Sample records for plant materials research

  1. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies

    USDA-ARS?s Scientific Manuscript database

    Local adaptation research in plants: limitations to synthetic understanding Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inf...

  2. Research on the Intensive Material Management System of Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Ruosi; Hao, Tianyi; Li, Yunxiao; Zhang, Fangqing; Ding, Sheng

    2017-05-01

    In view of the universal problem which the material management is loose, and lack of standardization and interactive real-time in the biomass power plant, a system based on the method of intensive management is proposed in this paper to control the whole process of power plant material. By analysing the whole process of power plant material management and applying the Internet of Things, the method can simplify the management process. By making use of the resources to maximize and data mining, material utilization, circulation rate and quality control management can be improved. The system has been applied in Gaotang power plant, which raised the level of materials management and economic effectiveness greatly. It has an important significance for safe, cost-effective and highly efficient operation of the plant.

  3. Commercial potential of space-based plant research

    NASA Astrophysics Data System (ADS)

    Bula, Raymond J.; Christophersen, Eric

    1999-01-01

    Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.

  4. Radioactive Material Used In Research | RadTown USA | US ...

    EPA Pesticide Factsheets

    2018-05-01

    Some laboratories use radioactive material to assist their research. Radioactive materials are used in research settings to help researchers create and test new medicines, technologies and procedures for plants, animals and people.

  5. Prosthetic limb sockets from plant-based composite materials.

    PubMed

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  6. Pathogen-tested, or certified planting material

    USDA-ARS?s Scientific Manuscript database

    Certification programs have been developed to provide plant material that meets a predetermined level of plant health. The primary objective of these programs is to limit pathogen incidence in plant material in order to minimize losses by growers. For many fruit and nut crops plantings are expecte...

  7. Genomic Aspects of Research Involving Polyploid Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are alsomore » used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.« less

  8. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  9. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  10. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  11. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  12. 7 CFR 600.8 - Plant materials centers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Plant materials centers. 600.8 Section 600.8..., DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.8 Plant materials centers. Plant materials centers (PMC) assemble and test plant species for conservation uses. Usually a PMC serves two or more States, and is...

  13. New plant releases from the USDA-NRCS Aberdeen, Idaho, Plant Materials Center

    Treesearch

    L. St. John; P. Blaker

    2001-01-01

    The Plant Materials Center at Aberdeen, Idaho, is operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to evaluate and release plant materials for conservation use and to develop and transfer new technology for the establishment and management of plants. The Center serves portions...

  14. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material and...

  15. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material and...

  16. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material and...

  17. 7 CFR 1726.175 - General plant materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false General plant materials. 1726.175 Section 1726.175... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General Plant § 1726.175 General plant... determine the procurement method that best meets its needs for purchase of general plant material and...

  18. Literature review on use of nonwood plant fibers for building materials and panels

    Treesearch

    John A. Youngquist; Brent E. English; Roger C. Scharmer; Poo Chow; Steven R. Shook

    1994-01-01

    The research studies included in this review focus on the use of nonwood plant fibers for building materials and panels. Studies address (1) methods for efficiently producing building materials and panels from nonwood plant fibers; (2) treatment of fibers prior to board production; (3) process variables, such as press time and temperature, press pressure, and type of...

  19. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  20. Reflectance characteristics of dry plant materials

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1987-01-01

    Chlorophyll and water obscure the absorption features of all other leaf constituents in the spectra of green leaves. The predominant near-IR and thermal IR spectral features of dry plant materials originate from lignin, cellulose, and hemicellulose. These compounds account for 80 to 98 percent of the dry weight in most plant materials.

  1. Tamarisk coalition - native riparian plant materials program

    Treesearch

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  2. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    PubMed

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature

  3. Boiler materials for ultra supercritical coal power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Pschirer, James

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this projectmore » is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a

  4. Research and development in pilot plant production of granular NPK fertilizer

    NASA Astrophysics Data System (ADS)

    Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali

    2017-05-01

    PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.

  5. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites

  6. Alaska Plant Materials Center | Division of Agriculture

    Science.gov Websites

    Alaska Plant Materials Center Serving Alaska's needs in the production of native plants and traditional Division of Agriculture Grants Alaska Agriculture Statistics Annual Overview Invasive Plants Invasive Plants Program Invasives News Plant Profiles Canada thistle Elodea European Bird Cherry Giant hogweed

  7. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    NASA Astrophysics Data System (ADS)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  8. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    PubMed Central

    Agarwal, Umesh P.

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression can be achieved, the utility of the Raman investigations has increased significantly. Moreover, the development of several new capabilities such as estimation of cellulose-crystallinity, ability to analyze changes in cellulose conformation at the local and molecular level, and examination of water-cellulose interactions have made this technique essential for research in the field of plant science. The FT-Raman method has also been applied to research studies in the arenas of biofuels and nanocelluloses. Moreover, the ability to investigate plant lignins has been further refined with the availability of near-IR Raman. In this paper, we present 1064-nm FT-Raman spectroscopy methodology to investigate various compositional and structural properties of plant material. It is hoped that the described studies will motivate the research community in the plant biomass field to adapt this technique to investigate their specific research needs. PMID:25295049

  9. Development of plant anatomy teaching material based on palynological studies of pollen impacted by the haze of Hibiscus rosa-sinensis

    NASA Astrophysics Data System (ADS)

    Desti

    2018-05-01

    The research about palynological study of pollen impacted by the haze of Hibiscus rosa-sinensis from Riau Province and its development as a teaching material for plant anatomy has been conducted in Biology Laboratory of Islamic University of Riau. The objective of this research is to find out of the pollen morphology of H. rosa-sinensis and the result of this study developed for teaching materials for plant anatomy subject. The method is descriptive. The analysis data used descriptive qualitative. The result showed that pollen has several characteristics which can be observed which is impacted by the haze. Pollen was observed is single pollen type, spheroidal sarcoid, polyphenoporate aperture type and exterior ornament. From result of research can be concluded that there is difference of pollen analysis between plant observed. Implication of research results in learning in the form of teaching materials for Plant Anatomy subject. Based on the validation results, it is known that the teaching materials that have been prepared can be used in the learning with percentage level achievement of 90.91% for teaching materials. The subject matter of Plant Anatomy which has been prepared based on the research result can be used in the learning process

  10. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  11. Nuclear power plant cable materials :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original

  12. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  13. An analysis of the development and application of plant protection UAV based on advanced materials

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  14. Development of North American forb plant materials for rangeland revegetation and restoration

    USDA-ARS?s Scientific Manuscript database

    Plant materials development for Intermountain rangelands is a primary mission of the USDA-ARS Forage and Range Research Laboratory. Currently there is a significant demand for North American forbs (including legumes) for rangeland revegetation and restoration in the Great Basin, but commercial quan...

  15. The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China

    NASA Astrophysics Data System (ADS)

    Weng, Yuqing

    Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.

  16. MSU-DOE Plant Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  17. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    PubMed

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  18. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  19. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  20. [Metabolomics research of medicinal plants].

    PubMed

    Duan, Li-Xin; Dai, Yun-Tao; Sun, Chao; Chen, Shi-Lin

    2016-11-01

    Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. Copyright© by the Chinese Pharmaceutical Association.

  1. Plant Material Testing: Can we learn from small plots

    USDA-ARS?s Scientific Manuscript database

    Choosing appropriate plant materials for a rangeland rehabilitation project is critical for long-term success. The question is what species to seed? We find it is first necessary to define objectives and goals before debating plant material choices. For example, our objective is often to suppress...

  2. The contribution of woody plant materials on the several conditions in a space environment

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  3. Materials research at CMAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucchiatti, Alessandro

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. Amore » detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.« less

  4. The hierarchical structure and mechanics of plant materials.

    PubMed

    Gibson, Lorna J

    2012-11-07

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.

  5. Suburban noise control with plant materials and solid barriers

    Treesearch

    David I. Cook; David F. Van Haverbeke

    1977-01-01

    Studies were conducted in suburban settings with specially designed noise screens consisting of combinations of plant materials and solid barriers. The amount of reduction in sound level due to the presence of the plant materials and barriers is reported. Observations and conclusions for the measured phenomena are offered, as well as tentative recommendations for the...

  6. Method and apparatus for selectively harvesting multiple components of a plant material

    DOEpatents

    Hoskinson, Reed L.; Hess, Richard J.; Kenney, Kevin L.; Svoboda, John M.; Foust, Thomas D.

    2004-05-04

    A method and apparatus for selectively harvesting multiple components of a plant material. A grain component is separated from the plant material such as by processing the plant material through a primary threshing and separating mechanism. At least one additional component of the plant material is selectively harvested such as by subjecting the plant material to a secondary threshing and separating mechanism. For example, the stems of a plant material may be broken at a location adjacent one or more nodes thereof with the nodes and the internodal stem portions being subsequently separated for harvesting. The at least one additional component (e.g., the internodal stems) may then be consolidated and packaged for subsequent use or processing. The harvesting of the grain and of the at least one additional component may occur within a single harvesting machine, for example, during a single pass over a crop field.

  7. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Treesearch

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  8. The hierarchical structure and mechanics of plant materials

    PubMed Central

    Gibson, Lorna J.

    2012-01-01

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093

  9. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    PubMed

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  10. Development of a material processing plant for lunar soil

    NASA Technical Reports Server (NTRS)

    Goettsch, Ulix; Ousterhout, Karl

    1992-01-01

    Currently there is considerable interest in developing in-situ materials processing plants for both the Moon and Mars. Two of the most important aspects of developing such a materials processing plant is the overall system design and the integration of the different technologies into a reliable, lightweight, and cost-effective unit. The concept of an autonomous materials processing plant that is capable of producing useful substances from lunar regolith was developed. In order for such a materials processing plant to be considered as a viable option, it must be totally self-contained, able to operate autonomously, cost effective, light weight, and fault tolerant. In order to assess the impact of different technologies on the overall systems design and integration, a one-half scale model was constructed that is capable of scooping up (or digging) lunar soil, transferring the soil to a solar furnace, heating the soil in the furnace to liberate the gasses, and transferring the spent soil to a 'tile' processing center. All aspects of the control system are handled by a 386 class PC via D/A, A/D, and DSP (Digital Signal Processor) control cards.

  11. New materials for thermal energy storage in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  12. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  13. Economic Effectiveness of Healthy Potato Planting Material Production with the Use of Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Mishchenko, I. A.; Galushko, V. P.; Taran, O. P.

    2008-06-01

    Research of potato crop productivity under simulated microgravity allows to identify the plants which can become potentially productive under such stress conditions and that might allow to identify the technological parameters of potato production in other space expeditions. One of the traditional practices of planting material treatment against the viruses are the species in vitro. The study of infectious process flow is conducted in the vitro potato in the conditions of clinorotation. The introduction into culture of the meristems from clinostated plants allowed to obtain the regenerants free from the PVX infection. The employment of simulated microgravity for plant remediation reduced the expenditures on the production of in vitro culture 4,5 times, as compared to termoteraphy.

  14. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  15. New research discovery may mean less radioactive contamination, safer nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S.

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  16. MIPSPlantsDB—plant database resource for integrative and comparative plant genome research

    PubMed Central

    Spannagl, Manuel; Noubibou, Octave; Haase, Dirk; Yang, Li; Gundlach, Heidrun; Hindemitt, Tobias; Klee, Kathrin; Haberer, Georg; Schoof, Heiko; Mayer, Klaus F. X.

    2007-01-01

    Genome-oriented plant research delivers rapidly increasing amount of plant genome data. Comprehensive and structured information resources are required to structure and communicate genome and associated analytical data for model organisms as well as for crops. The increase in available plant genomic data enables powerful comparative analysis and integrative approaches. PlantsDB aims to provide data and information resources for individual plant species and in addition to build a platform for integrative and comparative plant genome research. PlantsDB is constituted from genome databases for Arabidopsis, Medicago, Lotus, rice, maize and tomato. Complementary data resources for cis elements, repetive elements and extensive cross-species comparisons are implemented. The PlantsDB portal can be reached at . PMID:17202173

  17. Nondestructive surface analysis for material research using fiber optic vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    2001-11-01

    The advanced methods of fiber optical vibrational spectroscopy (FOVS) has been developed in conjunction with interferometer and low-loss, flexible, and nontoxic optical fibers, sensors, and probes. The combination of optical fibers and sensors with Fourier Transform (FT) spectrometer has been used in the range from 2.5 to 12micrometers . This technique serves as an ideal diagnostic tool for surface analysis of numerous and various diverse materials such as complex structured materials, fluids, coatings, implants, living cells, plants, and tissue. Such surfaces as well as living tissue or plants are very difficult to investigate in vivo by traditional FT infrared or Raman spectroscopy methods. The FOVS technique is nondestructive, noninvasive, fast (15 sec) and capable of operating in remote sampling regime (up to a fiber length of 3m). Fourier transform infrared (FTIR) and Raman fiber optic spectroscopy operating with optical fibers has been suggested as a new powerful tool. These techniques are highly sensitive techniques for structural studies in material research and various applications during process analysis to determine molecular composition, chemical bonds, and molecular conformations. These techniques could be developed as a new tool for quality control of numerous materials as well as noninvasive biopsy.

  18. DNA barcoding of medicinal plant material for identification

    USDA-ARS?s Scientific Manuscript database

    Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similar...

  19. Organic staining on bone from exposure to wood and other plant materials.

    PubMed

    Pollock, Corey R; Pokines, James T; Bethard, Jonathan D

    2018-02-01

    Determining the depositional environment and the postmortem alterations to a set of remains are necessary aspects of a forensic investigation to explain the circumstances surrounding the death of an individual. The present study examines organic staining as a method for reconstructing the depositional environment of skeletal remains and the taphonomic agents with which they came into contact. Organic staining results largely from tannins leaching from plant materials and therefore can be seen on bone deposited in wooden coffin environments or on terrestrial surfaces. The present study examines the hypothesis that the degree of staining observed on skeletal elements would increase as the length of exposure to the organic matter increased and that different plant materials and environments would leave different patterns or colorations of staining. The sample consisted of 165 pig (Sus scrofa) femora divided into four groups exposed to differing experimental conditions, including burial in direct contact with soil or burial in a simulated coffin environment, immersion in water with wood samples, and surface deposition with plant matter contact. The bones were removed once a month from their experimental environments and the level of staining was recorded qualitatively using the Munsell Soil Color Chart. In all of the experimental environments, staining was present after two months of exposure, and the color darkened across the bone surface with each episode of data collection. The results from the present study indicate that staining can manifest on bone within a relatively short time frame once skeletonization occurs and a variety of colorations or patterns of staining can manifest based on the plant material. The present research also demonstrates the potential of organic staining to aid in estimations of the postmortem interval as well as a depositional environmental reconstruction through plant species identification. Copyright © 2017 Elsevier B.V. All rights

  20. MIPS PlantsDB: a database framework for comparative plant genome research.

    PubMed

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  1. MIPS PlantsDB: a database framework for comparative plant genome research

    PubMed Central

    Nussbaumer, Thomas; Martis, Mihaela M.; Roessner, Stephan K.; Pfeifer, Matthias; Bader, Kai C.; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB–plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834–D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB. PMID:23203886

  2. Reuse of textile effluent treatment plant sludge in building materials.

    PubMed

    Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R

    2006-01-01

    This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.

  3. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Plant-Based, Shape-Memory Material Could Replace Today’s Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels. They fashioned the leathery material into small strips and brushed on a thin layer of silver nanoparticles to activate electrical conductivity. The strips were stretched or curled and then frozen as part of the process to program the material to return to its intended shape, whichmore » occurs after the application of low heat. “The performance of this polymer can be tuned further,” said ORNL’s Amit Naskar. “Variant lignins can be used at different ratios, which determines the material’s pliability.” This research was sponsored by the Department of Energy’s Bioenergy Technologies Office.« less

  5. Research of interaction between technological and material parameters during densification of sunflower hulls

    NASA Astrophysics Data System (ADS)

    Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír

    2018-01-01

    During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.

  6. Reuse of waste materials as growing media for ornamental plants.

    PubMed

    Hernández-Apaolaza, Lourdes; Gascó, Antonio M; Gascó, José M; Guerrero, Francisca

    2005-01-01

    The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.

  7. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cablemore » variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each

  8. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  9. Plant biology research and training for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledgemore » about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.« less

  10. Plant biology research and training for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledgemore » about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.« less

  11. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  12. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and

  13. Effect of lunar materials on plant tissue culture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  14. Predictive aging results for cable materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Clough, R.L.

    1990-11-01

    In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less

  15. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  16. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... materials for plant pests. 330.210a Section 330.210a Agriculture Regulations of the Department of... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210a Administrative instructions listing approved packing materials for plant pests. (a) The...

  17. PlantDB – a versatile database for managing plant research

    PubMed Central

    Exner, Vivien; Hirsch-Hoffmann, Matthias; Gruissem, Wilhelm; Hennig, Lars

    2008-01-01

    Background Research in plant science laboratories often involves usage of many different species, cultivars, ecotypes, mutants, alleles or transgenic lines. This creates a great challenge to keep track of the identity of experimental plants and stored samples or seeds. Results Here, we describe PlantDB – a Microsoft® Office Access database – with a user-friendly front-end for managing information relevant for experimental plants. PlantDB can hold information about plants of different species, cultivars or genetic composition. Introduction of a concise identifier system allows easy generation of pedigree trees. In addition, all information about any experimental plant – from growth conditions and dates over extracted samples such as RNA to files containing images of the plants – can be linked unequivocally. Conclusion We have been using PlantDB for several years in our laboratory and found that it greatly facilitates access to relevant information. PMID:18182106

  18. Potential resource materials from Ohio plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.; Roth, W.B.; Bagby, M.O.

    Previously, the Northern Regional Research Center (NRRC) has studied chemical and botanical features of about 800 plant species in a program to identify potential renewable sources of industrial raw materials. In this program, another 64 species from northwestern and southwestern Ohio were studied for the present report. Aboveground samples were quantitatively analyzed for moisture, ash, crude protein, oil, polyphenol, and hydrocarbon. Plant oils were examined for classes of constituents. Oils were saponified and analyzed for yields of organic acids and unsaponifiable matter. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for weight-averagemore » molecular weight and molecular weight distribution. Data are presented for 89 species of the 64 that gave the higher chemical yields. Rhus typhina gave outstanding yields of oil (6.5%) and polyphenol (30.8%) (moisture- plus ash-free basis). Liatris aspera yielded substantial amounts of oil (4.7%) and polyphenol (22.7%), whereas Cornus racemosa yielded a substantial amount of oil (4.4%) but a more typical yield of polyphenol (11.0%). Nuphar advena and Epilobium angustifolium had considerable amounts of polyphenol (16.2, 16.3%) but little oil. Nuphar advena contained the most crude protein (24.8%). Noteworthy amounts of hydrocarbon were extracted from Calamagrostis canadensis (1.1%), Aster umbellatus (0.8%), and Solidago riddellii (0.7%). Polyisoprenes in the hydrocarbon fractions of the latter 3 species were identified as gutta for C. canadensis and rubber for A. umbellatus and S. riddellii. Botanical features of the 8 species are briefly discussed.« less

  19. Collection and production of indigenous plant material for national park restoration

    Treesearch

    Mark Majerus

    1999-01-01

    The National Park Service is taking the "Restoration" approach to reestablishing native plant communities by salvaging topsoil and by seeding and planting native indigenous plant materials. In this way, they are making every effort to protect the genetic integrity of the often unique native plant resource. Since 1985, Yellowstone and Glacier National Parks...

  20. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota

    PubMed Central

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-01-01

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S′, H′, and D′) based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies. PMID:29479006

  1. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    PubMed

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  2. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    NASA Astrophysics Data System (ADS)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried

  3. Natural plant chemicals: source of industrial and medicinal materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.

    1985-01-01

    Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plants cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. Inmore » the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control. 65 references.« less

  4. Mineralization of carbon and nitrogen from freeze- and over-dried plant material added to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    Drying organic material before soil incorporation is a common procedure used in mineralization or decomposition studies. A laboratory study was conducted to determine the effect of drying methods on plant C and N and associated mineralization patterns in soil. Freeze- and oven-dried water hyacinth (Eichhornia crassipes (Mart) Solms) was added to a Kendrick soil (loamy, siliceous, hyperthermic Arenic Paleudults) at a rate of 5 g kg{sup {minus}1} and incubated in the dark at 27{degree}C for 90 d. Oven drying in paper bags significantly increased the lignin content and decreased the mineral content of the plant material compared to freeze drying.more » The total C and N was not significantly different for the two materials. The mineralization of C from freeze-dried plant material was more rapid during the initial stage of decomposition and remained significantly higher throughout the incubation. At 90 d, 50, and 41% of the plant C had evolved as CO{sub 2} for the freeze- and oven-dried plant material, respectively. Mineralization of {sup 15}N from the plant material accounted for 33% of the applied N of the freeze-dried material and 23% of the applied N of the oven-dried material. Nitrogen mineralization and CO{sub 2} evolution were linearly correlated (r=0.998) for the oven-dried plant material, but less correlated (r=0.770) for the freeze-dried material.« less

  5. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  6. Senior Projects in Materials Research.

    ERIC Educational Resources Information Center

    Buxton, Richard

    1999-01-01

    A program in a materials/prototyping lab provided the structure for a year-long research activity. Students could test physical properties of a specific material or explore the use of a material in a new application. (Author/JOW)

  7. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry.

    PubMed

    Liu, Jiangjiang; Wang, He; Cooks, R Graham; Ouyang, Zheng

    2011-10-15

    The chemical constituents of intact plant material, including living plants, are examined by a simple spray method that provides real-time information on sugars, amino acids, fatty acids, lipids, and alkaloids. The experiment is applicable to various plant parts and is demonstrated for a wide variety of species. An electrical potential is applied to the plant and its natural sap, or an applied solvent generates an electrospray that carries endogenous chemicals into an adjacent benchtop or miniature mass spectrometer. The sharp tip needed to create a high electric field can be either natural (e.g., bean sprout) or a small nick can be cut in a leaf, fruit, bark, etc. Stress-induced changes in glucosinolates can be followed on the minute time scale in several plants, including potted vegetables. Differences in spatial distributions and the possibility of studying plant metabolism are demonstrated. © 2011 American Chemical Society

  8. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  9. Materials Research in Microgravity 2012

    NASA Technical Reports Server (NTRS)

    Hyers, R. (Editor); Bojarevis, V. (Editor); Downey, J.; Henein, H. (Editor); Matson, D.; Seidel, A. (Editor); Voss, D. (Editor); SanSoucie, M. (Compiler)

    2012-01-01

    Reducing gravitational effects such as thermal and solutal buoyancy enables investigation of a large range of different phenomena in materials science. The Symposium on Materials Research in Microgravity involved 6 sessions composed of 39 presentations and 14 posters with contributions from more than 14 countries. The sessions concentrated on four different categories of topics related to ongoing reduced-gravity research. Highlights from this symposium will be featured in the September 2012 issue of JOM. The TMS Materials Processing and Manufacturing Division, Process Technology and Modeling Committee and Solidification Committee sponsored the symposium.

  10. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  11. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  12. The Plant Protoplast: A Useful Tool for Plant Research and Student Instruction

    ERIC Educational Resources Information Center

    Wagner, George J.; And Others

    1978-01-01

    A plant protoplast is basically a plant cell that lacks a cell wall. This article outlines some of the ways in which protoplasts may be used to advance understanding of plant cell biology in research and student instruction. Topics include high efficiency experimental virus infection, organelle isolation, and osmotic effects. (Author/MA)

  13. MSRR Rack Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  14. International regulations regarding exchange of Rubus plant material

    USDA-ARS?s Scientific Manuscript database

    This article summarizes the international quarantine regulations regarding plant material exchange for Rubus. US federal importation regulations are summarized along with aspects of Rubus that presented as noxious weed. Requirements for exporting Rubus to foreign countries are also described. Proper...

  15. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...

  16. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...

  17. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...

  18. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...

  19. 7 CFR 613.3 - NRCS responsibilities in plant materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...

  20. Strategic Research Directions In Microgravity Materials Science

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  1. Unit Plants, First Trial Materials, Inspection Set.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The Australian Science Education Project is producing materials designed for use in grades 7-10 of Australian schools. This is the first trial version of a unit introducing the study of plants. The section to be completed by all pupils, contained in the first of the student workbooks, emphasizes observation of specimens on school grounds and on…

  2. Cornell Center for Materials Research - An NSF MRSEC

    Science.gov Websites

    Cornell Center for Materials Research Cornell Center for Materials Research | An NSF MRSEC Search Research Atomic Membranes for 3D Systems Structured Materials for Strong Light-Matter Interactions Mechanisms, Materials, and Devices for Spin Manipulation Seed Projects - Exploratory Research Acknowledging

  3. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The importance of living botanical collections for plant biology and the “next generation” of evo-devo research

    PubMed Central

    Dosmann, Michael; Groover, Andrew

    2012-01-01

    Living botanical collections include germplasm repositories, long-term experimental plantings, and botanical gardens. We present here a series of vignettes to illustrate the central role that living collections have played in plant biology research, including evo-devo research. Looking toward the future, living collections will become increasingly important in support of future evo-devo research. The driving force behind this trend is nucleic acid sequencing technologies, which are rapidly becoming more powerful and cost-effective, and which can be applied to virtually any species. This allows for more extensive sampling, including non-model organisms with unique biological features and plants from diverse phylogenetic positions. Importantly, a major challenge for sequencing-based evo-devo research is to identify, access, and propagate appropriate plant materials. We use a vignette of the ongoing 1,000 Transcriptomes project as an example of the challenges faced by such projects. We conclude by identifying some of the pinch points likely to be encountered by future evo-devo researchers, and how living collections can help address them. PMID:22737158

  5. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  6. Materials and methods to increase plant growth and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirst, Matias

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  7. [Carbonyl compounds emission and uptake by plant: Research progress].

    PubMed

    Li, Jian; Cai, Jing; Yan, Liu-Shui; Li, Ling-Na; Tao, Min

    2013-02-01

    This paper reviewed the researches on the carbonyl compounds emission and uptake by plants, and discussed the compensation point of the bidirectional exchange of carbonyl compounds between plants and atmosphere. The uptake by leaf stomata and stratum corneum is the principal way for the purification of air aldehydes by plants. After entering into plant leaves, most parts of carbonyl compounds can be metabolized into organic acid, glucide, amino acid, and carbon dioxide, etc. , by the endoenzymes in leaves. The exchange direction of the carbonyl compounds between plants and atmosphere can be preliminarily predicted by the compensation point and the concentrations of ambient carbonyl compounds. This paper summarized the analytical methods such as DNPH/HPLC/UV and PFPH/GC/MS used for the determination of carbonyl compounds emitted from plants or in plant leaves. The main research interests in the future were pointed out, e. g. , to improve and optimize the analytical methods for the determination of carbonyl compounds emitted from plants and the researches on systems (e. g. , plant-soil system), to enlarge the detection species of carbonyl compounds emitted from plants, to screen the plant species which can effectively metabolize the pollutants, and to popularize the phytoremediation techniques for atmospheric

  8. Ice nucleation by plant structural materials and its potential contribution to glaciation in clouds

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Hoose, C.; Järvinen, E.; Kiselev, A. A.; Moehler, O.; Schnaiter, M.; Ullrich, R.; Cziczo, D. J.; Felgitsch, L.; Gourihar, K.; Grothe, H.; Reicher, N.; Rudich, Y.; Tobo, Y.; Zawadowicz, M. A.

    2015-12-01

    Glaciation of supercooled clouds through immersion freezing is an important atmospheric process affecting the formation of precipitation and the Earth's energy budget. Currently, the climatic impact of ice-nucleating particles (INPs) is being reassessed due to increasing evidence of their diversity and abundance in the atmosphere as well as their ability to influence cloud properties. Recently, it has been found that microcrystalline cellulose (MCC; extracted from natural wood pulp) can act as an efficient INP and may add crucial importance to quantify the role of primary biological INP (BINP) in the troposphere. However, it is still unclear if the laboratory results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to assess the overall role of BINPs in clouds and the climate system. Here, we use the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber in Karlsruhe, Germany to demonstrate that several important plant constituents as well as natural plant debris can act as BINPs in simulated super-cooled clouds of the lower and middle troposphere. More specifically, we measured the surface-scaled ice nucleation activity of a total 16 plant structural materials (i.e., celluloses, lignins, lipids and carbohydrates), which were dispersed and immersed in cloud droplets in the chamber, and compared to that of dried leaf powder as a model proxy for atmospheric BINPs. Using these surface-based activities, we developed parameters describing the ice nucleation ability of these particles. Subsequently, we applied them to observed airborne plant debris concentrations and compared to the background INP simulated in a global aerosol model. Our results suggest that cellulose is the most active BINPs amongst the 16 materials and the concentration of ice nucleating cellulose and plant debris to become significant (>0.1 L-1) below about -20 ˚C. Overall, our findings support the view that MCC may be a good proxy

  9. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  10. Trends in plant research using molecular markers.

    PubMed

    Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco

    2018-03-01

    A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.

  11. Foundational literature for moving native plant materials in changing climates

    Treesearch

    Mary I. Williams; Kas Dumroese; Jeremy Pinto; Martin F. Jurgensen

    2015-01-01

    Seed transfer guidelines and zones are used to manage the movement of plant materials, but by the end of the century many landscapes across the globe will have climates that are incompatible with current vegetation. The mismatch in rates between climate change and plant migration and adaptation will pose significant challenges for natural resource managers, especially...

  12. Fire-Resistant Materials: Research Overview

    DOT National Transportation Integrated Search

    1996-12-01

    This report provides an overview of the research being conducted by the Federal Aviation Administration (FAA) to develop fire safe cabin materials for commercial aircraft. The objective of the Fire-Resistant Materials program is to eliminate burning ...

  13. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  14. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  15. Investment in plant research and development bears fruit in China.

    PubMed

    Chong, Kang; Xu, Zhihong

    2014-04-01

    Recent rapid progress in plant science and biotechnology in China demonstrates that China's stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top-down organization of state programs and free exploration of scientists' interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China's progress in plant R&D to highlight fields in which Chinese research has made significant contributions.

  16. Advances in seed conservation of wild plant species: a review of recent research

    PubMed Central

    Hay, Fiona R.; Probert, Robin J.

    2013-01-01

    Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management. However, over the last 10–20 years, problems and knowledge gaps have been identified, which have led to more focused seed conservation research on diverse species. For example, there is now greater ecogeographic understanding of seed storage behaviour and of the relative longevity of orthodox seeds, and we are therefore able to predict which species should be conserved using cryostorage techniques; seed development studies have identified when seeds should be harvested for maximal tolerance of desiccation and longevity in storage, as well as highlighting how seed development can vary between species; and there is now a wealth of literature on the dormancy-breaking and germination requirements of wild species which, as well as enabling better management of accessions, will also mean that their use in restoration, species reintroduction, or for evaluation for other applications is possible. Future research may be focused, for example, on nursery and plant production systems for wild plant species that maximize genetic diversity, so that introduced seeds and plant materials have the resilience to cope with future environmental stresses. PMID:27293614

  17. [Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering].

    PubMed

    Li, Ran; Wang, Hong; Leng, Chongyan; Wang, Kuan; Xie, Ying

    2016-05-01

    Natural polymeric materials and their derivatives are organic macromolecular compounds which exist in plants, animals, and micro-organisms. They have been widely used in the preparation of scaffolds for skin tissue engineering recently because of their good histocompatibility and degradability, and low immunogenicity. With the improvement of the preparation technics, composite materials are more commonly used to make scaffolds for dermal tissue engineering. This article summarizes the classification and research status of the commonly used natural polymer materials, their derivatives, and composite scaffold materials, as well as makes a prospect of the research trends of dermal scaffold in the future.

  18. PLE in the analysis of plant compounds. Part II: One-cycle PLE in determining total amount of analyte in plant material.

    PubMed

    Dawidowicz, Andrzej L; Wianowska, Dorota

    2005-04-29

    Pressurised liquid extraction (PLE) is recognised as one of the most effective sample preparation methods. Despite the enhanced extraction power of PLE, the full recovery of an analyte from plant material may require multiple extractions of the same sample. The presented investigations show the possibility of estimating the true concentration value of an analyte in plant material employing one-cycle PLE in which plant samples of different weight are used. The performed experiments show a linear dependence between the reciprocal value of the analyte amount (E*), extracted in single-step PLE from a plant matrix, and the ratio of plant material mass to extrahent volume (m(p)/V(s)). Hence, time-consuming multi-step PLE can be replaced by a few single-step PLEs performed at different (m(p)/V(s)) ratios. The concentrations of rutin in Sambucus nigra L. and caffeine in tea and coffee estimated by means of the tested procedure are almost the same as their concentrations estimated by multiple PLE.

  19. Matching seed to site by climate similarity: techniques to prioritize plant materials development and use in restoration

    USGS Publications Warehouse

    Doherty, Kyle; Butterfield, Bradley J.; Wood, Troy E.

    2017-01-01

    Land management agencies are increasing the use of native plant materials for vegetation treatments to restore ecosystem function and maintain natural ecological integrity. This shift toward the use of natives has highlighted a need to increase the diversity of materials available. A key problem is agreeing on how many, and which, new accessions should be developed. Here we describe new methods that address this problem. Our methods use climate data to calculate a climate similarity index between two points in a defined extent. This index can be used to predict relative performance of available accessions at a target site. In addition, the index can be used in combination with standard cluster analysis algorithms to quantify and maximize climate coverage (mean climate similarity), given a modeled range extent and a specified number of accessions. We demonstrate the utility of this latter feature by applying it to the extents of 11 western North American species with proven or potential use in restoration. First, a species-specific seed transfer map can be readily generated for a species by predicting performance for accessions currently available; this map can be readily updated to accommodate new accessions. Next, the increase in climate coverage achieved by adding successive accessions can be explored, yielding information that managers can use to balance ecological and economic considerations in determining how many accessions to develop. This approach identifies sampling sites, referred to as climate centers, which contribute unique, complementary, climate coverage to accessions on hand, thus providing explicit sampling guidance for both germplasm preservation and research. We examine how these and other features of our approach add to existing methods used to guide plant materials development and use. Finally, we discuss how these new methods provide a framework that could be used to coordinate native plant materials development, evaluation, and use across

  20. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  1. Mechanistic understanding of cellular level of water in plant-based food material

    NASA Astrophysics Data System (ADS)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  2. Live Specimens More Effective than World Wide Web for Learning Plant Material

    ERIC Educational Resources Information Center

    Taraban, Roman; McKenney, Cynthia; Peffley, Ellen; Applegarth, Ashley

    2004-01-01

    The World Wide Web and other computer-based media are new teaching resources for plant identification. The purpose of the experiments reported here was to test whether learning plant identification for woody and herbaceous plant material over the web was as effective, more effective, or preferred by undergraduate students when compared with…

  3. Human pathogens on plants: designing a multidisciplinary strategy for research.

    PubMed

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2013-04-01

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  4. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research.

    PubMed

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2014-10-15

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  5. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  6. Plant use in the Lower and Middle Palaeolithic: Food, medicine and raw materials

    NASA Astrophysics Data System (ADS)

    Hardy, Karen

    2018-07-01

    There is little surviving evidence for plant use in the Lower and Middle Palaeolithic periods yet the evidence there is, clearly indicates the importance of plants in the diet, as medicines and as raw materials. Here, the current evidence for plants is summarised, and the way this can be used to enrich perceptions of the Lower and Middle Palaeolithic are explored. The evidence for plant food fits well with basic nutritional requirements while the presence of medicinal plants correlates with plant-based self-medication by animals. Many plant-based technologies are likely to have developed early in the Palaeolithic. Though investigating this is challenging due to a lack of evidence, the extensive evidence for use of plant materials as tools by chimpanzees provides a broad backdrop. The ecological knowledge carried by all hominins would have provided a safety net when moving into new regions, while varying levels of neophobia would have enabled adaptation to new environments as hominin populations moved and climates changed. Recent plant use among traditional societies in high latitudes shows that even in locations with reduced biodiversity, plant resources can fulfil essential dietary requirements.

  7. Recent global trends in structural materials research

    NASA Astrophysics Data System (ADS)

    Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki

    2013-02-01

    Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural

  8. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  9. Materials Research and Technology Initiatives

    DOT National Transportation Integrated Search

    1995-11-01

    This report is the departments first report on current and planned research and technology efforts in advanced materials. The report was published in support of the Administration's initiative to establish an integrated program of research designed t...

  10. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993-March 31, 1995

    NASA Astrophysics Data System (ADS)

    Carlson, Paul T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.

  11. Lewis Researcher in the Materials and Stresses Building

    NASA Image and Video Library

    1952-12-21

    A materials researcher at the NACA’s Lewis Flight Propulsion Laboratory examines a surface crack detection apparatus in the Materials and Stresses Building during December 1952. Materials research was an important aspect of propulsion technology. Advanced engine systems relied upon alloys, and later composites, that were strong, lightweight, and impervious to high temperatures. Jet engines which became increasingly popular in the late 1940s, produced much higher temperatures than piston engines. These higher temperatures stressed engine components, particularly turbines. Although Lewis materials research began during World War II, the Materials and Thermodynamics Division was not created until 1949. Its primary laboratories were located in the Materials and Stresses Building. The group sought to create new, improved materials and to improve engine design through increased understanding of materials. The Lewis materials researchers of the 1950s made contributions to nickel-aluminum alloys, cermet blades, metal matrix composites, oxide dispersion strengthened superalloys, and universal slopes.

  12. Plant-derived Secondary Organic Material in the Air and Ecosystems.

    PubMed

    Holopainen, J K; Kivimäenpää, M; Nizkorodov, S A

    2017-09-01

    Biogenic secondary organic aerosol (SOA) and deposited secondary organic material (SOM) are formed by oxidation of volatile organic compounds (VOCs) emitted by plants. Many SOA compounds have much longer chemical lifetimes than the original VOC, and may accumulate on plant surfaces and in soil as SOM because of their low volatility. This suggests that they may have important and presently unrecognized roles in plant adaptation. Using reactive plant terpenoids as a model we propose a three-tier (atmosphere-vegetation-soil) framework to better understand the ecological and evolutionary functions of SOM. In this framework, SOA in the atmosphere is known to affect solar radiation, SOM on the plant surfaces influences the interactive organisms, and wet and dry deposition of SOM on soil affects soil organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any processed...

  14. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any processed...

  15. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any processed...

  16. DNA Damage Repair System in Plants: A Worldwide Research Update.

    PubMed

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  17. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  18. Materials library collections as tools for interdisciplinary research

    PubMed Central

    2018-01-01

    ABSTRACT This paper examines how materials libraries are used as tools for interdisciplinary collaboration in 3 research projects that inhabit a disciplinary triangle between materials research, design and user needs: PhysFeel, which explores how materials collections can be used in psychological therapies; Light.Touch.Matters, a design-led project to develop new smart materials; and Hands of X, which uses materials collections to develop a bespoke prosthetics service. The paper analyses and contrasts these case studies to better understand the affordances and limitations of materials collections when used as research, translational and design tools. We conclude that in collaborations between materials researchers, designers and end users, tensions arise as a result of the primacy that each partner gives to creativity, the development of new knowledge and to solving societal problems. The use of a materials library addresses many of these issues but is not a panacea for all the problems associated with interdisciplinary working. PMID:29576803

  19. Materials library collections as tools for interdisciplinary research.

    PubMed

    Wilkes, S E; Miodownik, M A

    2018-01-01

    This paper examines how materials libraries are used as tools for interdisciplinary collaboration in 3 research projects that inhabit a disciplinary triangle between materials research, design and user needs: PhysFeel , which explores how materials collections can be used in psychological therapies; Light.Touch.Matters , a design-led project to develop new smart materials; and Hands of X , which uses materials collections to develop a bespoke prosthetics service. The paper analyses and contrasts these case studies to better understand the affordances and limitations of materials collections when used as research, translational and design tools. We conclude that in collaborations between materials researchers, designers and end users, tensions arise as a result of the primacy that each partner gives to creativity, the development of new knowledge and to solving societal problems. The use of a materials library addresses many of these issues but is not a panacea for all the problems associated with interdisciplinary working.

  20. 2010 Plant Molecular Biology Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Sussman

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides anmore » excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.« less

  1. Materials Research With Neutrons at NIST

    PubMed Central

    Cappelletti, R. L.; Glinka, C. J.; Krueger, S.; Lindstrom, R. A.; Lynn, J. W.; Prask, H. J.; Prince, E.; Rush, J. J.; Rowe, J. M.; Satija, S. K.; Toby, B. H.; Tsai, A.; Udovic, T. J.

    2001-01-01

    The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation’s measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments. PMID:27500021

  2. Embracing Community Ecology in Plant Microbiome Research.

    PubMed

    Dini-Andreote, Francisco; Raaijmakers, Jos M

    2018-06-01

    Community assembly is mediated by selection, dispersal, drift, and speciation. Environmental selection is mostly used to date to explain patterns in plant microbiome assembly, whereas the influence of the other processes remains largely elusive. Recent studies highlight that adopting community ecology concepts provides a mechanistic framework for plant microbiome research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.

  4. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less

  5. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    PubMed

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided

  6. [Research progress on mutation by spaceflight in medicinal plants breeding].

    PubMed

    Yan, Shuo; Gao, Wenyuan; Lu, Fuping; Zhao, Runhuai

    2010-02-01

    Space breeding in medicinal plants is special characteristics in China. Compared with other plants, in spite of a relatively small number, Medicinal plants have more obvious characteristics and advantages. Research on medicinal plants has also been carried into all aspects, such as biological traits, physiology and biochemistry, genomics, as well as differences in chemical composition, and chemical composition analysis is also involved. However, compared with other plants, especially crops and vegetables, biological research is an obvious deficiency, that is mainly reflected in the insufficient genetics and breeding researches, the stability of genetic traits from generation to generation were not followed up and in-depth study in breeding areas was not carried out. If medicinal plants resources from space with the genetic stability good quality were selected, it would address the problem of lack of resources and ease the pressure on wild resources of medicinal plants. It would at the same time play an important role in promoting the development of medicinal botany space breeding and the implementation of modernization of traditional Chinese medicine.

  7. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  8. High-resolution DNA melting analysis in plant research

    USDA-ARS?s Scientific Manuscript database

    Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually developed...

  9. Progress in plant research in space.

    PubMed

    Dutcher, F R; Hess, E L; Halstead, T W

    1994-01-01

    Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.

  10. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an application...

  11. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials-research. 3406.17... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an application...

  12. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOOD AND AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research. Program application materials in an application... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials-research. 3406.17...

  13. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident.

    PubMed

    Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy

    2017-12-14

    Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.

  14. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident

    PubMed Central

    Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy

    2017-01-01

    Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown. PMID:29286382

  15. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    PubMed

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  16. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  17. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  18. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    PubMed

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  19. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  20. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  1. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  2. The Plant Organelles Database 3 (PODB3) update 2014: integrating electron micrographs and new options for plant organelle research.

    PubMed

    Mano, Shoji; Nakamura, Takanori; Kondo, Maki; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nagatani, Akira; Nishimura, Mikio

    2014-01-01

    The Plant Organelles Database 2 (PODB2), which was first launched in 2006 as PODB, provides static image and movie data of plant organelles, protocols for plant organelle research and external links to relevant websites. PODB2 has facilitated plant organellar research and the understanding of plant organelle dynamics. To provide comprehensive information on plant organelles in more detail, PODB2 was updated to PODB3 (http://podb.nibb.ac.jp/Organellome/). PODB3 contains two additional components: the electron micrograph database and the perceptive organelles database. Through the electron micrograph database, users can examine the subcellular and/or suborganellar structures in various organs of wild-type and mutant plants. The perceptive organelles database provides information on organelle dynamics in response to external stimuli. In addition to the extra components, the user interface for access has been enhanced in PODB3. The data in PODB3 are directly submitted by plant researchers and can be freely downloaded for use in further analysis. PODB3 contains all the information included in PODB2, and the volume of data and protocols deposited in PODB3 continue to grow steadily. We welcome contributions of data from all plant researchers to enhance the utility and comprehensiveness of PODB3.

  3. PGSB PlantsDB: updates to the database framework for comparative plant genome research.

    PubMed

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C; Martis, Mihaela M; Seidel, Michael; Kugler, Karl G; Gundlach, Heidrun; Mayer, Klaus F X

    2016-01-04

    PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Checklist of the vascular plants of Steamboat Mountain Research Natural Area.

    Treesearch

    S. Reid Schuller; Robert E. Frenkel

    1981-01-01

    Lists 237 vascular plant taxa found in the 570-hectare Steamboat Mountain Research Natural Area. Notes on habitats, community types, and abundance are included for most taxa. This research note provides scientists, educators, and land managers with baseline information on the presence, location, and abundance of vascular plants within the Steamboat Mountain Research...

  5. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  6. Chamber wall materials response to pulsed ions at power-plant level fluences

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Provencio, P. P.; Tanaka, T. J.; Olson, C. L.; Peterson, R. R.; Stolp, J. E.; Schroen, D. G.; Knowles, T. R.

    2005-12-01

    Candidate dry-wall materials for the reactor chambers of future laser-driven Inertial Fusion Energy (IFE) power plants have been exposed to ion pulses from RHEPP-1, located at Sandia National Laboratories. These pulses simulate the MeV-level ion pulses with fluences of up to 20 J/cm 2 that can be expected to impinge on the first wall of such future plants. Various forms of tungsten and tungsten alloy were subjected to up to 1600 pulses, usually while being heated to 600 °C. Other metals were exposed as well. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Powder-metallurgy (PM) tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. This roughening is worse than for other metals, and worse than for either tungsten alloyed with rhenium (W25Re), or for CVD and single-crystal forms of tungsten. Carbon, particularly the form used in composite material, appears to suffer material loss well below its sublimation point. Some engineered materials were also investigated. It appears that some modification to PM tungsten is required for its successful use in a reactor environment.

  7. Power plant wastes capitalization as geopolymeric building materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  8. Plant materials for riparian revegetation

    Treesearch

    J. Chris Hoag; Thomas D. Landis

    2002-01-01

    Increased public awareness and concern have prompted new efforts in riparian revegetation using streambank bioengineering techniques. Planting in a riparian zone is very different than planting on upland sites. Riparian planting zones should be used to ensure that the vegetation is planted in the appropriate location so that the planting does not create more problems...

  9. Federal materials research and development: modernizing institutions and management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-12-02

    The report was generated as a result of a request from Senators William Brock and John Tunney, Senate members of the National Commission on Supplies and Shortages. They asked GAO to analyze Federal funding for materials research and development (R and D) and to evaluate the effectiveness of Federal materials R and D. The report reveals important deficiencies in institutional arrangements and information systems bearing on national materials problems. It looks beyond research and development as such and identifies the institutional setting that must be created for articulation of coherent rational materials policy goals. Their stipulation must necessarily precede andmore » serve to guide the establishment of research and development priorities. It contains recommendations for action that should be taken by both the National Commission on Supplies and Shortages and Executive Branch agencies to achieve a modern capability for formulation and execution of a national materials program. GAO made three recommendations aimed at modernizing the materials policy formulation process and the management of Federal materials R and D activity: (1) the Congress should consider establishing an institution to analyze national materials issues and provide policy guidance on a continuing basis; (2) a comprehensive unclassified information system for materials research and development should be established, building on existing information in the Smithsonian Science Information Exchange; and (3) the Science Exchange should include in its information system data pertaining to material research and development outside the Federal Government. (MCW)« less

  10. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  11. 77 FR 61432 - Proposal Review for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  12. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    NASA Astrophysics Data System (ADS)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  13. Introduction to the USDA-Agricultural Research Service Poisonous Plant Research Laboratory Special Rangelands Issue

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS Poisonous Plant Research Labortory (PPRL) in Logan, UT will sponsor an edition of the magazine Rangelands. This paper provides a brief history and overview of the PPRL, mission statement, research objectives by CRIS, and the disciplines involved in the research....

  14. Current Perspective in the International Trade of Medicinal Plants Material: An Update.

    PubMed

    Vasisht, Karan; Sharma, Neetika; Karan, Maninder

    2016-01-01

    The recent years have seen an increased interest in medicinal plants together with the therapeutic use of phytochemicals. Medicinal plants are utilized by the industry for the production of extracts, phytopharmaceuticals, nutraceuticals and cosmeceuticals and their use is expected to grow faster than the conventional drugs. The enormous demand of medicinal plant material has resulted in huge trade both at domestic and international levels. The trade data of medicinal plant material with commodity code HS 1211 (SITC.4, code 292.4) and their derived/related products which are traded under different commodity codes has been acquired from COMTRADE, Trade Map, country reports, technical documents etc for the period 2001 to 2014. The data was analyzed using statistical tools to draw conclusions. The significant features of the global trade; the leading source, consumer, import and export countries; and the striking trends are presented. The trade of the ten key countries and the selected important items is also discussed in detail. The conservative figure of trade of medicinal plants materials and their derived/related products including extracts, essential oils, phytopharmaceuticals, gums, spices used in medicine, tannins for pharmaceutical use, ingredients for cosmetics etc. as calculated from the global export data for the year 2014 is estimated at USD 33 billion. The average global export in medicinal plants under HS 1211 for the fourteen year period was USD 1.92 billion for 601,357 tons per annum and for the year 2014 it stood at 702,813 tons valued at USD 3.60 billion. For the studied period, an annual average growth rate (AAGR) of 2.4% in volumes and 9.2% in values of export was observed. Nearly 30% of the global trade is made up by top two countries of the import and export. China and India from Asia; Egypt and Morocco from Africa; Poland, Bulgaria and Albania from Europe; Chile and Peru from South America are important supply sources. The USA, Japan and Europe

  15. Effect of biologically active plants used as netst material and the derived benefit to starling nestlings.

    PubMed

    Clark, Larry; Russell Mason, J

    1988-11-01

    The European starling Sturnus vulgaris preferentially incorporates fresh sprigs of particular plant species for use as nesting material. Chemicals found in these plants may act to reduce pathogen and ectoparasite populations normally found in nest environments. The present experiments were performed to test this Nest Protection Hypothesis. In the fild, we experimentally determined that wild carrot Daucus carota, a plant species preferred as nest material, effectively reduced the number of hematophagous mites found within nests relative to control nests without green vegetation. Chicks from nests containing wild carrot had higher levels of blood hemoglobin than chicks from control nests. However, there were no differences in weight or feather development. In the laboratory, we found that wild carrot and fleabane, Erigeron philadelphicus, (also preferred by starlings as nest material) substantially reduced the emergence of feeding instars of mites, while garlic mustard, Alliaria officinalis, (commonly available but not preferred) had little effect on the emergence of mites. We infer that preferred plant material may act to inhibit feeding or otherwise delay reproduction of mites, thereby reducing risk of anemia to developing nestlings.

  16. Advanced Materials for Exploration Task Research Results

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  17. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  18. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  19. External Long-Duration Materials Instrument Research Observatory

    NASA Astrophysics Data System (ADS)

    Engelhardt, J. P.; Heath, K.

    2018-02-01

    The External Long-duration Materials and Instrument Research Observatory (ELMIRO) is a commercial facility that will allow for continuous and repeatable external testing on the Deep Space Gateway of materials, electronics/instruments for future deep space spacecraft.

  20. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    PubMed

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  1. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill

    PubMed Central

    Fassinou Hotegni, V. Nicodème; Lommen, Willemien J. M.; Agbossou, Euloge K.; Struik, Paul C.

    2015-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers

  2. Plant materials and methodologies for Great Basin rangelands

    USDA-ARS?s Scientific Manuscript database

    The Nevada Section, Society for Range Management held a winter meeting/symposium January 2017 in Sparks, Nevada. Nearly a century and half of research and experience was presented by scientists in the field of soil science, range and weed science and plant genetics. The ability of resource managers ...

  3. The Materials Data Facility: Data Services to Advance Materials Science Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaiszik, B.; Chard, K.; Pruyne, J.

    2016-07-06

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloudhosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific)andmore » automatically-extractedmetadata in a registrywhile the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. TheMDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of thirdparty publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF’s design, current status, and future plans.« less

  4. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-08-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  5. RESEARCH AND DEVELOPMENT ON ADVANCED GRAPHITE MATERIALS. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-04-01

    A review is given of activities over the period October 15, 1960 to October 15, 1961 on a three year program for the research and development of materials, experimental techniques, and equipment for development of premium quality, reproducible graphite-base materials suitable for missile and astronautic applications. Progress is reported on research and development in the study areas of raw materials, fabrication, and material characterization and evaluation. (auth)

  6. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardhan, S.; Watson, M.; Dick, W.A.

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth.more » An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.« less

  7. Classification and Identification of Plant Fibrous Material with Different Species Using near Infrared Technique—A New Way to Approach Determining Biomass Properties Accurately within Different Species

    PubMed Central

    Jiang, Wei; Zhou, Chengfeng; Han, Guangting; Via, Brian; Swain, Tammy; Fan, Zhaofei; Liu, Shaoyang

    2017-01-01

    Plant fibrous material is a good resource in textile and other industries. Normally, several kinds of plant fibrous materials used in one process are needed to be identified and characterized in advance. It is easy to identify them when they are in raw condition. However, most of the materials are semi products which are ground, rotted or pre-hydrolyzed. To classify these samples which include different species with high accuracy is a big challenge. In this research, both qualitative and quantitative analysis methods were chosen to classify six different species of samples, including softwood, hardwood, bast, and aquatic plant. Soft Independent Modeling of Class Analogy (SIMCA) and partial least squares (PLS) were used. The algorithm to classify different species of samples using PLS was created independently in this research. Results found that the six species can be successfully classified using SIMCA and PLS methods, and these two methods show similar results. The identification rates of kenaf, ramie and pine are 100%, and the identification rates of lotus, eucalyptus and tallow are higher than 94%. It is also found that spectra loadings can help pick up best wavenumber ranges for constructing the NIR model. Inter material distance can show how close between two species. Scores graph is helpful to choose the principal components numbers during the model construction. PMID:28105037

  8. [Research progress in water use efficiency of plants under global climate change].

    PubMed

    Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing

    2010-12-01

    Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.

  9. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  10. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  11. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  12. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  13. CosmoBon, tree research team, for studying utilization of woody plant in space environment

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari

    2012-07-01

    We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  14. Growing Plants Without Soil for Experimental Use.

    ERIC Educational Resources Information Center

    Blankendaal, M.; And Others

    Much of the current research in experimental plant biology requires highly uniform plants. To achieve this, many plants are grown under conditions in which the environment is carefully manipulated. This pamphlet has been prepared, therefore, to present and describe growth procedures which will produce vigorous, healthy, uniform plant material in…

  15. Research Progress of Building Materials Used in Construction Land

    NASA Astrophysics Data System (ADS)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  16. [New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant].

    PubMed

    Wang, Yong

    2017-03-25

    In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.

  17. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Hawk, J.; Schwant, R.

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that needmore » to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  18. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  19. [Research on the original plants of Xian Zhao Zi (Senshosi)].

    PubMed

    Kotaka, Shuji

    2008-01-01

    Since the Heian period, Xian Zhao Zi (Senshosi) has been used as part of the ceremony believed to help in a healthy pregnancy and safe birth. The purpose of this report is to consider which plants are original Xian Zhao Zi plants. Past research lists certain plants as Xian Zhao Zi, but it was difficult to draw any conclusions.

  20. Plant biology in space: recent accomplishments and recommendations for future research.

    PubMed

    Ruyters, G; Braun, M

    2014-01-01

    Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as

  1. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  2. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.

  3. PREFACE: MRS International Materials Research Conference (IMRC-2008)

    NASA Astrophysics Data System (ADS)

    Wang, Zhanguo; Qiu, Yong; Li, Yongxiang

    2009-03-01

    This volume contains selected papers presented at the MRS International Materials Research Conference (IMRC-2008) held in Chongqing, China, 9-12 June 2008. IMRC-2008 included 9 symposia of A. Eco/Environmental Materials, B. Sustainable Energy Materials, C. Electronic Packaging Materials, D. Electronic Materials, E. Materials and Processes for Flat-panel Displays, F. Functional Ceramics, G. Transportation Materials, H. Magnesium and I. Biomaterials for Medical Applications. Nearly 1200 participants from 33 countries attended the conference, and the conference organizers received more than 700 papers. After the peer review processes, 555 papers were selected to be published in 9 Journals or proceedings, including J. of Materials Research (JMR), Rare Metal Materials and Engineering, J. of Univ. Science and Technology Beijing, Biomedical Materials: Materials for Tissue Engineering and Regenerative Medicine, Chinese Journal of Aeronautics, Materials Science Forum, and Journal of Physics: Conference Series. Among the 555 selected papers, 91 papers are published in this volume, and the topics mainly cover electronic matrials, processes for flat-panel displays and functional ceramics. The editors would like to give special thanks to the graduate students Liwu Jiang, Ming Li and Di He from Beihang University for their hard work compiling and typesetting each paper in this volume. Zhanguo Wang, Yong Qiu and Yongxiang Li Editors

  4. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials.

    PubMed

    Jun, Xi

    2013-01-01

    High-pressure processing is a food processing technique that has shown great potentials in the food industry. Recently, it was developed to extract bioactive ingredients from plant materials, known as ultrahigh pressure extraction (UPE), taking advantages of time saving, higher extraction yields, fewer impurities in the extraction solution, minimal heat and can avoid thermal degradation on the activity and structure of bioactive components, and so on. This review provides an overview of the developments in the UPE of bioactive ingredients from plant material. Apart from a brief presentation of the theories of UPE and extraction equipment systems, the principal parameters that influence the extraction efficiency to be optimized in the UPE (e.g., solvent, pressure, temperature, extraction time, and the number of cycle) were discussed in detail, and finally the more recent applications of UPE for the extraction of active compounds from plant materials were summarized.

  5. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    PubMed

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  6. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases

    PubMed Central

    2012-01-01

    Background Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. Results This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed. Conclusions The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of

  7. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases.

    PubMed

    Lluveras-Tenorio, Anna; Mazurek, Joy; Restivo, Annalaura; Colombini, Maria Perla; Bonaduce, Ilaria

    2012-10-10

    Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed. The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of identifying polysaccharide binders in

  8. Boiler materials for ultra-supercritical coal power plants - steamside oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Sarver, J.; Tanzosh, J.M.

    2006-06-15

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. Themore » third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.« less

  9. Lewis materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1987-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. An overview of the division staff, facilities, past history, recent progress, and future interests is presented.

  10. Experience with wear-resistant materials at the Homer City Coal Cleaning Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    1984-10-01

    The Homer City Coal Cleaning Plant is a multistream, dual-circuit facility with a total capacity of 1.22 x 10/sup 6/ Kg/hr (1200 TPH) raw feed and serves the three generating units of the Pennsylvania Electric Company's Homer City Generating Station. The complicated multi-cleaning circuit design requires considerably more power and piping (10.6 km/35,000 ft of plus 5 cm/2 in. process piping) than a more conventional plant of the same capacity. Coupled with the maintenance intensive aspects of the plant is the requirement to have a high availability due to the mine mouth-to-cleaning plant-to-generating station philosophy under which it operates. Thesemore » factors required a dedicated effort to improve equipment wear characteristics. Experiences in the use of a variety of wear and corrosion resistant materials at the Homer City Coal Cleaning Plant are described.« less

  11. SeedUSoon: A New Software Program to Improve Seed Stock Management and Plant Line Exchanges between Research Laboratories

    PubMed Central

    Charavay, Céline; Segard, Stéphane; Pochon, Nathalie; Nussaume, Laurent; Javot, Hélène

    2017-01-01

    Plant research is supported by an ever-growing collection of mutant or transgenic lines. In the past, a typical basic research laboratory would focus on only a few plant lines that were carefully isolated from collections of lines containing random mutations. The subsequent technological breakthrough in high-throughput sequencing, combined with novel and highly efficient mutagenesis techniques (including site-directed mutagenesis), has led to a recent exponential growth in plant line collections used by individual researchers. Tracking the generation and genetic properties of these genetic resources is thus becoming increasingly challenging for researchers. Another difficulty for researchers is controlling the use of seeds protected by a Material Transfer Agreement, as often only the original recipient of the seeds is aware of the existence of such documents. This situation can thus lead to difficult legal situations. Simultaneously, various institutions and the general public now demand more information about the use of genetically modified organisms (GMOs). In response, researchers are seeking new database solutions to address the triple challenge of research competition, legal constraints, and institutional/public demands. To help plant biology laboratories organize, describe, store, trace, and distribute their seeds, we have developed the new program SeedUSoon, with simplicity in mind. This software contains data management functions that allow the separate tracking of distinct mutations, even in successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity of mutations and transgenes contained in any specific line, and the history of their inheritance. It can facilitate GMO certification procedures by distinguishing mutations on the basis of the presence/absence of a transgene, and by recording the technology used for their generation. Its interface can be customized to match the context and rules of any laboratory. In addition, Seed

  12. How can research on plants contribute to promoting human health?

    PubMed

    Martin, Cathie; Butelli, Eugenio; Petroni, Katia; Tonelli, Chiara

    2011-05-01

    One of the most pressing challenges for the next 50 years is to reduce the impact of chronic disease. Unhealthy eating is an increasing problem and underlies much of the increase in mortality from chronic diseases that is occurring worldwide. Diets rich in plant-based foods are strongly associated with reduced risks of major chronic diseases, but the constituents in plants that promote health have proved difficult to identify with certainty. This, in turn, has confounded the precision of dietary recommendations. Plant biochemistry can make significant contributions to human health through the identification and measurement of the many metabolites in plant-based foods, particularly those known to promote health (phytonutrients). Plant genetics and metabolic engineering can be used to make foods that differ only in their content of specific phytonutrients. Such foods offer research tools that can provide significant insight into which metabolites promote health and how they work. Plant science can reduce some of the complexity of the diet-health relationship, and through building multidisciplinary interactions with researchers in nutrition and the pathology of chronic diseases, plant scientists can contribute novel insight into which foods reduce the risk of chronic disease and how these foods work to impact human health.

  13. 50 CFR 36.15 - Subsistence uses of timber and plant material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Subsistence uses of timber and plant material. 36.15 Section 36.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  14. 50 CFR 36.15 - Subsistence uses of timber and plant material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Subsistence uses of timber and plant material. 36.15 Section 36.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  15. 50 CFR 36.15 - Subsistence uses of timber and plant material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Subsistence uses of timber and plant material. 36.15 Section 36.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  16. 50 CFR 36.15 - Subsistence uses of timber and plant material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Subsistence uses of timber and plant material. 36.15 Section 36.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  17. 50 CFR 36.15 - Subsistence uses of timber and plant material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Subsistence uses of timber and plant material. 36.15 Section 36.15 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  18. 36 CFR 13.485 - Subsistence use of timber and plant material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plant material. 13.485 Section 13.485 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Subsistence § 13.485 Subsistence use of... historic or scientific values, conservation of endangered or threatened species, or the purposes for which...

  19. 36 CFR 13.485 - Subsistence use of timber and plant material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plant material. 13.485 Section 13.485 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Subsistence § 13.485 Subsistence use of... historic or scientific values, conservation of endangered or threatened species, or the purposes for which...

  20. The Plant Research Unit: Long-Term Plant Growth Support for Space Station

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, C. S.; Goins, G. D.; Kliss, M.; Levine, H.; Lomax, P. A.; Porter, R. L.; Wheeler, R.

    1996-01-01

    The specifications of the plant research unit (PRU) plant habitat, designed for space station operations, are presented. A prototype brassboard model of the PRU is described, and the results of the subsystems tests are outlined. The effects of the long term red light emitting diode (LED) illumination as the sole source for plant development were compared with red LEDs supplemented with blue wavelengths, and white fluorescent sources. It was found that wheat and Arabidopsis were able to complete a life cycle under red LEDs alone, but with differences in physiology and morphology. The differences noted were greatest for the Arabidopsis, where the time to flowering was increased under red illumination. The addition of 10 percent of blue light was effective in eliminating the observed differences. The results of the comparative testing of three nutrient delivery systems for the PRU are discussed.

  1. Modified application of HS-SPME for quality evaluation of essential oil plant materials.

    PubMed

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-01-01

    The main limitation in the standard application of head space analysis employing solid phase microextraction (HS-SPME) for the evaluation of plants as sources of essential oils (EOs) are different quantitative relations of EO components from those obtained by direct analysis of EO which was got in the steam distillation (SD) process from the same plant (EO/SD). The results presented in the paper for thyme, mint, sage, basil, savory, and marjoram prove that the quantitative relations of EO components established by HS-SPME procedure and direct analysis of EO/SD are similar when the plant material in the HS-SPME process is replaced by its suspension in oil of the same physicochemical character as that of SPME fiber coating. The observed differences in the thyme EO composition estimated by both procedures are insignificant (F(exp)plant material quality and thus may improve the efficiency of analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Our Story | Materials Research Laboratory at UCSB: an NSF MRSEC

    Science.gov Websites

    this site Materials Research Laboratory at UCSB: an NSF MRSEC logo Materials Research Laboratory at & Workshops Visitor Info Research IRG-1: Magnetic Intermetallic Mesostructures IRG 2: Polymeric Seminars Publications MRL Calendar Facilities Computing Energy Research Facility Microscopy &

  3. Progress and prospective of plant sterol and plant stanol research: report of the Maastricht meeting.

    PubMed

    Plat, J; Mackay, D; Baumgartner, S; Clifton, P M; Gylling, H; Jones, P J H

    2012-12-01

    Abundant evidence over past decades shows that foods with added plant sterols and plant stanols lower serum LDL cholesterol concentrations. However, despite the overwhelming data, numerous scientific questions still remain. The objective of this paper is to summarize the considerations of 60 academic and industrial experts who participated in the scientific meeting in Maastricht, the Netherlands, on issues related to the health effects of plant sterols and plant stanols. The meeting participants discussed issues including efficacy profiling, heterogeneity in responsiveness, effects beyond LDL-C lowering, and food formulation aspects of plant sterol and stanol consumption. Furthermore, aspects related to the potential atherogenicity of elevated circulatory plant sterol concentrations were discussed. Until the potential atherogenicity of plant sterols is resolved, based on the results >200 clinical trials, the risk to benefit of plant sterol use is favorable. Evidence on these topics in plant sterol and plant stanol research was presented and used to reach consensus where possible. It was concluded that endpoint studies looking at plant sterol and plant stanol efficacy are needed, however, there was no clear opinion on the best marker and best design for such a study. Based on the current scientific evidence, plant sterols and plant stanols are recommended for use as dietary options to lower serum cholesterol. Copyright © 2012. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. 77 FR 56236 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  5. 77 FR 57162 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room...

  6. 77 FR 14441 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  7. Cottonseed and cotton plant biomass

    USDA-ARS?s Scientific Manuscript database

    The cotton plant generates several marketable products as a result of the ginning process. The product that garners the most attention in regards to value and research efforts, is lint with cottonseed being secondary. In addition to lint and cottonseed, the plant material itself has a value that...

  8. Field-based phenomics for plant genetics research

    USDA-ARS?s Scientific Manuscript database

    Perhaps the greatest challenge for crop research in the 21st century is how to predict crop performance as a function of genetic architecture and climate change. Advances in “next generation” DNA sequencing have greatly reduced genotyping costs. Methods for characterization of plant traits (phenotyp...

  9. Process for Low Cost Domestic Production of LIB Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, Anthony

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111,more » 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.« less

  10. 78 FR 11903 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and... Structures Materials Research Science and Engineering Center, by NSF Division of Materials Research (DMR...

  11. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  12. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  13. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-research. 3406.17... RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research...

  14. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  15. Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes

    USGS Publications Warehouse

    Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.

    1999-01-01

    The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic

  16. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  17. Perspectives for genomic selection applications and research in plants

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) has created a lot of excitement and expectations in the animal and plant breeding research communities. In this review, we briefly describe how genomic prediction can be integrated into breeding efforts and point out achievements and areas where more research is needed. GS pro...

  18. 77 FR 61433 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  19. 77 FR 6826 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and..., Program Director, Materials Research Science and Engineering Centers Program, Division of Materials...

  20. Governing the postmortem procurement of human body material for research.

    PubMed

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  1. 78 FR 24666 - Updates to the List of Plant Inspection Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... plant material imported for plant breeding and research programs. The Plant Germplasm Inspection Station... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 319 [Docket No. APHIS-2012-0099] Updates to the List of Plant Inspection Stations AGENCY: Animal and Plant Health...

  2. The role of silicon in plant biology: a paradigm shift in research approach.

    PubMed

    Frew, Adam; Weston, Leslie A; Reynolds, Olivia L; Gurr, Geoff M

    2018-06-08

    Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies

  3. 78 FR 11903 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  4. 77 FR 57161 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National...

  5. Materials for advanced ultrasupercritical steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Saha, Deepak

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  6. Research of footwear lining materials thermoconductive properties

    NASA Astrophysics Data System (ADS)

    Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.

    2017-11-01

    Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.

  7. Fusion power: a challenge for materials science.

    PubMed

    Duffy, D M

    2010-07-28

    The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted.

  8. Metagenomic Characterization and Biochemical Analysis of Cellulose-Degrading Bacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials, and Soil

    DTIC Science & Technology

    2016-01-04

    Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials,and Soil In an effort to...degrading bacteria from various samples, including termite gut, sheep rumen, soil, and decaying plant materials. Using selective media culture with...Metagenomic Characterization and Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant

  9. Biomimetic water-collecting materials inspired by nature.

    PubMed

    Zhu, Hai; Guo, Zhiguang; Liu, Weimin

    2016-03-11

    Nowadays, water shortage is a severe issue all over the world, especially in some arid and undeveloped areas. Interestingly, a variety of natural creatures can collect water from fog, which can provide a source of inspiration to develop novel and functional water-collecting materials. Recently, as an increasingly hot research topic, bioinspired materials with the water collection ability have captured vast scientific attention in both practical applications and fundamental research studies. In this review, we summarize the mechanisms of water collection in various natural creatures and present the fabrications, functions, applications, and new developments of bioinspired materials in recent years. The theoretical basis related to the phenomenon of water collection containing wetting behaviors and water droplet transportations is described in the beginning, i.e., the Young's equation, Wenzel model, Cassie model, surface energy gradient model and Laplace pressure equation. Then, the water collection mechanisms of three typical and widely researched natural animals and plants are discussed and their corresponding bioinspired materials are simultaneously detailed, which are cactus, spider, and desert beetles, respectively. This is followed by introducing another eight animals and plants (butterfly, shore birds, wheat awns, green bristlegrass, the Cotula fallax plant, Namib grass, green tree frogs and Australian desert lizards) that are rarely reported, exhibiting water collection properties or similar water droplet transportation. Finally, conclusions and outlook concerning the future development of bioinspired fog-collecting materials are presented.

  10. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials.

    PubMed

    Ripari, Valery; Gänzle, Michael G; Berardi, Enrico

    2016-09-02

    The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus graminis, or Lactobacillus rossiae, and Saccharomyces cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material. Copyright © 2016. Published by Elsevier B.V.

  11. NASA Materials Research for Extreme Conditions

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.

  12. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  15. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  16. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  17. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Review of research and developments in self healing composite materials

    NASA Astrophysics Data System (ADS)

    Reddy Madara, Sahith; Sarath Raj, N. S.; Pon Selvan, Chithirai, Dr.

    2018-04-01

    Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damage to themselves without any external diagnosis of the problem or human intervention. This article presents the current research and developments in self-healing composite materials. A detailed study is conducted on various types of self-healing composites with their self-healing mechanisms. The applications of self-healing materials in various fields including space sector is also discussed. Economics and Future outlooks for self-healing smart materials is highlighted at the end of the article. This research article will be useful to manufacturers, policy makers and researchers widely.

  19. United States Department of Agriculture-Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest.

    PubMed

    Schneider, Sally M; Rosskopf, Erin N; Leesch, James G; Chellemi, Daniel O; Bull, Carolee T; Mazzola, Mark

    2003-01-01

    Methyl bromide is a widely used fumigant for both pre-plant and post-harvest pest and pathogen control. The Montreal Protocol and the US Clean Air Act mandate a phase-out of the import and manufacture of methyl bromide, beginning in 2001 and culminating with a complete ban, except for quarantine and certain pre-shipment uses and exempted critical uses, in January 2005. In 1995, ARS built on its existing programs in soil-borne plant pathology and post-harvest entomology and plant pathology to initiate a national research program to develop alternatives to methyl bromide. The focus has been on strawberry, pepper, tomato, perennial and nursery cropping systems for pre-plant methyl bromide use and fresh and durable commodities for post-harvest use. Recently the program has been expanded to include research on alternatives for the ornamental and cut flower cropping systems. An overview of the national research program is presented. Results from four specific research trials are presented, ranging from organic to conventional systems. Good progress on short-term alternatives is being made. These will be used as the foundation of integrated management systems which begin with pre-plant management decisions and continue through post-harvest processing.

  20. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research.

    PubMed

    López-Rubalcava, Carolina; Estrada-Camarena, Erika

    2016-06-20

    Anxiety and depression are considered the most prevalent psychiatric disorders worldwide. In Mexico, the use of medicinal plants to alleviate the symptoms associated with these psychiatric disorders is increasing. However, there is little scientific evidence that validates the efficacy of these plants. This evidence needs to be critically revised, and further studied to provided scientific support for their use. To identify the plants that are used in Mexico for the treatment of disorders related to anxiety and depression, and to review the current preclinical and when available, clinical information of these plants. We searched in scientific databases (Pubmed, Web of Science, Scopus and other web sources such as "Biblioteca digital de la medicina tradicional Mexicana" ) for Mexican plants used for the treatment of anxiety and depression that have been analyzed in preclinical studies. Additional information was obtained from published books. For this review, we also consider those plants used in Mexican traditional medicine for the treatment of "nervios," "susto" or "espanto;" common terms that describe symptoms related to anxiety and depression disorders. The bibliographic search identified 49 plants used in Mexican traditional medicine for the treatment of disorders related to anxiety and depression. From all these plants, 59% were analyzed in preclinical research, and only 8% were tested in clinical studies; only a few of these studies tried to elucidate their mechanism of action. In general, it is proposed that the plant extracts interact with the GABAergic system. However, only part of these studies attempted to analyze other neurotransmitter systems. Finally, in some cases, drug-herbal interactions were reported. There is a large number of Mexican medicinal plants used as a treatment for anxiety and depression disorders. Although some of these plants have been studied in preclinical research, in most cases these studies are preliminary, and the understanding

  1. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  2. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  3. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  4. New Trends in Research of Energetic Materials

    DTIC Science & Technology

    2004-05-31

    The seventh consecutive Seminar on new trends in research of energetic materia?s is intended to be a world meeting of young people and university...teachers working in the field of teaching research development processing analyzing and application of all kinds of energetic materials Topics include explosions of gaseous dispersing and condensed systems.

  5. Space plant biology research in Lithuania.

    PubMed

    Ričkienė, Aurika

    2012-09-01

    In 1957, the Soviet Union launched the first artificial Earth satellite, initiating its space exploration programs. Throughout the rest of the twentieth century, the development of these space programs received special attention from Soviet Union authorities. Scientists from the former Soviet Republics, including Lithuania, participated in these programs. From 1971 to 1990, Lithuanians designed more than 20 experiments on higher plant species during space flight. Some of these experiments had never before been attempted and, therefore, made scientific history. However, the formation and development of space plant biology research in Lithuania or its origins, context of formation, and placement in a worldwide context have not been explored from a historical standpoint. By investigating these topics, this paper seeks to construct an image of the development of a very specific field of science in a small former Soviet republic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Importance of plant integrity in crop research, breeding, and production.

    PubMed

    Bláha, Ladislav; Pazderů, Kateřina

    2013-11-01

    Plant integrity looks like a "very easy and expanded topic," but the reality is totally different. Thanks to the very high specialization of scientists, we are losing a holistic view of plants and are making mistakes in our research due to this drawback. It is necessary to sense a plant in their whole complexity--in both roots and shoot, as well as throughout their life cycles. Only such an integrated approach can allow us to reach correct interpretations of our experimental results.

  7. The Plant Research Unit: An International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.

    2003-01-01

    The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.

  8. How Can Research on Plants Contribute to Promoting Human Health?[OA

    PubMed Central

    Martin, Cathie; Butelli, Eugenio; Petroni, Katia; Tonelli, Chiara

    2011-01-01

    One of the most pressing challenges for the next 50 years is to reduce the impact of chronic disease. Unhealthy eating is an increasing problem and underlies much of the increase in mortality from chronic diseases that is occurring worldwide. Diets rich in plant-based foods are strongly associated with reduced risks of major chronic diseases, but the constituents in plants that promote health have proved difficult to identify with certainty. This, in turn, has confounded the precision of dietary recommendations. Plant biochemistry can make significant contributions to human health through the identification and measurement of the many metabolites in plant-based foods, particularly those known to promote health (phytonutrients). Plant genetics and metabolic engineering can be used to make foods that differ only in their content of specific phytonutrients. Such foods offer research tools that can provide significant insight into which metabolites promote health and how they work. Plant science can reduce some of the complexity of the diet-health relationship, and through building multidisciplinary interactions with researchers in nutrition and the pathology of chronic diseases, plant scientists can contribute novel insight into which foods reduce the risk of chronic disease and how these foods work to impact human health. PMID:21586682

  9. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  10. The department of transportation's advanced materials research and technology initiatives

    DOT National Transportation Integrated Search

    1995-02-28

    This report provides an overview of DOT's current research and technology efforts, as well as those planned for Fiscal Year (FY) 1996, in two major areas: 1) Advanced Materials Research for Transportation Infrastructure, and 2) Advanced Materials Res...

  11. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  12. 75 FR 18241 - Proposal Review Panel for Materials Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research Notice of Meeting In... Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  13. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  14. Material research for environmental sustainability in Thailand: current trends

    PubMed Central

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-01-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet. PMID:27877788

  15. 77 FR 20852 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In.... Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230...

  16. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  17. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  18. 75 FR 9001 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  19. 78 FR 39017 - Proposal Review Panel for Materials Research, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research, Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open. Contact Person: Dr. Chuck Bouldin, Program Director, Materials Research Science and...

  20. 77 FR 2095 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Person: Dr. Thomas Rieker, Program Director, Materials Research Science and Engineering Centers Program...

  1. 75 FR 4876 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Science and Engineering Centers Program, Division of Materials Research, Room 1065, National Science...

  2. 77 FR 25503 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Dr. Sean L. Jones, Program Director, Materials Research Science and Engineering Centers Program...

  3. 78 FR 5505 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site Visit review of the Materials Research Science and.... Charles Bouldin, Program Director, Materials Research Science and Engineering Centers Program, Division of...

  4. 78 FR 40519 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open Contact Person: Dr. Charles Ying, Program Director, Materials Research Science and...

  5. Research tools: ethylene preparation. In: Chi-Kuang Wen editor. Ethylene in plants. Springer Netherlands. Springer Link

    USDA-ARS?s Scientific Manuscript database

    Ethylene is a plant hormone that regulates many aspects of plant growth and development, germination, fruit ripening, senescence, sex determination, abscission, defense, gravitropism, epinasty, and more. For experimental purposes, one needs to treat plant material with ethylene and its inhibitors t...

  6. New Developments in Spaceflight Hardware for Plant Research

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform to perform long term and shorter experiments with plants on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for flight 1xg controls and for studies with accelerations from 0.001xg to 2.0xg. Several experiments are in preparation, investigating gravity related gene expressions, gravisensing and phototropism of Arabidopsis thaliana, fern spores and lentil rots. The experiment specific hardware provides growth chambers for seedlings and whole A. thaliana plants, connected to the EMCS Life Support System. Besides video observation, the experiments will be evaluated on ground by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. Two years after EMCS, ESA's BIOLAB will be launched in the European "Columbus" Module. In a similar way as in EMCS, BIOLAB accommodates experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments will be presented in this communication.

  7. 75 FR 18240 - Proposal Review Panel for Materials Research Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and.... Type of Meeting: Part-open. Contact Person: Thomas Rieker, Program Director, Materials Research Science...

  8. 77 FR 19362 - Proposal Review Panel for Materials Research, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research, Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...: Part open. Contact Person: Dr. Sean L. Jones, Program Director, Materials Research Science and...

  9. 78 FR 4464 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science..., Materials Research Science and Engineering Centers Program, Division of Materials Research, Room 1065...

  10. Advanced Research Projects Agency on Materials Preparation and Characterization Research

    DTIC Science & Technology

    Briefly summarized is research concerned with such topics as: Preparation of silica glass from amorphous silica; Glass structure by Raman ...ferroelectrics; Silver iodide crystals; Vapor phase growth; Refractory optical host materials; Hydroxyapatite ; Calcite; Characterization of single crystals with a double crystal spectrometer; Characterization of residual strain.

  11. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  12. Industrial Fuel Gas Demonstration Plant Program. Bid packages for materials (Deliverable No. 28)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    Fixed-price supply type bid packages for materials and/or service essentially are comprised of two parts, namely: (1) a technical requisition of the material, equipment, or service to be supplied; and (2) commercial and legal requirements, normally referred to as terms and conditions. Requisitions, providing technical requirements, for all equipment items identified for the Industrial Fuel Gas Demonstration Plant may be found in the 12 volumes of the Demonstration Plant Mechanical Design. The requisitions have been included within separate sections of the design report, sorted by appropriate plant unit. Combined with any General Notes Requisition and the necessary FWEC Job Standards,more » these various item requisitions provide all technical information for the prospective vendor to furnish his bid. The terms and conditions (boiler plate) to be included in the bid package identify all the contractual requirements which will be imposed upon the bidder. These requirements cover the conditions he must meet to bid on the particular item as well as the clauses to be included within the eventual purchase order/subcontract. A typical package of such terms and conditions is included.« less

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  14. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  15. Modelling structural and plasma facing materials for fusion power plants: Recent advances and outstanding issues in the EURATOM fusion materials programme

    NASA Astrophysics Data System (ADS)

    Boutard, Jean-Louis; Dudarev, Sergei; Rieth, Michael

    2011-10-01

    EFDA Fusion Materials Topical Group was established at the end of 2007 to coordinate the EU effort on the development of structural and protection materials able to withstand the very demanding operating conditions of a future DEMO power plant. Focusing on a selection of well identified materials issues, including the behaviour of Reduced Activation Ferritic-Martensitic steels, and W-alloys under the foreseen operation conditions in a future DEMO, this paper describes recent advances in physical modelling and experimental validation, contributing to the definition of chemical composition and microstructure of materials with improved in-service stability at high temperature, high neutron flux and intense ion bombardment.

  16. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  17. Biosecurity Implications of New Technology and Discovery in Plant Virus Research

    PubMed Central

    MacDiarmid, Robin; Rodoni, Brendan; Melcher, Ulrich; Ochoa-Corona, Francisco; Roossinck, Marilyn

    2013-01-01

    Human activity is causing new encounters between viruses and plants. Anthropogenic interventions include changing land use, decreasing biodiversity, trade, the introduction of new plant and vector species to native landscapes, and changing atmospheric and climatic conditions. The discovery of thousands of new viruses, especially those associated with healthy-appearing native plants, is shifting the paradigm for their role within the ecosystem from foe to friend. The cost of new plant virus incursions can be high and result in the loss of trade and/or production for short or extended periods. We present and justify three recommendations for plant biosecurity to improve communication about plant viruses, assist with the identification of viruses and their impacts, and protect the high economic, social, environmental, and cultural value of our respective nations' unique flora: 1) As part of the burden of proof, countries and jurisdictions should identify what pests already exist in, and which pests pose a risk to, their native flora; 2) Plant virus sequences not associated with a recognized virus infection are designated as “uncultured virus” and tentatively named using the host plant species of greatest known prevalence, the word “virus,” a general location identifier, and a serial number; and 3) Invest in basic research to determine the ecology of known and new viruses with existing and potential new plant hosts and vectors and develop host-virus pathogenicity prediction tools. These recommendations have implications for researchers, risk analysts, biosecurity authorities, and policy makers at both a national and an international level. PMID:23950706

  18. Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  19. Enzyme conversion of lignocellulosic plant materials for resource recovery in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  20. SPECIFIC QUESTION OF RADIATION PROTECTION IN RESEARCH INSTITUTIONS AND TECHNICAL PLANTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, R.G.

    1958-01-01

    After characteristical dates on the special situation of research laboratories on one side and technical plants on the other side in relation to radiation protection are discussed, some technical questions are dealt with that are especially related to the use of rays by these two groups. In this aspect also such technical work is to be included as is still somewhat marginal for today-s considerations, as for instance the extraction and the dressing of uranium as well as the measures taken in relation to accidents that may occur with the usual routine work with radioactive material. The necessity of startingmore » the building up of an ample organization for protection against radiation is then discussed. (auth)« less

  1. Dark Septate Endophytic Fungi Help Tomato to Acquire Nutrients from Ground Plant Material

    PubMed Central

    Vergara, Carlos; Araujo, Karla E. C.; Urquiaga, Segundo; Schultz, Nivaldo; Balieiro, Fabiano de Carvalho; Medeiros, Peter S.; Santos, Leandro A.; Xavier, Gustavo R.; Zilli, Jerri E.

    2017-01-01

    Dark septate endophytic (DSE) fungi are facultative biotrophs that associate with hundreds of plant species, contributing to their growth. These fungi may therefore aid in the search for sustainable agricultural practices. However, several ecological functions of DSE fungi need further clarification. The present study investigated the effects of DSE fungi inoculation on nutrient recovery efficiency, nutrient accumulation, and growth of tomato plants fertilized with organic and inorganic N sources. Two experiments were carried out under greenhouse conditions in a randomized blocks design, with five replicates of tomato seedlings grown in pots filled with non-sterile sandy soil. Tomato seedlings (cv. Santa Clara I-5300) inoculated with DSE fungi (isolates A101, A104, and A105) and without DSE fungi (control) were transplanted to pots filled with 12 kg of soil which had previously received finely ground plant material [Canavalia ensiformis (L.)] that was shoot enriched with 0.7 atom % 15N (organic N source experiment) or ammonium sulfate-15N enriched with 1 atom % 15N (mineral N source experiment). Growth indicators, nutrient content, amount of nitrogen (N) in the plant derived from ammonium sulfate-15N or C. ensiformis-15N, and recovery efficiency of 15N, P, and K by plants were quantified 50 days after transplanting. The treatment inoculated with DSE fungi and supplied with an organic N source showed significantly higher recovery efficiency of 15N, P, and K. In addition, the 15N, N, P, K, Ca, Mg, Fe, Mn, and Zn content, plant height, leaf number, leaf area (only for the A104 inoculation), and shoot dry matter increased. In contrast, the only positive effects observed in the presence of an inorganic N source were fertilizer-K recovery efficiency, content of K, and leaf area when inoculated with the fungus A104. Inoculation with A101, A104, and A105 promoted the growth of tomato using organic N source (finely ground C. ensiformis-15N plant material). PMID:29312163

  2. Systematic Review of Plant-Based Homeopathic Basic Research: An Update.

    PubMed

    Ücker, Annekathrin; Baumgartner, Stephan; Sokol, Anezka; Huber, Roman; Doesburg, Paul; Jäger, Tim

    2018-05-01

    Plant-based test systems have been described as a useful tool for investigating possible effects of homeopathic preparations. The last reviews of this research field were published in 2009/2011. Due to recent developments in the field, an update is warranted. Publications on plant-based test systems were analysed with regard to publication quality, reproducibility and potential for further research.  A literature search was conducted in online databases and specific journals, including publications from 2008 to 2017 dealing with plant-based test systems in homeopathic basic research. To be included, they had to contain statistical analysis and fulfil quality criteria according to a pre-defined manuscript information score (MIS). Publications scoring at least 5 points (maximum 10 points) were assumed to be adequate. They were analysed for the use of adequate controls, outcome and reproducibility.  Seventy-four publications on plant-based test systems were found. Thirty-nine publications were either abstracts or proceedings of conferences and were excluded. From the remaining 35 publications, 26 reached a score of 5 or higher in the MIS. Adequate controls were used in 13 of these publications. All of them described specific effects of homeopathic preparations. The publication quality still varied: a substantial number of publications (23%) did not adequately document the methods used. Four reported on replication trials. One replication trial found effects of homeopathic preparations comparable to the original study. Three replication trials failed to confirm the original study but identified possible external influencing factors. Five publications described novel plant-based test systems. Eight trials used systematic negative control experiments to document test system stability.  Regarding research design, future trials should implement adequate controls to identify specific effects of homeopathic preparations and include systematic negative control

  3. Ash from thermal power plants as secondary raw material.

    PubMed

    Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2007-06-01

    The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.

  4. Crystal Growth and Other Materials Physical Researches in Space Environment

    NASA Astrophysics Data System (ADS)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  5. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  6. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  7. Report of the Materials Research Council (1975)

    DTIC Science & Technology

    1975-10-01

    July 16th 9:00 AM Heinz Heineman - Mobil Research Corporation " Petrochemicals from Alternate Feedstocks" 10󈧢 AM Kenneth Klabunde...Importance of Petrochemicals ; Alternate Feedstocks" -20- . 9:00 AM Fred Steffgan - Bureau of Mines "Coal Liquefaction" 10:30 AM Donald Severson...Africans since 1956. It was recommended that, the construction of about five large synthetic oil plants be commenced at once and that the annual rate

  8. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometermore » with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)« less

  9. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  10. Research progress of plant population genomics based on high-throughput sequencing.

    PubMed

    Wang, Yun-sheng

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  11. Experience with wear-resistant materials at the Homer City Coal Cleaning Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    1984-10-01

    The Homer City preparation plant is a multi-stream, dual-circuit facility with a capacity of 1200 ton/hour raw feed. It serves 3 units of a neighbouring power station. Experience with a number of wear and corrosion resistant materials is described. It is emphasised that the successes and failures reported may be site-specific.

  12. Making Plant-Support Structures From Waste Plant Fiber

    NASA Technical Reports Server (NTRS)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  13. Development of Teaching Materials for Field Identification of Plants and Analysis of Their Effectiveness in Science Education.

    ERIC Educational Resources Information Center

    Ohkawa, Chizuru

    2000-01-01

    Introduces teaching materials developed for field identification of plants with synoptical keys, identification tables, cards, and programs. Selects approximately 2000 seed plants and uses visibly identifiable characteristics for classification. Recommends using the methodology of identification in other areas for biological identification. (YDS)

  14. Progress in materials and structures at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Lauver, R. W.; Halford, G. R.; Davies, R. L.

    1980-01-01

    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed.

  15. Towards a more holistic research approach to plant conservation: the case of rare plants on oceanic islands.

    PubMed

    Silva, Luís; Dias, Elisabete Furtado; Sardos, Julie; Azevedo, Eduardo Brito; Schaefer, Hanno; Moura, Mónica

    2015-06-11

    Research dedicated to rare endemic plants is usually focused on one given aspect. However, holistic studies, addressing several key issues, might be more useful, supporting management programmes while unravelling basic knowledge about ecological and population-level processes. A more comprehensive approach to research is proposed, encompassing: phylogenetics/systematics, pollination biology and seed dispersal, propagation, population genetics, species distribution models (SDMs), threats and monitoring. We present a holistic study dedicated to Veronica dabneyi Hochst. ex Seub., an endangered chamaephyte endemic to the Azores. Veronica dabneyi was mainly found associated with other endemic taxa; however, invasive plants were also present and together with introduced cattle, goats and rabbits are a major threat. Most populations grow at somewhat rocky and steep locations that appeared to work as refuges. Seed set in the wild was generally high and recruitment of young plants from seed seemed to be frequent. In the laboratory, it was possible to germinate and fully develop V. dabneyi seedlings, which were planted at their site of origin. No dormancy was detected and time for 50 % germination was affected by incubation temperature. Eight new microsatellite markers were applied to 72 individuals from 7 sites. A considerable degree of admixture was found between samples from the two islands Flores and Corvo, with 98 % of the genetic variability allocated within populations. Levels of heterozygosity were high and no evidence of inbreeding was found. Species distribution models based on climatic and topographic variables allowed the estimation of the potential distribution of V. dabneyi on Flores and Corvo using ecological niche factor analysis and Maxent. The inclusion of land-use variables only slightly increased the information explained by the models. Projection of the expected habitat in Faial largely coincided with the only historic record of V. dabneyi on that island

  16. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds

  17. Suitable utilization of woody plants for hibitation on Mars

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    2016-07-01

    We have been investigating the usefulness of woody plants for habitation on Mars. During our research, we have found that woody plants have several properties which can be utilized for therapy and materials for enrage and construction even on Mars. Japanese people traditionally believe that "Bonsai" have therapeudic properties. Trees can become carbon fuel which can be used as energy on Mars. Tree materials could be used as a tool in closed bio-ecosystems such as for the purification and/or separation of solutions in an environment in space. Here, we will show some results of their abilities, the water leakage and vacuum seal test, separation of solutions using carbon materials made from trees. At the initiation of this research, we named the trees used as material for the experiment related to space environments "CosmoBon", small bonsai tree. To establish our research, as the first step, we will try to do the experiment using "CosmoBon".

  18. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  19. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  20. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    USGS Publications Warehouse

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component

  1. Materials dispersion and biodynamics project research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology

  2. Avian use of introduced plants: ornithologist records illuminate interspecific associations and research needs.

    PubMed

    Aslan, Clare E; Rejmánek, Marcel

    2010-06-01

    Introduced species have the potential to impact processes central to the organization of ecological communities. Although hundreds of nonnative plant species have naturalized in the United States, only a small percentage of these have been studied in their new biotic communities. Their interactions with resident (native and introduced) bird species remain largely unexplored. As a group, citizen scientists such as ornithologists possess a wide range of experiences. They may offer insights into the prevalence and form of bird interactions with nonnative plants on a broad geographic scale. We surveyed 173 ornithologists from four U.S. states, asking them to report observations of bird interactions with nonnative plants. The primary goal of the survey was to obtain information useful in guiding future empirical research. In all, 1143 unique bird-plant interactions were reported, involving 99 plant taxa and 168 bird species. Forty-seven percent of reported interactions concerned potential dispersal (feeding on seeds or fruits). Remaining "habitat interactions" involved bird use of plants for nesting, perching, woodpecking, gleaning, and other activities. We utilized detrended correspondence analysis to ordinate birds with respect to the plants they reportedly utilize. Results illuminate the new guilds formed by these interactions. We assessed the existing level of knowledge about invasiveness of those plants reported most often in feeding interactions, identifying information gaps for biological invasions research priority. To exemplify the usefulness of citizen science data, we utilized survey results to guide field research on invasiveness in some of these plant species and observed both qualitatively and quantitatively strong agreement between survey reports and our empirical data. Questionnaire reports are therefore heuristically informative for the fields of both avian ecology and invasion biology.

  3. Lab to farm: applying research on plant genetics and genomics to crop improvement.

    PubMed

    Ronald, Pamela C

    2014-06-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

  4. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  5. The role of fish, wildlife, and plant research in ecosystem management

    Treesearch

    Susan C. Loeb; Michael R. Lennartz; Robert C. Szaro

    1998-01-01

    This paper examines the concepts of ecology, ecosystems, and ecosystem management and then further examines the role of fish, wildlife, and plant ecology research in ecosystem management, past, present, and future. It is often assumed that research in support of ecosystem management will entail comprehensive studies of entire ecosystems, whereas research programs that...

  6. Advances in thermoelectric materials research: Looking back and moving forward.

    PubMed

    He, Jian; Tritt, Terry M

    2017-09-29

    High-performance thermoelectric materials lie at the heart of thermoelectrics, the simplest technology applicable to direct thermal-to-electrical energy conversion. In its recent 60-year history, the field of thermoelectric materials research has stalled several times, but each time it was rejuvenated by new paradigms. This article reviews several potentially paradigm-changing mechanisms enabled by defects, size effects, critical phenomena, anharmonicity, and the spin degree of freedom. These mechanisms decouple the otherwise adversely interdependent physical quantities toward higher material performance. We also briefly discuss a number of promising materials, advanced material synthesis and preparation techniques, and new opportunities. The renewable energy landscape will be reshaped if the current trend in thermoelectric materials research is sustained into the foreseeable future. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. 77 FR 2095 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and... Material Science in Atlanta, Georgia. Type of Meeting: Partial Open. Contact Person: Dr. Sean L. Jones...

  8. Crystal growth and materials research in photovoltaics: progress and challenges

    NASA Astrophysics Data System (ADS)

    Surek, Thomas

    2005-02-01

    Photovoltaics (PV) is solar electric power—a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs.

  9. Development of a multiplex DNA-based traceability tool for crop plant materials.

    PubMed

    Voorhuijzen, Marleen M; van Dijk, Jeroen P; Prins, Theo W; Van Hoef, A M Angeline; Seyfarth, Ralf; Kok, Esther J

    2012-01-01

    The authenticity of food is of increasing importance for producers, retailers and consumers. All groups benefit from the correct labelling of the contents of food products. Producers and retailers want to guarantee the origin of their products and check for adulteration with cheaper or inferior ingredients. Consumers are also more demanding about the origin of their food for various socioeconomic reasons. In contrast to this increasing demand, correct labelling has become much more complex because of global transportation networks of raw materials and processed food products. Within the European integrated research project 'Tracing the origin of food' (TRACE), a DNA-based multiplex detection tool was developed-the padlock probe ligation and microarray detection (PPLMD) tool. In this paper, this method is extended to a 15-plex traceability tool with a focus on products of commercial importance such as the emmer wheat Farro della Garfagnana (FdG) and Basmati rice. The specificity of 14 plant-related padlock probes was determined and initially validated in mixtures comprising seven or nine plant species/varieties. One nucleotide difference in target sequence was sufficient for the distinction between the presence or absence of a specific target. At least 5% FdG or Basmati rice was detected in mixtures with cheaper bread wheat or non-fragrant rice, respectively. The results suggested that even lower levels of (un-)intentional adulteration could be detected. PPLMD has been shown to be a useful tool for the detection of fraudulent/intentional admixtures in premium foods and is ready for the monitoring of correct labelling of premium foods worldwide.

  10. Research Activities for Nuclear Power Plant Aging Promoted by PLEC, JAPEIC, Japan

    NASA Astrophysics Data System (ADS)

    Maeda, Noriyoshi; Tajima, Kenichi

    In order to perform research activity for aging countermeasure of nuclear power plant effectively, Plant Life Engineering Center (PLEC) was established in Japan Power Engineering and Inspection Corporation (JAPEIC) in April 2000 sponsored by Ministry of International Trade and Industry (MITI, presently METI). Outlined activities of PLEC are as follows. Results of technical survey for research and development for aging phenomena have been summarized in a table (Research Map) categorizing them into “inspection and monitoring”, “evaluation method for aging” and “preventive maintenances and refurbishment”. Necessary research themes have been extracted from the Research Map consulting to experts of the specified research area and they are summarized into Medium and Long-term Research Perspective (Research Perspective), which contains prioritized research themes and outlined specification of each theme. Several new research themes proposed by various organizations and selected by PLEC as effective for the regulation activities are identified and proposed to be funded by METI every year. This paper also provides outlines and obtained results of aging related research projects currently conducted by JAPEIC sponsored by METI.

  11. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research.

    PubMed

    Bennett, Bradley C; Balick, Michael J

    2014-03-28

    Medical research on plant-derived compounds requires a breadth of expertise from field to laboratory and clinical skills. Too often basic botanical skills are evidently lacking, especially with respect to plant taxonomy and botanical nomenclature. Binomial and familial names, synonyms and author citations are often misconstrued. The correct botanical name, linked to a vouchered specimen, is the sine qua non of phytomedical research. Without the unique identifier of a proper binomial, research cannot accurately be linked to the existing literature. Perhaps more significant, is the ambiguity of species determinations that ensues of from poor taxonomic practices. This uncertainty, not surprisingly, obstructs reproducibility of results-the cornerstone of science. Based on our combined six decades of experience with medicinal plants, we discuss the problems of inaccurate taxonomy and botanical nomenclature in biomedical research. This problems appear all too frequently in manuscripts and grant applications that we review and they extend to the published literature. We also review the literature on the importance of taxonomy in other disciplines that relate to medicinal plant research. In most cases, questions regarding orthography, synonymy, author citations, and current family designations of most plant binomials can be resolved using widely-available online databases and other electronic resources. Some complex problems require consultation with a professional plant taxonomist, which also is important for accurate identification of voucher specimens. Researchers should provide the currently accepted binomial and complete author citation, provide relevant synonyms, and employ the Angiosperm Phylogeny Group III family name. Taxonomy is a vital adjunct not only to plant-medicine research but to virtually every field of science. Medicinal plant researchers can increase the precision and utility of their investigations by following sound practices with respect to botanical

  12. Electronics materials research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  13. Bioinspired self-healing materials: lessons from nature

    PubMed Central

    Cremaldi, Joseph C

    2018-01-01

    Healing is an intrinsic ability in the incredibly biodiverse populations of the plant and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms were identified: reversible muscle control, clotting, cellular response, layering, protective surfaces, vascular networks or capsules, exposure, and replenishable functional coatings. Then the relationship between these mechanisms, nature’s best (evolutionary) methods of mitigating and healing damage, and existing technology in self-healing materials are described. The goals of this top-level overview are to provide a framework for relating the behavior seen in living nature to bioinspired materials, act as a resource to addressing the limitations/problems with existing materials, and open up new avenues of insight and research into self-healing materials. PMID:29600152

  14. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  15. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  16. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  17. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S. J.

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less

  18. 77 FR 29696 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In... Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and...

  19. Proper survey methods for research of aquatic plant ecology and management

    USDA-ARS?s Scientific Manuscript database

    Proper survey methods are essential for objective, quantitative assessment of the distribution and abundance of aquatic plants as part of research and demonstration efforts. For research, the use of the appropriate method is an essential part of the scientific method, to ensure that the experimenta...

  20. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  1. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  2. Plant - Growth - Apollo 15 - Lunar Material - MSC

    NASA Image and Video Library

    1971-10-01

    S71-51318 (1 Oct. 1971) --- A close view of germ free plants -- lettuce (left), tomato (right center and left center) and citrus (right). This type of testing is a unique effort at the Manned Spacecraft Center (MSC) to grow germ-free plants. By study of the germ-free plants, NASA and the U.S. Department of Agriculture Forest Service hope to establish clearly the exact mineral needs of the plants alone. Previous nutrition studies have measured the needs of a complex of soil:micro-organisms:plants. Results from studies where the role of microbes is not known or defined are difficult to interpret and do not lead to the accumulation of exacting facts on plant nutrition.

  3. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  4. VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA

    PubMed Central

    Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.

    2010-01-01

    Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449

  5. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    PubMed Central

    Folta, Kevin M; Koss, Lawrence L; McMorrow, Ryan; Kim, Hyeon-Hye; Kenitz, J Dustin; Wheeler, Raymond; Sager, John C

    2005-01-01

    Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs) has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours), require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings. Conclusion The presentation

  6. Reevaluating the conceptual framework for applied research on host-plant resistance.

    PubMed

    Stout, Michael J

    2013-06-01

    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  7. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  8. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  9. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  10. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water

  11. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basismore » of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)« less

  12. Experiments and appropriate facilities for plant physiology research in space

    NASA Astrophysics Data System (ADS)

    Lork, W.

    Light is a very essential parameter in a plant's life. Changing the quality and/or quantity of illumination will not only determine the further development (photomorphogenesis), but also effect spontaneous responses like curvatures (phototropism). But there are several still unknown links in the signal transduction chain from the perception of the light signals to the terminal response. It is known from ground-based experiments, that part of this signal transduction path is congruous with that of gravitational signals. Biosample is a technology development programme, which enables sophisticated experiments with whole plants in a microgravity environment. It allows complex sequences of gravitational- and light-stimuli with simultaneous recording of the plant's response (e.g. curvature of the stem) by video. This facility in union with new genetic mutants, which are less- or insensitive to light, gravity or both, are convenient tools for progress in plant physiology research.

  13. Principles for supplying virus-tested material.

    PubMed

    Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora

    2015-01-01

    Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. © 2015 Elsevier Inc. All rights reserved.

  14. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research.

    PubMed

    Lindbo, John A; Falk, Bryce W

    2017-06-01

    Worldwide, plant viruses cause serious reductions in marketable crop yield and in some cases even plant death. In most cases, the most effective way to control virus diseases is through genetically controlled resistance. However, developing virus-resistant (VR) crops through traditional breeding can take many years, and in some cases is not even possible. Because of this, the demonstration of the first VR transgenic plants in 1985 generated much attention. This seminal report served as an inflection point for research in both basic and applied plant pathology, the results of which have dramatically changed both basic research and in a few cases, commercial crop production. The typical review article on this topic has focused on only basic or only applied research results stemming from this seminal discovery. This can make it difficult for the reader to appreciate the full impact of research on transgenic virus resistance, and the contributions from fundamental research that led to translational applications of this technology. In this review, we take a global view of this topic highlighting the significant changes to both basic and applied plant pathology research and commercial food production that have accumulated in the last 30 plus years. We present these milestones in the historical context of some of the scientific, economic, and environmental drivers for developing specific VR crops. The intent of this review is to provide a single document that adequately records the significant accomplishments of researchers in both basic and applied plant pathology research on this topic and how they relate to each other. We hope this review therefore serves as both an instructional tool for students new to the topic, as well as a source of conversation and discussion for how the technology of engineered virus resistance could be applied in the future.

  15. Arbuscular mycorrhizal symbiosis for sustainable cultivation of Chinese medicinal plants: a promising research direction.

    PubMed

    Zeng, Yan; Guo, Lan-Ping; Chen, Bao-Dong; Hao, Zhi-Peng; Wang, Ji-Yong; Huang, Lu-Qi; Yang, Guang; Cui, Xiu-Ming; Yang, Li; Wu, Zhao-Xiang; Chen, Mei-Lan; Zhang, Yan

    2013-01-01

    Arbuscular mycorrhizal (AM) are symbiotic systems in nature and have great significance in promoting the growth and stress resistance of medicinal plants. During our literature search from the Chinese Scientific Information Database (Chinese National Knowledge Infrastructure, CNKI) we obtained 65 articles with "AM fungi" and "medicinal plant" as the key words, which indicates that in China, research efforts on these topics have been increasing. The main purposes of this review are to discuss the effects of mycorrhiza on the active ingredients of Chinese medicinal plants in comparison with results obtained in other plants in studies conducted by the international research community, and to introduce works published in Chinese journals to international colleagues.

  16. Electrical Materials Research for NASAs Hybrid Electric Commercial Aircraft Program

    NASA Technical Reports Server (NTRS)

    Bowman, Randy

    2017-01-01

    A high-level description of NASA GRC research in electrical materials is presented with a brief description of the AATTHGEP funding project. To be presented at the Interagency Advanced Power Group Electrical Materials panel session.

  17. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  18. Educative Curriculum Materials: Uptake, Impact, and Implications for Research and Design

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Smith, P. Sean; Arias, Anna Maria; Kademian, Sylvie M.

    2017-01-01

    The authors synthesize the findings of a research project to extend what is known about educative curriculum materials, or curriculum materials designed with the intent of supporting teacher learning as well as student learning. Drawing on a three-year program of research, including several close observational case studies and a large-scale…

  19. A useful single-solution polychrome stain for plant material...Brook Cyte-Chrome I.

    Treesearch

    Stanley L Krugman; Julia F. Littlefield

    1968-01-01

    Fresh and chemically fixed sectioned plant material can be quickly stained by applying a Brook Cyte Chrome I polychrome stain. Staining time averaged only about 10 minutes. And exact timing of staining and de-staining is not as critical as with most of the commonly used stains. The overall quality is comparable to that of the traditional stains.

  20. PERFORM 60 - Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modelling - 60 years foreseen plant lifetime

    NASA Astrophysics Data System (ADS)

    Leclercq, Sylvain; Lidbury, David; Van Dyck, Steven; Moinereau, Dominique; Alamo, Ana; Mazouzi, Abdou Al

    2010-11-01

    In nuclear power plants, materials may undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities that operate these reactors need to quantify the ageing and the potential degradations of some essential structures of the power plant to ensure safe and reliable plant operation. So far, the material databases needed to take account of these degradations in the design and safe operation of installations mainly rely on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. A first step towards this goal has been successfully reached through the development of the RPV-2 and Toughness Module numerical tools by the scientific community created around the FP6 PERFECT project. These tools allow to simulate irradiation effects on the constitutive behaviour of the reactor pressure vessel low alloy steel, and also on its failure properties. Relying on the existing PERFECT Roadmap, the 4 years Collaborative Project PERFORM 60 has mainly for objective to develop multi-scale tools aimed at predicting the combined effects of irradiation and corrosion on internals (austenitic stainless steels) and also to improve existing ones on RPV (bainitic steels). PERFORM 60 is based on two technical sub-projects: (i) RPV and (ii) internals. In addition to these technical sub-projects, the Users' Group and Training sub-project shall allow representatives of constructors, utilities, research organizations… from Europe, USA and Japan to receive the information and training to get their own appraisal on limits and potentialities of the developed tools. An important effort will also be made to teach young

  1. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  2. [Research on source profile of aerosol organic compounds in leather plant].

    PubMed

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan

    2009-04-15

    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  3. Recycled material availability in Maryland - a synthesis study : [research summary].

    DOT National Transportation Integrated Search

    2016-10-01

    There is growing interest in using recycled materials in highway construction nationwide. The objectives of this research study were to: (i) document the state of the practice for the use of selected recycled materials; (ii) review their known perfor...

  4. Research on ignition and flame spread of solid materials in Japan

    NASA Technical Reports Server (NTRS)

    Ito, Kenichi; Fujita, Osamu

    1995-01-01

    Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.

  5. Plant development effects of biochars from different raw materials

    NASA Astrophysics Data System (ADS)

    Cely, Paola; Méndez, Ana; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal contents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic compounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.

  6. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  7. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  8. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard M. Amasino

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additionalmore » speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.« less

  9. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    PubMed Central

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  10. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    PubMed

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  11. The role of chemistry in poisonous plant research: Current status and future prospects

    USDA-ARS?s Scientific Manuscript database

    Poisonous plants are a major cause of economic loss to livestock producers in many parts of the world. Losses include deaths, abortions, birth defects, reduced production and lost forage value. The USDA-ARS-Poisonous Plant Research Lab in collaboration with the Inner Mongolia Agricultural Univers...

  12. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    PubMed

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  13. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    DTIC Science & Technology

    2015-01-02

    phloroglucinol, which are precursors of energetic materials butanetriol trinitrate (BTTN) and l ,3,5-triamino-2,4,6 trinitrobenzene (TATB), respectively, in...of energetic materials butanetriol trinitrate (BTTN) and l ,3,5-triamino-2,4,6 trinitrobenzene (TATB), respectively, in plants. The strategy was to... phenylalanine , valine and hexose sugars. On the other hand the metabolites that are completely depleted in the chloroplastic lines and partially in

  14. Medicinal plants with potential anti-arthritic activity

    PubMed Central

    Choudhary, Manjusha; Kumar, Vipin; Malhotra, Hitesh; Singh, Surender

    2015-01-01

    Ethno Pharmacological Relevance: Traditional medicinal plants are practiced worldwide for treatment of arthritis especially in developing countries where resources are meager. This review presents the plants profiles inhabiting throughout the world regarding their traditional usage by various tribes/ethnic groups for treatment of arthritis. Materials and Methods: Bibliographic investigation was carried out by analyzing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases from the last six decades. Plants/their parts/extracts/polyherbal formulations, toxicity studies for arthritis have been included in the review article. The profiles presented also include information about the scientific name, family, dose, methodology along with mechanism of action and toxicity profile. Research status of 20 potential plant species has been discussed. Further, geographical distribution of research, plants distribution according to families has been given in graphical form. Results: 485 plant species belonging to 100 families, traditionally used in arthritis are used. Among 100 plant families, malvaceae constitute 16, leguminasae 7, fabaceae 13, euphorbiaceae 7, compositae 20, araceae 7, solanaceae 12, liliaceae 9, apocynaceae, lauraceae, and rubiaceae 10, and remaining in lesser proportion. It was observed in our study that majority of researches are carried mainly in developing countries like India, China, Korea and Nigeria. Conclusion: This review clearly indicates that list of medicinal plants presented in this review might be useful to researchers as well as practioners. This review can be useful for preliminary screening of potential anti-arthritis plants. Further toxicity profile given in the review can be useful for the researchers for finding the safe dose. PMID:26401403

  15. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  16. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  17. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  18. Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

    PubMed

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-07-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.

  19. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  20. Recovery technologies for building materials

    NASA Astrophysics Data System (ADS)

    Karu, Veiko; Nurme, Martin; Valgma, Ingo

    2015-04-01

    Mining industry provides building materials for construction. Civil engineers have settled the quality parameters for construction materials. When we produce high quality building materials from carbonate rock (limestone, dolostone), then the estimated waste share is 25% to 30%, depending on crushing principles and rock quality. The challenge is to find suitable technology for waste recovery. During international mining waste related cooperation project MIN-NOVATION (www.min-novation.eu), partners mapped possibilities for waste recovery in mining industry and pointed out good examples and case studies. One example from Estonia showed that when we produce limestone aggregate, then we produce up to 30% waste material (fines with size 0-4mm). This waste material we can see as secondary raw material for building materials. Recovery technology for this fine grained material has been achieved with CDE separation plant. During the process the plant washes out minus 63 micron material from the limestone fines. This technology allows us to use 92% of all limestone reserves. By-product from 63 microns to 4 mm we can use as filler in concrete or as fine limestone aggregate for building or building materials. MIN-NOVATION project partners also established four pilot stations to study other mineral waste recovery technologies and solutions. Main aims on this research are to find the technology for recovery of mineral wastes and usage for new by-products from mineral mining waste. Before industrial production, testing period or case studies are needed. This research is part of the study of Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  1. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  2. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  3. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  4. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  5. Materials Science Research | Materials Science | NREL

    Science.gov Websites

    Structure Theory We use high-performance computing to design and discover materials for energy, and to study structure of surfaces and critical interfaces. Images of red and yellow particles Materials Discovery Our by traditional targeted experiments. Photo of a stainless steel piece of equipment with multiple

  6. Gravity Research on Plants: Use of Single-Cell Experimental Models

    PubMed Central

    Chebli, Youssef; Geitmann, Anja

    2011-01-01

    Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598

  7. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 77 FR 55863 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Princeton...

  9. Characterization of Lone Pine, California, tremolite asbestos and preparation of research material

    USGS Publications Warehouse

    Harper, Martin; Van Gosen, Bradley S.; Crankshaw, Owen S; Doorn, Stacy S; Ennis, J. Todd; Harrison, Sara E

    2014-01-01

    Well-characterized amphibole asbestos mineral samples are required for use as analytical standards and in future research projects. Currently, the National Institute for Standards and Technology Standard Reference Material samples of asbestos are listed as ‘Discontinued’. The National Institute for Occupational Safety and Health (NIOSH) has a goal under the Asbestos Roadmap of locating and characterizing research materials for future use. Where an initial characterization analysis determines that a collected material is appropriate for use as a research material in terms of composition and asbestiform habit, sufficient amounts of the material will be collected to make it publicly available. An abandoned mine near Lone Pine, California, contains a vein of tremolite asbestos, which was the probable source of a reference material that has been available for the past 17 years from the Health and Safety Laboratory (HSL) in the UK. Newly collected fibrous vein material from this mine was analyzed at Research Triangle Institute (RTI International) with some additional analysis by the US Geological Survey’s Denver Microbeam Laboratory. The analysis at RTI International included: (i) polarized light microscopy (PLM) with a determination of principal optical properties; (ii) X-ray diffraction; (iii) transmission electron microscopy, including energy dispersive X-ray spectroscopy and selected-area electron diffraction; and (iv) spindle stage analysis using PLM to determine whether individual fibers and bundles of the samples were polycrystalline or single-crystal cleavage fragments. The overall findings of the study indicated that the material is tremolite asbestos with characteristics substantially similar to the earlier distributed HSL reference material. A larger quantity of material was prepared by sorting, acid-washing and mixing for sub-division into vials of ~10g each. These vials have been transferred from NIOSH to RTI International, from where they can be

  10. Characterization of Lone Pine, California, Tremolite Asbestos and Preparation of Research Material

    PubMed Central

    Harper, Martin; Van Gosen, Bradley; Crankshaw, Owen S.; Doorn, Stacy S.; Ennis, Todd J.; Harrison, Sara E.

    2016-01-01

    Well-characterized amphibole asbestos mineral samples are required for use as analytical standards and in future research projects. Currently, the National Institute for Standards and Technology Standard Reference Material samples of asbestos are listed as ‘Discontinued’. The National Institute for Occupational Safety and Health (NIOSH) has a goal under the Asbestos Roadmap of locating and characterizing research materials for future use. Where an initial characterization analysis determines that a collected material is appropriate for use as a research material in terms of composition and asbestiform habit, sufficient amounts of the material will be collected to make it publicly available. An abandoned mine near Lone Pine, California, contains a vein of tremolite asbestos, which was the probable source of a reference material that has been available for the past 17 years from the Health and Safety Laboratory (HSL) in the UK. Newly collected fibrous vein material from this mine was analyzed at Research Triangle Institute (RTI International) with some additional analysis by the US Geological Survey’s Denver Microbeam Laboratory. The analysis at RTI International included: (i) polarized light microscopy (PLM) with a determination of principal optical properties; (ii) X-ray diffraction; (iii) transmission electron microscopy, including energy dispersive X-ray spectroscopy and selected-area electron diffraction; and (iv) spindle stage analysis using PLM to determine whether individual fibers and bundles of the samples were polycrystalline or single-crystal cleavage fragments. The overall findings of the study indicated that the material is tremolite asbestos with characteristics substantially similar to the earlier distributed HSL reference material. A larger quantity of material was prepared by sorting, acid-washing and mixing for sub-division into vials of ~10 g each. These vials have been transferred from NIOSH to RTI International, from where they can be

  11. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  12. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  13. Contributions of Indian Council of Medical Research (ICMR) in the area of Medicinal plants/Traditional medicine.

    PubMed

    Tandon, Neeraj; Yadav, Satyapal Singh

    2017-02-02

    Medicinal plants belong to the oldest known health care products that have been used by human beings all over the world and are major components of the formulations used in indigenous system of medicine practiced in many countries. Besides, finding place as health supplements, nutraceuticals, cosmetics, herbal tea etc. there has been a global insurgence of interest, including India, leading to enormous research/activities in the area of medicinal plants. The article is aimed to provide the effort and initiatives of ICMR towards research on medicinal plants and its contributions on consolidation of Indian research on medicinal plants that are very relevant and important in the national context. The various initiatives undertaken by ICMR on research on traditional medicines/medicinal plants in the past are reviewed and documented in this article. The multi-disciplinary, multicentric research initiatives of ICMR have resulted in validation of traditional treatment Kshaarasootra (medicated Ayurvedic thread) for anal fistula, Vijayasar (heart wood of Pterocarpus marsupium Roxb.) for diabetes mellitus, encouraging micro- and macrofilaricidal activity of Shakotak (stem bark of Streblus asper Lour.) in experimental studies an iridoid glycosides fraction isolated from root/rhizomes of Picrorhiza kurroa Royle ex Benth. (designated as Picroliv) for viral hepatitis. Other developmental and compilation of research works on Indian medicinal plants have resulted in publications of the thirteen volumes of quality standards, comprising of 449 Indian medicinal plants; three volumes of 90 phytochemical reference standards; fifteen volumes of review monographs on 4167 medicinal plant species; and one publication each on perspectives of Indian medicinal plants for management of liver disorders, lymphatic filariasis and diabetes mellitus (details available at http://www.icmr.nic.in/mpsite). The ICMR efforts assume special significance in the light of multifaceted use of medicinal plants

  14. [Research advances in mechanism of high phosphorus use efficiency of plants].

    PubMed

    Ma, Xiangqing; Liang, Xia

    2004-04-01

    Phosphorus deficiency is one of the main factors influencing agricultural and forestry productions. Fertilization and soil improvement are the major measures to meet the demand of phosphorus for crops in traditional agriculture and forestry management. Recently, the plants with high phosphorus use efficiency have been discovered to replace the traditional measures to improve phosphorus use efficiency of crops. This paper reviewed the research advances in the morphological, physiological and genetics mechanisms of plants with high phosphorus use efficiency. There were three mechanisms for the plants with high phosphorus use efficiency to grow under phosphorus stress: (1) under low phosphorus stress, the root morphology would change (root system grew fast, root axes became small, the number and density of lateral root increased) and more photosynthesis products would transport from the crown to the root, (2) under low phosphorus stress, plant root exudation increased, mycorrhizae invaded into root system, the feature of root absorption kinetics changed, and the internal phosphorus cycling of plant reinforced to tolerate phosphorus deficiency, and (3) under long selection stress of low phosphorus, some plants would form the genetic properties of phosphorus nutrition that could exploit the hardly soluble phosphorus in the soil.

  15. The materials processing research base of the Materials Processing Center. Report for FY 1982

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.

    1983-01-01

    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.

  16. 78 FR 30342 - Proposal Review Panel for Materials Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463 as amended), the National Science Foundation announces the following meeting: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Duke Universit...

  17. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    PubMed

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  18. Combined research effort on aggregate road materials

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Hoff, Inge; Willy Danielsen, Svein; Wigum, Børge Johannes; Fladvad, Marit; Rieksts, Karlis; Loranger, Benoit; Barbieri, Diego

    2017-04-01

    In European countries, the average aggregate consumption per capita is 5 tons per year (European Aggregates Association 2016), while the corresponding number in Norway is 11 tons (Neeb 2015). Due to the increased demand for sand and gravel for construction purposes, e.g. in road construction, the last decade has seen a significant trend towards the use of crushed rock aggregates. Neeb (2015) reports that half of the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction, and 33 % of the overall sold tonnage of crushed rock is exported. This resource has been more and more preferred over sand and gravel due to the significant technological development of its process and utilization phase. In Norway, the development and implementation of crushed aggregate technology has been the main approach to solve natural resource scarcity (Danielsen and Kuznetsova 2015). In order to reduce aggregates transportation, it is aimed to use local aggregates and aggregates processed from rock excavations, tunneling, road cuts, etc. One issue focused in this research is the influence from blasting and processing on the final quality of the crushed aggregates, specifically relating to the properties for road construction purposes. It is therefor crucial to plan utilization of available materials for use in different road layers following the same production line. New developments and improved availability of mobile crushing and screening equipment could produce more sustainable and profitable sources of good quality aggregate materials from small volume deposits in proximity to construction sites. One of the biggest challenges today to use these materials is that the pavement design manual sets rigid requirements for pavement layers. Four research projects are being conducted in Norway to improve the use of local materials for road construction. Four aspects are to be covered by the research: a) geological characteristics of the materials, their b

  19. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  20. Advances in Materials Research: An Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Roberson, Luke B.

    2011-01-01

    My time at Kennedy Space Center. was spent immersing myself in research performed in the Materials Science Division of the Engineering Directorate. My Chemical Engineering background provided me the ability to assist in many different projects ranging from tensile testing of composite materials to making tape via an extrusion process. However, I spent the majority of my time on the following three projects: (1) testing three different materials to determine antimicrobial properties; (2) fabricating and analyzing hydrogen sensing tapes that were placed at the launch pad for STS-133 launch; and (3) researching molten regolith electrolysis at KSC to prepare me for my summer internship at MSFC on a closely related topic. This paper aims to explain, in detail, what I have learned about these three main projects. It will explain why this research is happening and what we are currently doing to resolve the issues. This paper will also explain how the hard work and experiences that I have gained as an intern have provided me with the next big step towards my career at NASA.

  1. Automated saccharification assay for determination of digestibility in plant materials.

    PubMed

    Gomez, Leonardo D; Whitehead, Caragh; Barakate, Abdellah; Halpin, Claire; McQueen-Mason, Simon J

    2010-10-27

    Cell wall resistance represents the main barrier for the production of second generation biofuels. The deconstruction of lignocellulose can provide sugars for the production of fuels or other industrial products through fermentation. Understanding the biochemical basis of the recalcitrance of cell walls to digestion will allow development of more effective and cost efficient ways to produce sugars from biomass. One approach is to identify plant genes that play a role in biomass recalcitrance, using association genetics. Such an approach requires a robust and reliable high throughput (HT) assay for biomass digestibility, which can be used to screen the large numbers of samples involved in such studies. We developed a HT saccharification assay based on a robotic platform that can carry out in a 96-well plate format the enzymatic digestion and quantification of the released sugars. The handling of the biomass powder for weighing and formatting into 96 wells is performed by a robotic station, where the plant material is ground, delivered to the desired well in the plates and weighed with a precision of 0.1 mg. Once the plates are loaded, an automated liquid handling platform delivers an optional mild pretreatment (< 100°C) followed by enzymatic hydrolysis of the biomass. Aliquots from the hydrolysis are then analyzed for the release of reducing sugar equivalents. The same platform can be used for the comparative evaluation of different enzymes and enzyme cocktails. The sensitivity and reliability of the platform was evaluated by measuring the saccharification of stems from lignin modified tobacco plants, and the results of automated and manual analyses compared. The automated assay systems are sensitive, robust and reliable. The system can reliably detect differences in the saccharification of plant tissues, and is able to process large number of samples with a minimum amount of human intervention. The automated system uncovered significant increases in the

  2. Priorities for future innovation, research, and advocacy in dental restorative materials.

    PubMed

    Watson, T; Fox, C H; Rekow, E D

    2013-11-01

    Innovations in materials science, both within and outside of dentistry, open opportunities for the development of exciting direct restorative materials. From rich dialog among experts from dental and non-dental academic institutions and industry, as well as those from policy, research funding, and professional organizations, we learned that capitalizing on these opportunities is multifactorial and far from straightforward. Beginning from the point when a restoration is needed, what materials, delivery systems, and skills are needed to best serve the most people throughout the world's widely varied economic and infrastructure systems? New research is a critical element in progress. Effective advocacy can influence funding and drives change in practice and policy. Here we articulate both research and advocacy priorities, with the intention of focusing the energy and expertise of our best scientists on making a difference, bringing new innovations to improve oral health.

  3. Derived heuristics-based consistent optimization of material flow in a gold processing plant

    NASA Astrophysics Data System (ADS)

    Myburgh, Christie; Deb, Kalyanmoy

    2018-01-01

    Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.

  4. Materials Sciences Research.

    DTIC Science & Technology

    1975-07-01

    Physics of Refractory Materials (ERDA) ..... 160 J. Holder - Mechanical Properties of Solids (NSF) ...... 163 A. Granato - Anharmonic Effects in Solids...ERDA) ........ 166 6. Semiconductor Materials and Devices. N. Holonyak - Luinescence, Lasers, Carrier and Impurity Effects in Compound Semiconductors...1975. Dr. P. A. Egelstaff, University of Guelph, Ontario, Canada, "Three-Body Effects in Simple Fluids," April 9, 1975. Professor G. Leibfried, Oak

  5. MO200: a model for evaluation safeguards through material accountability for a 200 tonne per year mixed-oxide fuel-rod fabrication plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandborn, R.H.

    1976-01-01

    M0200, a computer simulation model, was used to investigate the safeguarding of plutonium dioxide. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The plant model was divided into material balance areas associated with definable unit processes. Indicators of plant operations studied were modified end-of-shift material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performances. (auth)

  6. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  7. Energy from Biomass Research and Technology Transfer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Dorin

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contributemore » to U.S. energy independence.« less

  8. Plant xylem hydraulics: What we understand, current research, and future challenges.

    PubMed

    Venturas, Martin D; Sperry, John S; Hacke, Uwe G

    2017-06-01

    Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality. © 2017 Institute of Botany, Chinese Academy of Sciences.

  9. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    PubMed

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials.

    PubMed

    Wrona, Olga; Rafińska, Katarzyna; Możeński, Cezary; Buszewski, Bogusław

    2017-11-01

    There has been growing interest in the application of supercritical solvents over the last several years, many of the applications industrial in nature. The purpose of plant material extraction is to obtain large amounts of extract rich in the desired active compounds in a time-sensitive and cost-effective manner. The productivity and profitability of a supercritical fluid extraction (SFE) process largely depends on the selection of process parameters, which are elaborated upon in this paper. Carbon dioxide (CO2) is the most desirable solvent for the supercritical extraction of natural products. Its near-ambient critical temperature makes it suitable for the extraction of thermolabile components without degradation. A new approach has been adopted for SFE in which the solubility of nonpolar supercritical CO2 can be enhanced by the addition of small amounts of cosolvent.

  11. Complete Report on the Development of Welding Parameters for Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.

    The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiatedmore » materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.« less

  12. ESA hardware for plant research on the International Space Station

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform on which long-term and shorter experiments with plants will be performed on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for in-flight 1 g controls and for studies with acceleration levels from 0.001 g to 2.0 g. Several experiments are in preparation investigating gravity relating to gene expression, gravisensing and phototropism of Arabidopsis thaliana and lentil roots. The experiment-specific hardware provides growth chambers for seedlings and whole A. thaliana plants and is connected to the EMCS Life Support System. Besides in-flight video observation, the experiments will be evaluated post-flight by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. About two years after the EMCS launch, ESA's Biolab will be launched in the European "Columbus" Module. In a similar way as in EMCS, Biolab will accommodate experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments are presented in this communication.

  13. Action Research to Support Teachers' Classroom Materials Development

    ERIC Educational Resources Information Center

    Edwards, Emily; Burns, Anne

    2016-01-01

    Language teachers constantly create, adapt and evaluate classroom materials to develop new curricula and meet their learners' needs. It has long been argued (e.g. by Stenhouse, L. [1975]. "An Introduction to Curriculum Research and Development." London: Heinemann) that teachers themselves, as opposed to managers or course book writers,…

  14. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  15. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material.

    PubMed

    Hurtado-Fernández, Elena; Gómez-Romero, María; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto

    2010-12-15

    Antioxidants are one of the most common active ingredients of nutritionally functional foods which can play an important role in the prevention of oxidation and cellular damage inhibiting or delaying the oxidative processes. In recent years there has been an increased interest in the application of antioxidants to medical treatment as information is constantly gathered linking the development of human diseases to oxidative stress. Within antioxidants, phenolic molecules are an important category of compounds, commonly present in a wide variety of plant food materials. Their correct determination is pivotal nowadays and involves their extraction from the sample, analytical separation, identification, quantification and interpretation of the data. The aim of this review is to provide an overview about all the necessary steps of any analytical procedure to achieve the determination of phenolic compounds from plant matrices, paying particular attention to the application and potential of capillary electroseparation methods. Since it is quite complicated to establish a classification of plant food material, and to structure the current review, we will group the different matrices as follows: fruits, vegetables, herbs, spices and medicinal plants, beverages, vegetable oils, cereals, legumes and nuts and other matrices (including cocoa beans and bee products). At the end of the overview, we include two sections to explain the usefulness of the data about phenols provided by capillary electrophoresis and the newest trends. Copyright 2010 Elsevier B.V. All rights reserved.

  16. International Materials Research Meeting in the Greater Region: “Current Trends in the Characterisation of Materials and Surface Modification”

    NASA Astrophysics Data System (ADS)

    2017-10-01

    Preface Dear ladies and gentlemen, On 6th and 7th of April 2017 took place the “International Materials Research Meeting in the Greater Region” at the Saarland University, Saarbrücken, Germany. This meeting corresponded to the 9th EEIGM International Conference on Advanced Materials Research and it was intended as a meeting place for researchers of the Greater Region as well as their partners of the different cooperation activities, like the EEIGM program, the ‘Erasmus Mundus’ Advanced Materials Science and Engineering Master program (AMASE), the ‘Erasmus Mundus’ Doctoral Program in Materials Science and Engineering (DocMASE) and the CREATe-Network. On this meeting, 72 participants from 15 countries and 24 institutions discussed and exchanged ideas on the latest trends in the characterization of materials and surface modifications. Different aspects of the material research of metals, ceramics, polymers and biomaterials were presented. As a conclusion of the meeting, the new astronaut of the European Space Agency Dr. Matthias Maurer, who is an alumni of the Saarland University and the EEIGM, held an exciting presentation about his activities. Following the publication of selected papers of the 2009 meeting in Volume 5 and 2012 meeting in Volume 31 of this journal, it is a great pleasure to present this selection of 9 articles to the readers of the IOP Conference Series: Materials Science and Engineering. The editors are thankful to all of the reviewers for reviewing the papers. Special praise is also given to the sponsors of the conference: European Commission within the program Erasmus Mundus (AMASE and DocMASE), Erasmus+ (AMASE), and Horizon2020 (CREATe-Network, Grant agreement No 644013): the DAAD (Alumni Program), and the German-French University (PhD-Track). List of Author signatures, Conference topics, Organization, Conference impressions and list of the participants are available in this PDF.

  17. Considerations for Conducting Plant Research in Open Atmosphere Chambers on ISS

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond; Hummerick, Mary; Graham, Thomas; Dixit, Anirudha; Massa, Gioia

    The access to spaceflight and now the International Space Station has provided plant researchers a laboratory that is in continuous freefall (near weightlessness). As veteran spaceflight investigators know too well, research in space is difficult to conduct and the experiments are often confounded by secondary events. An example of this is the distribution of water and gases in rooting systems in µ-gravity. Since the water does not settle to the ”bottom” of the rooting media in space, there can be poor distribution and movement of water and oxygen, which in turn can stress the plants. This also creates challenges for conducting ground controls where the logical approach is to use the same volume of water as in space. But under 1-g, the water does settle to the bottom of the root zone, which leaves less in the upper profile of the rooting medium. In addition, some chambers such as the Russian Svet (on Mir), Lada (ISS), and NASA’s Veggie chamber were or are open to the cabin air. This simplifies the hardware development and allows the use of cabin air for cooling and supplying CO2 to the plants. Yet it also exposes the plants to the cabin air, which could have very high CO2 levels (e.g., 3000 to 6000 ppm), low humidity, and trace contaminants that might be below the limits for human concerns but could still affect plants. A known effect of these “super-elevated” CO2 levels on many dicot species is increased transpiration due to elevated stomatal conductance, both during the light and the dark cycles. Examples of these secondary effects will be discussed, along with potential approaches for conducting adequate ground controls.

  18. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

  19. Genome elimination: translating basic research into a future tool for plant breeding.

    PubMed

    Comai, Luca

    2014-06-01

    During the course of our history, humankind has been through different periods of agricultural improvement aimed at enhancing our food supply and the performance of food crops. In recent years, it has become apparent that future crop improvement efforts will require new approaches to address the local challenges of farmers while empowering discovery across industry and academia. New plant breeding approaches are needed to meet this challenge to help feed a growing world population. Here I discuss how a basic research discovery is being translated into a potential future tool for plant breeding, and share the story of researcher Simon Chan, who recognized the potential application of this new approach--genome elimination--for the breeding of staple food crops in Africa and South America.

  20. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  1. Longitudinal Waves Organize and Control Plants and Other Life

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    2002-04-01

    Since the discovery of longitudinal waves in plants (W-waves) in 1988 I have taken data related to influences of these waves. These data include spacings between structures on plants, sap flow data, electrical data from probes traceable to effects produced by these waves, data related to the influences of gravity, data related to these waves traveling between plants and on and on. All of the data suggest that these waves provide a basis for a unified theory for plant growth and development. They likely provide a basis for growth and development for all life. The wave influences are present on the microscopic level in live plants but may not show in the microscopic pieces of material often scrutinized by the usual researcher. It is this author's conclusion that the waves mentioned are important in all life and provide what we call life which has been so difficult to pinpoint in previous work. The waves show in dead material but generally are of a much smaller amplitude than in resonating live material. In the wave theory one might compare something alive to a properly operating laser. See the

  2. Earth materials research: Report of a Workshop on Physics and Chemistry of Earth Materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The report concludes that an enhanced effort of earth materials research is necessary to advance the understanding of the processes that shape the planet. In support of such an effort, there are new classes of experiments, new levels of analytical sensitivity and precision, and new levels of theory that are now applicable in understanding the physical and chemical properties of geological materials. The application of these capabilities involves the need to upgrade and make greater use of existing facilities as well as the development of new techniques. A concomitant need is for a sample program involving their collection, synthesis, distribution, and analysis.

  3. Importance of tarnished plant bug as a USDA ARS research priority

    USDA-ARS?s Scientific Manuscript database

    Environmental and economic management of tarnished plant bug (TPB) (Lygus lineolaris) on cotton has been an area of continuous study by USDA scientists in Stoneville, Mississippi since the 1960s. Maintaining economically viable cotton production has required dynamic research information and increas...

  4. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Cancer.gov

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  5. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  6. [Research on the aging of all-ceramics restoration materials].

    PubMed

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  7. Carnivorous Plants.

    ERIC Educational Resources Information Center

    Canipe, Stephen

    This biology lesson on carnivorous (insectivorous) plants is designed to supplement the textbook in the areas of plant diversity, ecology, and distribution. An introduction provides general background information for use as lecture material by the teacher or as reading and/or study material for students. The introduction also includes…

  8. 36 CFR § 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials may I use for research? § 1254.1 Section § 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  9. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  10. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Treesearch

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  11. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS

  12. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  13. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  14. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  15. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study.

    PubMed

    McCleary, Barry V; McNally, Marian; Rossiter, Patricia

    2002-01-01

    Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.

  16. Effect of some pulverised plant materials on the developmental stages of fish beetle, Dermestes maculatus Degeer in smoked catfish (Clarias gariepinus) during storage.

    PubMed

    Fasakin, E A; Aberejo, B A

    2002-11-01

    The effectiveness of pulverised plant materials; Tithonium diversifolia, Afromomum melegueta, Nicotiana tabacum, Monodora myristica and Piper guineense as ovicidal, larvicidal and adult deterents of fish beetle (Dermestes maculatus) in smoked catfish (Clarias gariepinus) during storage were evaluated. Leaves of T. diversifolia, N. tabacum and seeds of A. melegueta, M. myristica and P. guineese were dried and pulverised into powder. Adults and larvae of third generation (F3) of D. maculatus were introduced into Kilner jars containing disinfested fish samples. Pulverised plant materials were applied to the surface of the fish samples at 10% (w/w) and monitored for 40 days, while egg hatchability of the insects was monitored for seven days. The result showed that all the plant materials had varying degree of insecticidal activities. Pulverised powder of P. guineense and A. melegueta were the most effective and significantly (P < 0.05) inhibited egg hatchability and adult emergence of D. maculatus in smoked catfish. N. tabacum gave the lowest insecticidal effect on adults, larvae and eggs of D. maculatus. However, the larvae of D. maculatus were not significantly (P > 0.05) affected by the plant materials. The percentage weight loss in fish treated with P. guineense and A. melegueta were minimal compared with the untreated fish sample. The result of this study showed that pulverised plant materials obtained from P. guineense and A. melegueta could be used to deter egg hatchability and adult emergence of D. maculatus in smoked catfish during storage. This could also reduce percentage losses due to insect infestation on smoked fish during storage.

  17. Process research on non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  18. Assessment of Nonnative Invasive Plants in the DOE Oak Ridge National Environmental Research Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, S.J.

    The Department of Energy (DOE) National Environmental Research Park at Oak Ridge, Tennessee, is composed of second-growth forest stands characteristic of much of the eastern deciduous forest of the Ridge and Valley Province of Tennessee. Human use of natural ecosystems in this region has facilitated the establishment of at least 167 nonnative, invasive plant species on the Research Park. Our objective was to assess the distribution, abundance, impact, and potential for control of the 18 most abundant invasive species on the Research Park. In 2000, field surveys were conducted of 16 management areas on the Research Park (14 Natural Areas,more » 1 Reference Area, and Walker Branch Watershed) and the Research Park as a whole to acquire qualitative and quantitative data on the distribution and abundance of these taxa. Data from the surveys were used to rank the relative importance of these species using the ''Alien Plant Ranking System, Version 5.1'' developed by the U.S. Geological Survey. Microstegium (Microstegium vimineum) was ranked highest, or most problematic, for the entire Research Park because of its potential impact on natural systems, its tendency to become a management problem, and how difficult it is to control. Microstegium was present in 12 of the 16 individual sites surveyed; when present, it consistently ranked as the most problematic invasive species, particularly in terms of its potential impact on natural systems. Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense) were the second- and third-most problematic plant species on the Research Park; these two species were present in 12 and 9 of the 16 sites surveyed, respectively, and often ranked second- or third-most problematic. Other nonnative, invasive species, in decreasing rank order, included kudzu (Pueraria montma), multiflora rose (Rosa multiflora), Chinese lespedeza (Lespedeza cuneara), and other species representing a variety of life forms and growth forms

  19. Plant Research

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Land's agricultural research team is testing new ways to sustain life in space as a research participant with Kennedy Space Center's Controlled Ecological Life Support System (CELSS). The Land, sponsored by Kraft General Foods, is an entertainment, research, and education facility at EPCOT Center, part of Walt Disney World. The cooperative effort is simultaneously a research and development program, a technology demonstration that provides the public to see high technology at work and an area of potential spinoff: the CELSS work may generate Earth use technology beneficial to the hydroponic (soilless growing) vegetable production industries of the world.

  20. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    PubMed

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  1. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions

    PubMed Central

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-01-01

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line. PMID:29617285

  2. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW

    PubMed Central

    Shuping, D.S.S.; Eloff, J.N.

    2017-01-01

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant

  3. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  4. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  6. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  7. Criteria and Planning Guidance for Ex-Plant Harvesting to Support Subsequent License Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Devanathan, Ram; Meyer, Ryan M.

    As U.S. nuclear power plants look to subsequent license renewal (SLR) to operate for a 20-year period beyond 60 years, the U.S. Nuclear Regulatory Commission and the industry will be addressing technical issues around the capability of long-lived passive components to meet their functionality objectives. A key challenge will be to better understand likely materials degradation mechanisms in these components and their impacts on component functionality and margins to safety. Research addressing many of the remaining technical gaps in these areas for SLR may greatly benefit from materials sampled from plants (decommissioned or operating). Because of the cost and inefficiencymore » of piecemeal sampling, there is a need for a strategic and systematic approach to sampling materials from structures, systems, and components (SSC) in both operating and decommissioned plants. This document describes a potential approach for sampling (harvesting) materials that focuses on prioritizing materials for sampling using a number of criteria. These criteria are based on an evaluation of technical gaps identified in the literature, research needs to address these technical gaps, and lessons learned from previous harvesting campaigns. The document also describes a process for planning future harvesting campaigns; such a plan would include an understanding of the harvesting priorities, available materials, and the planned use of the materials to address the technical gaps.« less

  8. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    DTIC Science & Technology

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  9. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  10. A highly efficient machine planting system for forestry research plantations—the Wright-MSU method

    Treesearch

    James R. McKenna; Oriana Rueda-Krauss; Brian Beheler

    2011-01-01

    For forestry research purposes, grid planting with uniform tree spacing is superior to planting with nonuniform spacing because it controls density across the plantation and facilitates accurate repeat measurements. The ability to cross-check tree positions in a grid-type plantation avoids problems associated with dead or missing trees and increases the efficiency and...

  11. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  12. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    PubMed

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  13. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  14. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    PubMed

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  15. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    PubMed Central

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  16. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  17. Testing of materials from the Minnesota Cold Regions pavement research test facility

    DOT National Transportation Integrated Search

    1996-09-01

    The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...

  18. New evidences on efficacy of boronic acid-based derivatization method to identify sugars in plant material by gas chromatography-mass spectrometry.

    PubMed

    Faraco, Marianna; Fico, Daniela; Pennetta, Antonio; De Benedetto, Giuseppe E

    2016-10-01

    This work presents an analytical procedure based on gas chromatography-mass spectrometry which allows the determination of aldoses (glucose, mannose, galactose, arabinose, xylose, fucose, rhamnose) and chetoses (fructose) in plant material. One peak for each target carbohydrate was obtained by using an efficient derivatization employing methylboronic acid and acetic anhydride sequentially, whereas the baseline separation of the analytes was accomplished using an ionic liquid capillary column. First, the proposed method was optimized and validated. Successively, it was applied to identify the carbohydrates present in plant material. Finally, the procedure was successfully applied to samples from a XVII century painting, thus highlighting the occurrence of starch glue and fruit tree gum as polysaccharide materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Research advances in the relationships between biodiversity and invasiveness within plant communities].

    PubMed

    Zheng, Jingming; Ma, Keping

    2006-07-01

    This paper reviewed the theoretical, observational, and experimental studies on the relationships between biodiversity and invasiveness within plant communities. The contradictory conclusions made from these studies were summarized and analyzed, and suggestions were put forward to improve future researches. In theoretical studies, models were highly simplified and depended on unrealistic assumptions, e. g., single mechanism of biodiversity formation, balance between communities status, and similar characters of alien and native species, which limited the credibility of research conclusions. Most of the observational studies were not directly exploring the relationships between biodiversity and invasiveness, but inferring from invasion patterns occurred in nature. Different research scales always resulted in contradictory conclusions. In small-scale research where some biotic factors dominated species interaction, the relationships between biodiversity and invasiveness might be negative, while in larger-scale research, other co-varying extrinsic factors might override those biotic factors in small-scale research, and the relationships between biodiversity and invasiveness might be positive. Although most experimental studies were conducted in small scale and extrinsic influences were ruled out, some mistakes might still happen when constructing biodiversity gradients in the experimental communities. Among these mistakes, sampling effect was the most common one, and the others included building communities with same species abundance but varying richness and density. Some suggestions were put forward on improving the study of the relationships between biodiversity and invasiveness in plant communities. In future researches, we should integrate observational study with experimental study, pay more attention to research scale, avoid sampling effect, and couple model with experimental design.

  20. The cost analysis of material handling in Chinese traditional praying paper production plant

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Budiman, I.; Salim, A.

    2018-02-01

    Chinese traditional praying paper industry is an industry which produced Chinese traditional religion praying paper. This kind of industry is rarely examined since it was only in Small and Medium Enterprise (SME’s- form). This industry produced various kinds of Chinese traditional paper products. The purpose of this research is to increase the amount of production, reduce waiting time and moving time, and reduce material handling cost. The research was conducted at prime production activities, consists of: calculate the capacity of the material handler, the frequency of movement, cost of material handling, and total cost of material handling. This displacement condition leads to an ineffective and inefficient production process. The alternative was developed using production judgment and aisle standard. Based on the observation results, it is possible to reduce displacement in the production. Using alternative which by-passed displacement from a rolled paper in the temporary warehouse to cutting and printing workstation, it can reduce material handling cost from 2.26 million rupiahs to 2.00 million rupiahs only for each batch of production. This result leads to increasing of production quantity, reducing waiting and moving time about 10% from the current condition.

  1. Seed germination in parasitic plants: what insights can we expect from strigolactone research?

    PubMed

    Brun, Guillaume; Braem, Lukas; Thoiron, Séverine; Gevaert, Kris; Goormachtig, Sofie; Delavault, Philippe

    2018-04-23

    Obligate root-parasitic plants belonging to the Orobanchaceae family are deadly pests for major crops all over the world. Because these heterotrophic plants severely damage their hosts even before emerging from the soil, there is an unequivocal need to design early and efficient methods for their control. The germination process of these species has probably undergone numerous selective pressure events in the course of evolution, in that the perception of host-derived molecules is a necessary condition for seeds to germinate. Although most of these molecules belong to the strigolactones, structurally different molecules have been identified. Since strigolactones are also classified as novel plant hormones that regulate several physiological processes other than germination, the use of autotrophic model plant species has allowed the identification of many actors involved in the strigolactone biosynthesis, perception, and signal transduction pathways. Nevertheless, many questions remain to be answered regarding the germination process of parasitic plants. For instance, how did parasitic plants evolve to germinate in response to a wide variety of molecules, while autotrophic plants do not? What particular features are associated with their lack of spontaneous germination? In this review, we attempt to illustrate to what extent conclusions from research into strigolactones could be applied to better understand the biology of parasitic plants.

  2. Materials Discovery | Photovoltaic Research | NREL

    Science.gov Websites

    and specialized analysis algorithms. The Center for Next Generation of Materials by Design (CNGMD) is , incorporating metastable materials into predictive design, and developing theory to guide materials synthesis design, accuracy and relevance, metastability, and synthesizability-to make computational materials

  3. Research progress in photolectric materials of CuFeS2

    NASA Astrophysics Data System (ADS)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  4. Microbiome-on-a-Chip: New Frontiers in Plant-Microbiota Research.

    PubMed

    Stanley, Claire E; van der Heijden, Marcel G A

    2017-08-01

    An enigmatic concoction of interactions between microbes and hosts takes place below ground, yet the function(s) of the individual components in this complex playground are far from understood. This Forum article highlights how microfluidic - or 'Microbiome-on-a-Chip' - technology could help to shed light on such relationships, opening new frontiers in plant-microbiota research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.

  6. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  7. Color Research and Its Application to the Design of Instructional Materials.

    ERIC Educational Resources Information Center

    Pett, Dennis; Wilson, Trudy

    1996-01-01

    Reviews color research and considers its implications for the design of instructional materials. Topics include physiological and psychological effects; color and learning, including attention, search tasks, retention and other objective measures, and non-objective measures; color and the cathode ray tube (CRT); and further research needs.…

  8. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  9. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, Frederick W; Katoh, Yutai; Melton, Stephanie G.

    2016-12-01

    This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for MFE carried out by ORNL. The organization of the report is mainly by material type, with sections on specific technical activities.

  10. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  11. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    PubMed

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  12. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants. Copyright © 2015 Elsevier Inc. All

  13. Analytical Energy Dispersive X-Ray Fluorescence Measurements with a Scanty Amounts of Plant and Soil Materials

    NASA Astrophysics Data System (ADS)

    Mittal, R.; Rao, P.; Kaur, P.

    2018-01-01

    Elemental evaluations in scanty powdered material have been made using energy dispersive X-ray fluorescence (EDXRF) measurements, for which formulations along with specific procedure for sample target preparation have been developed. Fractional amount evaluation involves an itinerary of steps; (i) collection of elemental characteristic X-ray counts in EDXRF spectra recorded with different weights of material, (ii) search for linearity between X-ray counts and material weights, (iii) calculation of elemental fractions from the linear fit, and (iv) again linear fitting of calculated fractions with sample weights and its extrapolation to zero weight. Thus, elemental fractions at zero weight are free from material self absorption effects for incident and emitted photons. The analytical procedure after its verification with known synthetic samples of macro-nutrients, potassium and calcium, was used for wheat plant/ soil samples obtained from a pot experiment.

  14. The use of containerless processing in researching reactive materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Krishnan, Shankar; Nordine, Paul C.

    1991-01-01

    It has recently become possible to perform containerless, high-temperature liquid-phase processing of many nonvolatile materials without resort to orbital microgravity, thereby facilitating the conduct of materials research in conjunction with noncontact diagnostic instruments. The melt-levitation techniques are electromagnetic, aerodynamic, acoustic, aeroacoustic, and electrostatic; nonorbital microgravity conditions are obtainable aboard NASA's KC-135 aircraft on parabolic flight paths, as well as in drop tubes and towers. Applications encompass the purification of metals and the creation of nonequilibrium and metastable structures. Process control and property measurements include optical pyrometry and emissivity, laser polarimetry, and drop calorimetry.

  15. How can plants tell which way is up?

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Weise, S. E.; Kiss, H. G.

    2000-01-01

    Many people think of plants as essentially sessile organisms that do not actively respond to their environment. What could be further from the truth! In fact, plants are capable of a variety of movements, including the dramatic nastic responses (such as Venus fly trap closure) and the less sensational tropisms. These latter movements are directed growth responses to some type of external stimulus such as gravity (gravitropism, formerly known as geotropism) or light (phototropism). This paper describes some interesting exercises that are derived from recent work, including research that has led to experiments performed on two Space Shuttle missions in 1997 (Kiss et al. 1998). The study of tropisms can be a useful way to introduce students to plant biology in high school and introductory college courses. In our experience, students are fascinated by plant movements when they are presented in lectures and find laboratory experiences on this topic quite engaging. Laboratory work on plant tropisms can also be used to introduce important concepts in science such as hypothesis testing, quantitative analysis, and the use of statistics. The laboratory exercises described in this paper involve the higher plant Arabidopsis thaliana, which has become an important organism in molecular biology research and is the focus of an international plant genome project. Based on the material presented here, a number of plant gravitropism laboratory exercises with Arabidopsis that are simple in terms of equipment/materials and procedures can be developed. These exercises are robust in that they work well even in the hands of introductory students, and they can be expanded according to the individual instructor's needs. This paper describes two exercises that have been performed by beginning college students, and these exercises can easily be performed in biology classes in most high school settings.

  16. The Bias of Materiality in Sociocultural Research: Reconceiving Embodiment

    ERIC Educational Resources Information Center

    Cheville, Julie

    2006-01-01

    Although language practices must obviously be an empirical focus in sociocultural research, this article suggests that emphasis on the human body's material aspect has not revealed how, in particular communicative contexts, its ideational influence surpasses that of language. This article suggests that in the "social" semiotic, the body's function…

  17. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  18. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only approved...

  19. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only approved...

  20. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only approved...

  1. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only approved...

  2. 7 CFR 330.210 - Packing materials and containers for plant pest movement; host materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210... through the United States, or interstate, must be free of soil, except when the Deputy Administrator approves in the permit the movement of soil with the plant pest. Subject to this exception, only approved...

  3. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  4. Tentative to use wastes from thermal power plants for construction building materials

    NASA Astrophysics Data System (ADS)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  5. RUPS: Research Utilizing Problem Solving. Administrators Version. Participant Materials.

    ERIC Educational Resources Information Center

    Jung, Charles; And Others

    These materials are the handouts for school administrators participating in RUPS (Research Utilizing Problem Solving) workshops. The purposes of the workshops are to develop skills for improving schools and to increase teamwork skills. The handouts correspond to the 16 subsets that make up the five-day workshop: (1) orientation; (2) identifying…

  6. PGP repository: a plant phenomics and genomics data publication infrastructure.

    PubMed

    Arend, Daniel; Junker, Astrid; Scholz, Uwe; Schüler, Danuta; Wylie, Juliane; Lange, Matthias

    2016-01-01

    Plant genomics and phenomics represents the most promising tools for accelerating yield gains and overcoming emerging crop productivity bottlenecks. However, accessing this wealth of plant diversity requires the characterization of this material using state-of-the-art genomic, phenomic and molecular technologies and the release of subsequent research data via a long-term stable, open-access portal. Although several international consortia and public resource centres offer services for plant research data management, valuable digital assets remains unpublished and thus inaccessible to the scientific community. Recently, the Leibniz Institute of Plant Genetics and Crop Plant Research and the German Plant Phenotyping Network have jointly initiated the Plant Genomics and Phenomics Research Data Repository (PGP) as infrastructure to comprehensively publish plant research data. This covers in particular cross-domain datasets that are not being published in central repositories because of its volume or unsupported data scope, like image collections from plant phenotyping and microscopy, unfinished genomes, genotyping data, visualizations of morphological plant models, data from mass spectrometry as well as software and documents.The repository is hosted at Leibniz Institute of Plant Genetics and Crop Plant Research using e!DAL as software infrastructure and a Hierarchical Storage Management System as data archival backend. A novel developed data submission tool was made available for the consortium that features a high level of automation to lower the barriers of data publication. After an internal review process, data are published as citable digital object identifiers and a core set of technical metadata is registered at DataCite. The used e!DAL-embedded Web frontend generates for each dataset a landing page and supports an interactive exploration. PGP is registered as research data repository at BioSharing.org, re3data.org and OpenAIRE as valid EU Horizon 2020 open

  7. PGP repository: a plant phenomics and genomics data publication infrastructure

    PubMed Central

    Arend, Daniel; Junker, Astrid; Scholz, Uwe; Schüler, Danuta; Wylie, Juliane; Lange, Matthias

    2016-01-01

    Plant genomics and phenomics represents the most promising tools for accelerating yield gains and overcoming emerging crop productivity bottlenecks. However, accessing this wealth of plant diversity requires the characterization of this material using state-of-the-art genomic, phenomic and molecular technologies and the release of subsequent research data via a long-term stable, open-access portal. Although several international consortia and public resource centres offer services for plant research data management, valuable digital assets remains unpublished and thus inaccessible to the scientific community. Recently, the Leibniz Institute of Plant Genetics and Crop Plant Research and the German Plant Phenotyping Network have jointly initiated the Plant Genomics and Phenomics Research Data Repository (PGP) as infrastructure to comprehensively publish plant research data. This covers in particular cross-domain datasets that are not being published in central repositories because of its volume or unsupported data scope, like image collections from plant phenotyping and microscopy, unfinished genomes, genotyping data, visualizations of morphological plant models, data from mass spectrometry as well as software and documents. The repository is hosted at Leibniz Institute of Plant Genetics and Crop Plant Research using e!DAL as software infrastructure and a Hierarchical Storage Management System as data archival backend. A novel developed data submission tool was made available for the consortium that features a high level of automation to lower the barriers of data publication. After an internal review process, data are published as citable digital object identifiers and a core set of technical metadata is registered at DataCite. The used e!DAL-embedded Web frontend generates for each dataset a landing page and supports an interactive exploration. PGP is registered as research data repository at BioSharing.org, re3data.org and OpenAIRE as valid EU Horizon 2020 open

  8. Spectrophotometric method for the determination of paraquat in water, grain and plant materials.

    PubMed

    Shivhare, P; Gupta, V K

    1991-04-01

    A sensitive spectrophotometric method for the determination of paraquat using ascorbic acid (an easily available reducing agent) is described. Paraquat is reduced with ascorbic acid in alkaline solution to give a blue radical ion with an absorbance maximum at 600 nm. Beer's law is obeyed in the range 12-96 micrograms of paraquat in 10 ml of the final solution (1.2-9.6 ppm). The important analytical parameters and the optimum reaction conditions were evaluated. The method was applied successfully to the determination of paraquat in water, grain and plant materials.

  9. The important of living botanical collections for plant biology and the “next generation” of evo-devo research

    Treesearch

    Michael Dosmann; Andrew Groover

    2012-01-01

    Living botanical collections include germplasm repositories, long-term experimental plantings, and botanical gardens. We present here a series of vignettes to illustrate the central role that living collections have played in plant biology research, including evo-devo research. Looking towards the future, living collections will become increasingly important in support...

  10. Resource competition in plant invasions: emerging patterns and research needs

    PubMed Central

    Gioria, Margherita; Osborne, Bruce A.

    2014-01-01

    Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relative to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, although invasive congeners are not necessarily competitively superior over native congeners, nor are alien dominants are better competitors than native dominants. We discuss how the outcomes of competition depend on a number of factors, such as the heterogeneous distribution of resources, the stage of the invasion process, as well as phenotypic plasticity and evolutionary adaptation, which may result in increased or decreased competitive ability in both invasive and native species. Competitive advantages of invasive species over natives are often transient and only important at the early stages of an invasion process. It remains unclear how important resource competition is relative to other mechanisms (competition avoidance via phenological differences, niche differentiation in space associated with phylogenetic distance, recruitment and dispersal limitation, indirect competition, and allelopathy). Finally, we identify the conceptual and methodological issues characterizing competition studies in plant invasions, and we discuss future research needs, including examination of resource competition dynamics and the impact of global environmental change on competitive interactions between invasive and native species. PMID

  11. Resource competition in plant invasions: emerging patterns and research needs.

    PubMed

    Gioria, Margherita; Osborne, Bruce A

    2014-01-01

    Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relative to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, although invasive congeners are not necessarily competitively superior over native congeners, nor are alien dominants are better competitors than native dominants. We discuss how the outcomes of competition depend on a number of factors, such as the heterogeneous distribution of resources, the stage of the invasion process, as well as phenotypic plasticity and evolutionary adaptation, which may result in increased or decreased competitive ability in both invasive and native species. Competitive advantages of invasive species over natives are often transient and only important at the early stages of an invasion process. It remains unclear how important resource competition is relative to other mechanisms (competition avoidance via phenological differences, niche differentiation in space associated with phylogenetic distance, recruitment and dispersal limitation, indirect competition, and allelopathy). Finally, we identify the conceptual and methodological issues characterizing competition studies in plant invasions, and we discuss future research needs, including examination of resource competition dynamics and the impact of global environmental change on competitive interactions between invasive and native species.

  12. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mutagenicity studies in a tyre plant: in vitro activity of workers' urinary concentrates and raw materials.

    PubMed

    Crebelli, R; Paoletti, A; Falcone, E; Aquilina, G; Fabri, G; Carere, A

    1985-07-01

    The possible contribution to urinary mutagenicity of occupational exposures in the rubber industry was studied by assaying the urine concentrates of 72 workmen (44 smokers) employed in a tyre plant. Twenty three clerks (16 smokers) engaged in the administrative department of the same factory served as presumptive unexposed controls. XAD-2 resin concentrates of urine samples were assayed in the plate incorporation test and in the microtitre fluctuation assay with Salmonella typhimurium strains TA1535, TA98, and TA100. Furthermore, the in vitro mutagenicity of the major raw materials in use at the plant was determined in the plate incorporation assay with S typhimurium strains TA1535, TA1537, TA98, and TA100. The results obtained from the urinary mutagenicity study show that smoking habits, but not occupation, were statistically significantly related to the appearance of a urinary mutagenicity that was detectable with strain TA98. A possible synergistic effect of occupation with smoking was observed among tyre builders who were also smokers. The study of the raw materials showed that three technical grade materials were weakly active as mutagens in strain TA98 in the absence (poly-p-dinitrosobenzene) or in the presence of metabolic activation (mixed diaryl-p-phenylendiamines and tetramethyltiuram disulphide). The latter chemical was also weakly active in strain TA100.

  14. Mutagenicity studies in a tyre plant: in vitro activity of workers' urinary concentrates and raw materials.

    PubMed Central

    Crebelli, R; Paoletti, A; Falcone, E; Aquilina, G; Fabri, G; Carere, A

    1985-01-01

    The possible contribution to urinary mutagenicity of occupational exposures in the rubber industry was studied by assaying the urine concentrates of 72 workmen (44 smokers) employed in a tyre plant. Twenty three clerks (16 smokers) engaged in the administrative department of the same factory served as presumptive unexposed controls. XAD-2 resin concentrates of urine samples were assayed in the plate incorporation test and in the microtitre fluctuation assay with Salmonella typhimurium strains TA1535, TA98, and TA100. Furthermore, the in vitro mutagenicity of the major raw materials in use at the plant was determined in the plate incorporation assay with S typhimurium strains TA1535, TA1537, TA98, and TA100. The results obtained from the urinary mutagenicity study show that smoking habits, but not occupation, were statistically significantly related to the appearance of a urinary mutagenicity that was detectable with strain TA98. A possible synergistic effect of occupation with smoking was observed among tyre builders who were also smokers. The study of the raw materials showed that three technical grade materials were weakly active as mutagens in strain TA98 in the absence (poly-p-dinitrosobenzene) or in the presence of metabolic activation (mixed diaryl-p-phenylendiamines and tetramethyltiuram disulphide). The latter chemical was also weakly active in strain TA100. PMID:4015996

  15. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  16. Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Correa, Miguel; Zwoster, Andy

    The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, asmore » the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide

  17. Basic procedures for epigenetic analysis in plant cell and tissue culture.

    PubMed

    Rodríguez, José L; Pascual, Jesús; Viejo, Marcos; Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Yrei, Norma Yague; Santamaría, María E; Pérez, Marta; Fernández Fraga, Mario; Berdasco, María; Rodríguez Fernández, Roberto; Cañal, María J

    2012-01-01

    In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

  18. Design Principles Guide Educators in Choosing and Using Curriculum Materials. Research Review

    ERIC Educational Resources Information Center

    Foster, Elizabeth

    2018-01-01

    Engaging with materials can shape the teaching experience, teachers' practices and mindsets, and, ultimately, students' learning experiences. This issue of "Learning Professional" looks at an area of emerging interest: curriculum materials and the role they play in the daily work of educators and leaders. Educators, researchers, and…

  19. Modeling, simulation, and control of an extraterrestrial oxygen production plant

    NASA Technical Reports Server (NTRS)

    Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.

    1991-01-01

    The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.

  20. Mutualism between tree shrews and pitcher plants: perspectives and avenues for future research.

    PubMed

    Clarke, Charles; Moran, Jonathan A; Chin, Lijin

    2010-10-01

    Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified "toilet pitchers" that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with faeces and regularly defecate into the pitchers when they visit them to feed. Faeces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews, and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species. © 2010 Landes Bioscience