolities of Solanum viarum seedlings. Triple inoculation of G. aggregatum+B. coagulans+T. harzainum with Solanum viarum in a green house nursery study resulted in maximum plant biomass (plant height 105 cm and plant dry weight 12.17 g), P, Fe, Zn, Cu and Mn and secondary metabolities [total phenols (129.6 microg g(-1) f.wt.), orthodihydroxy phenols (90.6 microg g(-1) f.wt.), flavonoids (3.94 microg g(-1) f.wt.), alkaloids (5.05 microg g(-1) f.wt.), saponins (5.05 microg g(-1) f.wt.) and tannins (0.324 microg g(-1) f.wt.)] of S. viarum seedlings. The mycorrhizal root colonization and spore numbers in the root zone soil of the inoculated plants increased. The enzyme activity namely acid phosphatase (53.44 microg PNP g(-1) soil), alkaline phosphatase (40.95 microg PNP g(-1) soil) and dehydrogenase (475.5 microg PNP g(-1) soil) and total population of B. coagulans (12.5x10(4) g(-1)) and T. harzianum (12.4 x 10(4) g(-1)), in the root zone soil was found high in the triple inoculation with G. aggregatum+B. coagulans+T. harzianum that proved to be the best microbial consortium.

  15. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

    PubMed Central

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho

    2015-01-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  16. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211.

    PubMed

    Bhattacharyya, Chandrima; Bakshi, Utpal; Mallick, Ivy; Mukherji, Shayantan; Bera, Biswajit; Ghosh, Abhrajyoti

    2017-01-01

    Bacillus aryabhattai AB211 is a plant growth promoting, Gram-positive firmicute, isolated from the rhizosphere of tea (Camellia sinensis), one of the oldest perennial crops and a major non-alcoholic beverage widely consumed all over the world. The whole genome of B. aryabhattai AB211 was sequenced, annotated and evaluated with special focus on genomic elements related to plant microbe interaction. It's genome sequence reveals the presence of a 5,403,026 bp chromosome. A total of 5226 putative protein-coding sequences, 16 rRNA, 120 tRNA, 8 ncRNAs, 58 non-protein coding genes, and 11 prophage regions were identified. Genome sequence comparisons between strain AB211 and other related environmental strains of B. aryabhattai, identified about 3558 genes conserved among all B. aryabhattai genomes analyzed. Most of the common genes involved in plant growth promotion activities were found to be present within core genes of all the genomes used for comparison, illustrating possible common plant growth promoting traits shared among all the strains of B. aryabhattai. Besides the core genes, some genes were exclusively identified in the genome of strain AB211. Functional annotation of the genes predicted in the strain AB211 revealed the presence of genes responsible for mineral phosphate solubilization, siderophores, acetoin, butanediol, exopolysaccharides, flagella biosynthesis, surface attachment/biofilm formation, and indole acetic acid production, most of which were experimentally verified in the present study. Genome analysis and experimental evidence suggested that AB211 has robust central carbohydrate metabolism implying that this bacterium can efficiently utilize the root exudates and other organic materials as an energy source. Genes for the production of peroxidases, catalases, and superoxide dismutases, that confer resistance to oxidative stresses in plants were identified in AB211 genome. Besides these, genes for heat shock tolerance, cold shock tolerance, glycine

  17. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211

    PubMed Central

    Bhattacharyya, Chandrima; Bakshi, Utpal; Mallick, Ivy; Mukherji, Shayantan; Bera, Biswajit; Ghosh, Abhrajyoti

    2017-01-01

    Bacillus aryabhattai AB211 is a plant growth promoting, Gram-positive firmicute, isolated from the rhizosphere of tea (Camellia sinensis), one of the oldest perennial crops and a major non-alcoholic beverage widely consumed all over the world. The whole genome of B. aryabhattai AB211 was sequenced, annotated and evaluated with special focus on genomic elements related to plant microbe interaction. It’s genome sequence reveals the presence of a 5,403,026 bp chromosome. A total of 5226 putative protein-coding sequences, 16 rRNA, 120 tRNA, 8 ncRNAs, 58 non-protein coding genes, and 11 prophage regions were identified. Genome sequence comparisons between strain AB211 and other related environmental strains of B. aryabhattai, identified about 3558 genes conserved among all B. aryabhattai genomes analyzed. Most of the common genes involved in plant growth promotion activities were found to be present within core genes of all the genomes used for comparison, illustrating possible common plant growth promoting traits shared among all the strains of B. aryabhattai. Besides the core genes, some genes were exclusively identified in the genome of strain AB211. Functional annotation of the genes predicted in the strain AB211 revealed the presence of genes responsible for mineral phosphate solubilization, siderophores, acetoin, butanediol, exopolysaccharides, flagella biosynthesis, surface attachment/biofilm formation, and indole acetic acid production, most of which were experimentally verified in the present study. Genome analysis and experimental evidence suggested that AB211 has robust central carbohydrate metabolism implying that this bacterium can efficiently utilize the root exudates and other organic materials as an energy source. Genes for the production of peroxidases, catalases, and superoxide dismutases, that confer resistance to oxidative stresses in plants were identified in AB211 genome. Besides these, genes for heat shock tolerance, cold shock tolerance

  18. Identification of Plant Growth-Promoting Bacteria Using Titanium Dioxide Photocatalysis-Assisted Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Marín, E.; Calderón, A.

    2013-09-01

    The effect of titanium dioxide photocatalysis against bacteria that are dangerous for human health has been investigated in the past, suggesting the possibility of using a specific behavior for each microorganism during this process for its discrimination. In this study, the behavior of some plants’ growth promoting bacteria ( Burkholderia unamae (Strain MTI 641), Acetobacter diazotrophicus (Strain PAl 5T), A. diazotrophicus (Strain CFN-Cf 52), and B. unamae (Strain TATl-371)) interacting with light and bactericidal titanium dioxide films have been analyzed using the photoacoustic technique. The monitoring of these interactions shows particular characteristics that could serve for identifying these species.

  19. Plant growth promotion due to rhizobacterial volatiles--an effect of CO2?

    PubMed

    Kai, Marco; Piechulla, Birgit

    2009-11-03

    Serratia odorifera, an antagonistic rhizobacterium, emits a diverse and complex bouquet of volatiles. Three different in vitro experimental culture systems indicated that these volatiles promote the growth of Arabidopsis thaliana. CO(2) trapping and significant rise of CO(2) levels (390-3000 ppm CO(2) within 24 h) due to bacterial growth in sealed Petri dishes verified the enhanced effects of rhizobacterial CO(2) on A. thaliana's growth. In contrast, open cocultivations abrogated growth promotion, and inhibitory effects come to the fore at ambient CO(2) concentrations.

  20. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    PubMed

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future.

  1. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  2. Draft Genome Sequence of a Natural Root Isolate, Bacillus subtilis UD1022, a Potential Plant Growth-Promoting Biocontrol Agent

    PubMed Central

    Bishnoi, Usha

    2015-01-01

    Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. PMID:26159522

  3. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    PubMed

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion.

  4. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation.

  5. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant.

    PubMed

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio; Quecine, Maria Carolina

    2016-03-17

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion.

  6. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant

    PubMed Central

    Batista, Bruna Durante; Taniguti, Lucas Mitsuo; Monteiro-Vitorello, Claudia Barros; Azevedo, João Lúcio

    2016-01-01

    Burkholderia ambifaria strain RZ2MS16 was isolated from the rhizosphere of Amazon guarana in Brazil. This bacterium exhibits a remarkable capacity to promote the growth of corn and soybean. Here, we report the draft genome sequence of RZ2MS16 and some genes related to multiple traits involved in plant growth promotion. PMID:26988044

  7. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  8. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran.

    PubMed

    Zou, Changsong; Li, Zhifang; Yu, Diqiu

    2010-08-01

    Several chemical changes in soil are associated with plant growth-promoting rhizobacteria. An endosporeforming bacterium, strain XTBG34, was isolated from a Xishuangbanna Tropical Botanical Garden soil sample and identified as Bacillus megaterium. The strain's volatiles had remarkable plant growth promotion activity in Arabidopsis thaliana plants; after 15 days treatment, the fresh weight of plants inoculated with XTBG34 was almost 2-fold compared with those inoculated with DH5alpha. Head space volatile compounds produced by XTBG34, trapped with headspace solid phase microextraction and identified by gas chromatography-mass spectrometry, included aldehydes, alkanes, ketones and aroma components. Of the 11 compounds assayed for plant growth promotion activity in divided Petri plates, only 2-pentylfuran increased plant growth. We have therefore identified a new plant growth promotion volatile of B. megaterium XTBG34, which deserves further study in the mechanisms of interaction between plant growth-promoting rhizobacteria and plants.

  9. Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium.

    PubMed

    Qin, Yuxuan; Han, Yuzhu; Yu, Yaqiong; Shang, Qingmao; Zhang, Bao; Li, Pinglan

    2015-10-20

    Bacillus amyloliquefaciens L-S60, a gram-positive plant-associated bacterium, which could stimulate plant growth and shows strong antifungal function, was isolated from the turfy soil in Beijing, China. The genome of B. amyloliquefaciens L-S60 comprises a 3903,017bp long circular chromosome that consists of 3909 protein-coding genes and 117 RNA genes. Based on genomic analysis, we identified gene clusters responsible for the biosynthesis of numerous bioactive metabolites with well-established in-vitro activity such as surfactin, iturin and fengycins. Additionally, we also found functionally related genes in the genome of L-S60, which play key roles in the process of plant growth promotion hormone secretion, biofilm formation and volatile compounds production.

  10. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    PubMed

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  11. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development.

    PubMed

    Valenzuela-Soto, José Humberto; Estrada-Hernández, María Gloria; Ibarra-Laclette, Enrique; Délano-Frier, John Paul

    2010-01-01

    Root inoculation of tomato (Solanum lycopersicum) plants with a Bacillus subtilis strain BEB-DN (BsDN) isolated from the rhizosphere of cultivated potato plants was able to promote growth and to generate an induced systemic resistance (ISR) response against virus-free Bemisia tabaci. Growth promotion was evident 3 weeks after inoculation. No changes in oviposition density, preference and nymphal number in the early stages of B. tabaci development were observed between BsDN-treated plants and control plants inoculated with a non-growth promoting Bs strain (PY-79), growth medium or water. However, a long-term ISR response was manifested by a significantly reduced number of B. tabaci pupae developing into adults in BsDN-treated plants. The observed resistance response appeared to be a combination of jasmonic acid (JA) dependent and JA-independent responses, since the BsDN-related retardation effect on B. tabaci development was still effective in the highly susceptible spr2 tomato mutants with an impaired capacity for JA biosynthesis. A screening of 244 genes, 169 of which were previously obtained from subtractive-suppressive-hybridization libraries generated from B. tabaci-infested plants suggested that the BsDN JA-dependent ISR depended on an anti-nutritive effect produced by the simultaneous expression of genes coding principally for proteases and proteinase inhibitors, whereas the JA-independent ISR observed in the spr2 background curiously involved the up-regulation of several photosynthetic genes, key components of the phenyl-propanoid and terpenoid biosynthetic pathways and of the Hsp90 chaperonin, which probably mediated pest resistance response(s), in addition to the down-regulation of pathogenesis and hypersensitive response genes.

  12. Bioprospecting of Plant Growth Promoting Bacilli and Related Genera Prevalent in Soils of Pristine Sacred Groves: Biochemical and Molecular Approach

    PubMed Central

    Lyngwi, Nathaniel A.; Nongkhlaw, Macmillan; Kalita, Debajit; Joshi, Santa Ram

    2016-01-01

    Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus. PMID:27111883

  13. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential.

    PubMed

    Vyas, Pratibha; Joshi, Robin; Sharma, K C; Rahi, Praveen; Gulati, Ashu; Gulati, Arvind

    2010-12-01

    A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1- carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole- 3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3- pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of coldtolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

  14. Bioprospecting of Plant Growth Promoting Bacilli and Related Genera Prevalent in Soils of Pristine Sacred Groves: Biochemical and Molecular Approach.

    PubMed

    Lyngwi, Nathaniel A; Nongkhlaw, Macmillan; Kalita, Debajit; Joshi, Santa Ram

    2016-01-01

    Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus.

  15. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion

    PubMed Central

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S.; Kumar, Shailendra; Ansari, Mohammad W.; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  16. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S; Kumar, Shailendra; Ansari, Mohammad W; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional.

  17. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    PubMed

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  18. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    PubMed

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.

  19. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.

  20. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  1. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas.

    PubMed

    Gulati, Arvind; Vyas, Pratibha; Rahi, Praveen; Kasana, Ramesh Chand

    2009-04-01

    A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations.

  2. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    PubMed Central

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  3. Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity.

    PubMed

    Elo; Maunuksela; Salkinoja-Salonen; Smolander; Haahtela

    2000-02-01

    We studied the potential of the humus layer of the Norway spruce stands to supply beneficial rhizobacteria to birch (Betula pendula), alder (Alnus incana) and fescue grass (Festuca rubra), representatives of pioneer vegetation after clear-cutting of the coniferous forest. Axenically grown seedlings of these species were inoculated with the acid spruce humus, pH 3.7-5.3. Actinorhizal propagules, capable of nodulating alder, were present in high density (10(3) g(-1)) in humus of long-term limed plots, whereas plots with nitrogen fertilization contained almost none (plant pathogenic Rhizoctonia sp., Botrytis cinerea and Fusarium culmorum. The antagonistic isolates also commonly produced siderophores and/or cell wall degrading enzymes.

  4. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures

    PubMed Central

    Osman, Awad G.; Sherif, Ashraf M.; Elhussein, Adil A.

    2014-01-01

    Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB) and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21–240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti), non-symbiotic nitrogen fixers (Azospirillum braziliense) or potassium solibilizers (Bacillus circulans), given that the fungicide is applied within the range of the recommended field dose. PMID:26038670

  5. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters.

    PubMed

    Mwajita, Mwashasha Rashid; Murage, Hunja; Tani, Akio; Kahangi, Esther M

    2013-01-01

    Rice (Oryza sativa L.) is the most important staple food crop in many developing countries, and is ranked third in Kenya after maize and wheat. Continuous cropping without replenishing soil nutrients is a major problem in Kenya resulting to declining soil fertility. The use of chemical fertilizers to avert the problem of low soil fertility is currently limited due to rising costs and environmental concerns. Many soil micro-organisms are able to solubilize the unavailable phosphorus, increase uptake of nitrogen and also synthesize growth promoting hormones including auxin. The aim of this study was to isolate and characterize phyllosphere, rhizoplane and rhizosphere micro-organisms from Kenyan rice with growth promoting habits. In this study whole plant rice samples were collected from different rice growing regions of Kenya. 76.2%, over 80% and 38.5% of the bacterial isolates were positive for phosphate solubilization, nitrogenase activity and IAA production whereas 17.5% and 5% of the fungal isolates were positive for phosphate solubilization and IAA production respectively. Hence these micro-organisms have potential for utilization as bio-fertilizers in rice production.

  6. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates.

    PubMed

    Saïdi, Sabrine; Chebil, Samir; Gtari, Maher; Mhamdi, Ridha

    2013-06-01

    A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.

  7. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  8. Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC 13613T.

    PubMed

    Jeong, Haeyoung; Jeong, Da-Eun; Kim, Sun Hong; Song, Geun Cheol; Park, Soo-Young; Ryu, Choong-Min; Park, Seung-Hwan; Choi, Soo-Keun

    2012-08-01

    Bacillus siamensis KCTC 13613(T), a novel halophilic Bacillus species isolated from a salted Thai food, produced antimicrobial compounds against plant pathogens and promoted plant growth by volatile emission. We determined the 3.8-Mb genome sequence of B. siamensis KCTC 13613(T) to reveal the plant-beneficial effect at the genomic level.

  9. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions.

    PubMed

    Bordiec, Sophie; Paquis, Sandra; Lacroix, Hélène; Dhondt, Sandrine; Ait Barka, Essaïd; Kauffmann, Serge; Jeandet, Philippe; Mazeyrat-Gourbeyre, Florence; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2011-01-01

    Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that colonize the rhizosphere of many plant species and confer beneficial effects, such as an increase in plant growth. PGPR are also well known as inducers of systemic resistance to pathogens in plants. However, the molecular mechanisms involved locally after direct perception of these bacteria by plant cells still remain largely unknown. Burkholderia phytofirmans strain PsJN is an endophytic PGPR that colonizes grapevine and protects the plant against the grey mould disease caused by Botrytis cinerea. This report focuses on local defence events induced by B. phytofirmans PsJN after perception by the grapevine cells. It is demonstrated that, after addition to cell suspension cultures, the bacteria were tightly attaching to plant cells in a way similar to the grapevine non-host bacteria Pseudomonas syringae pv. pisi. B. phytofirmans PsJN perception led to a transient and monophasic extracellular alkalinization but no accumulation of reactive oxygen species or cell death were detected. By contrast, challenge with P. syringae pv. pisi induced a sustained and biphasic extracellular alkalinization, a two phases oxidative burst, and a HR-like response. Perception of the PGPR also led to the production of salicylic acid (SA) and the expression of a battery of defence genes that was, however, weaker in intensity compared with defence gene expression triggered by the non-host bacteria. Some defence genes up-regulated after B. phytofirmans PsJN challenge are specifically induced by exogenous treatment with SA or jasmonic acid, suggesting that both signalling pathways are activated by the PGPR in grapevine.

  10. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules.

    PubMed

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent.

  11. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes.

  12. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  13. Draft Genome Sequence of Bacillus atrophaeus UCMB-5137, a Plant Growth-Promoting Rhizobacterium.

    PubMed

    Chan, Wai Yin; Dietel, Kristin; Lapa, Svitlana V; Avdeeva, Lilija V; Borriss, Rainer; Reva, Oleg N

    2013-06-20

    Bacillus atrophaeus UCMB-5137 shows an extraordinary activity in root colonization and plant and crop protection. Its draft genome sequence comprises 21 contigs of 4.11 Mb, harboring 4,167 coding sequences (CDS). The genome carries several genes encoding antimicrobial lipopeptides and polyketides. Multiple horizontally acquired genes of possible importance for plant colonization were also found.

  14. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  15. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice.

    PubMed

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Bandikinda, Prakash; Sathya, Arumugam; Vijayabharathi, Rajendran; Rupela, Om; Kudapa, Himabindu; Katta, Krishnamohan; Varshney, Rajeev Kumar

    2014-01-20

    Six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180, isolated from six different herbal vermi-composts were characterized for in vitro plant growth-promoting (PGP) properties and further evaluated in the field for PGP activity in rice. Of the six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140 and CAI-155 produced siderophores; CAI-13, CAI-93, CAI-155 and KAI-180 produced chitinase; CAI-13, CAI-140, CAI-155 and KAI-180 produced lipase; CAI-13, CAI-93, CAI-155 and KAI-180 produced protease; and CAI-13, CAI-85, CAI-140 and CAI-155 produced ß-1-3-glucanase whereas all the six actinomycetes produced cellulase, hydrocyanic acid and indole acetic acid (IAA). The actinomycetes were able to grow in NaCl concentrations of up to 8%, at pH values between 7 and 11, temperatures between 20 and 40 °C and compatible with fungicide bavistin at field application levels. In the rice field, the actinomycetes significantly enhanced tiller numbers, panicle numbers, filled grain numbers and weight, stover yield, grain yield, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere, the actinomycetes also significantly enhanced total nitrogen, available phosphorous, % organic carbon, microbial biomass carbon and nitrogen and dehydrogenase activity over the un-inoculated control. Sequences of 16S rDNA gene of the actinomycetes matched with different Streptomyces species in BLAST analysis. Of the six actinomycetes, CAI-85 and CAI-93 were found superior over other actinomycetes in terms of PGP properties, root development and crop productivity. qRT-PCR analysis on selected plant growth promoting genes of actinomycetes revealed the up-regulation of IAA genes only in CAI-85 and CAI-93.

  16. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

  17. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves.

    PubMed

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Shahzad, Raheem; Hong, Sung-Jun; Park, Gun-Seok; Jung, Byung Kwon; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    Fungal endophytes have been characterized as producers of phytohormones and potent promoters of plant growth. In this study, two fungal endophytes, Fusarium tricinctum RSF-4L and Alternaria alternata RSF-6L, were isolated from the leaves of Solanum nigrum. Culture filtrates (CFs) from each isolate were initially screened for indole compounds, and assayed for their ability to promote the growth of Dongjin rice plants. Nearly all plant growth attributes examined (i.e., chlorophyll content, root-shoot length, and biomass production) were significantly enhanced upon treatment with fungal CFs. Subsequently, gas chromatography/mass spectrometry analyses were utilized to confirm the presence of phytohormones in the CF of each fungal endophytic isolate. These analyses revealed that RSF-4L and RSF-6L produced 54 and 30 µg/mL indole acetic acid, respectively, within their respective cultures. These findings suggest that the endophytes isolated in this study synthesize bioactive compounds that could play important roles in promoting plant growth.

  18. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  19. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

    PubMed Central

    Shrivastava, Pooja; Kumar, Rajesh

    2014-01-01

    Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants. PMID:25737642

  20. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation.

    PubMed

    Shrivastava, Pooja; Kumar, Rajesh

    2015-03-01

    Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction - somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.

  1. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    SciTech Connect

    Köberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  2. Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents

    PubMed Central

    Ly, Lindsey K.; Underwood, Grace E.; McCully, Lucy M.; Bitzer, Adam S.; Godino, Agustina; Bucci, Vanni; Brigham, Christopher J.; Príncipe, Analía; Fischer, Sonia E.

    2015-01-01

    Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively. PMID:25814613

  3. Developing microbe–plant interactions for applications in plant‐growth promotion and disease control, production of useful compounds, remediation and carbon sequestration

    PubMed Central

    Wu, Cindy H.; Bernard, Stéphanie M.; Andersen, Gary L.; Chen, Wilfred

    2009-01-01

    Summary Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe–plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant‐growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed. PMID:21255275

  4. Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3.

    PubMed

    Ahemad, Munees; Khan, Mohammad Saghir

    2011-06-01

    This study was designed to evaluate the effect of the selected pesticides [herbicides (metribuzin and glyphosate), insecticides (imidacloprid and thiamethoxam) and fungicides (hexaconazole, metalaxyl and kitazin)] at the recommended and the higher dose rates on plant growth promoting traits of Rhizobium sp. strain MRL3 isolated from lentil-nodules. Strain MRL3 was explicitly selected owing to its high pesticide-tolerance ability and substantial production of indole acetic acid, siderophores (salicylic acid and 2, 3 dihydroxy benzoic acid), exo-polysaccharides, HCN and ammonia. A trend of pesticide-concentration dependent progressive-decline for plant growth promoting properties of Rhizobium sp. strain MRL3 was observed excluding exo-polysaccharides which was regularly augmented on exceeding the concentration of each tested pesticide from the recommended dose. Commonly, the maximum toxicity to plant growth promoting traits of Rhizobium was shown by glyphosate, imidacloprid and hexaconazole at three times the recommended rate among herbicides, insecticides and fungicides, respectively.

  5. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.

    PubMed

    López, Martha L; Peralta-Videa, Jose R; Benitez, Tenoch; Gardea-Torresdey, Jorge L

    2005-10-01

    Phytoremediation is a novel cleanup technology for the removal of contaminants from polluted waters and soils. In phytoremediation, the plant uptake capability and the availability of the pollutant in the media are important. Here we show the results of a study on the combined effects of ethylenediaminetetraacetic acid (EDTA) and the phytohormone indole-3-acetic acid (IAA) on Pb uptake by Medicago sativa (alfalfa). Plants were grown in hydroponics media containing a nutrient solution amended with Pb at 0.2mM and different combinations of EDTA, and IAA. After 10d of treatment, the Pb content in plant tissues was quantified using an Inductively Coupled Plasma Optical Emission Spectrometer (ICP/OES). The results showed that the combination of 100 microM IAA/0.2 mM EDTA increased the Pb accumulation in leaves by about 2800% and by about 600%, as compared to Pb content in leaves of plants exposed to Pb alone and those cultivated with Pb/EDTA, respectively. These results indicate that non-metal hyperaccumulator plants could increase their hyperaccumulating potential without genetic manipulation.

  6. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi.

    PubMed

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Park, Gun-Seok; Khan, Abdul Latif; Hong, Sung-Jun; Ullah, Rehman; Jung, Byung Kwon; Park, Chang Eon; Ur-Rehman, Shafiq; Lee, In-Jung; Shin, Jae-Ho

    2017-02-01

    Current investigation conducted to evaluate the associated fungal endophyte interactions of a Cd hyper-accumulator Solanum nigrum Korean ecotype under varying concentrations of Cd. Two indole-3-acetic acid (IAA) producing fungal strains, RSF-4L and RSF-6L, isolated from the leaves of S. nigrum, were initially screened for Cd tolerance and accumulation potential. In terms of dry biomass production, the strain RSF-6L showed higher tolerance and accumulation capacity for Cd toxicity in comparison to RSF-4L. Therefore, RSF-6L was applied in vivo to S. nigrum and grown for six weeks under Cd concentrations of 0, 10, and 30mgKg(-1) of dry sand. The effect of fungal inoculation assessed by plant physiological responses, endogenous biochemical regulations, and Cd profile in different tissues. Significant increase were observed in plant growth attributes such as shoot length, root length, dry biomass, leaf area, and chlorophyll contents in inoculated RSF-6L plants in comparison to non-inoculated plants with or without Cd contamination. RSF-6L inoculation decreased uptake of Cd in roots and above ground parts, as evidenced by a low bio-concentration factor (BCF) and improved tolerance index (TI). However, Cd concentration in the leaves remained the same for inoculated and non-inoculated plants under Cd spiking. Fungal inoculation protected the host plants, as evidenced by low peroxidase (POD) and polyphenol peroxidase (PPO) activities and high catalase (CAT) activity. Application of appropriate fungal inoculation that can improve tolerance mechanisms of hyper-accumulators and reduce Cd uptake can be recommended for phyto-stabilisation/immobilisation of heavy metals in crop fields.

  7. Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain 916.

    PubMed

    Wang, Xiaoyu; Luo, Chuping; Chen, Zhiyi

    2012-10-01

    Bacillus sp. strain 916, isolated from the soil, showed strong activity against Rhizoctonia solani. Here, we present the high-quality draft genome sequence of Bacillus sp. strain 916. Its 3.9-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.

  8. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  9. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection.

    PubMed

    Felestrino, Érica B; Santiago, Iara F; Freitas, Luana da Silva; Rosa, Luiz H; Ribeiro, Sérvio P; Moreira, Leandro M

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested.

  10. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection

    PubMed Central

    Felestrino, Érica B.; Santiago, Iara F.; Freitas, Luana da Silva; Rosa, Luiz H.; Ribeiro, Sérvio P.; Moreira, Leandro M.

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested. PMID:28239369

  11. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem.

    PubMed

    Ferjani, Raoudha; Marasco, Ramona; Rolli, Eleonora; Cherif, Hanene; Cherif, Ameur; Gtari, Maher; Boudabous, Abdellatif; Daffonchio, Daniele; Ouzari, Hadda-Imene

    2015-01-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.

  12. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem

    PubMed Central

    Gtari, Maher; Boudabous, Abdellatif; Daffonchio, Daniele; Ouzari, Hadda-Imene

    2015-01-01

    In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures. PMID:25866759

  13. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice.

    PubMed

    Adhikari, T B; Joseph, C M; Yang, G; Phillips, D A; Nelson, L M

    2001-10-01

    Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P < or = 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%-73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (10(8) CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.

  14. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  15. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed Central

    Janarthine, S. Rylo Sona; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  16. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  17. Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements.

    PubMed

    Wernitznig, S; Adlassnig, W; Sprocati, A R; Turnau, K; Neagoe, A; Alisi, C; Sassmann, S; Nicoara, A; Pinto, V; Cremisini, C; Lichtscheidl, I

    2014-01-01

    In the process of remediation of mine sites, the establishment of a vegetation cover is one of the most important tasks. This study tests two different approaches to manipulate soil properties in order to facilitate plant growth. Mine waste from Ingurtosu, Sardinia, Italy rich in silt, clay, and heavy metals like Cd, Cu, and Zn was used in a series of greenhouse experiments. Bacteria with putative beneficial properties for plant growth were isolated from this substrate, propagated and consortia of ten strains were used to inoculate the substrate. Alternatively, sand and volcanic clay were added. On these treated and untreated soils, seeds of Helianthus annuus, of the native Euphorbia pithyusa, and of the grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra were germinated, and the growth of the seedlings was monitored. The added bacteria established well under all experimental conditions and reduced the extractability of most metals. In association with H. annuus, E. pithyusa and D. flexuosa bacteria improved microbial activity and functional diversity of the original soil. Their effect on plant growth, however, was ambiguous and usually negative. The addition of sand and volcanic clay, on the other hand, had a positive effect on all plant species except E. pithyusa. Especially the grasses experienced a significant benefit. The effects of a double treatment with both bacteria and sand and volcanic clay were rather negative. It is concluded that the addition of mechanical support has great potential to boost revegetation of mining sites though it is comparatively expensive. The possibilities offered by the inoculation of bacteria, on the other hand, appear rather limited.

  18. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops

    PubMed Central

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-01-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. PMID:25431199

  19. The Plant Growth-Promoting Bacteria Azospirillum amazonense: Genomic Versatility and Phytohormone Pathway

    PubMed Central

    Cecagno, Ricardo; Fritsch, Tiago Ebert; Schrank, Irene Silveira

    2015-01-01

    The rhizosphere bacterium Azospirillum amazonense associates with plant roots to promote plant growth. Variation in replicon numbers and rearrangements is common among Azospirillum strains, and characterization of these naturally occurring differences can improve our understanding of genome evolution. We performed an in silico comparative genomic analysis to understand the genomic plasticity of A. amazonense. The number of A. amazonense-specific coding sequences was similar when compared with the six closely related bacteria regarding belonging or not to the Azospirillum genus. Our results suggest that the versatile gene repertoire found in A. amazonense genome could have been acquired from distantly related bacteria from horizontal transfer. Furthermore, the identification of coding sequence related to phytohormone production, such as flavin-monooxygenase and aldehyde oxidase, is likely to represent the tryptophan-dependent TAM pathway for auxin production in this bacterium. Moreover, the presence of the coding sequence for nitrilase indicates the presence of the alternative route that uses IAN as an intermediate for auxin synthesis, but it remains to be established whether the IAN pathway is the Trp-independent route. Future investigations are necessary to support the hypothesis that its genomic structure has evolved to meet the requirement for adaptation to the rhizosphere and interaction with host plants. PMID:25866821

  20. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance.

  1. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa.

    PubMed

    Hariprasad, P; Chandrashekar, S; Singh, S Brijesh; Niranjana, S R

    2014-08-01

    A new Pseudomonas strain, designated as 2apa was isolated from tomato rhizosphere and identified as a member of species Pseudomonas aeruginosa based on its morphology, conventional, biochemical, cell wall fatty acid methyl ester analysis, and 16S rRNA gene sequence analysis. The strain 2apa was positive for root colonization, indole acetic acid (IAA), salicylic acid and siderophore production and inhibited the growth of wide range of microorganisms. Antimicrobial substances produced by this strain with further purification and structure elucidation proved to be phenazine. Under laboratory and greenhouse conditions the strain promoted plant growth and suppressed a wide range of foliar and root pathogens in tomato. The protection offered by strain 2apa to foliar pathogens is considered as induced systemic resistance and was further confirmed by enhanced accumulation of phenolics, elicitation of lipoxygenas activity, and jasmonic acid levels. The broad-spectrum antimicrobial and induced systemic resistance exhibiting strain P. aeruginosa 2apa can be used as an effective biological control candidate against devastating fungal and bacterial pathogens, which attack both root and foliar portions of tomato plant. Production of other functional traits such as IAA and siderophore may enhance its potential as biofertilizer.

  2. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110.

    PubMed

    Han, Jong-In; Choi, Hong-Kyu; Lee, Seung-Won; Orwin, Paul M; Kim, Jina; Laroe, Sarah L; Kim, Tae-Gyu; O'Neil, Jennifer; Leadbetter, Jared R; Lee, Sang Yup; Hur, Cheol-Goo; Spain, Jim C; Ovchinnikova, Galina; Goodwin, Lynne; Han, Cliff

    2011-03-01

    Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions.

  3. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-12-01

    In this study, culturable endophytic bacterial isolates obtained from an ethnomedicinal plant Clerodendrum colebrookianum Walp., were assessed for their diversity, in vitro screening for their plant growth promoting (PGP) activities and to use them as inoculant for in vivo PGP activities with biocontrol potential. Totally, 73 isolates were recovered from different tissues of C. colebrookianum were identified by 16S rRNA gene sequencing and phylogenetically analyzed by using BOX-PCR fingerprinting. Out of 73 isolates, 52 exhibited varying extents of antagonistic potential were selected for screening for various PGP traits. Concerning the PGP activities, the percentage of isolates positive for P-solubilisation, indolic compounds production, siderophore and ammonia production were 84.6, 92.3, 78.8 and 98.0 respectively. All isolates were positive for the production of hydrocyanic acid (HCN) and 86.5%, 84.6% and 90.3% of isolates showed significant cellulase, amylase and protease production respectively. Further, the top 10 bacterial isolates based on a bonitur scale with multiple PGP activities were screened for root surface colonization and biofilm formation ability. Out of selected 10 isolates, 9 showed significant potential for root surface colonization on tomato roots. Isolate BPSAC6 identified as Bacillus sp. was most efficient in biofilm formation as assessed with respect to the intensity of crystal violet, which further showed their potential to withstand various biotic and abiotic stresses. Furthermore, Bacillus sp. strain BPSAC6 showed a significant increase in shoot and root height as well as fresh weight after 45 and 60 d of inoculation with tomato seedlings. Additionally, biosynthetic potential of antagonistic isolate was detection by using PKSI, PKSII and NRPS biosynthetic genes. Two isolates Pseudomonas psychrotolerans and Labrys wisconsinensis were reported first time as an endophyte. At last, first time an endophytic bacterial strain Bacillus sp. BPSAC

  4. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  5. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358.

    PubMed Central

    de Groot, A; Heijnen, I; de Cock, H; Filloux, A; Tommassen, J

    1994-01-01

    In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits. Images PMID:7905475

  6. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A

    NASA Astrophysics Data System (ADS)

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter

    2016-05-01

    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator.

  7. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    PubMed

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.

  8. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A

    PubMed Central

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter

    2016-01-01

    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator. PMID:27216548

  9. In vitro and in vivo characterization of plant growth promoting Bacillus strains isolated from extreme environments of Eastern Algeria.

    PubMed

    Ait-Kaki, Asma; Kacem-Chaouche, Noreddine; Ongena, Marc; Kara-Ali, Mounira; Dehimat, Laid; Kahlat, Karima; Thonart, Philippe

    2014-02-01

    This report is to our knowledge the first to study plant growth promotion and biocontrol characteristics of Bacillus isolates from extreme environments of Eastern Algeria. Seven isolates of 14 (50 %) were screened for their ability to inhibit growth of some phytopathogenic fungi on PDA and some roots exudates. The bacteria identification based on 16S r-RNA and gyrase-A gene sequence analysis showed that 71 % of the screened isolates belonged to Bacillus amyloliquefaciens and the rest were closely related to B. atrophaeus and B. mojavensis. Most of them had high spore yields (22 × 10(8)-27 × 10(8) spores/ml). They produced protease and cellulase cell wall-degrading enzymes while the chitinase activity was only observed in the B. atrophaeus (6SEL). A wide variety of lipopeptides homologous was detected by liquid chromatography-electrospray ionization-mass spectrometry analysis. Interestingly, some additional peaks with new masses were characterized, which may correspond to new fengycin classes. The isolates produced siderophores and indole-3- acetic acid phytohormone. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. atrophaeus (6SEL) significantly increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05). These results suggest that these isolates may be used further as bio-inoculants to improve crop systems.

  10. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions.

    PubMed

    Sadeghi, Akram; Karimi, Ebrahim; Dahaji, Peyman Abaszadeh; Javid, Majid Ghorbani; Dalvand, Yadola; Askari, Hossein

    2012-04-01

    A biocontrol Streptomyces isolate (C) was tested for its plant growth promoting qualities under saline conditions. Exposure to elevated osmotic strengths up to 300 mM NaCl increased dry weight and cfu/ml significantly. The isolate C produced indolyl-3-acetic acid (IAA) into the medium in the amount of 2.4 μg/ml. The amount of auxin increased after adding salt and reached to 4.7 μg/ml in 300 mM NaCl. Biosynthesis of siderophore was detectable and increased in presence of NaCl. Streptomyces isolate C showed good solubilization of tricalcium phosphate in culture medium with 92 mg/l. Solubilization decreased in presence of NaCl. Soil treatment with isolate C increased the growth and development of wheat plant in normal and saline conditions. In this treatment there were significant increases in germination rate, percentage and uniformity, shoot length and dry weight compared to the control. Applying the bacterial inocula increased the concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil, but had non-significant effect on other micro and macronutrients concentrations. Results of this study show that Streptomyces isolate C has potential to be utilized as biofertilizer in saline soils.

  11. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    SciTech Connect

    Weyens N.; van der Lelie D.; Boulet, J.; Adriaensen, D.; Timmermans, J.-P.; Prinsen, E.; Van Oevelen, S.; D"Haen, J.; Smeets, K.; Taghavi, S.; Vangronsveld, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

  12. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Kulshrestha, Saurabh; Chauhan, Anjali; Shirkot, Chand Karan

    2015-01-01

    P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth.

  13. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-01-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.

  14. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil.

    PubMed

    Ignatova, Lyudmila V; Brazhnikova, Yelena V; Berzhanova, Ramza Z; Mukasheva, Togzhan D

    2015-06-01

    538 yeast strains were isolated from dark chestnut soil collected from under the plants of the legume family (Fabaceae). The greatest number of microorganisms is found at soil depth 10-20 cm. Among the 538 strains of yeast 77 (14.3%) strains demonstrated the ability to synthesize IAA. 15 strains were attributed to high IAA-producing yeasts (above 10 μg/ml). The most active strains were YA05 with 51.7 ± 2.1 μg/ml of IAA and YR07 with 45.3 ± 1.5 μg/ml. In the study of effect of incubation time on IAA production the maximum accumulation of IAA coincided with maximum rates of biomass: at 120 h for YR07 and at 144 h for strain YA05. IAA production increased when medium was supplemented with the L-tryptophan. 400 μg/ml of L-tryptophan showed maximum IAA production. 10 strains demonstrated the ability to inhibit the growth and development of phytopathogenic fungi. YA05 and YR07 strains formed the largest zones of inhibition compared to the other strains--from 21.6 ± 0.3 to 30.6 ± 0.5 mm. Maximum zone of inhibition was observed for YA05 against Phytophtora infestans and YR07 strains against Fusarium graminearum. YA05 and YR07 strains were identified as Aureobasidium pullulans YA05 (GenBank accession No JF160955) and Rhodotorula mucilaginosa YR07 (GenBank accession No JF160956).

  15. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    PubMed

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  16. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling.

    PubMed

    Patel, Kinjal Samir; Naik, Jinal Hardik; Chaudhari, Sejal; Amaresan, Natarajan

    2017-03-23

    To elucidate the functional diversity of hot spring bacteria, 123 bacteria were isolated and screened for evaluating their multifunctional plant growth promoting (PGP) properties. The antagonistic activity against different phytopathogens showed the presence of a high amount of biocontrol bacteria in the hot springs. During screening for PGP properties, 61.0% isolates showed production of indole acetic acid and 23.6% showed inorganic phosphate solubilization qualitatively. For production of extracellular enzymes, it was found that 61.0% isolates produced lipase, 56.9% produced protease, and 43.9% produced cellulase. In extreme properties, half of the isolates showed tolerance to 5% NaCl (w/v) and 48.8% isolates survived heat shock at 70°C. The identification of 12 multipotential bacteria based on 16S rRNA gene sequencing revealed that the bacteria belonged to Aneurinibacillus aneurinilyticus and Bacillus spp. Bacterization of tomato seeds showed that the hot spring bacteria promoted shoot height, fresh shoot weight, root length, and fresh root weight of tomato seedlings, with values ranging from 3.12% to 74.37%, 33.33% to 350.0%, 16.06% to 130.41%, and 36.36% to 318.18%, respectively, over the control. This research shows that multifunctional bacteria could be isolated from the hot springs. The outcome of this research may have a potential effect on crop production methodologies used in saline and arid environments.

  17. Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy.

    PubMed

    Sathya, Arumugam; Vijayabharathi, Rajendran; Srinivas, Vadlamudi; Gopalakrishnan, Subramaniam

    2016-12-01

    The present study was evaluated to test the potential of plant growth-promoting actinobacteria in increasing seed mineral density of chickpea under field conditions. Among the 19 isolates of actinobacteria tested, significant (p < 0.05) increase of minerals over the uninoculated control treatments was noticed on all the isolates for Fe (10-38 %), 17 for Zn (13-30 %), 16 for Ca (14-26 %), 9 for Cu (11-54 %) and 10 for Mn (18-35 %) and Mg (14-21 %). The increase might be due to the production of siderophore-producing capacity of the tested actinobacteria, which was confirmed in our previous studies by q-RT PCR on siderophore genes expressing up to 1.4- to 25-fold increased relative transcription levels. The chickpea seeds were subjected to processing to increase the mineral availability during consumption. The processed seeds were found to meet the recommended daily intake of FDA by 24-28 % for Fe, 25-28 % for Zn, 28-35 % for Cu, 12-14 % for Ca, 160-167 % for Mn and 34-37 % for Mg. It is suggested that the microbial inoculum can serve as a complementary sustainable tool for the existing biofortification strategies and substantially reduce the chemical fertilizer inputs.

  18. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum.

    PubMed

    Díaz Herrera, Silvana; Grossi, Cecilia; Zawoznik, Myriam; Groppa, María Daniela

    2016-01-01

    The role of endophytic communities of seeds is still poorly characterised. The purpose of this work was to survey the presence of bacterial endophytes in the seeds of a commercial wheat cultivar widely sown in Argentina and to look for plant growth promotion features and biocontrol abilities against Fusarium graminearum among them. Six isolates were obtained from wheat seeds following a culture-dependent protocol. Four isolates were assignated to Paenibacillus genus according to their 16S rRNA sequencing. The only gammaproteobacteria isolated, presumably an Enterobactereaceae of Pantoea genus, was particularly active as IAA and siderophore producer, and also solubilised phosphate and was the only one that grew on N-free medium. Several of these isolates demonstrated ability to restrain F. graminearum growth on dual culture and in a bioassay using barley and wheat kernels. An outstanding ability to form biofilm on an inert surface was corroborated for those Paenibacillus which displayed greater biocontrol of F. graminearum, and the inoculation with one of these isolates in combination with the Pantoea isolate resulted in greater chlorophyll content in barley seedlings. Our results show a significant ecological potential of some components of the wheat seed endophytic community.

  19. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating.

    PubMed

    Berninger, Teresa; Mitter, Birgit; Preininger, Claudia

    2016-01-01

    A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min). Four bead sizes (55 ± 39 μm, 104 ± 23 μm, 188 ± 16 μm and 336 ± 20 μm after lyophilisation) were produced. Bacterial viability, release, bead morphology, seed surface coverage and attrition were investigated. Release from the smallest bead size was approximately 10 times higher than from the largest. Seed surface coverage was highest (69 ± 3%) when alginate beads produced with nozzle size 80 μm were applied. Pulverised macro-beads are an alternative option, if high throughput is top priority.

  20. Draft Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens Strain CREA-C16 Isolated from Pea (Pisum sativum L.) Rhizosphere

    PubMed Central

    Sorrentino, Roberto; Scotti, Riccardo; Salzano, Melania; Aurilia, Vincenzo

    2017-01-01

    ABSTRACT Herein, we report the draft genome sequence of Pseudomonas fluorescens strain CREA-C16, a plant growth-promoting rhizobacterium that was isolated from the rhizosphere of Pisum sativum L. plants. The genome sequence is ~6 Mb in size, with a G+C content of 60.1%, and includes 4,457 candidate protein-encoding genes. PMID:28126933

  1. A Novel Interaction between Plant-Beneficial Rhizobacteria and Roots: Colonization Induces Corn Resistance against the Root Herbivore Diabrotica speciosa

    PubMed Central

    Santos, Franciele; Peñaflor, Maria Fernanda G. V.; Paré, Paul W.; Sanches, Patrícia A.; Kamiya, Aline C.; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S.

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered. PMID:25405495

  2. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    PubMed

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  3. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress.

    PubMed

    Singh, Rajnish Prakash; Jha, Prameela; Jha, Prabhat Nath

    2015-07-20

    Plant-growth-promoting bacteria (PGPB) with 1-aminocyclopropane-1-carboxylatedeaminase (ACCD) activity can protect plants from the deleterious effects of abioticstressors. An ACCD bacterial strain, SBP-8, identified as Klebsiella sp., also having other plant-growth-promoting activities, was isolated from Sorghum bicolor growing in the desertregion of Rajasthan, India. ACCD activity of SBP-8 was characterized at biochemical, physiological, and molecular levels. The presence of AcdS, a structural gene for ACCD, was confirmed by the polymerase chain reaction. Strain SBP-8 showed optimum growth and ACCD activity at increased salt (NaCl) concentrations of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. Inoculation of wheat plants with SBP-8 when grow in the presence of salt (150-200 mM) and temperature (30-40 °C) stressors resulted inamelioration of stress conditions by increasing plant biomass and chlorophyll content, and are duction in plant growth inhibition (10-100%) occurred due to salt and temperature stressors. Moreover, strain SBP-8 also caused Na(+) exclusion (65%) and increased uptake of K(+) (84.21%) in the host plant. This property can protect plants from adverse effects of Na(+) on plant growth and physiology. Thus, SBP-8 improves growth of the host plant and protects from salt stressors through more than one mechanism including an effect of ACCD activity and on K(+)/Na(+) ratio in plants. The colonization efficiency of strain SBP-8 was confirmedby CFU (colony-forming unit) count, microscopy, and ERIC-PCR based DNA-finger-printing approach. Therefore, and the use of efficient colonizing plant-growth-promoting bacteria may provideinsights into possible biotechnological approaches to decrease the impact of salinity and other stressors.

  4. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN.

    PubMed

    Compant, Stéphane; Reiter, Birgit; Sessitsch, Angela; Nowak, Jerzy; Clément, Christophe; Ait Barka, Essaïd

    2005-04-01

    Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream.

  5. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils.

    PubMed

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Samineni, Srinivasan; Sameer Kumar, C V

    2016-01-01

    Seven strains of bacteria [Pseudomonas plecoglossicida SRI-156, Brevibacterium antiquum SRI-158, Bacillus altitudinis SRI-178, Enterobacter ludwigii SRI-211, E. ludwigii SRI-229, Acinetobacter tandoii SRI-305 and Pseudomonas monteilii SRI-360; demonstrated previously for control of charcoal rot disease in sorghum and plant growth-promotion (PGP) in rice] were evaluated for their PGP and biofortification traits in chickpea and pigeonpea under field conditions. When treated on seed, the seven selected bacteria significantly enhanced the shoot height and root length of both chickpea and pigeonpea over the un-inoculated control. Under field conditions, in both chickpea and pigeonpea, the plots inoculated with test bacteria enhanced the nodule number, nodule weight, root and shoot weights, pod number, pod weight, leaf weight, leaf area and grain yield over the un-inoculated control plots. Among the seven bacteria, SRI-229 was found to significantly and consistently enhance all the studied PGP and yield traits including nodule number (24 and 36%), nodule weight (11 and 44%), shoot weight (22 and 20%), root weight (23 and 16%) and grain yield (19 and 26%) for both chickpea and pigeonpea, respectively. When the harvested grains were evaluated for their mineral contents, iron (up to 18 and 12%), zinc (up to 23 and 5%), copper (up to 19 and 8%), manganese (up to 2 and 39%) and calcium (up to 22 and 11%) contents in chickpea and pigeonpea, respectively, were found enhanced in test bacteria inoculated plots over the un-inoculated control plots. This study further confirms that the selected bacterial isolates not only have the potential for PGP in cereals and legumes but also have the potential for biofortification of mineral nutrients.

  6. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals.

    PubMed

    Desale, Prithviraj; Patel, Bhargav; Singh, Sukrit; Malhotra, Aakshi; Nawani, Neelu

    2014-08-01

    Salinity and heavy metal stress are challenging problems in agriculture. Here we report the plant growth promoting ability of three moderate halophiles, Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6, in presence of both salinity and heavy metal stress. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 can tolerate 25, 21, and 29% NaCl, respectively and grow in presence of 1 mM cobalt, cadmium, and nickel and 0.04 mM mercury and 0.03 mM silver. Halobacillus sp. ADN1, Halomonas sp. MAN5, and Halobacillus sp. MAN6 produced 152.5, 95.3, and 167.3 µg/ml indole acetic acid (IAA) and could solubilize 61, 53, and 75 parts per million (ppm) phosphate, respectively in the presence of 15% NaCl. The production of IAA and solubilization of phosphate was well retained in the presence of salinity and heavy metals like 1 mM cadmium, 0.7 mM nickel, 0.04 mM mercury, and 0.03 mM silver. Besides, the strains showed amylase and protease activities and could produce hydrogen cyanide and ammonia in presence of salinity and heavy metals. A mixture of three strains enhanced the root growth of Sesuvium portulacastrum under saline and heavy metal stress, where the root length increased nearly 4.5 ± 0.6 times and root dry weight increased 5.4 ± 0.5 times as compared to control. These strains can thus be useful in microbial assisted phytoremediation of polluted saline soils.

  7. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    PubMed

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  8. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    PubMed Central

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system. PMID:25763031

  9. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems.

  10. Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions.

    PubMed

    Sorty, Ajay M; Meena, Kamlesh K; Choudhary, Khushboo; Bitla, Utkarsh M; Minhas, P S; Krishnani, K K

    2016-11-01

    Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies. Molecular identification showed the presence of the genera Bacillus, Pantoea, Marinobacterium, Acinetobacter, Enterobacter, Pseudomonas, Rhizobium, and Sinorhizobium (LC027447-53; LC027455; LC027457, LC027459, and LC128410). The phylogenetic studies along with carbon source utilization profiles using the Biolog® indicated the presence of novel species and the in planta studies revealed promising results under salinity stress. Whereas the nodule endophytes had minute plant growth-promoting (PGP) activity, the cell free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum L). The maximum vigor index was monitored in isolate Y7 (Enterobacter sp strain NIASMVII). Indole acetic acid (IAA) production by the isolates ranged between 0.22 and 25.58 μg mL(-1). This signifies the need of exploration of their individual metabolites for developing next-generation bio-inoculants through co-inoculation with other compatible microbes. This study has potential in utilization of the weed-associated microbiome in terms of alleviation of salinity stress in crop plants.

  11. Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation.

    PubMed

    Ventorino, Valeria; Sannino, Filomena; Piccolo, Alessandro; Cafaro, Valeria; Carotenuto, Rita; Pepe, Olimpia

    2014-01-01

    The use of microorganisms to accelerate the natural detoxification processes of toxic substances in the soil represents an alternative ecofriendly and low-cost method of environmental remediation compared to harmful incineration and chemical treatments. Fourteen strains able to grow on minimal selective medium with a complex mixture of different classes of xenobiotic compounds as the sole carbon source were isolated from the soil of the ex-industrial site ACNA (Aziende Chimiche Nazionali Associate) in Cengio (Savona, Italy). The best putative degrading isolate, Methylobacterium populi VP2, was identified using a polyphasic approach on the basis of its phenotypic, biochemical, and molecular characterisation. Moreover, this strain also showed multiple plant growth promotion activities: it was able to produce indole-3-acetic acid (IAA) and siderophores, solubilise phosphate, and produce a biofilm in the presence of phenanthrene and alleviate phenanthrene stress in tomato seeds. This is the first report on the simultaneous occurrence of the PAH-degrading ability by Methylobacterium populi and its multiple plant growth-promoting activities. Therefore, the selected indigenous strain, which is naturally present in highly contaminated soils, is good candidate for plant growth promotion and is capable of biodegrading xenobiotic organic compounds to remediate contaminated soil alone and/or soil associated with plants.

  12. Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation.

    PubMed

    Déniel, F; Rey, P; Chérif, M; Guillou, A; Tirilly, Y

    2004-07-01

    In tomato soilless culture, slow filtration allows one to control the development of diseases caused by pathogenic microorganisms. During the disinfecting process, microbial elimination is ensured by mechanical and biological factors. In this study, system efficacy was enhanced further to a biological activation of filter by inoculating the pozzolana grains contained in the filtering unit with 5 selected bacteria. Three strains identified as Pseudomonas putida and 2 as Bacillus cereus came from a filter whose high efficiency to eliminate pathogens has been proven over years. These 5 bacteria displayed either a plant growth promoting activity (P. putida strains) or antagonistic properties (B. cereus strains). Over the first months following their introduction in the filter, the bacterial colonisation of pozzolana grains was particularly high as compared to the one observed in the control filter. Conversely to Bacillus spp. populations, Pseudomonas spp. ones remained abundant throughout the whole cultural season. The biological activation of filter unit very significantly enhanced fungal elimination with respect to the one displayed by the control filter. Indeed, the 6-month period needed by the control filter to reach its best efficacy against Fusarium oxysporum was shortened for the bacteria-amended filter; in addition, a high efficacy filtration was got as soon as the first month. Fast colonization of pozzolana grains by selected bacteria and their subsequent interaction with F. oxysporum are likely responsible for filter efficiency. Our results suggest that Pseudomonas spp. act by competition for nutrients, and Bacillus spp. by antibiosis and (or) direct parasitism. Elimination of other fungal pathogens, i.e., Pythium spp., seems to differ from that of Fusarium since both filters demonstrated a high efficacy at the experiment start. Pythium spp. elimination appears to mainly rely on physical factors. It is worth noting that a certain percentage of the 5 pozzolana

  13. Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Senthilkumar, Murugaiyan; Pragatheswari, Dhandapani; Lee, Jung-Sook; Lee, Keun-Chul

    2015-02-01

    Three novel bacterial strains, designated Vu-144(T), Vu-7 and Vu-35, were isolated on minimal medium from rhizosphere soil of field-grown cowpea and subjected to a taxonomic study using a polyphasic approach. Cells of the strains were Gram-stain-negative, non-motile, non-spore-forming, coccoid rods, and formed non-pigmented colonies. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Vu-144(T) was affiliated with an uncultivated lineage of the phylum Bacteroidetes. Its closest phylogenetic neighbour was the recently described species Niastella populi, a member of the family Chitinophagaceae, with just 90.7 % sequence similarity to the type strain. The only isoprenoid quinone detected was menaquinone 7 (MK-7). The fatty acid profiles showed large amounts of iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G and minor amounts of summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and other fatty acids, allowing the differentiation of the strains from other genera. The G+C content of the genomic DNA of the three strains ranged from 43.1 to 44.3 mol%. In addition to phosphatidylethanolamine, the major polar lipids were three unidentified aminophospholipids (APL1-APL3), two unidentified phospholipids (PL1, PL2) and three unidentified lipids (UL1-UL3). Biochemical test patterns also differed from those of Niastella populi and members of other genera. All three isolates showed plant-growth-promoting properties, e.g. the ability to produce indole-3-acetic acid and NH3 and to solubilize phosphate, utilized 1-aminocyclopropane 1-carboxylate (ACC) as a sole source of nitrogen and possessed the ACC deaminase enzyme. The novel isolates readily colonized roots and stimulated growth of tomato and cowpea under glasshouse conditions. Inoculated plants showed a 45-60 % increase in dry matter weight with respect to uninoculated controls. On the basis of the evidence from our polyphasic study, isolate Vu-144(T) represents a novel genus and species in

  14. Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth.

    PubMed

    Selvakumar, G; Kundu, S; Gupta, Anand D; Shouche, Yogesh S; Gupta, Hari S

    2008-02-01

    The leguminous vine Kudzu (Pueraria thunbergiana) is an introduction into the N. W. Himalayan region of India. Despite its value as a fodder and cover crop, little is known about the nature of the nodule microflora. In an attempt to study the nodule bacteria, we isolated and characterized three nonrhizobial plant growth promoting bacteria from surface sterilized nodules of Kudzu. Based on the sequencing of the 16 S r RNA gene, the isolates were designated as Bacillus thuringiensis KR-1, Enterobacter asburiae KR-3, and Serratia marcescens KR-4. Crystalline bodies were detected in the isolate KR-1, confirming its identity as B. thuringiensis. Under in vitro conditions, all three isolates were found to produce indole acetic acid. Other plant growth promotion attributes such as P solubilization, hydrogen cyanide production, and ammonia production varied among the isolates. All of the three isolates promoted growth and positively influenced nutrient uptake parameters of wheat seedlings.

  15. The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne.

    PubMed

    Fox, Aaron; Kwapinski, Witold; Griffiths, Bryan S; Schmalenberger, Achim

    2014-10-01

    Plants rely on microorganisms to mobilize organically and inorganically bound sulfur (S) and phosphorus (P) in which the plant can then readily utilize. The aim of this study was to investigate the role of S- and P-mobilizing bacteria in plant growth promotion in biochar-amended soil, which has been rarely investigated so far. Pot experiments of Lolium perenne were established on S and P limited soil with 1% or 2% biochar (Miscanthus × giganteus) or without biochar (control) for a period of 126 days. Both biochar amendments resulted in significant plant growth promotion. Rhizobacteria capable of growing with (1) S from aromatic sulfonates, (2) P from phosphate esters, (3) P from phosphonates, and (4) P from tri-calcium phosphates as sole source of S or P, respectively, were significantly more abundant in the biochar treatments. 16S rRNA gene-based rhizobacteria community analysis revealed a significant biochar treatment effect. Abundance of nematodes feeding on bacteria was also significantly increased in the biochar treatments. Diversity analysis of rhizospheric asfA and phnJ genes revealed broad sequence diversities in bacterial sulfonate and phosphonate-mineralizing capabilities. These findings suggest that biochar amendment enhances microbially mediated nutrient mobilization of S and P resulting in improved plant growth.

  16. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    PubMed

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination.

  17. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.

    PubMed

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2015-04-01

    Endosulfan and their metabolites can be detected in soils with a history of endosulfan application. Microbial degradation offers an effective approach to remove toxicants, and in this study, Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 were isolated through enrichment technique. The biodegradation of endosulfan and its metabolites rate constant (k) and DT50 were determined through first-order kinetic models. E. asburiae JAS5 degraded the endosulfan, and its metabolites in liquid medium was characterized by the k which was 0.382 day(-1) (α-endosulfan), 0.284 day(-1) (β-endosulfan) and 0.228 day(-1) (endosulfan sulphate), and DT50 was 1.8 day (α-endosulfan), 2.4 days (β-endosulfan) and 3.0 days (endosulfan sulphate). The α-endosulfan, β-endosulfan and endosulfan sulphate metabolites were present in the liquid medium that was degraded by E. cloacae JAS7 which was characterized by the k of 0.391, 0.297 day(-1) and 0.273 day(-1), and DT50 was 1.7, 2.3 and 2.5 days, respectively. The infrared spectrum of endosulfan degraded sample in the aqueous medium by E. asburiae JAS5 and E. cloacae JAS7 showed a band at 1402 cm(-1) which is the characteristics of COOH group. E. asburiae JAS5 and E. cloacae JAS7 strains also showed the ability of plant growth promoting traits such as indole-3-acetic acid (IAA) production, organic acids production and solubilization of various inorganic phosphates. E. asburiae JAS5 solubilized 324 ± 2 μg ml(-1) of tricalcium phosphate, 296 ± 6 μg ml(-1) of dicalcium phosphate and 248 ± 5 μg ml(-1) of zinc phosphate, whereas E. cloacae JAS7 solubilized 338 ± 5, 306 ± 4 and 268 ± 3 μg ml(-1) of tricalcium phosphate, dicalcium phosphate and zinc phosphate, respectively. The IAA production by JAS5 and JAS7 strains were estimated to be 38.6 ± 0.3 and 46.6 ± 0.5 μg ml(-1), respectively. These bacterial strains form a potential candidate for bioremediation of pesticide-contaminated agricultural

  18. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    PubMed

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth.

  19. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature

    PubMed Central

    Meldau, Dorothea G.; Long, Hoang H.; Baldwin, Ian T.

    2012-01-01

    Many plants have intimate relationships with soil microbes, which improve the plant’s growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root-associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate B55, was found to have dramatic plant growth promotion (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse, and field conditions, but it also “rescues” many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant–microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant–microbe interaction should be viewed as part of the plant’s extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed. PMID:22701461

  20. Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil.

    PubMed

    Shaw, Sophie; Le Cocq, Kate; Paszkiewicz, Konrad; Moore, Karen; Winsbury, Rebecca; de Torres Zabala, Marta; Studholme, David J; Salmon, Deborah; Thornton, Christopher R; Grant, Murray R

    2016-12-01

    The free-living soil fungus Trichoderma hamatum strain GD12 is notable amongst Trichoderma strains in both controlling plant diseases and stimulating plant growth, a property enhanced during its antagonistic interactions with pathogens in soil. These attributes, alongside its markedly expanded genome and proteome compared with other biocontrol and plant growth-promoting Trichoderma strains, imply a rich potential for sustainable alternatives to synthetic pesticides and fertilizers for the control of plant disease and for increasing yields. The purpose of this study was to investigate the transcriptional responses of GD12 underpinning its biocontrol and plant growth promotion capabilities during antagonistic interactions with the pathogen Sclerotinia sclerotiorum in soil. Using an extensive mRNA-seq study capturing different time points during the pathogen-antagonist interaction in soil, we show that dynamic and biphasic signatures in the GD12 transcriptome underpin its biocontrol and plant (lettuce) growth-promoting activities. Functional predictions of differentially expressed genes demonstrate the enrichment of transcripts encoding proteins involved in transportation and oxidation-reduction reactions during both processes and an over-representation of siderophores. We identify a biphasic response during biocontrol characterized by a significant induction of transcripts encoding small-secreted cysteine-rich proteins, secondary metabolite-producing gene clusters and genes unique to GD12. These data support the hypothesis that Sclerotinia biocontrol is mediated by the synthesis and secretion of antifungal compounds and that GD12's unique reservoir of uncharacterized genes is actively recruited during the effective biological control of a plurivorous plant pathogen.

  1. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein.

    PubMed

    Fan, Ben; Chen, Xiao Hua; Budiharjo, Anto; Bleiss, Wilfrid; Vater, Joachim; Borriss, Rainer

    2011-02-20

    A single copy of the gfp gene linked with the P(spac) promoter and flanked by the terminal FZB42 amyE sequences was stably integrated into the chromosome of plant growth promoting bacterium Bacillus amyloliquefaciens FZB42 via homologous recombination. A spontaneous mutant, FB01mut, emitting bright fluorescence was detected among the transformants and found suitable for colonization experiments performed with Zea mays, Arabidopsis thaliana and Lemna minor. Real-time RT-PCR revealed that FB01mut expressed 2.5 times more of the gfp transcript than the original GFP-labeled strain. Confocal laser scanning microscopy of plant roots infected with gfp+ tagged FZB42 revealed that the bacterium behaves different in colonizing surfaces of plant roots of different species. In contrast to maize, FZB42 colonized preferentially root tips when colonizing Arabidopsis. FZB42 colonized heavily Lemna fronds and roots by forming biofilms consisting of extracellular matrix and cells with altered morphology. Surfactin, but no other lipopeptide or polyketide synthesized by FZB42 under laboratory conditions, was detected in extracts of Lemna plantlets colonized by FZB42. Due to its stable and long-lasting emission of bright fluorescence without antibiotic pressure FB01mut is an excellent tool for studying plant colonization under competitive, environmental conditions.

  2. Isolation and Characterization of Nodule-Associated Exiguobacterium sp. from the Root Nodules of Fenugreek (Trigonella foenum-graecum) and Their Possible Role in Plant Growth Promotion

    PubMed Central

    Rajendran, Geetha; Patel, Maheshwari H.; Joshi, Sanket J.

    2012-01-01

    One of the ways to increase the competitive survivability of rhizobial biofertilizers and thus achieve better plant growth under such conditions is by modifying the rhizospheric environment or community by addition of nonrhizobial nodule-associated bacteria (NAB) that cause better nodulation and plant growth when coinoculated with rhizobia. A study was performed to investigate the most commonly associated nodule-associated bacteria and the rhizospheric microorganisms associated with the Fenugreek (Trigonella foenum-graecum) plant. Isolation of nonrhizobial isolates from root nodules of Fenugreek was carried out along with the rhizospheric isolates. About 64.7% isolates obtained from Fenugreek nodules were gram-negative coccobacilli, 29.41% were gram-positive bacilli, and all rhizospheric isolates except one were gram-positive bacilli. All the isolates were characterized for their plant growth promoting (PGP) activities. Two of the NAB isolates M2N2c and B1N2b (Exiguobacterium sp.) showed maximum positive PGP features. Those NAB isolates when coinoculated with rhizobial strain—S. meliloti, showed plant growth promotion with respect to increase in plant's root and shoot length, chlorophyll content, nodulation efficiency, and nodule dry weight. PMID:22518149

  3. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt.

    PubMed

    Das, Krishnashis; Rajawat, Mahendra Vikram Singh; Saxena, Anil Kumar; Prasanna, Radha

    2017-03-01

    Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride-Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

  4. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  5. Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2.

    PubMed

    Shimizu, Kaori; Hossain, Mohamed Motaher; Kato, Kimihiko; Kubota, Mashaharu; Hyakumachi, Mitsuro

    2013-01-01

    Penicillium simplicissimum GP17-2 is a plant growth-promoting fungus (PGPF) and an inducer of systemic defense responses. The mechanisms underlying the effect of GP17-2 on the reduction of cucumber leaf damage caused by the anthracnose pathogen Colletotrichum orbiculare were investigated. Cucumber leaves treated with the culture filtrate (CF) of GP17-2 exhibited a clear systemic resistance against subsequent infection with C. orbiculare. The number and size of lesions caused by the disease were reduced in CF-treated plants, in comparison with that in the control plants. The results showed that CF treatment could trigger a set of defense responses, including the production of hydrogen peroxide, formation of lignin, emission of ultra-weak photons, accumulation of salicylic acid, and increase in the transcription of the genes for the defense-related enzymes chitinase and peroxidase. Furthermore, subsequent inoculation of CF-pretreated plants with C. orbiculare resulted in higher systemic expression of the genes for chitinase, β-1,3-glucanase, and peroxidase relative to nontreated, inoculated plants; this indicated that CF mediates a potentiation state in the plant, enabling it to mount a rapid and effective response on infection by C. orbiculare. Our results indicate that the ability of CF of GP17-2 to stimulate active oxygen species, lignification, SA accumulation, and defense gene activation and potentiation in the host is the possible mode of action of the GP17-2 elicitor and inducer of induced systemic resistance against C. orbiculare infection in cucumber plants.

  6. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.<