Benchmarking MARS (accident management software) with the Browns Ferry fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, S.M.; Liu, L.Y.; Raines, J.C.
1992-01-01
The MAAP Accident Response System (MARS) is a userfriendly computer software developed to provide management and engineering staff with the most needed insights, during actual or simulated accidents, of the current and future conditions of the plant based on current plant data and its trends. To demonstrate the reliability of the MARS code in simulatng a plant transient, MARS is being benchmarked with the available reactor pressure vessel (RPV) pressure and level data from the Browns Ferry fire. The MRS software uses the Modular Accident Analysis Program (MAAP) code as its basis to calculate plant response under accident conditions. MARSmore » uses a limited set of plant data to initialize and track the accidnt progression. To perform this benchmark, a simulated set of plant data was constructed based on actual report data containing the information necessary to initialize MARS and keep track of plant system status throughout the accident progression. The initial Browns Ferry fire data were produced by performing a MAAP run to simulate the accident. The remaining accident simulation used actual plant data.« less
Genetic progress estimation strategy for upright common bean plants using recurrent selection.
Pereira, L A; Abreu, A F B; Júnior, I C Vieira; Pires, L P M; Ramalho, M A P
2017-03-22
Common bean producers in Brazil tend to grow plants as upright as possible. Because the control of this trait involves a large number of genes, recurrent selection (RS) is the best approach for successful plant improvement. Because plant architecture (PA) is evaluated using scores and usually has high heritability, RS for PA is performed through visual selection in generation S 0 . The aim of the present study was to evaluate selection progress and investigate whether this progress varies with the number of selected progenies or the generation evaluated. In addition, the effect of RS for the upright (PA) trait on progeny grain yield (GY) was investigated. Data of progenies S 0:3 and S 0:4 of the fifth, eighth, and twelfth cycles were used. A combined analysis of variance was performed using the adjusted means of the 47 best progenies from each generation and cycle, using two control cultivars as reference. A joint analysis of the two generations used during the evaluation of progenies for the different cycles was also performed. The genetic progress (GP) was estimated by fitting a linear regression equation to the relationship between the adjusted mean of each cycle and the number of cycles. We found that RS was efficient and the estimated GP of the evaluated progenies was 4.5%. Based on the GY heritability estimates, in more advanced generation selection for GY can be successfully performed on progenies. Thus, the selection already done for PA in F 2 could be associated to the most productive progenies.
J.W." Jerry" Van Sambeek; Larry D. Godsey; William D. Walter; Harold E. Garrett; John P. Dwyer
2016-01-01
Benefits of repeated air-root-pruning of seedlings when stepping up to progressively larger containers include excellent lateral root distribution immediately below the root collar and an exceptionally fibrous root ball. To evaluate long-term field performance of repeatedly air-root-pruned container stock, three plantings of swamp white oak (Quercus bicolor...
Okinawan Subtropical Plants as a Promising Resource for Novel Chemical Treasury.
Matsunami, Katsuyoshi; Otsuka, Hideaki
2018-01-01
The Okinawa Islands are a crescent-shaped archipelago and their natural forests hold a huge variety of unique subtropical plants with relatively high endemism. We have performed phytochemical study on Okinawan subtropical plants for many years. In this review, we describe our recent research progress on the isolation of new compounds and their various bioactivities.
Progress in plant research in space.
Dutcher, F R; Hess, E L; Halstead, T W
1994-01-01
Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects.
Baccar, Rim; Fournier, Christian; Dornbusch, Tino; Andrieu, Bruno; Gouache, David; Robert, Corinne
2011-01-01
Background and Aims The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments. Methods A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined. Key Results Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations. Conclusions It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi-isogenic lines differing by single architectural traits. PMID:21724656
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, JA
2002-01-15
This report describes the tasks performed and the progress made during Phase 2 of the DOE-NERI project number 99-119 entitled Automatic Development of Highly Reliable Control Architecture for Future Nuclear Power Plants. This project is a collaboration effort between the Oak Ridge National Laboratory (ORNL), The University of Tennessee, Knoxville (UTK) and the North Carolina State University (NCSU). ORNL is the lead organization and is responsible for the coordination and integration of all work.
Sengupta, Debashree; Guha, Anirban; Reddy, Attipalli Ramachandra
2013-10-05
The present study investigates the interdependence of plant water status with foliar and root responses in Vigna radiata L.Wilczek under progressive drought. Vegetatively-mature V. radiata plants were subjected to water withdrawal for 3 and 6days (D3 and D6, respectively) and then re-watered subsequently for 6days (6R) for stress-recovery. Changes in plant water status were expressed in terms of leaf and root moisture contents (LMC and RMC, respectively) and leaf relative water content (LRWC). Progressive drought caused apparent decrease in LRWC, LMC and RMC depicting significant level of dehydration of leaf and root tissues. Stomatal limitation alone could not account for the observed decrease in net CO2 assimilation rates (Pn) due to comparatively less decrease in sub-stomatal CO2 (Ci) concentrations with respect to other gas exchange parameters indicating possible involvement of non-stomatal limitations. Analysis of polyphasic chl a fluorescence kinetics during progressive drought showed decreased energy connectivity among PSII units as defined by a positive L-band with highest amplitude during D6. Efficiency of electron flux from OEC towards PSII acceptor side was not significantly affected during drought conditions as evidenced by the absence of a positive K-band. Increasing root-level water-limitation enforced a gradual oxidative stress through H2O2 accumulation and membrane lipid peroxidation in V. radiata roots exhibiting drastic enhancement of proline content and a significant but gradual increase in ascorbic acid content as well as guaiacol peroxidase activity under progressive drought. Expression analysis of Δ(1) pyrroline-5-carboxylate synthetase (P5CS) through real time PCR and enzyme activity studies showed a strong positive correlation between VrP5CS gene expression, enzyme activity and proline accumulation in the roots of V. radiata under progressive drought and recovery. Drought-induced changes in root moisture content (RMC) showed positive linear correlations with leaf water content, stomatal conductance as well as transpirational water loss dynamics and a significant negative correlation with the corresponding drought-induced expression patterns of ascorbate, guaiacol peroxidase and proline in roots of V. radiata. The study provides new insights into the plant water status-dependent interrelationship between photosynthetic performance and major root defense responses of V. radiata under progressive drought conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan
2013-01-01
Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.
Bashir, Khurram; Rasheed, Sultana; Matsui, Akihiro; Iida, Kei; Tanaka, Maho; Seki, Motoaki
2018-01-01
Numerous experiments have been performed in Arabidopsis to monitor changes in gene expression that occur in response to a variety of abiotic and biotic stresses, different growth conditions, and at various developmental stages. In addition, gene expression patterns have also been characterized among wild-type and mutant genotypes. Despite these numerous reports, transcriptional changes occurring in roots of soil-grown plants subjected to a progressive drought stress have remained undocumented. To fill this gap, we established a system that allows one to establish water-deficit conditions and to collect root and shoot samples with minimal damage to the root system. Arabidopsis plants are grown in a ceramic-based granular soil and subjected to progressive drought stress by withholding water. Root and shoot samples were collected separately, RNA was purified, and a microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days after the onset of drought stress treatment. Here, we describe the detailed protocol used to analyze the transcriptomic changes occurring in roots and shoots of soil-grown Arabidopsis subjected to a progressive drought stress.
Analysis of GMO Plum Plant Culture in System Operations Failure
NASA Technical Reports Server (NTRS)
Mercado, Dianne
2017-01-01
GMO plum trees are being evaluated at the Kennedy Space Center as a possible candidate for future space crops. Previously conducted horticultural testing compared the performance of several plum genotypes in controlled environment chambers, resulting in a down-selection to the NASA-11 genotype. Precursory studies determined the water use requirements to sustain the plants as well as the feasibility of grafting non-GMO plum scions onto GMO plum rootstocks of NASA-5, NASA-10, and NASA-11 genotypes. This study follows the growth and horticultural progress of plum trees and in-vitro cultures from August 2017 to November 2017, and provides supplemental support for future GMO plum studies. The presence of Hurricane Irma in early September 2017 resulted in the plants undergoing material deterioration from major changes to their overall horticultural progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
1991-05-01
Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less
Genetic progress in oat associated with fungicide use in Rio Grande do Sul, Brazil.
Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A
2016-12-19
The State of Rio Grande do Sul (RS) is the largest producer of oat in Brazil with the aid of consolidated breeding programs, which are constantly releasing new cultivars. The main objectives of this study were to: 1) evaluate the annual genetic progress in grain yield and hectoliter weight of the oat cultivars in RS, with and without fungicide use on aerial parts of plants; and 2) evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars through network yield trials conducted with and without fungicide use on aerial plant parts. The data on grain yield and hectoliter weight were obtained from 89 competition field trials of oat cultivars carried out from 2007 to 2014 in nine municipalities of RS. Of the total 89 trials, 44 were carried out with fungicide application on aerial plant parts and 45 were carried out without fungicide application. The annual genetic progress in oat cultivars was studied using the methodology proposed by Vencovsky (1988). The annual genetic progress in oat grain yield was 1.02% with fungicide use and 4.02% without fungicide use during the eight-year study period in RS. The annual genetic progress with respect to the hectoliter weight was 0.08% for trials with fungicide use and 0.71% for trials without fungicide use. Performing network yield trials with and without fungicide use on the aerial plants parts is a feasible method to evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars.
Real-Time Assessment of Robot Performance during Remote Exploration Operations
2009-03-01
degraded instruments (i.e., instrument performance) and to improve plant performance (e.g., increase thermal efficiency). Such degraded instrument...activities. Lidar is used for 3D terrain mapping. During reconnaissance, the rover acquires multiple scans to construct a panorama at specified...Metric Interpretation Operational Use Panorama in Progress Should be true while taking a panorama RO: indicates whether Lidar is functioning
Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress
Olsovska, Katarina; Kovar, Marek; Brestic, Marian; Zivcak, Marek; Slamka, Pavol; Shao, Hong Bo
2016-01-01
Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought. PMID:27551283
Schenkeveld, Walter D C; Reichwein, Arjen M; Bugter, Marcel H J; Temminghoff, Erwin J M; van Riemsdijk, Willem H
2010-12-22
FeEDDHA (iron(3+) ethylenediamine-N,N'-bis(hydroxyphenylacetic acid) products are commonly applied to mend and prevent Fe deficiency chlorosis in soil-grown crops. Plants mainly take up Fe in the progressed vegetative and in the reproductive stages. This study examined which of the principal constituents of FeEDDHA products (the isomers racemic o,o-FeEDDHA, meso o,o-FeEDDHA, and o,p-FeEDDHA), most effectively meets the Fe requirements of soybean plants (Glycine max (L.) Merr.) grown on calcareous soil in the aforementioned growth stages. FeEDDHA isomers were applied once, separately or in mixtures, at t = 0, in the progressed vegetative stage or in the reproductive stage. o,p-FeEDDHA did not significantly contribute to Fe uptake in either growth stage. Both racemic and meso o,o-FeEDDHA were effective in supplying plants with Fe, approximately to the same extent. The moment of application had a significant effect on yield and FeEDDHA pore water concentrations at harvest, but not on Fe uptake. To optimize yield while minimizing FeEDDHA dosage, FeEDDHA is best applied to soybean plants prior to the onset of chorosis.
1983-08-01
Program Acquisition Schedule A-8 LIST OF TABLES TABLE TITLE Page 1 Evolution of the ELF Communications Ecological 2 Moni tori ng Program 2 Summary of...performed on plots in maple-dominant, mixed hardwood stands in Michigan. NATIVE BEES Bees are important pollinators of flowering plants and are...SMALL MAMMALS AND NESTING BIRDS Small mammals and nesting birds represent an ecological level inter- mediate between plants and strict carnivores
He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian
2014-05-01
Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.
Plant salt-tolerance mechanisms
Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...
2014-06-01
Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less
Volatile organic compounds as non-invasive markers for plant phenotyping.
Niederbacher, B; Winkler, J B; Schnitzler, J P
2015-09-01
Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A whole-plant screening test to identify genotypes with superior freezing tolerance.
Bertrand, Annick; Castonguay, Yves; Bourassa, Josée
2014-01-01
Freezing tolerance is a determinant factor of persistence of perennials grown in northern climate. Selection for winterhardiness in field nurseries is difficult because of the unpredictability of occurrence of test winters allowing the identification of hardy genotypes. Here we describe a whole-plant assay entirely performed indoor in growth chambers and walk-in freezers to identify genotypes with superior tolerance to freezing within populations of open pollinated species. Three successive freezing stresses are applied to progressively eliminate 90 % of the population and to retain only the 10 % best performing genotypes. This approach can be used to generate recurrently selected populations more tolerant to freezing in different species.
Medicinal Plants in Neurodegenerative Diseases: Perspective of Traditional Persian Medicine.
Farzaei, Mohammad Hosein; Shahpiri, Zahra; Mehri, Mohammad Reza; Bahramsoltani, Roodabeh; Rezaei, Mahdi; Raeesdana, Azade; Rahimi, Roja
2018-01-01
Neurodegenerative diseases are a progressive loss of structure and/or function of neurons. Weak therapeutic response and progressive nature of the diseases, as well as a wide range of side effects caused by conventional therapeutic approaches make patients seek for complementary and alternative medicine. The aim of the present paper is to discuss the neuropharmacological basis of medicinal plants and their principle phytochemicals which have been used in traditional Persian medicine for different types of neurodegenerative diseases. Medicinal plants introduced in traditional Persian medicine perform beneficial effects in neurodegenerative diseases via various cellular and molecular mechanisms including suppression of apoptosis mediated by an increase in the expression of anti-apoptotic agents (e.g. Bcl-2) as well as a decrease in the expression and activity of proapoptotic proteins (e.g. Bax, caspase 3 and 9). Alleviating inflammatory responses and suppressing the expression and function of pro-inflammatory cytokines like Tumor necrosis factor α and interleukins, as well as improvement in antioxidative performance mediated by superoxide dismutase and catalase, are among other neuroprotective mechanisms of traditional medicinal plants. Modulation of transcription, transduction, intracellular signaling pathways including ERK, p38, and MAPK, with upstream regulatory activity on inflammatory cascades, apoptosis and oxidative stress associated pathways, play an essential role in the preventive and therapeutic potential of the plants in neurodegenerative diseases. Medicinal plants used in traditional Persian medicine along with their related phytochemicals by affecting various neuropharmacological pathways can be considered as future drugs or adjuvant therapies with conventional pharmacotherapeutics; though, further clinical studies are necessary for the confirmation of their safety and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Relationships between Cognitive Ability and Dynamic Decision Making
ERIC Educational Resources Information Center
Gonzalez, C.; Thomas, R.P.; Vanyukov, P.
2005-01-01
This study investigated the relationships between cognitive ability (as assessed by the Raven Progressive Matrices Test [RPM] and the Visual-Span Test [VSPAN]) and individuals' performance in three dynamic decision making (DDM) tasks (i.e., regular Water Purification Plant [WPP], Team WPP, and Firechief). Participants interacted repeatedly with…
The diagnosis of plant pathogenic bacteria: a state of art.
Scala, Valeria; Pucci, Nicoletta; Loreti, Stefania
2018-03-01
Plant protection plays an important role in agriculture for the food quality and quantity. The diagnosis of plant diseases and the identification of the pathogens are essential prerequisites for their understanding and control. Among the plant pests, the bacterial pathogens have devastating effects on plant productivity and yield. Different techniques (microscopy, serology, biochemical, physiological, molecular tools and culture propagation) are currently used to detect and identify bacterial pathogens. Detection and identification are critical steps for the appropriate application of phytosanitary measures. The "harmonization of phytosanitary regulations and all other areas of official plant protection action" mean the good practices for plant protection and plant material certification. The prevention of diseases progression and spread by early detection are a valuable strategy for proper pest management and disease control. For this purpose, innovative methods aim achieving results within a shorter time and higher performance, to provide rapidly, accurately and reliably diagnosis. In this review, we focus on the techniques for plant bacterial diagnosis and on the regulations for harmonizing plant protection issue.
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
30-year progress of membrane transport in plants.
Hedrich, Rainer; Marten, Irene
2006-09-01
In the past 30 years enormous progress was made in plant membrane biology and transport physiology, a fact reflected in the appearance of textbooks. The first book dedicated to 'Membrane Transport in Plants' was published on the occasion of the 'International Workshop on Membrane Transport in Plants' held at the Nuclear Research Center, Jülich, Germany [Zimmermann and Dainty (eds) 1974] and was followed in 1976 by a related volume 'Transport in plants II' in the 'Encyclopedia of plant physiology' [Lüttge and Pitman (eds) 1976]. A broad spectrum of topics including thermodynamics of transport processes, water relations, primary reactions of photosynthesis, as well as more conventional aspects of membrane transport was presented. The aim of the editors of the first book was to bring advanced thermodynamical concepts to the attention of biologists and to show physical chemists and biophysicist what the more complex biological systems were like. To bundle known data on membrane transport in plants and relevant fields for mutual understanding, interdisciplinary research and clarification of problems were considered highly important for further progress in this scientific area of plant physiology. The present review will critically evaluate the progress in research in membrane transport in plants that was achieved during the past. How did 'Membrane Transport in Plants' progress within the 30 years between the publication of the first book about this topic (Zimmermann and Dainty 1974), a recent one with the same title (Blatt 2004), and today?
Progress In Fresnel-Köhler Concentrators
NASA Astrophysics Data System (ADS)
Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan
2011-12-01
The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) OVERALL VIEW ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) OVERALL VIEW LOOKING SOUTHEAST; CONSTRUCTION 34 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-3034. Holmes, Photographer, 6/23/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Saleem, Aansa Rukya; Brunetti, Cecilia; Khalid, Azeem; Della Rocca, Gianni; Raio, Aida; Emiliani, Giovanni; De Carlo, Anna; Mahmood, Tariq; Centritto, Mauro
2018-01-01
Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.
Khalid, Azeem; Raio, Aida; Emiliani, Giovanni; De Carlo, Anna; Mahmood, Tariq
2018-01-01
Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants. PMID:29447189
Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2015-09-01
The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the May-June issue is on outage management and health physics. Major articles include: Outage optimization initiatives, by George B. Beam, AREVA NP, Inc.; New plant based on excellent track records, by Jim Scarola, Progress Energy; Meeting customer needs and providing environmental benefits, by Peter S. Hastings, Duke Energy; Plants with 3-D design, by Jack A. Bailey, Tennessee Valley Authority; and Highest quality with exceptional planning, by Jason A. Walls, Duke Energy. Industry innovation articles include: Integrated exposure reduction plan, by Ed Wolfe, Exelon; Performance-based radiation worker training, by Joe Giuffre and Timothy Vriezerma, American Electric Power.
Falavigna, Vítor da Silveira; Miotto, Yohanna Evelyn; Porto, Diogo Denardi; Anzanello, Rafael; Santos, Henrique Pessoa dos; Fialho, Flávio Bello; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando
2015-11-01
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple. © 2015 Scandinavian Plant Physiology Society.
Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.
Chabbert, Brigitte; Habrant, Anouck; Herbaut, Mickaël; Foulon, Laurence; Aguié-Béghin, Véronique; Garajova, Sona; Grisel, Sacha; Bennati-Granier, Chloé; Gimbert-Herpoël, Isabelle; Jamme, Frédéric; Réfrégiers, Matthieu; Sandt, Christophe; Berrin, Jean-Guy; Paës, Gabriel
2017-12-19
Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHEAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST SHOWING OVERALL BLOCK EXTERIOR WALLS; CONSTRUCTION 65 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-4976. Holmes, Photographer, 9/26/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING EAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING EAST SHOWING EXCAVATION AND FORMING; CONSTRUCTION 6 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-59-4935. J. Anderson, Photographer, 9/21/1959 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Progressive Plant Growing Has Business Blooming
NASA Technical Reports Server (NTRS)
2006-01-01
In 1997, AgriHouse, Inc. (d.b.a. Aeroponics International), a leading agri-biology company, united with NASA and BioServe Space Technologies, a nonprofit, NASA-sponsored partnership research center, to design a soil-less plant-growth experiment to be performed in microgravity, aboard the Mir space station. This experiment aimed to gauge the effectiveness of a non-pesticide solution on the immune responses of bean plants. In essence, the research consortium was looking for a means of keeping plants free from infection, without having to rely on the use of pesticides. This research, combined with follow-on grants from NASA, has helped Berthoud, Colorado-based AgriHouse gain credibility in the commercial marketplace with related technology and gross the capital necessary to conduct further research in a new-age field known as bio-pharming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoni, Jeffrey N.; Kalinich, Donald A.
2014-02-01
Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on keymore » figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.« less
ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson
2004-12-01
This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissionsmore » from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.« less
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHEAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST SHOWING DECK FORMING FOR SOUTH SECTION OF OPERATING CORRIDOR; CONSTRUCTION 44 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-3624. Holmes, Photographer, 7/25/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHWEST, ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHWEST, SHOWING FORMING FOR NORTH WALLS OF CELLS 1, 4 AND 5; CONSTRUCTION 21 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-1874. Holmes, Photographer, 4/21/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
33 CFR Appendix D to Part 273 - Work Progress Report
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Work Progress Report D Appendix D to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. D Appendix D to Part 273—Work Progress Report Aquatic Plant...
33 CFR Appendix D to Part 273 - Work Progress Report
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Work Progress Report D Appendix D to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. D Appendix D to Part 273—Work Progress Report Aquatic Plant...
33 CFR Appendix D to Part 273 - Work Progress Report
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Work Progress Report D Appendix D to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. D Appendix D to Part 273—Work Progress Report Aquatic Plant...
33 CFR Appendix D to Part 273 - Work Progress Report
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Work Progress Report D Appendix D to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. D Appendix D to Part 273—Work Progress Report Aquatic Plant...
33 CFR Appendix D to Part 273 - Work Progress Report
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Work Progress Report D Appendix D to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. D Appendix D to Part 273—Work Progress Report Aquatic Plant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2005-03-31
This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized emissions were performed. Stage I toxicological assessments were carried out in Sprague-Dawley rats. Biological endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. No significant differences between exposed animals and sham animals (exposed to filtered air) were observed for any of the endpoints; histopathological results are pending and will be reported in the next semiannual report. The scenarios evaluated during this reporting period were slightly modified from those originally proposed. We substituted a new scenario, secondary aerosol + SOA, to investigate the effects of a strongly acidic aerosol with a biogenic component. Since we did not observe any biological response to this scenario, the neutralized secondary aerosol scenario (i.e., oxidized emissions + ammonia) was deemed unnecessary. Moreover, in light of the lack of response observed in the Stage I assessment, it was decided that a Stage II assessment (evaluation of cardiac function in a compromised rat model) was unlikely to provide useful information. However, this model will be employed at Plant 1 and/or 2. During this reporting period, significant progress was made in planning for fieldwork at Plant 1. Stack sampling was carried out at the plant in mid-December to determine the concentration of primary particles. It was found that PM{sub 2.5} mass concentrations were approximately three times higher than those observed at Plant 0. In mid-February, installation and setup for the mobile laboratories began. Animal exposures are scheduled to begin at this plant on March 21, 2005. During the next reporting period, we will initiate fieldwork at Plant 1. At either or both Plants 1 and 2, a detailed Stage II assessment will be performed, even if no significant findings are observed in Stage I. The next semiannual report is expected to include a detailed description of the fieldwork at Plant 1, including toxicological findings and interpretation.« less
USDA-ARS?s Scientific Manuscript database
As the seasons progress, autumn-planted winter wheat plants (Triticum aestivum L.) first gain, then progressively lose freezing tolerance. Exposing the plants to freeze-thaw cycles of -3/3°C results in increased ability to tolerate subsequent freezing to potentially damaging temperatures. This stu...
The function of small RNAs in plant biotic stress response.
Huang, Juan; Yang, Meiling; Zhang, Xiaoming
2016-04-01
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control. © 2016 Institute of Botany, Chinese Academy of Sciences.
Quantifying progress toward a conservation assessment for all plants.
Bachman, Steven P; Nic Lughadha, Eimear M; Rivers, Malin C
2018-06-01
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21-26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one-quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Progress in passive solar energy systems. Volume 8. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, J.; Andrejko, D.A.
1983-01-01
This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaicmore » system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1995-09-01
This report describes the progress made during this reporting period of a project to demonstrate that the air pollution from a traveling- grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators -- for the execution of this effort. The terms of a long- term contract for the procurement of 750,000 tons of 20 mm x 0 raw coal for the new plant have been negotiated with the Katowice Holding Company. This draft contract currently is still under legal review. The negotiated price is near that of the Polish government`s established price of $32/ton. Biprostal, an engineering firm located in Krakow, continued performing the many environmental and permitting activities that are required by the various levels of the Polish government before the plant can be constructed and operated. The search for markets for utilizing surplus production from the new plant continues. Because of the unanticipated delays encountered during the onset of the project with forming the EFH Coal/Polish partnership and in negotiating long-term raw coal supply contracts, a third 90-day, no-cost time extension was requested.« less
ITER activities and fusion technology
NASA Astrophysics Data System (ADS)
Seki, M.
2007-10-01
At the 21st IAEA Fusion Energy Conference, 68 and 67 papers were presented in the categories of ITER activities and fusion technology, respectively. ITER performance prediction, results of technology R&D and the construction preparation provide good confidence in ITER realization. The superconducting tokamak EAST achieved the first plasma just before the conference. The construction of other new experimental machines has also shown steady progress. Future reactor studies stress the importance of down sizing and a steady-state approach. Reactor technology in the field of blanket including the ITER TBM programme and materials for the demonstration power plant showed sound progress in both R&D and design activities.
Seki, Hikaru; Tamura, Keita; Muranaka, Toshiya
2018-06-01
Increased public awareness of negative health effects associated with excess sugar consumption has triggered increasing interest in plant-derived natural sweeteners. Steviol glycosides are a group of highly sweet diterpene glycosides contained in the leaves of stevia (Stevia rebaudiana). Mogrosides, extracted from monk fruit (Siraitia grosvenorii), are a group of cucurbitane-type triterpenoid glycosides. Glycyrrhizin is an oleanane-type triterpenoid glycoside derived from the underground parts of Glycyrrhiza plants (licorice). This review focuses on the natural isoprenoid sweetening agents steviol glycosides, mogrosides, and glycyrrhizin, and describes recent progress in gene discovery and elucidation of the catalytic functions of their biosynthetic enzymes. Recently, remarkable progress has been made in engineering the production of various plant-specialized metabolites in microbial hosts such as Saccharomyces cerevisiae via the introduction of biosynthetic enzyme genes. Perspectives on the microbial production of plant-derived natural sweeteners are also discussed.
The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions
Jacoby, Richard; Peukert, Manuela; Succurro, Antonella; Koprivova, Anna; Kopriva, Stanislav
2017-01-01
In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon. PMID:28974956
Glutamate Receptor Homologs in Plants: Functions and Evolutionary Origins
Price, Michelle Beth; Jelesko, John; Okumoto, Sakiko
2012-01-01
The plant glutamate-like receptor homologs (GLRs) are homologs of mammalian ionotropic glutamate receptors (iGluRs) which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs), which in turn will help understanding of the molecular mechanisms of plant GLR functions. In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenetic analysis using iGluRs from metazoans, plants, and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial iGluRs, indicating the separation of plant, other eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed. PMID:23115559
NASA Astrophysics Data System (ADS)
Leclercq, Sylvain; Lidbury, David; Van Dyck, Steven; Moinereau, Dominique; Alamo, Ana; Mazouzi, Abdou Al
2010-11-01
In nuclear power plants, materials may undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities that operate these reactors need to quantify the ageing and the potential degradations of some essential structures of the power plant to ensure safe and reliable plant operation. So far, the material databases needed to take account of these degradations in the design and safe operation of installations mainly rely on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. A first step towards this goal has been successfully reached through the development of the RPV-2 and Toughness Module numerical tools by the scientific community created around the FP6 PERFECT project. These tools allow to simulate irradiation effects on the constitutive behaviour of the reactor pressure vessel low alloy steel, and also on its failure properties. Relying on the existing PERFECT Roadmap, the 4 years Collaborative Project PERFORM 60 has mainly for objective to develop multi-scale tools aimed at predicting the combined effects of irradiation and corrosion on internals (austenitic stainless steels) and also to improve existing ones on RPV (bainitic steels). PERFORM 60 is based on two technical sub-projects: (i) RPV and (ii) internals. In addition to these technical sub-projects, the Users' Group and Training sub-project shall allow representatives of constructors, utilities, research organizations… from Europe, USA and Japan to receive the information and training to get their own appraisal on limits and potentialities of the developed tools. An important effort will also be made to teach young researchers in the field of materials' degradation. PERFORM 60 has officially started on March 1st, 2009 with 20 European organizations and Universities involved in the nuclear field.
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP640) LOOKING NORTHWEST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP-640) LOOKING NORTHWEST SHOWING FORMING AND PLACEMENT OF REINFORCING STEEL FOR SOUTH WALLS OF CELLS 1, 3, 4 AND 5 AND WEST WALL FOR CELLS 1 AND 2; CONSTRUCTION 13 PERCENT COMPLETE. INL PHOTO NUMBER NRTS 59-6436. J. Anderson, Photographer, 12/18/1959 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Draeger, Tracie; Moore, Graham
2017-09-01
Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
Protective Effects of Selected Botanical Agents on Bone.
Jolly, James Jam; Chin, Kok-Yong; Alias, Ekram; Chua, Kien Hui; Soelaiman, Ima Nirwana
2018-05-11
Osteoporosis is a serious health problem affecting more than 200 million elderly people worldwide. The early symptoms of this disease are hardly detectable. It causes progressive bone loss, which ultimately renders the patients susceptible to fractures. Osteoporosis must be prevented because the associated fragility fractures result in high morbidity, mortality, and healthcare costs. Many plants used in herbal medicine contain bioactive compounds possessing skeletal protective effects. This paper explores the anti-osteoporotic properties of selected herbal plants, including their actions on osteoblasts (bone forming cells), osteoclasts (bone resorbing cells), and bone remodelling. Some of the herbal plant families included in this review are Berberidaceae, Fabaceae, Arecaceae, Labiatae, Simaroubaceaea, and Myrsinaceae. Their active constituents, mechanisms of action, and pharmaceutical applications were discussed. The literature shows that very few herbal plants have undergone human clinical trials to evaluate their pharmacological effects on bone to date. Therefore, more intensive research should be performed on these plants to validate their anti-osteoporotic properties so that they can complement the currently available conventional drugs in the battle against osteoporosis.
Meyer, Susan L F; Roberts, Daniel P
2002-03-01
Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.
Competing neighbors: light perception and root function.
Gundel, Pedro E; Pierik, Ronald; Mommer, Liesje; Ballaré, Carlos L
2014-09-01
Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition.
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
Mei, Suyu
2012-10-07
Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana
Shi, Ming-Zhu; Xie, De-Yu
2014-01-01
Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana. PMID:24354533
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi; ...
2017-06-23
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
Paul, Rachel E.; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E.; Brutnell, Thomas P.; Dinneny, José R.; Leakey, Andrew D. B.
2017-01-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. PMID:28644860
Feldman, Max J; Paul, Rachel E; Banan, Darshi; Barrett, Jennifer F; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E; Brutnell, Thomas P; Dinneny, José R; Leakey, Andrew D B; Baxter, Ivan
2017-06-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.
NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.
1991-01-01
This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration planmore » was completed. (VC)« less
Volatile science? Metabolic engineering of terpenoids in plants.
Aharoni, Asaph; Jongsma, Maarten A; Bouwmeester, Harro J
2005-12-01
Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.
de Paiva Rolla, Amanda Alves; de Fátima Corrêa Carvalho, Josirley; Fuganti-Pagliarini, Renata; Engels, Cibelle; do Rio, Alexandre; Marin, Silvana Regina Rockenbach; de Oliveira, Maria Cristina Neves; Beneventi, Magda A; Marcelino-Guimarães, Francismar Corrêa; Farias, José Renato Bouças; Neumaier, Norman; Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Nepomuceno, Alexandre Lima
2014-02-01
The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses. This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse. Drought was simulated in the greenhouse by progressively drying the soil of pot cultures of the P58 and P1142 lines. In the field, the performance of the P58 line and of 09D-0077, a cross between the cultivars BR16 and P58, was evaluated under four different water regimes: irrigation, natural drought (no irrigation) and water stress created using rain-out shelters in the vegetative or reproductive stages. Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, such as the number of seeds, the number of pods with seeds and the total number of pods. The greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions. Further studies are needed to better characterize the soil and atmospheric conditions under which these plants may outperform the non-transformed parental plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actionsmore » being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.« less
Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R
2015-01-01
This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castaneda Vazquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernandez Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.
2016-10-01
The CONNIE experiment uses fully depleted, high resistivity CCDs as particle detectors in an attempt to measure for the first time the Coherent Neutrino-Nucleus Elastic Scattering of antineutrinos from a nuclear reactor with silicon nuclei. This talk, given at the XV Mexican Workshop on Particles and Fields (MWPF), discussed the potential of CONNIE to perform this measurement, the installation progress at the Angra dos Reis nuclear power plant, as well as the plans for future upgrades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A.; et al.
2016-10-19
The CONNIE experiment uses fully depleted, high resistivity CCDs as particle detectors in an attempt to measure for the first time the Coherent Neutrino-Nucleus Elastic Scattering of antineutrinos from a nuclear reactor with silicon nuclei.This talk, given at the XV Mexican Workshop on Particles and Fields (MWPF), discussed the potential of CONNIE to perform this measurement, the installation progress at the Angra dos Reis nuclear power plant, as well as the plans for future upgrades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, R. E.
Research has been centered around the question as to how plant cell enlargement is controlled and regulated at the cellular level. Progress is reported on the following projects: proton permeability of plant cuticles; the control of osmoregulation in Avena coleoptiles; an analysis of the acid-extension curves. (ACR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Melin, Alexander M; Burress, Timothy A
The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pumpmore » will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.« less
Amores, Gerardo Ruiz; Guazzaroni, María-Eugenia; Arruda, Letícia Magalhães; Silva-Rocha, Rafael
2016-04-01
Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized promoters in order to construct new expression systems with enhanced performance under the conditions of interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact in the final performance of the process of interest. We expect to provide here some new directions to drive future research directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.
Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min
2013-07-01
Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.
Molecular motors and their functions in plants
NASA Technical Reports Server (NTRS)
Reddy, A. S.
2001-01-01
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan
2016-01-01
This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.
Protective Effects of Selected Botanical Agents on Bone
Jolly, James Jam; Alias, Ekram; Chua, Kien Hui; Soelaiman, Ima Nirwana
2018-01-01
Osteoporosis is a serious health problem affecting more than 200 million elderly people worldwide. The early symptoms of this disease are hardly detectable. It causes progressive bone loss, which ultimately renders the patients susceptible to fractures. Osteoporosis must be prevented because the associated fragility fractures result in high morbidity, mortality, and healthcare costs. Many plants used in herbal medicine contain bioactive compounds possessing skeletal protective effects. This paper explores the anti-osteoporotic properties of selected herbal plants, including their actions on osteoblasts (bone forming cells), osteoclasts (bone resorbing cells), and bone remodelling. Some of the herbal plant families included in this review are Berberidaceae, Fabaceae, Arecaceae, Labiatae, Simaroubaceaea, and Myrsinaceae. Their active constituents, mechanisms of action, and pharmaceutical applications were discussed. The literature shows that very few herbal plants have undergone human clinical trials to evaluate their pharmacological effects on bone to date. Therefore, more intensive research should be performed on these plants to validate their anti-osteoporotic properties so that they can complement the currently available conventional drugs in the battle against osteoporosis. PMID:29751644
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL; ASLBP No. 09-879-04-COL-BD01] Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2...
Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.
Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B
2010-01-01
The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively affected by Pistacia. Salt also seems to mediate the interaction between the two species, negating the potential positive effects of an additional water source via hydraulic lift.
A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.
1992-01-01
The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
Does Acacia dealbata express shade tolerance in Mediterranean forest ecosystems of South America?
Aguilera, Narciso; Sanhueza, Carolina; Guedes, Lubia M; Becerra, José; Carrasco, Sebastián; Hernández, Víctor
2015-01-01
The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become progressively invaded by A. dealbata and provide a basis for estimating the possible impacts that this invasive species can cause in these ecosystems in a timescale. PMID:26380668
Investment in plant research and development bears fruit in China.
Chong, Kang; Xu, Zhihong
2014-04-01
Recent rapid progress in plant science and biotechnology in China demonstrates that China's stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top-down organization of state programs and free exploration of scientists' interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China's progress in plant R&D to highlight fields in which Chinese research has made significant contributions.
Nakasaki, Kiyohiko; Marui, Taketoshi
2011-06-01
To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.
15. international conference on plant growth substances: Program -- Abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose workmore » focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.
1996-11-01
Through ComEd Fossil (Generating) Division`s Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use ofmore » state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC`s. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options.« less
Microbial production of plant hormones: Opportunities and challenges.
Shi, Tian-Qiong; Peng, Hui; Zeng, Si-Yu; Ji, Rong-Yu; Shi, Kun; Huang, He; Ji, Xiao-Jun
2017-03-04
Plant hormones are a class of organic substances which are synthesized during the plant metabolism. They have obvious physiological effect on plant growth at very low concentrations. Generally, plant hormones are mainly divided into 5 categories: auxins, cytokinins, ethylene, gibberellins (GAs) and abscisic acid (ABA). With the deepening of research, some novel plant hormones such as brassinosteroid and salicylates have been found and identified. The plant hormone products are mainly obtained through plant extraction, chemical synthesis as well as microbial fermentation. However, the extremely low yield in plants and relatively complex chemical structure limit the development of the former 2 approaches. Therefore, more attention has been paid into the microbial fermentative production. In this commentary, the developments and technological achievements of the 2 important plant hormones (GAs and ABA) have been discussed. The discovery, producing strains, fermentation technologies, and their accumulation mechanisms are first introduced. Furthermore, progresses in the industrial mass scale production are discussed. Finally, guidelines for future studies for GAs and ABA production are proposed in light of the current progress, challenges and trends in the field. With the widespread use of plant hormones in agriculture, we believe that the microbial production of plant hormones will have a bright future.
In Vitro Screening for Cytotoxic Activity of Herbal Extracts
Lombardi, Valter R. M.; Cacabelos, Ramón
2017-01-01
Experimental studies have shown that a variety of chemopreventive plant components affect tumor initiation, promotion, and progression and the main difference, between botanical medicines and synthetic drugs, resides in the presence of complex metabolite mixtures shown by botanical medicine which in turn exert their action on different levels and via different mechanisms. In the present study, we performed an in vitro screening of ethanol extracts from commercial plants in order to investigate potential antitumor activity against human tumor cell lines. Experimental results obtained through a variety of methods and techniques indicated that extracts of I. verum, G. glabra, R. Frangula, and L. usitatissimum present significant reduction in in vitro tumor cell proliferation, suggesting these extracts as possible chemotherapeutical adjuvants for different cancer treatments. PMID:28386288
Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao
2015-03-01
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Maggi, Federico; Bosco, Domenico; Galetto, Luciana; Palmano, Sabrina; Marzachì, Cristina
2017-01-01
Analyses of space-time statistical features of a flavescence dorée (FD) epidemic in Vitis vinifera plants are presented. FD spread was surveyed from 2011 to 2015 in a vineyard of 17,500 m2 surface area in the Piemonte region, Italy; count and position of symptomatic plants were used to test the hypothesis of epidemic Complete Spatial Randomness and isotropicity in the space-time static (year-by-year) point pattern measure. Space-time dynamic (year-to-year) point pattern analyses were applied to newly infected and recovered plants to highlight statistics of FD progression and regression over time. Results highlighted point patterns ranging from disperse (at small scales) to aggregated (at large scales) over the years, suggesting that the FD epidemic is characterized by multiscale properties that may depend on infection incidence, vector population, and flight behavior. Dynamic analyses showed moderate preferential progression and regression along rows. Nearly uniform distributions of direction and negative exponential distributions of distance of newly symptomatic and recovered plants relative to existing symptomatic plants highlighted features of vector mobility similar to Brownian motion. These evidences indicate that space-time epidemics modeling should include environmental setting (e.g., vineyard geometry and topography) to capture anisotropicity as well as statistical features of vector flight behavior, plant recovery and susceptibility, and plant mortality. PMID:28111581
Ginocchio, Rosanna; León-Lobos, Pedro; Arellano, Eduardo Carlos; Anic, Vinka; Ovalle, Juan Francisco; Baker, Alan John Martin
2017-05-01
Abandoned tailing dumps (ATDs) offer an opportunity to identify the main physicochemical filters that determine colonization of vegetation in solid mine wastes. The current study determined the soil physicochemical factors that explain the compositional variation of pioneer vegetal species on ATDs from surrounding areas in semiarid Mediterranean-climate type ecosystems of north-central Chile (Coquimbo Region). Geobotanical surveys-including physicochemical parameters of substrates (0-20 cm depth), plant richness, and coverage of plant species-were performed on 73 ATDs and surrounding areas. A total of 112 plant species were identified from which endemic/native species (67%) were more abundant than exotic species (33%) on ATDs. The distribution of sampling sites and plant species in canonical correspondence analysis (CCA) ordination diagrams indicated a gradual and progressive variation in species composition and abundance from surrounding areas to ATDs because of variations in total Cu concentration (1.3%) and the percentage of soil particles <2 μm (1.8%). According to the CCA, there were 10 plant species with greater abundance on sites with high total Cu concentrations and fine-textured substrates, which could be useful for developing plant-based stabilization programs of ATDs in semiarid Mediterranean-climate type ecosystems of north-central Chile.
NASA Astrophysics Data System (ADS)
Wolkovich, E. M.; Flynn, D. F. B.
2016-12-01
In recent years increasing attention has focused on plant phenology as an important indicator of the biological impacts of climate change, as many plants have shifted their leafing and flowering earlier with increasing temperatures. As data have accumulated, researchers have found a link between phenological responses to warming and plant performance and invasions. Such work suggests phenology may not only be a major impact of warming, but a critical predictor of future plant performance. Yet alongside this increasing interest in phenology, important issues remain unanswered: responses to warming for species at the same site or in the same genus vary often by weeks or more and the explanatory power of phenology for performance and invasions when analyzed across diverse datasets remains low. We propose progress can come from explicitly considering phenology within a community context and as a critical plant trait correlated with other major plant functional traits. Here, we lay out a framework for our proposal: specifically we review how we expect phenology and phenological cues of different species within a community to vary and what other functional traits are predicted to co-vary with phenological traits. Much research currently suggests phenology is a critical functional trait that is shaped strongly by the environment. Plants are expected to adjust their phenologies to avoid periods of high abiotic risk and/or high competition. Thus we may expect phenology to correlate strongly to other traits involved in mitigating risk and high competition. Results from recent meta-analyses as well as experimental and observational research from 28 species in northeastern North American temperate forests suggest that species within a community show the predicted diversified set of phenological cues. We review early work on links to other functional traits and in closing review how these correlations may in turn determine the diversity of phenological responses observed for some species and communities.
Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk
NASA Astrophysics Data System (ADS)
Bucknor, Matthew D.
Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar complexity to existing cable failure techniques and tuned to empirical data can better approximate the temperature response of a cables located in tightly packed cable bundles. The new models also provide a way to determine the conditions insides a cable bundle which allows for separate treatment of cables on the interior of the bundle from cables on the exterior of the bundle. The results from the DET analysis show that the overall assessed probability of cable failure can be significantly reduced by more realistically accounting for the influence that the fire brigade has on a fire progression scenario. The shielding analysis results demonstrate a significant reduction in the temperature response of a shielded versus a non-shielded cable bundle; however the computational cost of using a fire progression model that can capture these effects may be prohibitive for performing DET analyses with currently available computational fluid dynamics models and computational resources.
Great Basin Native Plant Project: 2015 Progress Report
Francis Kilkenny; Fred Edwards; Alexis Malcomb
2016-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead...
Crop development related to temperature and photoperiod
USDA-ARS?s Scientific Manuscript database
Plant development, or the progression of plants through their life cycle, has been of great interest in human history because of the need to know and predict when the harvested part of the plant was at the optimum stage. This knowledge was especially important (even vital) in medicinal plants, where...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less
Urbain, V; Wright, P; Thomas, M
2001-01-01
Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.
Mobile robotics application in the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.L.; White, J.R.
1995-03-01
Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Somemore » of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.« less
High-temperature solar receiver integrated with a short-term storage system
NASA Astrophysics Data System (ADS)
Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria
2017-06-01
Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.
Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.
Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron
2012-02-01
Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
[Research progress in water use efficiency of plants under global climate change].
Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing
2010-12-01
Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.
Great Basin Native Plant Project: 2014 Progress Report
Francis Kilkenny; Anne Halford; Alexis Malcomb
2015-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...
Great Basin Native Plant Project: 2013 Progress Report
Francis Kilkenny; Nancy Shaw; Corey Gucker
2014-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 United States Department of Agriculture (USDA) and United States Department of Interior (USDI) Report to Congress encouraged use of native plant materials for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Project is a cooperative project lead by the...
Crop development related to temperature and photoperiod in temperate cereals
USDA-ARS?s Scientific Manuscript database
Plant development, or the progression of plants through their life cycle, has been of great interest in human history because of the need to know and predict when the harvested part of the plant was at the optimum stage. This knowledge was especially important (even vital) in medicinal plants, where...
Evolution of Plant-Made Pharmaceuticals
Thomas, David R.; Penney, Claire A.; Majumder, Amrita; Walmsley, Amanda M.
2011-01-01
The science and policy of pharmaceuticals produced and/or delivered by plants has evolved over the past twenty-one years from a backyard remedy to regulated, purified products. After seemingly frozen at Phase I human clinical trials with six orally delivered plant-made vaccines not progressing past this stage over seven years, plant-made pharmaceuticals have made a breakthrough with several purified plant-based products advancing to Phase II trials and beyond. Though fraught with the usual difficulties of pharmaceutical development, pharmaceuticals made by plants have achieved pertinent milestones albeit slowly compared to other pharmaceutical production systems and are now at the cusp of reaching the consumer. Though the current economic climate begs for cautious investment as opposed to trail blazing, it is perhaps a good time to look to the future of plant-made pharmaceutical technology to assist in planning for future developments in order not to slow this technology’s momentum. To encourage continued progress, we highlight the advances made so far by this technology, particularly the change in paradigms, comparing developmental timelines, and summarizing the current status and future possibilities of plant-made pharmaceuticals. PMID:21686181
WRKY transcription factors in plant responses to stresses.
Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua
2017-02-01
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.
Administration of Progress Payments at Defense Contract Management District-West
1993-08-05
the progress payment is calculated from the contractor’s incurred cost, the actual amount payable is always limited by the fair value of the...progress payments exceed the fair value of undelivered work. In addition to assessing the validity of the EAC relative to the progress payment request...were overpaid because Air Force Plant Representative Offices incorrectly calculated progress payment reductions for fair value of remaining work
Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.; Savage, B.; Johnson, B.
This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.
Study Progress on Tissue Culture of Maize Mature Embryo
NASA Astrophysics Data System (ADS)
Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu
It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.
Use of dark chocolate for diabetic patients: a review of the literature and current evidence.
Shah, Syed Raza; Alweis, Richard; Najim, Najla Issa; Dharani, Amin Muhammad; Jangda, Muhammad Ahmed; Shahid, Maira; Kazi, Ahmed Nabeel; Shah, Syed Arbab
2017-10-01
Dietary changes are a major lifestyle factor that can influence the progression of chronic diseases such as diabetes. Recently, flavanols, a subgroup of plant-derived phytochemicals called flavonoids, have gained increasing attention, due to studies showing an inverse correlation between dietary intake of flavanols and incidence of diabetes. Flavanoids in the cocoa plant may ameliorate insulin resistance by improving endothelial function, altering glucose metabolism, and reducing oxidative stress. Oxidative stress has been proposed as the main culprit for insulin resistance. The well-established effects of cocoa on endothelial function also points to a possible effect on insulin sensitivity. The relationship between insulin resistance and endothelial function is a reciprocal one. Overall, the evidence from these studies suggests that cocoa may be useful in slowing the progression to type 2 diabetes and ameliorating insulin resistance in metabolic syndrome. Additionally, results from several small studies indicate that cocoa may also have therapeutic potential in preventing cardiovascular complications in diabetic patients. Studies highlighting the potential of cocoa-containing diets, in large-randomized controlled trials should be performed which might give us a better opportunity to analyze the potential health-care benefit for reducing the risk of complications in diabetic patients at molecular level.
Cai, Jinhai; Okamoto, Mamoru; Atieno, Judith; Sutton, Tim; Li, Yongle; Miklavcic, Stanley J.
2016-01-01
Leaf senescence, an indicator of plant age and ill health, is an important phenotypic trait for the assessment of a plant’s response to stress. Manual inspection of senescence, however, is time consuming, inaccurate and subjective. In this paper we propose an objective evaluation of plant senescence by color image analysis for use in a high throughput plant phenotyping pipeline. As high throughput phenotyping platforms are designed to capture whole-of-plant features, camera lenses and camera settings are inappropriate for the capture of fine detail. Specifically, plant colors in images may not represent true plant colors, leading to errors in senescence estimation. Our algorithm features a color distortion correction and image restoration step prior to a senescence analysis. We apply our algorithm to two time series of images of wheat and chickpea plants to quantify the onset and progression of senescence. We compare our results with senescence scores resulting from manual inspection. We demonstrate that our procedure is able to process images in an automated way for an accurate estimation of plant senescence even from color distorted and blurred images obtained under high throughput conditions. PMID:27348807
The molecular mechanism of plant gravitropism.
Wu, Di; Huang, Lin-zhou; Gao, Jin; Wang, Yong-hong
2016-07-20
Gravity is an important environmental factor that regulates plant growth and morphogenesis. In response to gravity stimulus, plants can set the optimum angle between the organs and the gravity vector. Plant gravitropism is divided into four sequential steps, including gravity perception, signal transduction, asymmetrical distribution of auxin, and organ curvature. In recent years, large numbers of mutants with defective gravitropism have been identified and genes involved in the regulation of gravitropism have been functionally characterized. In particular, progress has been achieved on elucidating the molecular mechanisms of gravity perception and asymmetrical distribution of auxin. As one of the most important strategies for plant to adapt environmental changes, gravitropism is also involved in the regulation of rice plant architecture and grain yield through modulating rice tiller angle. Therefore, the investigation of plant gravitropism not only contributes to decipher the regulatory mechanisms of plant growth and development, but also helps to guide the genetic improvement of crop architecture. However, the molecular mechanisms and regulatory network of gravitropism remain to be elusive. In this review, we focus on recent progress on elucidating molecular mechanisms underlying gravitropism and its involvement in regulating rice tiller angle, which is an important agronomic trait that determines rice plant architecture and thus grain yields.
An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants
Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin
2015-01-01
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. PMID:25649435
33 CFR 273.15 - Work Progress Report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Work Progress Report. 273.15 Section 273.15 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.15 Work Progress Report. Reporting officers will prepare and submit to...
33 CFR 273.15 - Work Progress Report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Work Progress Report. 273.15 Section 273.15 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.15 Work Progress Report. Reporting officers will prepare and submit to...
33 CFR 273.15 - Work Progress Report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Work Progress Report. 273.15 Section 273.15 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.15 Work Progress Report. Reporting officers will prepare and submit to...
33 CFR 273.15 - Work Progress Report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Work Progress Report. 273.15 Section 273.15 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.15 Work Progress Report. Reporting officers will prepare and submit to...
33 CFR 273.15 - Work Progress Report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Work Progress Report. 273.15 Section 273.15 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL § 273.15 Work Progress Report. Reporting officers will prepare and submit to...
View of the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment in the SM
2003-03-12
ISS006-E-44999 (12 March 2003) --- A view of the Russian BIO-5 Rasteniya-2/Lada-2 (Plants-2) plant growth experiment located in the Zvezda Service Module on the International Space Station (ISS). A camera used for recording progress of the experiment is visible on the right.
CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing
Noman, Ali; Aqeel, Muhammad; He, Shuilin
2016-01-01
Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188
Beck, John J; Alborn, Hans; Block, Anna; Christensen, Shawn A; Hunter, Charles T; Rering, Caitlin C; Seidl-Adams, Irmgard; Stuhl, Charles; Torto, Baldwyn; Tumlinson, James H
2018-06-12
The last two decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires non-trivial planning. This planning can include: an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system; correctly identifying and understanding unexpected observations that may occur during the experiment; and, thorough interpretation of the resultant data. This challenge of planning, performing and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles, but also include and understand the biochemistry of the plant's response to these stressors. In this paper, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants, can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
High temperature causes negative whole-plant carbon balance under mild drought.
Zhao, Junbin; Hartmann, Henrik; Trumbore, Susan; Ziegler, Waldemar; Zhang, Yiping
2013-10-01
Theoretically, progressive drought can force trees into negative carbon (C) balance by reducing stomatal conductance to prevent water loss, which also decreases C assimilation. At higher temperatures, negative C balance should be initiated at higher soil moisture because of increased respiratory demand and earlier stomatal closure. Few data are available on how these theoretical relationships integrate over the whole plant. We exposed Thuja occidentalis to progressive drought under three temperature conditions (15, 25, and 35°C), and measured C and water fluxes using a whole-tree chamber design. High transpiration rates at higher temperatures led to a rapid decline in soil moisture. During the progressive drought, soil moisture-driven changes in photosynthesis had a greater impact on the whole-plant C balance than respiration. The soil moisture content at which whole-plant C balance became negative increased with temperature, mainly as a result of higher respiration rates and an earlier onset of stomatal closure under a warmer condition. Our results suggest that the effect of drought on whole-plant C balance is highly temperature-dependent. High temperature causes a negative C balance even under mild drought and may increase the risk of C starvation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Obtaining big data of vegetation using artificial neural network
NASA Astrophysics Data System (ADS)
Ise, T.; Minagawa, M.; Onishi, M.
2017-12-01
To carry out predictive studies concerning ecosystems, obtaining appropriate datasets is one of the key factors. Recently, applications of neural network such as deep learning have successfully overcome difficulties in data acquisition and added large datasets for predictive science. For example, deep learning is very powerful in identifying and counting people, cars, etc. However, for vegetation science, deep learning has not been widely used. In general, differing from animals, plants have characteristics of modular growth. For example, numbers of leaves and stems which one individual plant typically possesses are not predetermined but change flexibly according to environmental conditions. This is clearly different from that the standard model of human face has predetermined numbers of parts, such as two eyes, one mouth, and so on. This characteristics of plants can make object identification difficult. In this study, a simple but effective technique was used to overcome the difficulty of visual identification of plants, and automated classification of plant types and quantitative analyses were become possible. For instance, when our method was applied to classify bryophytes, one of the most difficult plant types for computer vision due to their amorphous shapes, the performance of identification model was typically over 90% success. With this technology, it may be possible to obtain the big data of plant type, size, density etc. from satellite and/or drone imageries, in a quantitative manner. this will allow progress in predictive biogeosciences.
76 FR 59175 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
...) (Tentative) a. Southern Nuclear Operating Co. (Vogtle Electric Generating Plant, Units 3 and 4)--Appeal of LBP-10-21 (Tentative) b. Luminant Generation Company LLC (Comanche Peak Nuclear Power Plant, Units 3...) c. Progress Energy Florida, Inc. (Levy County Nuclear Power Plant, Units 1 and 2), Staff Petition...
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
Ikekawa, Nobuo; Fujimoto, Yoshinori; Ishiguro, Masaji
2013-01-01
Natural sterols often occur as a heterogeneous mixture of homologs, which had disturbed the progress of steroid research. Development and application of GC methodology overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to compare them with natural samples as well as to investigate structure-activity relationship. Advance of HPLC technology also facilitated the determination of the stereochemical structure of naturally occurring steroidal compounds, which were obtained only in minute amounts. This review highlights three topics out of our steroid research that have been performed mainly at Tokyo Institute of Technology around 1970-1990. These are sterol metabolism in insects focusing on the mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and microanalysis of plant hormone brassinosteroids.
Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob
2013-07-01
On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress ismore » the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)« less
Respiratory health in chrysotile asbestos miners in British Columbia: a longitudinal study.
Enarson, D A; Embree, V; MacLean, L; Grzybowski, S
1988-01-01
A respiratory survey was undertaken in chrysotile asbestos miners in British Columbia consisting of a questionnaire, spirometry, chest radiography, and physical examination. The tests were performed in 1977 and again in 1983. The population groups studied included 63 "exposed" (working in the plant more than nine years), 52 "controls" (working in the plant less than five years), and 38 residents of the village at the minesite. A subset of 39 was identified with high exposure (worked in the mill more than five years). Measured levels of environmental particulates were similar over the entire period of operation of the plant (1.4 to 14.0 million particles per cubic foot and 0.7-88.0 fibres/cc in the mill; 0.2 to 2.7 mpcf and 0.6 to 9.3 f/cc in the mine). The exposed groups were more likely to report cough and breathlessness than the two other groups and were also more likely to have abnormal FVC and chest x ray films (the latter not significant, p greater than 0.05) and to be more likely to have a combination of these abnormalities. There was no trend to progression in the combination of abnormalities associated with exposure on follow up. The heavily exposed group showed a significantly worse trend in FVC. This adverse trend was confined to those with initial abnormalities. Tobacco smoking did not increase the trend to progression in this group. PMID:2840111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2004-12-02
This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.« less
Knowns and unknowns of plasma membrane protein degradation in plants.
Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji
2018-07-01
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kucharik, C. J.
2005-12-01
Agriculture is a dominant driver of land surface phenology in the United States Corn Belt. The timing of planting and harvest, along with the rate of plant development, are influenced by crop type, technology, land management decisions, and weather and soil conditions. Collectively, these integrated factors affect the spatial and temporal spectral signature of crops captured by remote sensing. While many studies have used the historical satellite record of vegetation activity to detect changes across the land surface, there has been less emphasis on using ground-based or remote sensing data to depict the contemporary phenology of individual US agro-ecosystems. The objectives of this study were twofold: (1) demonstrate how weekly USDA-NASS 'Crop Progress' data and 'Weekly Weather and Crop Bulletins' could be useful to remote sensing science when characterizing changing land surface phenology over the US; and (2) quantify long-term trends in corn planting progress from 1979 to 2005 across 12 states in the US Corn Belt. Examination of the weekly NASS crop progress data shows that the initiation of corn planting has become significantly (P < 0.01) earlier by 6 to 24 days since 1979, potentially contributing to about 10% to 64% of the linear increase in corn yields during this period. The magnitude of earlier planting date trend varies regionally, and not all of this change can be attributed to an earlier arrival of spring or warmer springtime temperatures. Rather, the change appears to be related to increased farmer planting efficiency in spring attributed to the increased adoption of no-tillage or reduced-tillage practices and plowing soils in fall. Regardless of the exact cause of this trend, we have a legitimate reason to suspect that 'greening' of the Corn Belt since about 1980, according to remote sensing observations, is not entirely due to climate change, but rather arises from human land-use change in combination with climate factors. In the future, crop progress data may provide an ideal blueprint for selecting the ideal MODIS scene (i.e., 8-day period) that can separate various crop phenologies (e.g., corn vs. soybean) at high resolution, and offer a means to help validate or parameterize ecosystem model algorithms.
(Photosynthesis in intact plants)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allowmore » us to explore new options in the attempt to understand function at the level of molecular structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Mattie, Patrick D.
Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this studymore » was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.« less
NASA Technical Reports Server (NTRS)
Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond
2015-01-01
Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.
Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less
Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.; ...
2018-02-15
Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less
Green factory: plants as bioproduction platforms for recombinant proteins.
Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J
2012-01-01
Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. Copyright © 2011 Elsevier Inc. All rights reserved.
Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo
2018-02-01
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Navarro, Jose A; Botella, Francisco; Maruhenda, Antonio; Sastre, Pedro; Sánchez-Pina, M Amelia; Pallas, Vicente
2004-05-01
ABSTRACT Nonisotopic molecular dot blot hybridization technique and multiplex reverse transcription-polymerase chain reaction assay for the specific detection of Lettuce big-vein virus (LBVV) and Mirafiori lettuce virus (MiLV) in lettuce tissue were developed. Both procedures were suitable for the specific detection of both viruses in a range of naturally infected lettuce plants from various Spanish production areas and seven different cultivars. The study of the distribution of both viruses in the plant revealed that the highest concentration of LBVV and MiLV occurred in roots and old leaves, respectively. LBVV infection progress in a lettuce production area was faster than that observed for MiLV. In spite of different rates of virus infection progress, most lettuce plants became infected with both viruses about 100 days posttransplant. The appearance of both viruses in lettuce crops was preceded by a peak in the concentration of resting spores and zoosporangia of the fungus vector Olpidium brassicae in lettuce roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, C.H.; Coury, G.E.
1979-01-01
Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.
The plant vascular system: Evolution, development and functions
William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo
2013-01-01
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa
2014-08-01
Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.
Zhou, Zhen; Li, Dianbin; Zhou, Hua; Lin, Xiaoli; Li, Censing; Tang, Mingfeng; Feng, Zhou; Li, Ming
2015-06-01
This article reviews the current progress and research indications in the application of natural plant compounds with the potential for the treatment of cardiovascular diseases. Our understanding of how to apply natural plant compounds to enhance mechanisms of inherited cardiac regeneration, which is physiologically pertinent to myocyte turnover or minor cardiac repair, for substantial cardiac regeneration to repair pathological heart injuries is discussed. Although significant progress has been made in the application of natural plant compounds for therapy of heart diseases, the understanding or the application of these compounds specifically for enhancing mechanisms of inherited cardiac regeneration for the treatment of cardiovascular diseases is little. Recent recognition of some natural plant compounds that can repair damaged myocardial tissues through enhancing mechanisms of inherited cardiac regeneration has offered an alternative for clinical translation. Application of natural plant compounds, which show the activity of manipulating gene expressions in such a way to enhance mechanisms of inherited cardiac regeneration for cardiac repair, may provide a promising strategy for the reconstruction of damaged cardiac tissues due to cardiovascular diseases. Georg Thieme Verlag KG Stuttgart · New York.
Liu, Jinling; Liu, Xionglun; Dai, Liangying; Wang, Guoliang
2007-09-01
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants.
Hagel, Jillian M; Mandal, Rupasri; Han, Beomsoo; Han, Jun; Dinsmore, Donald R; Borchers, Christoph H; Wishart, David S; Facchini, Peter J
2015-09-15
Recent progress toward the elucidation of benzylisoquinoline alkaloid (BIA) metabolism has focused on a small number of model plant species. Current understanding of BIA metabolism in plants such as opium poppy, which accumulates important pharmacological agents such as codeine and morphine, has relied on a combination of genomics and metabolomics to facilitate gene discovery. Metabolomics studies provide important insight into the primary biochemical networks underpinning specialized metabolism, and serve as a key resource for metabolic engineering, gene discovery, and elucidation of governing regulatory mechanisms. Beyond model plants, few broad-scope metabolomics reports are available for the vast number of plant species known to produce an estimated 2500 structurally diverse BIAs, many of which exhibit promising medicinal properties. We applied a multi-platform approach incorporating four different analytical methods to examine 20 non-model, BIA-accumulating plant species. Plants representing four families in the Ranunculales were chosen based on reported BIA content, taxonomic distribution and importance in modern/traditional medicine. One-dimensional (1)H NMR-based profiling quantified 91 metabolites and revealed significant species- and tissue-specific variation in sugar, amino acid and organic acid content. Mono- and disaccharide sugars were generally lower in roots and rhizomes compared with stems, and a variety of metabolites distinguished callus tissue from intact plant organs. Direct flow infusion tandem mass spectrometry provided a broad survey of 110 lipid derivatives including phosphatidylcholines and acylcarnitines, and high-performance liquid chromatography coupled with UV detection quantified 15 phenolic compounds including flavonoids, benzoic acid derivatives and hydroxycinnamic acids. Ultra-performance liquid chromatography coupled with high-resolution Fourier transform mass spectrometry generated extensive mass lists for all species, which were mined for metabolites putatively corresponding to BIAs. Different alkaloids profiles, including both ubiquitous and potentially rare compounds, were observed. Extensive metabolite profiling combining multiple analytical platforms enabled a more complete picture of overall metabolism occurring in selected plant species. This study represents the first time a metabolomics approach has been applied to most of these species, despite their importance in modern and traditional medicine. Coupled with genomics data, these metabolomics resources serve as a key resource for the investigation of BIA biosynthesis in non-model plant species.
Brewer, Michael J; Armstrong, J Scott; Parker, Roy D
2013-06-01
The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.
Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Williams, Paul
This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less
Developmental Pathways Are Blueprints for Designing Successful Crops
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318
Developmental Pathways Are Blueprints for Designing Successful Crops.
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils.
Jiang, Lei; Yang, Yi; Jia, Lin Xian; Lin, Jing Ling; Liu, Ying; Pan, Bo; Lin, Yong
2016-05-01
The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0mgkg(-1) simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8mgkg(-1) to 8.0mgkg(-1), simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress. Copyright © 2016 Elsevier Inc. All rights reserved.
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...
2017-03-13
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
A sarabande of tropical fruit proteomics: Avocado, banana, and mango.
Righetti, Pier Giorgio; Esteve, Clara; D'Amato, Alfonsina; Fasoli, Elisa; Luisa Marina, María; Concepción García, María
2015-05-01
The present review highlights the progress made in plant proteomics via the introduction of combinatorial peptide ligand libraries (CPLL) for detecting low-abundance species. Thanks to a novel approach to the CPLL methodology, namely, that of performing the capture both under native and denaturing conditions, identifying plant species in the order of thousands, rather than hundreds, is now possible. We report here data on a trio of tropical fruits, namely, banana, avocado, and mango. The first two are classified as "recalcitrant" tissues since minute amounts of proteins (in the order of 1%) are embedded on a very large matrix of plant-specific material (e.g., polysaccharides and other plant polymers). Yet, even under these adverse conditions we could report, in a single sweep, from 1000 to 3000 unique gene products. In the case of mango the investigation has been extended to the peel too, since this skin is popularly used to flavor dishes in Far East cuisine. Even in this tough peel 330 proteins could be identified, whereas in soft peels, such as in lemons, one thousand unique species could be detected. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Mechanisms of inhibition of viral replication in plants]. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
Progress is described concerning genetic mapping CMV movement genes for CMV coat protein in squash and ToMV gene in tomato. These gene products appear to be involved in resistance to squash and tomato mosaic viruses respectively.
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...
CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
2007-02-28
ISS014-E-15475 (28 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, checks the progress of plants growing in the Russian Lada greenhouse in the Zvezda Service Module of the International Space Station.
2007-02-28
ISS014-E-15479 (28 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, checks the progress of plants growing in the Russian Lada greenhouse in the Zvezda Service Module of the International Space Station.
Anti-inflammatory agents from plants: progress and potential.
Recio, M C; Andujar, I; Rios, J L
2012-01-01
The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases.
Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread
Dall’Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E.; Gilmer, David
2016-01-01
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. PMID:27548199
The potential impact of plant biotechnology on the Millennium Development Goals.
Yuan, Dawei; Bassie, Ludovic; Sabalza, Maite; Miralpeix, Bruna; Dashevskaya, Svetlana; Farre, Gemma; Rivera, Sol M; Banakar, Raviraj; Bai, Chao; Sanahuja, Georgina; Arjó, Gemma; Avilla, Eva; Zorrilla-López, Uxue; Ugidos-Damboriena, Nerea; López, Alberto; Almacellas, David; Zhu, Changfu; Capell, Teresa; Hahne, Gunther; Twyman, Richard M; Christou, Paul
2011-03-01
The eight Millennium Development Goals (MDGs) are international development targets for the year 2015 that aim to achieve relative improvements in the standards of health, socioeconomic status and education in the world's poorest countries. Many of the challenges addressed by the MDGs reflect the direct or indirect consequences of subsistence agriculture in the developing world, and hence, plant biotechnology has an important role to play in helping to achieve MDG targets. In this opinion article, we discuss each of the MDGs in turn, provide examples to show how plant biotechnology may be able to accelerate progress towards the stated MDG objectives, and offer our opinion on the likelihood of such technology being implemented. In combination with other strategies, plant biotechnology can make a contribution towards sustainable development in the future although the extent to which progress can be made in today's political climate depends on how we deal with current barriers to adoption.
Modeling, simulation, and high-autonomy control of a Martian oxygen production plant
NASA Technical Reports Server (NTRS)
Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.
1992-01-01
Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.
Use of dark chocolate for diabetic patients: a review of the literature and current evidence
Shah, Syed Raza; Alweis, Richard; Najim, Najla Issa; Dharani, Amin Muhammad; Jangda, Muhammad Ahmed; Shahid, Maira; Kazi, Ahmed Nabeel; Shah, Syed Arbab
2017-01-01
ABSTRACT Dietary changes are a major lifestyle factor that can influence the progression of chronic diseases such as diabetes. Recently, flavanols, a subgroup of plant-derived phytochemicals called flavonoids, have gained increasing attention, due to studies showing an inverse correlation between dietary intake of flavanols and incidence of diabetes. Flavanoids in the cocoa plant may ameliorate insulin resistance by improving endothelial function, altering glucose metabolism, and reducing oxidative stress. Oxidative stress has been proposed as the main culprit for insulin resistance. The well-established effects of cocoa on endothelial function also points to a possible effect on insulin sensitivity. The relationship between insulin resistance and endothelial function is a reciprocal one. Overall, the evidence from these studies suggests that cocoa may be useful in slowing the progression to type 2 diabetes and ameliorating insulin resistance in metabolic syndrome. Additionally, results from several small studies indicate that cocoa may also have therapeutic potential in preventing cardiovascular complications in diabetic patients. Studies highlighting the potential of cocoa-containing diets, in large-randomized controlled trials should be performed which might give us a better opportunity to analyze the potential health-care benefit for reducing the risk of complications in diabetic patients at molecular level. PMID:29181133
Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe
Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek
2017-01-01
Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients. PMID:28394274
Vegetarian Diet in Chronic Kidney Disease-A Friend or Foe.
Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek
2017-04-10
Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients.
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Research on digital system design of nuclear power valve
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye
2018-04-01
With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.
Gene Delivery into Plant Cells for Recombinant Protein Production
Chen, Qiang
2015-01-01
Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-01-01
Progress is reported on studies of cytoplasmic factors controlling male sterility in plants. Results are reported from cytological comparisons of fertile selections from gamma -irradiated corn with male steriles, mainliners, and restored steriles, in which no consistent differences in cytoplasmic constituents were observed. Results of cytological and genetic studies on mutants of Neurospora crassa, petunia, tobacco, sorghum, sugar beets, Vicia faba, and several gymnosperms are summarized. The relationship between male, sterility of plants and their susceptibility to virus and fungus infections was also studied. (CH)
The CWF pipeline system from Shen mu to the Yellow Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ercolani, D.
1993-12-31
A feasibility study on the applicability of coal-water fuel (CWF) technology in the People`s Republic of China (PRC) is in progress. This study, awarded to Snamprogetti by the International Centre for Scientific Culture (World Laboratory) of Geneva, Switzerland, is performed on behalf of Chinese Organizations led by the Ministry of Energy Resources and the Academy of Sciences of the People`s Republic of China. Slurry pipelines appear to be a solution for solving the logistic problems created by a progressively increasing coal consumption and a limited availability of conventional transport infrastructures in the PRC. Within this framework, CWF pipelines are themore » most innovative technological option in consideration of the various advantages the technology offers with respect to conventional slurry pipelines. The PRC CWF pipeline system study evaluates two alternative transport streams, but originating from the same slurry production plant, located at Shachuanguo, about 100 km from Sheng Mu.« less
Plant conservation progress in the United States
Kayri Havens; Andrea Kramer; Ed. Guerrant
2017-01-01
Effective national plant conservation has several basic needs, including: 1) accessible, up-to-date information on species distribution and rarity; 2) research and management capacity to mitigate the impact of threats that make plants rare; 3) effective networks for conserving species in situ and ex situ; 4) education and training to make sure the right people are...
Great Basin Native Plant Selection and Increase Project FY08 Progress Report
Nancy Shaw; Mike Pellant
2009-01-01
The Interagency Native Plant Materials Development Program (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of native plant materials for use in the...
Insect-induced crystallization of white pine resins. I. white-pine weevil
Frank S., Jr. Santamour
1965-01-01
In breeding programs designed to produce insect-resistant plants, a serious obstacle to progress often is the lack of efficient selection and testing criteria. Natural infestations of some insects are large and severe enough to allow selection of resistant plants directly from the natural plant population. However, the attacks of the white-pine weevil (...
Great Basin Native Plant Selection and Increase Project: 2012 progress report
Nancy Shaw; Mike Pellant
2013-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...
Influence of oak woodland composition and structure on infection by Phytophthora ramorum
Nathan Rank; Hall Cushman; Brian Anacker; David Rizzo; Ross Meentemeyer
2008-01-01
Introduced plant pathogens have major ecological impacts in many parts of the world. While the spread of pathogens can be strongly mediated by the composition and structure of local host plant communities, little is known about effects of plant community structure on invasion dynamics of introduced pathogens. The progress of infection by the invasive pathogen ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Contact: Larry Mann, Progress Energy Carolinas, Inc., Tillery Hydro Plant, 179 Tillery Dam Road, Mount... available for inspection and reproduction at the address in item (h) above. m. Individuals desiring to be...
CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING SOUTH. INL PHOTO NUMBER NRTS-50-693. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. ...
CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER NRTS-51-1387. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...
CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12573. R.G. Larsen, Photographer, 10/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Beneficial uses program. Progress report ending December 31, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-06-01
Progress is reported in research on uses of irradiated sewage sludge, particularly as a cattle feed supplement and commercial fertilizer additive, on potential sites for irradiator demonstration plants, and on the inactivation of enteric bacteria by radiation treatment. (LCL)
Dal Bosco, Daniela; Sinski, Iraci; Ritschel, Patrícia S; Camargo, Umberto A; Fajardo, Thor V M; Harakava, Ricardo; Quecini, Vera
2018-06-06
Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.
MSU-DOE Plant Research Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)
WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhegang Ma
The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significantmore » damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.« less
Cryobiotechnology of apple (Malus spp.): development, progress and future prospects.
Wang, Min-Rui; Chen, Long; Teixeira da Silva, Jaime A; Volk, Gayle M; Wang, Qiao-Chun
2018-05-01
Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.
The therapeutic potential of plant-derived vaccines and antibodies.
Rodgers, P B; Hamilton, W D; Adair, J R
1999-03-01
The production of recombinant proteins in plants is reviewed with a particular focus on plant-derived vaccines and antibodies for human healthcare. Issues relating to foreign gene expression, such as protein yield, localisation and glycosylation are also considered. Emphasis is placed on reporting progress with preclinical and clinical evaluation of plant-derived vaccines and antibodies. An assessment is made of the likely future direction of research and development in this area.
CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-885. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...
AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING PLACEMENT ...
CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING PLACEMENT OF PIERS. INL PHOTO NUMBER NRTS-54-11716. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Aly, Hanan F; Rizk, Maha Z; Abo-Elmatty, Dina M; Desoky, M M; Ibrahim, N A; Younis, Eman A
2016-04-01
The present work aims to evaluate the protective and ameliorative effects of two plant-derived proteins obtained from the seeds of Cajanus cajan and Caesalpinia gilliesii(Leguminosae) against the toxic effects of acetaminophen in kidney after chronic dose through determination of certain biochemical markers including total urea, creatinine, and kidney marker enzyme, that is, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In addition histopathological examination of intoxicated and treated kidney with both proteins was performed. The present results show a significant increase in serum total urea and creatinine, while significant decrease in GAPDH. Improvement in all biochemical parameters studied was demonstrated, which was documented by the amelioration signs in rats kidney architecture. Thus, both plant protein extracts can counteract the nephrotoxic process, minimize damage to the kidney, delay disease progression, and reduce its complications. © The Author(s) 2013.
Mori, Koji; Tateishi, Seiichiro; Kubo, Tatsuhiko; Okazaki, Ryuji; Suzuki, Katsunori; Kobayashi, Yuichi; Hiraoka, Koh; Hayashi, Takeshi; Takeda, Masaru; Kiyomoto, Yoshifumi; Kawashita, Futoshi; Yoshikawa, Toru; Sakai, Kazuhiro
2014-11-01
To clarify the occupational health (OH) issues that arose, what actions were taken, and the OH performances during the disaster involving the Fukushima Daiichi Nuclear Power Plant and thus improve the OH management system with respect to long-term decommissioning work and preparation for future disasters. We used information in advisory reports to the Tokyo Electric Power Company by an OH expert group, observation through support activities, and data officially released by the Tokyo Electric Power Company. Occupational health issues transitioned as work progressed and seasons changed. They were categorized into OH management system establishment, radiation exposure control, heat illness prevention, infectious disease prevention and control, and fitness for workers' duties. Occupational health management systems involving OH experts should be implemented to manage multiple health risks with several conflicts and trade-offs after a disaster.
MELCOR simulations of the severe accident at Fukushima Daiichi Unit 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoni, Jeffrey; Gauntt, Randall; Kalinich, Donald
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty duemore » to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. As a result, the MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.« less
MELCOR simulations of the severe accident at Fukushima Daiichi Unit 3
Cardoni, Jeffrey; Gauntt, Randall; Kalinich, Donald; ...
2014-05-01
In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and U.S. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of the MELCOR code and the Fukushima models against plant data. A MELCOR 2.1 model of the Fukushima Daiichi Unit 3 reactor is developed using plant-specific information and accident-specific boundary conditions, which involve considerable uncertainty duemore » to the inherent nature of severe accidents. Publicly available thermal-hydraulic data and radioactivity release estimates have evolved significantly since the accidents. Such data are expected to continually change as the reactors are decommissioned and more measurements are performed. As a result, the MELCOR simulations in this work primarily use boundary conditions that are based on available plant data as of May 2012.« less
Plants scrub landfill leachate clean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
Leachate from the sanitary landfill in Barre, Mass., is collected in a series of holding lagoons. There, aquatic plants such as duckweed biodegrade and purify the wastewater. The plants saturate the leachate with oxygen, which speeds up aerobic oxidation by bacteria. The leachate is moved progressively through the series of lagoons, and the contents of the final lagoon are emptied into a trout pond. (3 photos)
Journey towards the centre of the earth: plant gravitropism
NASA Technical Reports Server (NTRS)
Swatzell, L. J.; Kiss, J. Z.
2000-01-01
The study of gravitropism dates back about two hundred years, and although significant progress has been made in this field, the central question in gravitropism research is still unanswered. How is a physical stimulus transduced into a biochemical signal which ultimately elicits a response (curvature) in a plant? Simply put, how does a plant 'know' which way is down?.
ERIC Educational Resources Information Center
South Dakota Dept. of Environmental Protection, Pierre.
This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryther, J H
1980-01-01
Progress for the period May 1979 to December 1979 is reported in the following subject areas: (1) the ORCA clone of the red seaweed Gracilaria tikvakiae has now been grown continuously in tank culture for two years; (2) studies were continued on the culture of freshwater plants such as water hyacinth, pennywort, water lettuce, and duckweed; (3) the loss of water from evapotranspiration of freshwater plants was measured and compared with water loss from evaporation from open water; and (4) experiments were conducted to investigate the possibility of recycling the chemicals left in the solid and liquid residues following anaerobicmore » digestion and methane production as a source of nutrients for new plant production. (ACR)« less
Air pollution effects on food quality. 2nd annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pell, E.J.
1979-02-01
Progress is reported in studies to determine the effect of acute, toxic exposures of ozone to alfalfa, potato, and soybean plants. The objective has been to correlate the foliar response with alterations in quality of the edible portion of the plant viz. the leaf, tuber and seed of alfalfa, potato and soybean, respectively. In 1977 we (1) modified our fumigation facilities, (2) developed protocol for studies with alfalfa and potato, and (3) conducted studies on flavonoid status of alfalfa and a series of parameters of potato tubers. In 1978 we (1) conducted more indepth studies with alfalfa, (2) repeated themore » potato study, (3) began to develop protocol for measuring additional parameters of alfalfa and potato quality, and (4) developed protocol for cultivating and exposing soybean plants.« less
Spampinato, Claudia P
2017-05-01
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Baldani, José I; Baldani, Vera L D
2005-09-01
This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.
Genetic and epigenetic control of plant heat responses
Liu, Junzhong; Feng, Lili; Li, Jianming; He, Zuhua
2015-01-01
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22–27°C), high temperature (27–30°C) and extremely high temperature (37–42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed. PMID:25964789
Kwan, Grace; Charkowski, Amy O; Barak, Jeri D
2013-02-12
Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.
Berghaus, Roy D; Thayer, Stephan G; Law, Bibiana F; Mild, Rita M; Hofacre, Charles L; Singer, Randall S
2013-07-01
A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant.
Thayer, Stephan G.; Law, Bibiana F.; Mild, Rita M.; Hofacre, Charles L.; Singer, Randall S.
2013-01-01
A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant. PMID:23624481
EXTERIOR VIEW, LOOKING EAST, OF REDUCTION PLANT NO. 6 WITH ...
EXTERIOR VIEW, LOOKING EAST, OF REDUCTION PLANT NO. 6 WITH PRIMARY AND SECONDARY LIMESTONE REDUCTION ('CRUSHING') IN PROGRESS. FEEDER (RIGHT) FEEDS TO CONVEYOR BELTS (CENTER) AND CRUSHER (LEFT). LIMESTONE PROCESSED THROUGH THIS OPERATION IS FURTHER SCREENED AND PROCESSED AT ANOTHER PLANT ON THE THOMAS SITE. OPERATION OF THIS PLANT, WHICH BEGAN IN 1960, INCORPORATES WITHIN THE FEEDER A CONCRETE RETAINING WALL DATING TO A TURN OF THE CENTURY QUARRY OPERATION FORMERLY ON THIS SITE. - Wade Sand & Gravel Company, Reduction Plant No. 6, State Route 78, Thomas, Jefferson County, AL
Shillapoo Wildlife Area, Annual Report 2007-2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, Brian
This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 08 contract period October 1, 2007-September 30, 2008. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. Significant progress was realized in almost all major work types. Of particular note was progress made in tree plantings and pasturemore » rehabilitation efforts. This year's tree planting effort included five sites detailed below and in terms of the number of plants was certainly the largest effort on the wildlife area to date in one season. The planting itself took a significant amount of time, which was anticipated. However, installation of mats and tubes took much longer than expected which impacted planned fence projects in particular. Survival of the plantings appears to be good. Improvement to the quality of waterfowl pasture habitats is evident on a number of sites due to replanting and weed control efforts. Continuing long-term weed control efforts will be key in improving this particular type of habitat. A prolonged cold, wet spring and a number of equipment breakdowns presented stumbling blocks that impacted schedules and ultimately progress on planned activities. The unusual spring weather delayed fieldwork on pasture planting projects as well as weed control and slowed the process of maintaining trees and shrubs. This time lag also caused the continued deferral of some of our fencing projects. The large brush hog mower had the driveline break twice and the smaller tractor had an engine failure that caused it to be down for over a month. We have modified our budget plan for next year to include a temporary employee that will work primarily on tree maintenance and fencing projects to make sure that we make progress in these areas and we will be investigating whether a heavier duty driveline can be obtained for the mower.« less
Blaustein, Ryan A; Lorca, Graciela L; Meyer, Julie L; Gonzalez, Claudio F; Teplitski, Max
2017-06-01
Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by Liberibacter asiaticus , Liberibacter americanus , and Liberibacter africanus The microbial communities of leaves ( n = 94) and roots ( n = 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of Liberibacter spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between Liberibacter spp. and members of the Burkholderiaceae , Micromonosporaceae , and Xanthomonadaceae This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression. IMPORTANCE This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed. Copyright © 2017 American Society for Microbiology.
Developing Learning Progression-Based Teacher Knowledge Measures
ERIC Educational Resources Information Center
Jin, Hui; Shin, HyoJeong; Johnson, Michele E.; Kim, JinHo; Anderson, Charles W.
2015-01-01
This study developed learning progression-based measures of science teachers' content knowledge (CK) and pedagogical content knowledge (PCK). The measures focus on an important topic in secondary science curriculum using scientific reasoning (i.e., tracing matter, tracing energy, and connecting scales) to explain plants gaining weight and…
TRANSFORMATION OF TNT BY AQUATIC PLANTS AND PLANT TISSUE CULTURES. (R825513C013)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
1980-08-01
Work on the plant support subsystems and engineering services is reported. The master control system, thermal storage subsystem, receiver unit, and the beam characterization system were reviewed. Progress in program management and system integration is highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, T.
The Warden ASP project has progressed from the initial planning stage to construction of an injection plant. An ASP chemical system was designed based on laboratory evaluations that included interfacial tension, mobility requirements, rock-alkali interaction, fluid capabilities, and core tests. Field cores were obtained from the Permian No. 5 and No. 6 sands on the Warden lease in Sho-Vel-Tum oil field. A separate tank battery for the pilot pattern area was installed, and a field tracer test is currently being evaluated. Tracer test results to date indicate that there is no major fracturing in the No. 5 sand. There ismore » indication, however, of some channeling through high permeability sand. The field injection plant was designed, and construction is in progress. Several variations of injection plant design have been evaluated. Some plant design details, such as alkali storage, were found to be dependent on the availability of use equipment and project budget. The surfactant storage facility design was shown to be dependent on surfactant rheology.« less
1984-10-01
develop pollution abatement procedures for Army munition plants and military installations.n, t ftr Laboratory is also actively engaged in the...FACILITIES The physical plant provides over 100,000 square feet for research, development, testing, and administrative activities . Space is...protection of industrial workers and thq surrounding community at Army-controlled, industry-operated munition plants . G Environmental Quality program
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
Chemical regulators of plant hormones and their applications in basic research and agriculture.
Jiang, Kai; Asami, Tadao
2018-04-20
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Role of plant hormones in plant defence responses.
Bari, Rajendra; Jones, Jonathan D G
2009-03-01
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrel, J.E.; Kucera, C.L.; Johannsen, C.J.
1980-12-01
During this contract period research was continued at finding suitable methods and criteria for determining the success of revegetation in Midwestern prime ag lands strip mined for coal. Particularly important to the experimental design was the concept of reference areas, which were nearby fields from which the performance standards for reclaimed areas were derived. Direct and remote sensing techniques for measuring plant ground cover, production, and species composition were tested. 15 mine sites were worked in which were permitted under interim permanent surface mine regulations and in 4 adjoining reference sites. Studies at 9 prelaw sites were continued. All sitesmore » were either in Missouri or Illinois. Data gathered in the 1980 growing season showed that 13 unmanaged or young mineland pastures generally had lower average ground cover and production than 2 reference pastures. In contrast, yields at approximately 40% of 11 recently reclaimed mine sites planted with winter wheat, soybeans, or milo were statistically similar to 3 reference values. Digital computer image analysis of color infrared aerial photographs, when compared to ground level measurements, was a fast, accurate, and inexpensive way to determine plant ground cover and areas. But the remote sensing approach was inferior to standard surface methods for detailing plant species abundance and composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.E.
1997-12-31
This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less
Transgenic Wheat, Barley and Oats: Production and Characterization
NASA Astrophysics Data System (ADS)
Lazzeri, Paul A.; Jones, Huw D.
Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.
Grall, Sophie; Manceau, Charles
2003-01-01
The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development. PMID:12676663
Grall, Sophie; Manceau, Charles
2003-04-01
The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.
Kraepiel, Yvan; Pédron, Jacques; Patrit, Oriane; Simond-Côte, Elizabeth; Hermand, Victor; Van Gijsegem, Frédérique
2011-04-21
Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senyagin, Yu.V.; Sop'yanik, V.Kh.; Oreshkin, Yu.A.
1982-11-01
Increasing the operational reliability of power generating equipment is linked to the storage and systematization of objective information pertaining to the causes and progress of emergencies occurring in the equipment. Current methods for receiving such information at thermal power plants are discussed.
USDA-ARS?s Scientific Manuscript database
Sessile nature of plants necessitates them to perceive impending cues about biotic and abiotic stresses and alter their growth accordingly by eliciting appropriate defense signals. During the evolutionary progression, plants have developed sophisticated mechanisms to precisely identify the nature of...
Adaptation of the Long-Lived Monocarpic Perennial Saxifraga longifolia to High Altitude.
Munné-Bosch, Sergi; Cotado, Alba; Morales, Melanie; Fleta-Soriano, Eva; Villellas, Jesús; Garcia, Maria B
2016-10-01
Global change is exerting a major effect on plant communities, altering their potential capacity for adaptation. Here, we aimed at unveiling mechanisms of adaptation to high altitude in an endemic long-lived monocarpic, Saxifraga longifolia, by combining demographic and physiological approaches. Plants from three altitudes (570, 1100, and 2100 m above sea level [a.s.l.]) were investigated in terms of leaf water and pigment contents, and activation of stress defense mechanisms. The influence of plant size on physiological performance and mortality was also investigated. Levels of photoprotective molecules (α-tocopherol, carotenoids, and anthocyanins) increased in response to high altitude (1100 relative to 570 m a.s.l.), which was paralleled by reduced soil and leaf water contents and increased ABA levels. The more demanding effect of high altitude on photoprotection was, however, partly abolished at very high altitudes (2100 m a.s.l.) due to improved soil water contents, with the exception of α-tocopherol accumulation. α-Tocopherol levels increased progressively at increasing altitudes, which paralleled with reductions in lipid peroxidation, thus suggesting plants from the highest altitude effectively withstood high light stress. Furthermore, mortality of juveniles was highest at the intermediate population, suggesting that drought stress was the main environmental driver of mortality of juveniles in this rocky plant species. Population structure and vital rates in the high population evidenced lower recruitment and mortality in juveniles, activation of clonal growth, and absence of plant size-dependent mortality. We conclude that, despite S. longifolia has evolved complex mechanisms of adaptation to altitude at the cellular, whole-plant and population levels, drought events may drive increased mortality in the framework of global change. © 2016 American Society of Plant Biologists. All Rights Reserved.
Hiwasa-Tanase, Kyoko; Hirai, Tadayoshi; Kato, Kazuhisa; Duhita, Narendra; Ezura, Hiroshi
2012-03-01
The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.
A review of plant-based compounds and medicinal plants effective on atherosclerosis
Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud
2017-01-01
Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications. PMID:28461816
Viral vectors for production of recombinant proteins in plants.
Lico, Chiara; Chen, Qiang; Santi, Luca
2008-08-01
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.
A review of plant-based compounds and medicinal plants effective on atherosclerosis.
Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud
2017-01-01
Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, D.S.
Pretest 3-D finite element calculations have been performed on the wedge pillar portion of the WIPP Geomechanical Evaluation Experiment. The wedge pillar separates two drifts that intersect at an angle of 7.5/sup 0/. Purpose of the experiment is to provide data on the creep behavior of the wedge and progressive failure at the tip. The first set of calculations utilized a symmetry plane on the center-line of the wedge which allowed treatment of the entire configuration by modeling half of the geometry. Two 3-D calculations in this first set were performed with different drift widths to study the influence ofmore » drift size on closure and maximum stress. A cross-section perpendicular to the wedge was also analyzed with 2-D finite element models and the results compared to the 3-D results. In another set of 3-D calculations both drifts were modeled but with less distance between the drifts and the outer boundaries. Results of these calculations are compared with results from the other calculations to better understand the influence of boundary conditions.« less
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.
2009-10-22
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify eachmore » cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.« less
HOMER CITY MULTISTREAM COAL CLEANING DEMONSTRATION: A PROGRESS REPORT
The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed...
Poisonous plants affecting the central nervous system of horses in Brazil
USDA-ARS?s Scientific Manuscript database
Poisoning by Indigofera pascuori was recently reported in horses in the state of Roraima. It causes chronic signs of sleepiness, unsteady gait, severe ataxia, and progressive weight loss. Some animals are blind. Young horses are more affected than adults. After the end of plant consumption the anima...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...) and (e) of this section. The progress reports must be in the form of implementation plan revisions... Federal Implementation Plan need not require BART-eligible fossil fuel-fired steam electric plants in the...
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2012 CFR
2012-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2013 CFR
2013-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
18 CFR 35.25 - Construction work in progress.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of pollution produced by the power plant, but does not include any facility that reduces pollution by... oil or coal burners, soot blowers, bottom ash removal systems and concomitant air pollution control..., which facility would not be necessary if the plant continued to burn gas or oil. (4) Pollution control...
Improving School Custodial Service. Bulletin, 1949, No. 13
ERIC Educational Resources Information Center
Viles, N. E.
1949-01-01
Adequate school plant maintenance and operational services are important factors in pupil protection, educational progress, property preservation, and in pupil and community pride in schools. Each school administrator or school employee responsible for the care and use of school plants should have some knowledge of the basic principles and…
[Reviews on antiviral activity of chemical constituents from plants].
Yang, Xian-Feng; Wang, Yu-Li; Xu, Wei-Ren
2008-01-01
This paper reviewed the progress in researches on antiviral activity of chemical constituents from plants in recent years, the antiviral activity and mechanism of action of flavonoids, alkaloids, terpenoids, coumarins and polysaccharoses were sammarszed, provided new leading compound for antivirus new drugs from the plares in prospect.
Can our chestnut survive another invasion?
Lynne K. Rieske; W. Rodney Cooper
2011-01-01
Plant breeders and land managers have been actively pursuing development of an American chestnut with desirable silvicultural characteristics that demonstrates resistance to the chestnut blight fungus. As progress towards development of a blight-resistant chestnut continues, questions arise as to how these plants will interact with pre-existing stresses. The Asian...
Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.
Heredia, Antonio
2003-03-17
Cutin is a support biopolyester involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant cells and organs, and minimizing the deleterious impact of pathogens. Despite the complexity and intractable nature of this biopolymer, significant progress in chemical composition, molecular architecture and, more recently, biosynthesis have been made in the past 10 years. This review is focused in the description of these advances and their physiological impacts to improve our knowledge on plant cutin, an unusual topic in most plant physiology and biochemistry books and reviews.
Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.
1987-01-01
A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.
In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance
NASA Astrophysics Data System (ADS)
Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.
Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.
Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?
Lord, Christina E N; Wertman, Jaime N; Lane, Stephanie; Gunawardena, Arunika H L A N
2011-06-06
Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.
ERIC Educational Resources Information Center
Karp, William
The 74th Illinois General Assembly created the Illinois Commission on Automation and Technological Progress to study and analyze the economic and social effects of automation and other technological changes on industry, commerce, agriculture, education, manpower, and society in Illinois. Commission members visited industrial plants and business…
ERIC Educational Resources Information Center
Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma
2010-01-01
In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…
The soil biota composition along a progressive succession of secondary vegetation in a karst area.
Zhao, Jie; Li, Shengping; He, Xunyang; Liu, Lu; Wang, Kelin
2014-01-01
Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microbial and nematode communities, as well as soil physico-chemical properties were studied along a progressive succession of secondary vegetation (from grassland to shrubland to forest) in a karst area in southwest China. Microbial biomass, nematode density, ratio of fungal to bacterial biomass, nematode structure index, and nematode enrichment index decreased with the secondary succession in the plant community. Overall, the results indicated a pattern of declines in soil biota abundance and food web complexity that was associated with a decrease in soil pH and a decrease in soil organic carbon content with the progressive secondary succession of the plant community. Our findings suggest that soil biota amendment is necessary during karst ecosystem restoration and establishment and management of grasslands may be feasible in karst areas.
The Formation and Function of Plant Cuticles1
Yeats, Trevor H.; Rose, Jocelyn K.C.
2013-01-01
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field. PMID:23893170
Resveratrol and Ophthalmic Diseases
Abu-Amero, Khaled K.; Kondkar, Altaf A.; Chalam, Kakarla V.
2016-01-01
Resveratrol, a naturally occurring plant polyphenol found in grapes, is the principal biologically active component in red wine. Clinical studies have shown that resveratrol due to its potent anti-oxidant and anti-inflammatory properties are cardio-protective, chemotherapeutic, neuroprotective, and display anti-aging effects. Oxidative stress and inflammation play a critical role in the initiation and progression of age-related ocular diseases (glaucoma, cataract, diabetic retinopathy and macular degeneration) that lead to progressive loss of vision and blindness. In vitro and in vivo (animal model) experimental studies performed so far have provided evidence for the biological effects of resveratrol on numerous pathways including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, pro-survival or angiogenesis that are implicated in the pathogenesis of these age-related ocular disorders. In this review, we provide a brief overview of current scientific literature on resveratrol, its plausible mechanism(s) of action, its potential use and current limitations as a nutritional therapeutic intervention in the eye and its related disorders. PMID:27058553
Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua
Wetzstein, Hazel Y.; Porter, Justin A.; Janick, Jules; Ferreira, Jorge F. S.; Mutui, Theophilus M.
2018-01-01
Artemisinin, produced in the glandular trichomes of Artemisia annua L. is a vital antimalarial drug effective against Plasmodium falciparum resistant to quinine-derived medicines. Although work has progressed on the semi-synthetic production of artemisinin, field production of A. annua remains the principal commercial source of the compound. Crop production of artemisia must be increased to meet the growing worldwide demand for artemisinin combination therapies (ACTs) to treat malaria. Grower artemisinin yields rely on plants generated from seeds from open-pollinated parents. Although selection has considerably increased plant artemisinin concentration in the past 15 years, seed-generated plants have highly variable artemisinin content that lowers artemisinin yield per hectare. Breeding efforts to produce improved F1 hybrids have been hampered by the inability to produce inbred lines due to self-incompatibility. An approach combining conventional hybridization and selection with clonal propagation of superior genotypes is proposed as a means to enhance crop yield and artemisinin production. Typical seed-propagated artemisia plants produce less than 1% (dry weight) artemisinin with yields below 25 kg/ha. Genotypes were identified producing high artemisinin levels of over 2% and possessing improved agronomic characteristics such as high leaf area and shoot biomass production. Field studies of clonally-propagated high-artemisinin plants verified enhanced plant uniformity and an estimated gross primary productivity of up to 70 kg/ha artemisinin, with a crop density of one plant m-2. Tissue culture and cutting protocols for the mass clonal propagation of A. annua were developed for shoot regeneration, rooting, acclimatization, and field cultivation. Proof of concept studies showed that both tissue culture-regenerated plants and rooted cutting performed better than plants derived from seed in terms of uniformity, yield, and consistently high artemisinin content. Use of this technology to produce plants with homogeneously-high artemisinin can help farmers markedly increase the artemisinin yield per cultivated area. This would lead to increased profit to farmers and decreased prices of ACT. PMID:29636758
Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.
2013-01-01
ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399
Cheng, Xiaoyan; Wu, Yan; Guo, Jianping; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun
2013-01-01
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice. PMID:24033867
Nitric oxide and gene regulation in plants.
Grün, S; Lindermayr, C; Sell, S; Durner, J
2006-01-01
There is increasing evidence that nitric oxide (NO), which was first identified as a unique diffusible molecular messenger in animals, plays an important role in diverse physiological processes in plants. Recent progress that has deepened our understanding of NO signalling functions in plants, with special emphasis on defence signalling, is discussed here. Several studies, based on plants with altered NO-levels, have recently provided genetic evidence for the importance of NO in gene induction. For a general overview of which gene expression levels are altered by NO, two studies, involving large-scale transcriptional analyses of Arabidopsis thaliana using custom-made or commercial DNA-microarrays, were performed. Furthermore, a comprehensive transcript profiling by cDNA-amplification fragment length polymorphism (AFLP) revealed a number of Arabidopsis thaliana genes that are involved in signal transduction, disease resistance and stress response, photosynthesis, cellular transport, and basic metabolism. In addition, NO affects the expression of numerous genes in other plant species such as tobacco or soybean. The NO-dependent intracellular signalling pathway(s) that lead to the activation or suppression of these genes have not yet been defined. Several lines of evidence point to an interrelationship between NO and salicylic acid (SA) in plant defence. Recent evidence suggests that NO also plays a role in the wounding/jasmonic acid (JA) signalling pathway. NO donors affect both wounding-induced H2O2 synthesis and wounding- or JA-induced expression of defence genes. One of the major challenges ahead is to determine how the correct specific response is evoked, despite shared use of the NO signal and, in some cases, its downstream second messengers.
Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants
Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.
2012-01-01
Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated wastewater. PMID:23124279
Auxin-BR Interaction Regulates Plant Growth and Development
Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun
2018-01-01
Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511
SOBOLEV, VICTOR S.; KHAN, SHABANA I.; TABANCA, NURHAYAT; WEDGE, DAVID E.; MANLY, SUSAN P.; CUTLER, STEPHEN J.; COY, MONIQUE R.; BECNEL, JAMES J.; NEFF, SCOTT A.; GLOER, JAMES B.
2011-01-01
The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene, have been acknowledged by several investigators. Despite considerable progress in peanut research, relatively little is known about the biological activity of the stilbenoid phytoalexins. This study investigated the activities of some of these compounds in a broad spectrum of biological assays. Since peanut stilbenoids appear to play roles in plant defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further investigated these peanut phytoalexins, together with some related natural and synthetic stilbenoids (a total of 24 compounds) in a panel of bioassays to determine their anti-inflammatory, cytotoxic, and antioxidant activities in mammalian cells. Several of these compounds were also evaluated as mammalian opioid receptor competitive antagonists. Assays for adult mosquito and larvae toxicity were also performed. The results of these studies reveal that peanut stilbenoids, as well as related natural and synthetic stilbene derivatives, display a diverse range of biological activities. PMID:21314127
Aoyama, Shoki; Huarancca Reyes, Thais; Guglielminetti, Lorenzo; Lu, Yu; Morita, Yoshie; Sato, Takeo; Yamaguchi, Junji
2014-02-01
Carbon (C) and nitrogen (N) are essential elements for metabolism, and their availability, called the C/N balance, must be tightly coordinated for optimal growth in plants. Previously, we have identified the ubiquitin ligase CNI1/ATL31 as a novel C/N regulator by screening plants grown on C/N stress medium containing excess sugar and limited N. To elucidate further the effect of C/N balance on plant growth and to determine the physiological function of ATL31, we performed C/N response analysis using an atmospheric CO2 manipulation system. Under conditions of elevated CO2 and sufficient N, plant biomass and total sugar and starch dramatically increased. In contrast, elevated CO2 with limited N did not increase plant biomass but promoted leaf chlorosis, with anthocyanin accumulation and increased senescence-associated gene expression. Similar results were obtained with plants grown in medium containing excess sugar and limited N, suggesting that disruption of the C/N balance affects senescence progression. In ATL31-overexpressing plants, promotion of senescence under disrupted CO2/N conditions was repressed, whereas in the loss-of-function mutant it was enhanced. The ATL31 gene was transcriptionally up-regulated under N deficiency and in senescent leaves, and ATL31 expression was highly correlated with WRKY53 expression, a key regulator of senescence. Furthermore, transient protoplast analysis implicated the direct activation of ATL31 expression by WRKY53, which was in accordance with the results of WRKY53 overexpression experiments. Together, these results demonstrate the importance of C/N balance in leaf senescence and the involvement of ubiquitin ligase ATL31 in the process of senescence in Arabidopsis.
Role of RNA interference in plant improvement
NASA Astrophysics Data System (ADS)
Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant
2011-06-01
Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.
Adaptation of the Long-Lived Monocarpic Perennial Saxifraga longifolia to High Altitude1[OPEN
Morales, Melanie; Fleta-Soriano, Eva; Garcia, Maria B.
2016-01-01
Global change is exerting a major effect on plant communities, altering their potential capacity for adaptation. Here, we aimed at unveiling mechanisms of adaptation to high altitude in an endemic long-lived monocarpic, Saxifraga longifolia, by combining demographic and physiological approaches. Plants from three altitudes (570, 1100, and 2100 m above sea level [a.s.l.]) were investigated in terms of leaf water and pigment contents, and activation of stress defense mechanisms. The influence of plant size on physiological performance and mortality was also investigated. Levels of photoprotective molecules (α-tocopherol, carotenoids, and anthocyanins) increased in response to high altitude (1100 relative to 570 m a.s.l.), which was paralleled by reduced soil and leaf water contents and increased ABA levels. The more demanding effect of high altitude on photoprotection was, however, partly abolished at very high altitudes (2100 m a.s.l.) due to improved soil water contents, with the exception of α-tocopherol accumulation. α-Tocopherol levels increased progressively at increasing altitudes, which paralleled with reductions in lipid peroxidation, thus suggesting plants from the highest altitude effectively withstood high light stress. Furthermore, mortality of juveniles was highest at the intermediate population, suggesting that drought stress was the main environmental driver of mortality of juveniles in this rocky plant species. Population structure and vital rates in the high population evidenced lower recruitment and mortality in juveniles, activation of clonal growth, and absence of plant size-dependent mortality. We conclude that, despite S. longifolia has evolved complex mechanisms of adaptation to altitude at the cellular, whole-plant and population levels, drought events may drive increased mortality in the framework of global change. PMID:27440756
Root based responses account for Psidium guajava survival at high nickel concentration.
Bazihizina, Nadia; Redwan, Mirvat; Taiti, Cosimo; Giordano, Cristiana; Monetti, Emanuela; Masi, Elisa; Azzarello, Elisa; Mancuso, Stefano
2015-02-01
The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils. Copyright © 2014 Elsevier GmbH. All rights reserved.
Organochlorine Turnover in Forest Ecosystems: The Missing Link in the Terrestrial Chlorine Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Leri; S Myneni
Research in the last 20 years has shown that chlorine undergoes transformations between inorganic and organic forms as part of a complex biogeochemical cycle in terrestrial systems. Natural organochlorine production appears to be associated with the decomposition of plant material on the soil surface, though the chlorine cycle budget implies that a proportion of natural organochlorine enters soil through plant litter and atmospheric deposition as well. Organochlorine compounds may form through biotic and abiotic pathways, but the rates and magnitude of production in the field remain undefined. We have performed a time-dependent trace of chlorine concentration through forest ecosystems, revealingmore » distinct fractions of naturally produced organochlorine in plant biomass. Aliphatic organochlorine constitutes an intrinsic component of healthy leaves that persists through senescence and humification of the plant material, making a substantial contribution to the pool of soil organochlorine. Plant leaves also contain soluble aromatic organochlorine compounds that leach from leaf litter during early decay stages. As decay progresses, high concentrations of insoluble aromatic organochlorine accrue in the humus, through de novo production as well as adsorption. The rates of aromatic organochlorine production and degradation vary seasonally and conversely. This study presents the first unambiguous evidence that there exist multiple pools of chlorinated organic matter in the soil environment and that leaf litter deposition makes a significant and refractory contribution to the soil organochlorine pool, providing key insights into the biogeochemical chlorine cycle.« less
Cell cycle nucleic acids, polypeptides and uses thereof
Gordon-Kamm, William J [Urbandale, IA; Lowe, Keith S [Johnston, IA; Larkins, Brian A [Tucson, AZ; Dilkes, Brian R [Tucson, AZ; Sun, Yuejin [Westfield, IN
2007-08-14
The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.
Career Progression Systems for a Multi-Plant Manufacturing Corporation; Final Report.
ERIC Educational Resources Information Center
Brecher, Charles
The report explores the obstacles to increased occupational mobility for workers at a multiplant manufacturing firm. Analysis of the job histories of workers at two plants found advancement opportunities to be limited and inequitable because narrow departmental units were used as the basis for defining eligibility for promotions. Through the use…
School Plant Management: Organizing the Maintenance Program. Bulletin, 1960, No. 15. OE-21002
ERIC Educational Resources Information Center
Finchum, R. N.
1960-01-01
Present capital outlay investments in elementary and secondary school buildings, sites, and equipment in the United States are being increased at the rate of about $3 billion annually. Maintenance and operational services, important aspects of property protection, educational progress, pupil safety, and plant efficiency, are being provided in…
Progress in developing disease control strategies for hybrid poplars
Michael E. Ostry
2000-01-01
Hybrid poplars are being grown throughout many regions of the world for purposes including the production of fiber and energy, ornamental landscape plantings, and soil stabilization. Disease has often been responsible for planting failures resulting in poplars being labeled the universal host to many damaging pathogens. However, many of the poplar species and their...
26 CFR 1.46-5 - Qualified progress expenditures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... example, if two ships are contracted for at the same time, each ship is considered separately under this... construction period of that unit. For example, if a manufacturing plant has a normal construction period of two... normal construction period of less than two years, the plant and the equipment do not constitute an...
26 CFR 1.46-5 - Qualified progress expenditures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... example, if two ships are contracted for at the same time, each ship is considered separately under this... construction period of that unit. For example, if a manufacturing plant has a normal construction period of two... normal construction period of less than two years, the plant and the equipment do not constitute an...
Current progress towards the metabolic engineering of plant oil for hydroxy fatty acids production
USDA-ARS?s Scientific Manuscript database
Vegetable oil is not only edible but also can be used for industrial purposes. The industrial demand for vegetable oil will increase with the future depletion of fossil fuels and environmental problems such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high...
USDA-ARS?s Scientific Manuscript database
Deployment of resistant varieties is a key strategy to mitigating economic losses due to arthropod-transmitted plant pathogens of perennial crops. Resistant plants have lower pathogen titers than susceptible counterparts, but often remain hosts for the pathogen. As resistant varieties maintain yield...
Responsible decision-making for plant research and breeding innovations in the European Union.
Eriksson, Dennis; Chatzopoulou, Sevasti
2018-01-02
Plant research and breeding has made substantial technical progress over the past few decades, indicating a potential for tremendous societal impact. Due to this potential, the development of policies and legislation on plant breeding and the technical progress should preferably involve all relevant stakeholders. However, we argue here that there is a substantial imbalance in the European Union (EU) regarding the influence of the various stakeholder groups on policy makers. We use evidence from three examples in order to show that the role of science is overlooked: 1) important delays in the decision process concerning the authorization of genetically modified (GM) maize events, 2) the significance attributed to non-scientific reasons in new legislation concerning the prohibition of GM events in EU member states, and 3) failure of the European Commission to deliver legal guidance to new plant breeding techniques despite sufficient scientific evidence and advisory reports. We attribute this imbalance to misinformation and misinterpretation of public perceptions and a disproportionate attention to single outlier reports, and we present ideas on how to establish a better stakeholder balance within this field.
Biosynthesis of plant cell wall polysaccharides.
Gibeaut, D M; Carpita, N C
1994-09-01
The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.
MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN
Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli
2016-01-01
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711
Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.
Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin
2017-11-13
Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.
Super-resolution Microscopy in Plant Cell Imaging.
Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef
2015-12-01
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sasaya, Takahide
2014-01-01
The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.
Regulation of potassium transport and signaling in plants.
Wang, Yi; Wu, Wei-Hua
2017-10-01
As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protein Kinases in Shaping Plant Architecture.
Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao
2018-02-13
Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.
2013-01-01
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles. PMID:24155951
Plants that attack plants: molecular elucidation of plant parasitism.
Yoshida, Satoko; Shirasu, Ken
2012-12-01
Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin
2013-07-01
Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.
Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Hereme, Rasme; Molina-Montenegro, Marco A
2017-01-01
The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread.
Thermophotovoltaic systems for civilian and industrial applications in Japan
NASA Astrophysics Data System (ADS)
Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi
2003-05-01
The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generations. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan.
ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
1999-02-01
A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalentmore » size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char transfer system including all pressure vessels and major piping components. Experimental testing at the Combustion and Environmental Test Facility continued during this quarter. Performance of the char burner, as benchmarked by flame stability and low NOx, has been exceptional. The burner was operated successfully both without natural gas and supplemental pulverized coal.« less
Discovery of digestive enzymes in carnivorous plants with focus on proteases.
Ravee, Rishiesvari; Mohd Salleh, Faris 'Imadi; Goh, Hoe-Han
2018-01-01
Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap) , Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants) , Cephalotus (Australian pitcher plants) , Genlisea (corkscrew plants) , and Utricularia (bladderworts). Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
[Research progress of genetic engineering on medicinal plants].
Teng, Zhong-qiu; Shen, Ye
2015-02-01
The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.
Pathogen profile update: Fusarium oxysporum.
Michielse, Caroline B; Rep, Martijn
2009-05-01
Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; genus Fusarium. Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting, yellowing of the lower leaves, progressive wilting, defoliation and, finally, death of the plant. On fungal colonization, the vascular tissue turns brown, which is clearly visible in cross-sections of the stem. Some formae speciales are not primarily vascular pathogens, but cause foot and root rot or bulb rot. Can cause severe losses in many vegetables and flowers, field crops, such as cotton, and plantation crops, such as banana, date palm and oil palm. Use of resistant varieties is the only practical measure for controlling the disease in the field. In glasshouses, soil sterilization can be performed. http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html; http://www.fgsc.net/Fusarium/fushome.htm; http://www.phi-base.org/query.php
Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology.
Sarmast, Mostafa K; Salehi, H
2016-07-01
Profound interest and progress has been made since the invention of nanotechnology in 1959. However, its application in plant tissue culture and biotechnology has not been fully acknowledged in parallel with other facets of this technology. In this manuscript, the AgNPs effects on plant tissue culture and biotechnology encompass their antimicrobial effects and their mechanisms of action addressed to some extends. Moreover, their effects on seedling growth also reviewed. Most of the presented papers in the field of plant science have focused on antimicrobial effects of silver nanoparticles but its interesting inhibitory effects of plant senescence phytohormone ethylene, most likely can open a new window for future research.
Hanford Works monthly report, October 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1952-11-20
this document presents a summary of work and progress at the Hanford Engineer works for October 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Works monthly report, December 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-01-23
This document presents a summary of work and progress at the Hanford Engineer Works for December 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present.
Chen, Ming; Zhou, Shuang; Zhu, Yi; Sun, Yingzhu; Zeng, Guangming; Yang, Chunping; Xu, Piao; Yan, Ming; Liu, Zhifeng; Zhang, Wei
2018-05-04
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hanford Works monthly report, February 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-03-18
This document presents a summary of work and progress at the Hanford Engineer Works for February 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Works monthly report, August 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1952-09-24
This document presents a summary of work and progress at the Hanford Engineer Works for August 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department` section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical,Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estatemore » and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Works monthly report, September 1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1952-10-20
This document presents a summary of work and progress at the Hanford Engineer Works for September 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Calcium and signal transduction in plants
NASA Technical Reports Server (NTRS)
Poovaiah, B. W.; Reddy, A. S.
1993-01-01
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.; Peko, D.; Farmer, M.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, M. L.
In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less
NASA Astrophysics Data System (ADS)
Hernández-Cordero, Antonio I.; Hernández-Calvento, Luis; Espino, Emma Pérez-Chacón
2015-06-01
This paper explores the relationship between vegetation dynamics and dune mobility in an arid transgressive coastal dune system, specifically the dune field of Maspalomas (Gran Canaria, Canary Islands). The aim is to understand the strategies of colonization and survival that plant communities have developed in slacks that face dune advance. The relationship between plant colonization and dune migration was performed by following Tamarix canariensis and Traganum moquinii plants for several years. Morphological data about each individual as well as the distance of each plant to the dune were measured. A study of the colonization patterns developed by T. moquinii, T. canariensis, Cyperus laevigatus and Launaea arborescens communities was performed by analyzing the evolution of consolidated plant patches and adult plants in relation to the dune advance. This was achieved using digital orthophotos and spatial analysis from geographic information systems. Initiation of plant colonization over transgressive dunes occurs on both wet and dry slacks. The results show that both plant colonization and development of adult plants are largely related to dune mobility. Thus, survival of T. moquinii and T. canariensis plants under dune migration conditions is related to both distance to the dune front and plant height at the moment of burial. Distance from the dune front and plant height increases chance of survival. The dynamics of adult plants is also related to dune displacement rates. Thus, each community has different thresholds of resistance to mobility rates. The T. canariensis community withstands average rates higher than 3 m/year. Its arboreal structure allows this species to grow high enough to resist the advance of the dunes and burial. For the T. moquinii community, the population decreases gradually to eventually disappear when dune mobility rates exceed 4 m/year. The C. laevigatus community develops at dune mobility rates lower than 3 m/year, decreasing its surface area at higher rates. The L. arborescens community endures dune migration rates of at least 1.8 m/year. However, different distances between the dune front and the vegetated area also significant factor, because these can compensate for the effects of displacement rates. Thus, the closer a vegetated area is to a dune front, the lower the rates of displacement must be to produce a greater reduction in the surface vegetation. Plant communities present two patterns of plant colonization to resist burial by sand, one vertical and the other horizontal. The horizontal pattern is employed by C. laevigatus and L. arborescens communities and consists of locating new generations of plants in progressive alignment with the dune front migration. The vertical pattern is employed by the T. canariensis community, and consists of increasing the heights of the plants. The T. moquinii community can utilize both patterns because it reacts positively to some degree of burial since it is located in areas where the dunes reach different heights.
Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).
Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo
2017-10-05
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.
Barak, Jeri D; Schroeder, Brenda K
2012-01-01
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Pinard, F; Makune, S E; Campagne, P; Mwangi, J
2016-11-01
Based on time and spatial dynamic considerations, this study evaluates the potential role of short- and long-distance dispersal in the spread of coffee wilt disease (CWD) in a large commercial Robusta coffee estate in Uganda (Kaweri, 1,755 ha) over a 4-year period (2008 to 2012). In monthly surveys, total disease incidence, expansion of infection foci, and the occurrence of isolated infected trees were recorded and submitted to spatial analysis. Incidence was higher and disease progression faster in old coffee plantings compared with young plantings, indicating a lack of efficiency of roguing for reducing disease development in old plantings. At large spatial scale (approximately 1 km), Moran indices (both global and local) revealed the existence of clusters characterized by contrasting disease incidences. This suggested that local environmental conditions were heterogeneous or there were spatial interactions among blocks. At finer spatial scale (approximately 200 m), O-ring statistics revealed positive correlation between distant infection sites across distances as great as 60 m. Although these observations indicate the role of short-distance dispersal in foci expansion, dispersal at greater distances (>20 m) appeared to also contribute to both initiation of new foci and disease progression at coarser spatial scales. Therefore, our results suggested the role of aerial dispersal in CWD progression.
Plant-made vaccines against West Nile virus are potent, safe, and economically feasible
Chen, Qiang
2015-01-01
The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. PMID:25676782
Will genomic selection be a practical method for plant breeding?
Nakaya, Akihiro; Isobe, Sachiko N
2012-11-01
Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.
Plant-made vaccines against West Nile virus are potent, safe, and economically feasible.
Chen, Qiang
2015-05-01
The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Great Basin Native Plant Selection and Increase Project: FY2010 Progress Report
Nancy Shaw; Mike Pellant
2011-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...
Great Basin Native Plant Selection and Increase Project: 2011 Progress Report
Nancy Shaw; Mike Pellant
2012-01-01
The Interagency native Plant Materials Development Program outlined in the 2002 Report to Congress (USDI and USDA 2002), USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. This project was initiated to foster the development of...
The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...
USDA-ARS?s Scientific Manuscript database
The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot development provided opportunity to assess if a single in-season measurement had value in evaluati...
Biotechnological approaches to study plant responses to stress.
Pérez-Clemente, Rosa M; Vives, Vicente; Zandalinas, Sara I; López-Climent, María F; Muñoz, Valeria; Gómez-Cadenas, Aurelio
2013-01-01
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Biotechnological Approaches to Study Plant Responses to Stress
Pérez-Clemente, Rosa M.; Vives, Vicente; Zandalinas, Sara I.; López-Climent, María F.; Muñoz, Valeria; Gómez-Cadenas, Aurelio
2013-01-01
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized. PMID:23509757
Plant-based vaccines for animals and humans: recent advances in technology and clinical trials
Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu
2015-01-01
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752
Let a sewage plant running smart
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Out-dated technical equipment, occlusive information communication, inadequate sanitation, low management level and some irrational distribution structures in the existing sewage plants bring about lower sewage treatment efficiency and poorer water quality, thereby permanently harming human health and severely damaging the environment. With the rapid development of scientific-technological progress and the vigorous support of the entire international community, the existing sewage plants call for more and more intelligent operation and management in the future. This review for the first time proposes the novel concept of the “smart” sewage plant, and gives a through interpretation of its special functions and attributes. We envision that the future smart sewage plant will became an “ambient intelligence” in all aspects in the sewage plants.
Wang, Yong
2017-03-25
In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.
41. Photocopy of progress photograph ca. 1974, photographer unknown. Original ...
41. Photocopy of progress photograph ca. 1974, photographer unknown. Original photograph Property of United States Air Force, 21" Space Command. This is the source for views 41 to 47. CAPE COD AIR STATION PAVE PAWS FACILITY - SHOWING BUILDING "RED IRON" STEEL STRUCTURE NEARING COMPLETION. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Promoting Student Progressions in Science Classrooms: A Video Study
ERIC Educational Resources Information Center
Jin, Hui; Johnson, Michele E.; Shin, Hyo Jeong; Anderson, Charles W.
2017-01-01
This study was conducted in a large-scale environmental literacy project. In the project, we developed a Learning Progression Framework (LPF) for matter and energy in social-ecological systems; the LPF contains four achievement levels. Based on the LPF, we designed a Plant Unit to help Levels 2 and 3 students advance to Level 4 of the LPF. In the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... of 10 CFR 2.347 and 2.348 in their communications with Mr. Dehmel. It is so ordered. Dated at...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
... Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is... operating license and materials license authorize CP&L to possess, use, and operate the Robinson facility...). Progress Energy is CP&L's ultimate parent corporation. As part of the transaction, Progress Energy will...
Post-translational modifications in secreted peptide hormones in plants.
Matsubayashi, Yoshikatsu
2011-01-01
More than a dozen secreted peptides are now recognized as important hormones that coordinate and specify cellular functions in plants. Recent evidence has shown that secreted peptide hormones often undergo post-translational modification and proteolytic processing, which are critical for their function. Such 'small post-translationally modified peptide hormones' constitute one of the largest groups of peptide hormones in plants. This short review highlights recent progress in research on post-translationally modified peptide hormones, with particular emphasis on their structural characteristics and modification mechanisms.
Plant developmental biologists meet on stairways in Matera.
Beeckman, Tom; Friml, Jiri
2012-10-01
The third EMBO Conference on Plant Molecular Biology, which focused on 'Plant development and environmental interactions', was held in May 2012 in Matera, Italy. Here, we review some of the topics and themes that emerged from the various contributions; namely, steering technologies, transcriptional networks and hormonal regulation, small RNAs, cell and tissue polarity, environmental control and natural variation. We intend to provide the reader who might have missed this remarkable event with a glimpse of the recent progress made in this blossoming research field.
The Soil Biota Composition along a Progressive Succession of Secondary Vegetation in a Karst Area
He, Xunyang; Liu, Lu; Wang, Kelin
2014-01-01
Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microbial and nematode communities, as well as soil physico-chemical properties were studied along a progressive succession of secondary vegetation (from grassland to shrubland to forest) in a karst area in southwest China. Microbial biomass, nematode density, ratio of fungal to bacterial biomass, nematode structure index, and nematode enrichment index decreased with the secondary succession in the plant community. Overall, the results indicated a pattern of declines in soil biota abundance and food web complexity that was associated with a decrease in soil pH and a decrease in soil organic carbon content with the progressive secondary succession of the plant community. Our findings suggest that soil biota amendment is necessary during karst ecosystem restoration and establishment and management of grasslands may be feasible in karst areas. PMID:25379741
Progress in the Development of the Lead Tungstate Crystals for EM-Calorimetry in High-Energy Physics
NASA Astrophysics Data System (ADS)
Novotny, R. W.; Brinkmann, K.-T.; Borisevich, A.; Dormenev, V.; Houzvicka, J.; Korjik, M.; Zaunick, H.-G.
2017-11-01
Even at present time there is a strong interest and demand for high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic (EM) calorimetry. PWO is implemented into the EM calorimeter of the CMS-ECAL detector at LHC [1] and required for the completion of the PANDA EMC [2] and various ongoing detector projects at Jefferson Lab. The successful mass production of PWO using the Czochralski method was stopped after bankruptcy of the Bogoroditsk Technical Chemical Plant (BTCP) in Russia as major producer so far. The Shanghai Institute of Ceramics, Chinese Academy of Science (China) was considered as an alternative producer using the modified Bridgman method. The company CRYTUR (Turnov, Czech Republic) with good experience in the development and production of different types of inorganic oxide crystals has restarted at the end of 2014 the development of lead tungstate for mass production based on the Czochralski method. An impressive progress was achieved since then. The growing technology was optimized to produce full size samples with the quality meeting the PANDA-EMC specifications for PWO-II. We will present a detailed progress report on the research program in collaboration with groups at Orsay and JLab. The full size crystals will be characterized with respect to optical performance, light yield, kinetics and radiation hardness.
Human System Simulation in Support of Human Performance Technical Basis at NPPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Katya Le Blanc; alan mecham
2010-06-01
This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to reviewmore » operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the requirements of the end-user are taken into account during the design process and the validity of design is determined through testing of real end users« less
Intercellular and systemic spread of RNA and RNAi in plants.
Nazim Uddin, Mohammad; Kim, Jae-Yean
2013-01-01
Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.
Progress in electrochemical storage for battery systems
NASA Technical Reports Server (NTRS)
Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.
1972-01-01
Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.
Status of molten carbonate fuel cell technology development
NASA Astrophysics Data System (ADS)
Parsons, E. L., Jr.; Williams, M. C.; George, T. J.
The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip
In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less
Assessing performance of feedlot operations using epidemiology.
Corbin, Marilyn J; Griffin, Dee
2006-03-01
The progressive feedlot veterinarian must be well versed not only in individual production animal medicine, but also in population-based medicine. Feedlot health programs must be goal oriented, and evaluation of these goals is accomplished through diligent use of record systems and analytic evaluation of these record systems. Basic feedlot monitoring parameters include health and economic parameters in addition to the use of bench marking parameters between and among feed yards. When these parameters have significant changes, steps should be initiated to begin field investigations. Feedlot epidemiology uses several novel applications such as partial budgeting, risk assessment, and packing plant audits to provide scientifically sound and economically feasible solutions for the feeding industry.
Grizzly Usage and Theory Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, B. W.; Backman, M.; Chakraborty, P.
2016-03-01
Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) structures, systems and components (SSCs) subjected to a variety of age-related aging mechanisms. Grizzly simulates both the progression of aging processes, as well as the capacity of aged components to safely perform. This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical analysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of components and materials. Grizzly is in a state of constant development, and future releases will broaden the capabilities of this code for RPV analysis, as wellmore » as expand it to address degradation in other critical NPP components.« less
Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T
2014-01-01
Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-01-01
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure. PMID:25802117
Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction.
Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi
2015-03-24
Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure.
Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?
2011-01-01
Background Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. Results The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Conclusions Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant. PMID:21645374
Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.
Egan, Martin J; Talbot, Nicholas J
2008-08-01
This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.
Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar
2018-01-01
The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, W.W.; Burton, G.W.
1984-06-01
Dominant immunity to rust (Puccinia) and Piricularia leaf spot, a new stable A/sub 1/ cytoplasm and yield genes have been discovered in a single accession of P. monodii, a subspecies of pearl millet Pennisetum americanum. The useful genes were transferred to the best pearl millet inbreds using a backcrossing and screening system enhanced by controlling daylength, temperature, and breaking seed dormancy. Genes for fertility restoration, plant morphology, head characteristics and grain yield were transferred from the A' genome of P. purpureum (secondary gene pool) to pearl millet. This was made possible by doubling the chromosome number of the sterile triploidmore » between pearl millet and P. purpureum to produce fertile hexaploids. A number of hexaploids were backcrossed to pearl millet to find hexaploids that produced A' gametes to produce AA' 2n = 14 pearl millet plants. The value of the genes on the A' genome were not recognized before the AA' plants were produced because the B genome masked the characteristics on the A' genome in P. purpureum. In the tertiary gene pool, male and female fertile apomictic BC/sub 1/ plants were produced between pearl millet and P. orientale or P. squamulatum by manipulating chromosome levels or by producing trispecific hybrids. The development of fertile backcross plants in this gene pool is encouraging for further germplasm transfer research with emphasis on apomixis. The cytoplasm of P. schweinfurthii has been transferred to pearl millet. Mutations for early maturity and daylength insensitivity induced with mutagens have resulted in the development and release of early maturing inbreds Tift 23A/sub 1/E/sub 1/ and Tift 23B/sub 1/E/sub 1/.« less
Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming
2016-02-23
Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Towards development of new ornamental plants: status and progress in wide hybridization.
Kuligowska, Katarzyna; Lütken, Henrik; Müller, Renate
2016-07-01
The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.
Hanford Atomic Products Operation monthly report, January 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-02-21
This document presents a summary of work and progress at the Hanford Engineer Works for January 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report for April 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-05-23
This document presents a summary of work and progress at the Hanford Engineer Works for April 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Monthly report Hanford Atomic Products Operation, July 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-08-20
This document presents a summary of work and progress at the Hanford Engineer Works for July 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services Departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, August 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-09-28
This document presents a summary of work and progress at the Hanford Engineer Works for August 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report for May 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-06-21
This document presents a summary of work and progress at the Hanford Engineer Works for May, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, March 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-04-23
This document presents a summary of work and progress at the Hanford Engineer Works for March 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, September 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-10-27
This document presents a summary of work and progress at the Hanford Engineer Works for September 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, June 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-07-26
This document presents a summary of work and progress at the Hanford Engineer Works for June 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, March 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-04-20
This document presents a summary of work and progress at the Hanford Engineer Works for March 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, November 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-12-30
This document presents a summary of work and progress at the Hanford Engineer Works for November 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, August 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-09-27
This document presents a summary of work and progress at the Hanford Engineer Works for August 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, May 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-06-22
This document presents a summary of work and progress at the Hanford Engineer Works for May 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Science, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report for December 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-01-30
This document presents a summary of work and progress at the Hanford Engineer Works for December 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, October 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-11-30
This document presents a summary of work and progress at the Hanford Engineer works for October, 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products for Operation monthly report, February 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-03-18
This document presents a summary of work and progress at the Hanford Engineer Works for February 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, May 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-06-23
This document presents a summary of work and progress at the Hanford Engineer Works for May 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, July 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-08-26
This document presents a summary of work and progress at the Hanford Engineer Works for July 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, October 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-11-20
This document presents a summary of work and progress at the Hanford Engineer Works for October 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services. Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, May 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This document presents a summary of work and progress at the Hanford Engineer Works for May 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, October 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-11-24
This document presents a summary of work and progress at the Hanford Engineer Works for October 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, December 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-01-25
This document presents a summary of work and progress at the Hanford Engineer Works for December 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, July 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-08-20
This document presents a summary of work and progress at the Hanford Engineer Works for July 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, August 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-09-17
This document presents a summary of work and progress at the Hanford Engineer Works for August 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department report plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities, and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report for September 1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-10-25
This document presents a summary of work and progress at the Hanford Engineer Works for September 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, June 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-07-22
This document presents a summary of work and progress at the Hanford Engineer Works for June 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estatemore » and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, December 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1954-01-22
This document presents a summary of work and progress at the Hanford Engineer Works for December 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
Hanford Atomic Products Operation monthly report, August 1953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1953-09-18
This document presents a summary of work and progress at the Hanford Engineer Works for August, 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less
MHD performance calculations with oxygen enrichment
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.
1979-01-01
The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.
Functional genomics of bio-energy plants and related patent activities.
Jiang, Shu-Ye; Ramachandran, Srinivasan
2013-04-01
With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.
Plant-made oral vaccines against human infectious diseases—Are we there yet?
Chan, Hui-Ting; Daniell, Henry
2016-01-01
Summary Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. PMID:26387509
Molinari, Sergio
2011-03-01
Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.
Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics.
Hu, J; Jiang, J; Wang, N
2018-02-01
Citrus huanglongbing (HLB) or greening is a devastating disease of citrus worldwide and no effective control measure is currently available. Plant defense activators environmentally friendly compounds capable of inducing resistance against many plant pathogens. Earlier studies showed that foliar spray of plant defense inducers could slow down HLB disease progress. In this study, eight plant defense activators and three antibiotics were evaluated in three field trials for their effect to control HLB by trunk injection of young and mature sweet orange trees. Results showed that four trunk injections of several activators, including salicylic acid, oxalic acid, acibenzolar-S-methyl, and potassium phosphate, provided significant control of HLB by suppressing 'Candidatus Liberibacter asiaticus' titer and disease progress. Trunk injection of penicillin, streptomycin, and oxytetracycline hydrochloride resulted in excellent control of HLB. In general, antibiotics were more effective in reduction of 'Ca. L. asiaticus' titer and HLB symptom expressions than plant defense activators. These treatments also resulted in increased yield and better fruit quality. Injection of both salicylic acid and acibenzolar-S-methyl led to significant induction of pathogenesis-related (PR) genes PR-1 and PR-2 genes. Meanwhile, injection of either potassium phosphate or oxalic acid resulted in significant induction of PR-2 or PR-15 gene expression, respectively. These results suggested that HLB diseased trees remained inducible for systemic acquired resistance under field conditions. In summary, this study presents information regarding controlling HLB via trunk injection of plant defense activators and antibiotics, which helps citrus growers in decision making regarding developing an effective HLB management program.
Birth of plant proteomics in India: a new horizon.
Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra
2015-09-08
In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.
Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi
2013-01-01
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general. PMID:23457602
Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi
2013-01-01
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.
Eradication of Phytophthora ramorum in Oregon forests--status after 3 years
Alan Kanaskie; Nancy Osterbauer; Michael McWilliams; Ellen Goheen; Everett Hansen; Wendy Sutton
2006-01-01
Sudden oak death (SOD) was first discovered in Oregon forests in July 2001 near the city of Brookings. Since September 2001 we have been attempting to eradicate the pathogen by cutting and burning all infected host plants and adjacent apparently uninfected plants. Eradication currently is in progress on approximately 42 sites, totaling 72 acres. The majority of sites...
Resende, C F; Pacheco, V S; Dornellas, F F; Oliveira, A M S; Freitas, J C E; Peixoto, P H P
2018-03-22
In this study, the activities of antioxidant enzymes, photosynthetic pigments, proline and carbohydrate contents in Pitcairnia encholirioides under ex vitro conditions of water deficit were evaluated. Results show that plants under progressive water stress, previously in vitro cultured in media supplemented with 30 g L-1 sucrose and GA3, accumulated more proline and increased peroxidase (POD) activity and the contents of photosynthetic pigments and carbohydrates. For plants previously in vitro cultured with 15 g L-1 sucrose and NAA, no differences were found for proline content and there were reductions in activities of peroxidase (POD), catalase (CAT) and poliphenoloxidase (PPO), and in contents of carbohydrates, with progress of ex vitro water deficit. After rehydration, plants showed physiological recovery, with enzymatic activities and contents of metabolites similar to those found in the controls not submitted to dehydration, regardless of the previous in vitro culture conditions. These results show that micropropagated P. encholirioides has high tolerance to dehydration once in ex vitro conditions, which can ensure the survival of plants from tissue culture when transferred to its natural environment, emphasizing the importance of such biotechnology for the propagation of endangered species.
Abd El-Baki, G K; Mostafa, Doaa
2014-12-01
The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.
Molecular and genetic control of plant thermomorphogenesis.
Quint, Marcel; Delker, Carolin; Franklin, Keara A; Wigge, Philip A; Halliday, Karen J; van Zanten, Martijn
2016-01-06
Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.
Barillot, Romain; Chambon, Camille; Andrieu, Bruno
2016-01-01
Background and Aims Improving crops requires better linking of traits and metabolic processes to whole plant performance. In this paper, we present CN-Wheat, a comprehensive and mechanistic model of carbon (C) and nitrogen (N) metabolism within wheat culms after anthesis. Methods The culm is described by modules that represent the roots, photosynthetic organs and grains. Each of them includes structural, storage and mobile materials. Fluxes of C and N among modules occur through a common pool and through transpiration flow. Metabolite variations are represented by differential equations that depend on the physiological processes occurring in each module. A challenging aspect of CN-Wheat lies in the regulation of these processes by metabolite concentrations and the environment perceived by organs. Key Results CN-Wheat simulates the distribution of C and N into wheat culms in relation to photosynthesis, N uptake, metabolite turnover, root exudation and tissue death. Regulation of physiological activities by local concentrations of metabolites appears to be a valuable feature for understanding how the behaviour of the whole plant can emerge from local rules. Conclusions The originality of CN-Wheat is that it proposes an integrated view of plant functioning based on a mechanistic approach. The formalization of each process can be further refined in the future as knowledge progresses. This approach is expected to strengthen our capacity to understand plant responses to their environment and investigate plant traits adapted to changes in agronomical practices or environmental conditions. A companion paper will evaluate the model. PMID:27497242
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent. PMID:25792804
Ayurvedic medicinal plants for Alzheimer's disease: a review
2012-01-01
Alzheimer's disease is an age-associated, irreversible, progressive neurodegenerative disease that is characterized by severe memory loss, unusual behavior, personality changes, and a decline in cognitive function. No cure for Alzheimer's exists, and the drugs currently available to treat the disease have limited effectiveness. It is believed that therapeutic intervention that could postpone the onset or progression of Alzheimer's disease would dramatically reduce the number of cases in the next 50 years. Ayurvedic medicinal plants have been the single most productive source of leads for the development of drugs, and over a hundred new products are already in clinical development. Indeed, several scientific studies have described the use of various Ayurvedic medicinal plants and their constituents for treatment of Alzheimer's disease. Although the exact mechanism of their action is still not clear, phytochemical studies of the different parts of the plants have shown the presence of many valuable compounds, such as lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids, that show a wide spectrum of pharmacological activities, including anti-inflammatory, anti-amyloidogenic, anti-cholinesterase, hypolipidemic, and antioxidant effects. This review gathers research on various medicinal plants that have shown promise in reversing the Alzheimer's disease pathology. The report summarizes information concerning the phytochemistry, biological, and cellular activities and clinical applications of these various plants in order to provide sufficient baseline information that could be used in drug discovery campaigns and development process, thereby providing new functional leads for Alzheimer's disease. PMID:22747839
Identification of Actin-Binding Proteins from Maize Pollen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, C.J.
Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPsmore » (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.« less
[Transgenic plants as medicine production systems].
Okada, Y
1997-10-01
Transgenic plants are emerging as an important system for the expression of many recombinant proteins, especially those intended for therapeutic purpose. The production of foreign proteins in plants has several advantages. In terms of required equipment and cost, mass production in plants is far easier to achieve than techniques involving animal cells. Successful production of several proteins in plants, including human serum albumin, haemoglobin, monoclonal antibodies, viral antigens (vaccines), enkephalin, and trichosanthin, has been reported. Particularly, the demonstration that vaccine antigens can be produced in plants in their native, immunogenic forms opens exciting possibilities for the "bio-farming" of vaccines. If the antigens are orally active, food-based "edible vaccines" could allow economical production. In this review, I will discuss the progress that has been made by several groups in what is now an expanding area of medicine research that utilizes transgenic plants.
The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses
Bai, Yuling; Sunarti, Sri; Kissoudis, Christos; Visser, Richard G. F.; van der Linden, C. G.
2018-01-01
In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.
He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu
2018-03-28
Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1995-12-31
This report describes the progress made during this reporting period of a two-year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions--MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators--for the execution of this effort. A long- term contract for the procurement of 750,000 tons of 20 mm. {times} 0 raw coal for the new plant has been negotiated with the Katowice Coal Holding Company. This long-term lease includes a site near the defunct Kazimierz-Julius preparation plant that has all of the infrastructure needed to build and operate the proposed 300 tph stoker coal preparation plant. The search for markets for utilizing surplus production from the new plant continues. Bid prices for a prefabricated (modular) 300-tph turnkey preparation plant delivered to Poland for preparing a stoker coal ranged from $3.2 to $3.5 million dollars (US). A commitment has been negotiated with Bank PKO S.A. to provide $2 million in cost-share financing toward the capital cost of the project. This sum, when added to the $2.4 million in DOE- BPU funds will be adequate to meet the $3 to $3.5 million needed to finance the purchase, erection and start-up of the 300 tph processing plant.« less
Initial empirical analysis of nuclear power plant organization and its effect on safety performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.; McLaughlin, S.D.; Osborn, R.N.
This report contains an analysis of the relationship between selected aspects of organizational structure and the safety-related performance of nuclear power plants. The report starts by identifying and operationalizing certain key dimensions of organizational structure that may be expected to be related to plant safety performance. Next, indicators of plant safety performance are created by combining existing performance measures into more reliable indicators. Finally, the indicators of plant safety performance using correlational and discriminant analysis. The overall results show that plants with better developed coordination mechanisms, shorter vertical hierarchies, and a greater number of departments tend to perform more safely.
NASA Astrophysics Data System (ADS)
Tardieu, F.
2012-04-01
Water transfer in the SPAC is essentially linked to environmental conditions such as evaporative demand or soil water potential, and physical parameters such as soil hydraulic capacity or hydraulic conductivity. Models used in soil science most often represent the plant via a small number of variables such as the water flux that crosses the base of the stem or the root length (or area) in each soil layer. Because there is an increasing demand for computer simulations of plants that would perform better under water deficit, models of SPA water transfer are needed that could better take into account the genetic variability of traits involved in plant hydraulics. (i) The water flux through the plant is essentially limited by stomata, which present a much higher resistance to water flow than those in the soil - root continuum. This can lead to unexpected relations between flux, leaf water potential and root hydraulic conductance. (ii) A large genetic variability exists within and between species for stomatal control, with important consequences for the minimum soil water potential that is accessible to the plant. In particular, isohydric plants that maintain leaf water potential in a narrow range via stomatal control have a higher (nearer to 0) 'wilting point' than anisohydric plants that allow leaf water potential to reach very low values. (iii) The conductivity for water transfer in roots and shoots is controlled by plants via aquaporins. It largely varies with time of the day, water and nutrient status, in particular via plant hormones and circadian rhythms. Models of SPA water transfer with a time definition of minutes to hour should probably not ignore this, while those with longer time steps are probably less sensitive to changes in plant hydraulic conductivity. (iv) The "dogma" that dense root systems provide tolerance to water deficit is profoundly affected when the balance "H2O gain vs C investment" is taken into account. At least three programmes of recurrent selection for drought tolerance have resulted in a decrease in root biomass. Overall, it is now crucial to take into account the rapid progress in plant hydraulics in SPA models of water transfer. Several projects aim at this objective, in particular the EU project DROPS that gathers geneticists, plant modellers and soil modellers.
ERIC Educational Resources Information Center
Amir, On; Ariely, Dan
2008-01-01
This article investigates the influence of progress certainty and discrete progress markers (DPMs) on performance and preferences. The authors suggest that the effects of DPMs depend on whether progress certainty is high or low. When the distance to the goal is uncertain, DPMs can help reduce uncertainty and thus improve performance and increase…
Xu, Jianfeng; Zhang, Ningning
2014-12-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Docking of Natural Products against Neurodegenerative Diseases: General Concepts.
Ribeiro, Frederico F; Mendonca Junior, Francisco J B; Ghasemi, Jahan B; Ishiki, Hamilton M; Scotti, Marcus T; Scotti, Luciana
2018-01-01
Since antiquity, humanity has used medicinal plant preparations to cure its ills, and, as research has progressed, new technologies have enabled more investigations on natural compounds which originate from plants, fungi, and marine species. The health benefits that these natural products provide have become a motive for treatment studies of various diseases. Among them, the neurodegenerative diseases like Alzheimer's and Parkinson's, a major age-related neurodegenerative disorder. Studies with natural products for neurodegenerative diseases (particularly through molecular docking) search for, and then focus on those ligands which offer effective inhibition of the enzymes monoamine oxidase and acetylcholinesterase. This review introduces the main concepts involved in docking studies with natural products: and also in our group, which has conducted a docking study of natural products isolated from Tetrapterys mucronata for inhibition of acetylcholinesterase. We observed that compounds 4 and 5 formed more interactions than the theoretical ligand, but that ligands with greater activity also interacted with residues HIS 381 and GLN 527. We have reported on our docking study performed with AChE and alkaloids isolated from the plant Tetrapterys mucronata. Our docking results corroborate the experiments conducted, and emphasize the positive contribution that these theoretical studies involving natural products bring to the fight against neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ghorani-Azam, Adel; Sepahi, Samaneh; Khodaverdi, Elham; Mohajeri, Seyed Ahmad
2018-05-22
Vascular dementia (VaD) generally refers to memory deficits and cognitive abnormalities that are resulted from vascular disease. In this study, we aimed to systematically review the literature wherein therapeutic effects of medicinal plants have been studied on VaD. A systematic literature search was performed in the PubMed, Scopus, Web of Science, Google Scholar, and other databases using VaD, and medicinal plants as key terms. No strict inclusion criteria were defined, and almost all clinical studies were included. A total of 524 articles were found, of which only 28 relevant articles with 3461 studied patients were included to this systematic review. The results showed that medicinal plants, particularly Sancaijiangtang and Ginkgo biloba could improve behavioral and psychological symptoms, working memory, Mini-Mental State Examination, and activities of daily living as well as neuropsychiatric features. It was also shown that the age, average progression of the disease, and the type of folk medicines effective in treating the disease are important factors in the management of VaD. The results of this review indicated that herbal therapy can be a potential candidate in the treatment of VaD; however, further studies are needed to confirm such efficiency. Copyright © 2018 John Wiley & Sons, Ltd.
The molecular composition of ambers
Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.
1988-01-01
Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken bymore » the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation plant. Quotations for a 300tph modular heavy-medium cyclone plant are being evaluated.« less
Evaluating physiological responses of plants to salinity stress
Negrão, S.; Schmöckel, S. M.; Tester, M.
2017-01-01
Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, M. H.; Tirawat, R.; Kessinger, K. A.
The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less
Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...
2015-05-01
The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less
Non-coding RNAs and Their Roles in Stress Response in Plants.
Wang, Jingjing; Meng, Xianwen; Dobrovolskaya, Oxana B; Orlov, Yuriy L; Chen, Ming
2017-10-01
Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.
Popescu, George V; Noutsos, Christos; Popescu, Sorina C
2016-01-01
In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.
Schäfer, Holger; Wink, Michael
2009-12-01
Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens.
Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A
2015-03-01
Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Plant based dietary supplement increases urinary pH
Berardi, John M; Logan, Alan C; Rao, A Venket
2008-01-01
Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg) was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03) with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body. PMID:18990209
Metabolic engineering of plant oils and waxes for use as industrial feedstocks.
Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G
2013-02-01
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Will genomic selection be a practical method for plant breeding?
Nakaya, Akihiro; Isobe, Sachiko N.
2012-01-01
Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117
Gravity, chromosomes, and organized development in aseptically cultured plant cells
NASA Technical Reports Server (NTRS)
Krikorian, Abraham D.
1993-01-01
The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.
ERIC Educational Resources Information Center
Lin, Tin-Chun
2014-01-01
A total of 389 business students in undergraduate introductory microeconomics classes in spring 2007, 2009, and 2011, and fall 2012 participated in an exam performance progress study. Empirical evidence suggested that missing classes decelerates and hampers high-performing students' exam performance progress. Nevertheless, the evidence does…
Design with constructal theory: Steam generators, turbines and heat exchangers
NASA Astrophysics Data System (ADS)
Kim, Yong Sung
This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.
Claxton, Larry D
2015-01-01
Much progress has been made in reducing the pollutants emitted from various combustors (including diesel engines and power plants) by the use of alternative fuels; however, much more progress is needed. Not only must researchers improve fuels and combustors, but also there is a need to improve the toxicology testing and analytical chemistry methods associated with these complex mixtures. Emissions from many alternative carbonaceous fuels are mutagenic and carcinogenic. Depending on their source and derivation, alternative carbonaceous fuels before combustion may or may not be genotoxic; however, in order to know their genotoxicity, appropriate chemical analysis and/or bioassay must be performed. Newly developed fuels and combustors must be tested to determine if they provide a public health advantage over existing technologies - including what tradeoffs can be expected (e.g., decreasing levels of PAHs versus increasing levels of NOx and possibly nitroarenes in ambient air). Another need is to improve exposure estimations which presently are a weak link in doing risk analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.
Performance calculations for 200-1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Staiger, P. J.
1981-01-01
The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.
Progress in Decommissioning the Humboldt Bay Power Plant - 13604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John
Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) tomore » Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)« less
Bakshi, Madhunita; Oelmüller, Ralf
2014-01-01
WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469
Methylome evolution in plants.
Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank
2016-12-20
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
Occurrence and Biosynthesis of Alkyl Hydroxycinnamates in Plant Lipid Barriers
Domergue, Frédéric; Kosma, Dylan K.
2017-01-01
The plant lipid barriers cuticle and suberin represent one of the largest biological interfaces on the planet. They are comprised of an insoluble polymeric domain with associated organic solvent-soluble waxes. Suberin-associated and plant cuticular waxes contain mixtures of aliphatic components that may include alkyl hydroxycinnamates (AHCs). The canonical alkyl hydroxycinnamates are comprised of phenylpropanoids, typically coumaric, ferulic, or caffeic acids, esterified with long chain to very long chain fatty alcohols. However, many related structures are also present in the plant kingdom. Although their functions remain elusive, much progress has been made on understanding the distribution, biosynthesis, and deposition of AHCs. Herein a summary of the current state of knowledge on plant AHCs is provided. PMID:28665304
Calcium/Calmodulin-Mediated Gravitropic Response in Plants
NASA Technical Reports Server (NTRS)
Poovaiah, B. W.
2002-01-01
Plant organs respond to different physical signals such as gravity, light and touch. Gravity gives plants proper orientation, resulting in the proper form that we take for granted; the roots grow down into soil and shoots grow towards the light. Under microgravity conditions, as in space, plant growth patterns lack a clear sense of direction. Calcium and calmodulin (CaM) play an important role in gravity signal transduction. However, the molecular and biochemical mechanisms involved in gravity signal transduction are not clearly understood. The goal of this project was to gain a fundamental understanding of how calcium/calmodulin-mediated signaling is involved in gravity signal transduction in plants. During the grant period, significant progress was made in elucidating the role of calmodulin and its target proteins in gravitropism.
NASA Astrophysics Data System (ADS)
Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta
2016-05-01
The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using this unique portable device will have on a parabolic trough solar power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R.; Melin, A.; Burress, T.
The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate andmore » more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.« less
Plants and phytochemicals for Huntington's disease.
Choudhary, Sunayna; Kumar, Puneet; Malik, Jai
2013-07-01
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor dysfunction, including chorea and dystonia, emotional disturbances, memory, and weight loss. The medium spiny neurons of striatum and cortex are mainly effected in HD. Various hypotheses, including molecular genetics, oxidative stress, excitotoxicity, metabolic dysfunction, and mitochondrial impairment have been proposed to explain the pathogenesis of neuronal dysfunction and cell death. Despite no treatment is available to fully stop the progression of the disease, there are treatments available to help control the chorea. The present review deals with brief pathophysiology of the disease, plants and phytochemicals that have shown beneficial effects against HD like symptoms. The literature for the current review was collected using various databases such as Science direct, Pubmed, Scopus, Sci-finder, Google Scholar, and Cochrane database with a defined search strategy.
Persistent, circulative transmission of begomoviruses by whitefly vectors.
Rosen, Ran; Kanakala, Surapathrudu; Kliot, Adi; Cathrin Pakkianathan, Britto; Farich, Basheer Abu; Santana-Magal, Nadine; Elimelech, Meytar; Kontsedalov, Svetlana; Lebedev, Galina; Cilia, Michelle; Ghanim, Murad
2015-12-01
Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of this virus group and B. tabaci. Mechanisms and proteins encoded by the insect vector and its bacterial symbionts, which have been shown to be important for virus transmission, have been identified and thoroughly studied. Despite the economic importance of this group of viruses and their impact on the global agriculture, progress in investigating the virus-vector interactions is moving slowly when compared with similar virus-vector systems in plants and animals. Major advances in this field and future perspectives will be discussed in this review. Copyright © 2015 Elsevier B.V. All rights reserved.
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2012-0938; FRL-9374-7] Pesticide Reregistration Performance Measures and Goals; Annual Progress Report; Notice of Availability AGENCY: Environmental... EPA's progress report in meeting its performance measures and goals for pesticide reregistration...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0959; FRL-9343-5] Pesticide Reregistration Performance Measures and Goals; Annual Progress Report; Notice of Availability AGENCY: Environmental... EPA's progress report in meeting its performance measures and goals for pesticide reregistration...
30 CFR 827.13 - Coal preparation plants: Interim performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...
30 CFR 827.13 - Coal preparation plants: Interim performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...
30 CFR 827.13 - Coal preparation plants: Interim performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...
30 CFR 827.13 - Coal preparation plants: Interim performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...
30 CFR 827.13 - Coal preparation plants: Interim performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...
Translational plant proteomics: a perspective.
Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep
2012-08-03
Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.
Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C
2017-01-01
Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple possible responses by life forms to progressive exclusion of herbivores, we also found some important generalities. Changes in leaf traits of legumes and grasses correlated with their increasing dominance in the short-grass vegetation and plants were more efficient at constructing photosynthetic tissue when herbivores are present with few exceptions. These results demonstrate that vertebrate and invertebrate herbivores are essential to maintain plant species richness and resource-use efficiency. © 2016 by the Ecological Society of America.
Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals
Liew, Pit Sze; Hair-Bejo, Mohd
2015-01-01
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. PMID:26351454
Regulatory mechanisms for specification and patterning of plant vascular tissues.
Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku
2010-01-01
Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.
[Progress on salt resistance in autopolyploid plants].
Zhu, Hong Ju; Liu, Wen Ge
2018-04-20
Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during the first Quarter of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for this effort. An evaluation of the washability characteristics of five samples of two coals (Piast and Janina) showed that {open_quotes}compliance-quality{close_quotes} stoker coals could be produced which contained less than 640 g of SO{sub 2}/KJ (1.5 lbs SO{sub 2}/MMBtu) at acceptable plant yields by washing in heavy media cyclones. A search for long-term sources of raw coal to feed the proposed new 300 tph stoker coal preparation plant was initiated. As the quantity of stoker coal that will be produced (300 tph) at the new plant will exceed the demand by MPEC, a search for other and additional potential markets was begun. Because the final cost of the stoker coal will be influenced by such factors as the plant`s proximity to both the raw coal supply and the customers, the availability and cost of utilities, and the availability of suitable refuse disposal areas, these concerns were the topic of discussions at the many meetings that were held between EFH Coal and the Polish Partners.« less
Cheng, Fang; Cheng, Zhihui
2015-01-01
Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant allelopathy. PMID:26635845
Kofroňová, Monika; Mašková, Petra; Lipavská, Helena
2018-05-07
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Unique Chernobyl Cranes for Deconstruction Activities in the New Safe Confinement - 13542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parameswaran, N.A. Vijay; Chornyy, Igor; Owen, Rob
2013-07-01
The devastation left behind from the Chernobyl nuclear power plant (ChNPP) Unit 4 accident which occurred on April 26, 1986 presented unparalleled technical challenges to the world engineering and scientific community. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter (OS) that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant (ChNPP) Unit. One of the major mechanical handling systems to be installed in themore » NSC is the Main Cranes System (MCS). The planned decontamination and decommissioning or dismantling (D and D) activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the NSC, will require large and sophisticated cranes. The article will focus on the unique design features of the MCS for the D and D activities. (authors)« less
Enhanced plastochromanol-8 accumulation during reiterated drought in maize (Zea mays L.).
Fleta-Soriano, Eva; Munné-Bosch, Sergi
2017-03-01
Plastochromanol-8 (PC-8) belongs to the group of tocochromanols, and together with tocopherols and carotenoids, might help protect photosystem II from photoinhibition during environmental stresses. Here, we aimed to unravel the time course evolution of PC-8 together with that of vitamin E compounds, in maize (Zea mays L.) plants exposed to reiterated drought. Measurements were performed in plants grown in a greenhouse subjected to two consecutive cycles of drought-recovery. PC-8 contents, which accounted for more than 25% of tocochromanols in maize leaves, increased progressively in response to reiterated drought stress. PC-8 contents paralleled with those of vitamin E, particularly α-tocopherol. Profiling of the stress-related phytohormones (ABA, jasmonic acid and salicylic acid) was consistent with a role of ABA in the regulation of PC-8 and vitamin E biosynthesis during drought stress. Results also suggest that PC-8 may help tocopherols prevent damage to the photosynthetic apparatus. A better knowledge of the ABA-dependent regulation of PC-8 may help us manipulate the contents of this important antioxidant in crops. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Small RNA sorting: matchmaking for Argonautes
Czech, Benjamin; Hannon, Gregory J.
2013-01-01
Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes — microRNAs (miRNAs) and small interfering RNAs (siRNAs) — in plants and animals. PMID:21116305
Solar thermal plant impact analysis and requirements definition
NASA Technical Reports Server (NTRS)
Gupta, Y. P.
1980-01-01
Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.
GRID INDEPENDENT FUEL CELL OPERATED SMART HOME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Mohammad S. Alam
2003-12-07
A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journalmore » paper is under review. Three theses have been completed and three additional theses are in progress.« less
[Metabolomics research of medicinal plants].
Duan, Li-Xin; Dai, Yun-Tao; Sun, Chao; Chen, Shi-Lin
2016-11-01
Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. Copyright© by the Chinese Pharmaceutical Association.
Xu, Jianfeng; Zhang, Ningning
2014-01-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170
Wang, Jianfei; Shen, Qirong
2006-11-01
Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.
Coletta-Filho, Helvecio D; Daugherty, Matthew P; Ferreira, Cléderson; Lopes, João R S
2014-04-01
Over the last decade, the plant disease huanglongbing (HLB) has emerged as a primary threat to citrus production worldwide. HLB is associated with infection by phloem-limited bacteria ('Candidatus Liberibacter' spp.) that are transmitted by the Asian citrus psyllid, Diaphorina citri. Transmission efficiency varies with vector-related aspects (e.g., developmental stage and feeding periods) but there is no information on the effects of host-pathogen interactions. Here, acquisition efficiency of 'Candidatus Liberibacter asiaticus' by D. citri was evaluated in relation to temporal progression of infection and pathogen titer in citrus. We graft inoculated sweet orange trees with 'Ca. L. asiaticus'; then, at different times after inoculation, we inspected plants for HLB symptoms, measured bacterial infection levels (i.e., titer or concentration) in plants, and measured acquisition by psyllid adults that were confined on the trees. Plant infection levels increased rapidly over time, saturating at uniformly high levels (≈10(8) copy number of 16S ribosomal DNA/g of plant tissue) near 200 days after inoculation-the same time at which all infected trees first showed disease symptoms. Pathogen acquisition by vectors was positively associated with plant infection level and time since inoculation, with acquisition occurring as early as the first measurement, at 60 days after inoculation. These results suggest that there is ample potential for psyllids to acquire the pathogen from trees during the asymptomatic phase of infection. If so, this could limit the effectiveness of tree rouging as a disease management tool and would likely explain the rapid spread observed for this disease in the field.
ERIC Educational Resources Information Center
Kane, Kevin M.
2013-01-01
The idea of "best practices" in the performing arts is introduced as a set of progressive educational values and pedagogical strategies that attempt to not only train youth in the performing arts, but also to be transformative. This article builds on the work of educational reformer John Dewey to describe progressive performing arts…
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Plant biology in space: recent accomplishments and recommendations for future research.
Ruyters, G; Braun, M
2014-01-01
Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Mng'ong'o, Frank C.; Sambali, Joseph J.; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J.; Turner, Elizabeth L.; Nyogea, Daniel; Ensink, Jeroen H. J.; Moore, Sarah J.
2011-01-01
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28–0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09–0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38–0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed. PMID:22022471
Mng'ong'o, Frank C; Sambali, Joseph J; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J; Turner, Elizabeth L; Nyogea, Daniel; Ensink, Jeroen H J; Moore, Sarah J
2011-01-01
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28-0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09-0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38-0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed.
The Shock and Vibration Digest. Volume 13, Number 10
1981-10-01
shells when they impact rigid barriers. Such behavior is of interest in the protection of nuclear power plants . Progress on the MENTOR finite...pipewhip restraints during a postulated pipe break in a nuclear power plant . Other experimental work [124] also provioes valuable information on the...World Congr. Space Enclosures, Bldg. Res. Ctr., Con- cordia Univ., Montreal, pp 321-327 (July 1976). 48. Stolarski, H., "Assessment of Large Displace
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1981-01-01
The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).
Richard W. Hemingway
1998-01-01
Hemingwayâs book review brings into focus Edwin Haslam's career, devoted to defining the significance of plant polyphenols. That historical perspective focuses on the progress made in this science over the last 30 years. Most important, this book demonstrates the myriad ways that plant polypheÂnols influence our lives. Professor Haslam makes a strong argument for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, C.; Einset, J.
1958-10-31
Preliminary data are presented from observations on the response of three varieties of apples and one variety of grapes subjected to a wide range of radiation damage at growth stages ramging from seed to matuee plants. Ultimate objectives of the study are the radioinduced production of mutations in apples and grapes. (C.H.)
Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J
2010-06-01
*Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.
Ramsey, E.; Rangoonwala, A.
2008-01-01
We describe newly developed remote sensing tools to map the localized occurrences and regional distribution of the marsh dieback in coastal Louisiana (Fig. 1). As a final goal of our research and development, we identified what spectral features accompanied the onset of dieback and could be directly linked to the optical signal measured at the satellite. In order to accomplish our research goal, we carried out two interlinked objectives. First, we determined the spectral features within the hyperspectral spectra of the impacted plant that could be linked to the spectral return. This was accomplished by measuring the differences in leaf optical properties of impacted and non impacted marsh plants in such a way that the measured differences could be linked to the dieback onset and progression. The spectral analyses were constrained to selected wavelengths (bands of reflectance data) historically associated with changes in leaf composition and structure caused by changes in the plant biophysical environment. Second, we determined what changes in the canopy reflectance (canopy signal sensed at the satellite) could be linked to dieback onset and progression. Third, we transformed a suite of six Landsat Thematic Mapper images collected before, during, and in the final stages of dieback to maps of dieback occurrences. ??2008 IEEE.
Multifunctional fructans and raffinose family oligosaccharides
den Ende, Wim Van
2013-01-01
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans. PMID:23882273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawn St. Germain; Ronald Farris; Heather Medeman
2013-09-01
This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S.more » will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.« less
Traka, Maria H; Mithen, Richard F
2011-07-01
The rise in noncommunicable chronic diseases associated with changing diet and lifestyles throughout the world is a major challenge for society. It is possible that certain dietary components within plants have roles both in reducing the incidence and progression of these diseases. We critically review the types of evidence used to support the health promoting activities of certain phytochemicals and plant-based foods and summarize the major contributions but also the limitations of epidemiological and observational studies and research with the use of cell and animal models. We stress the need for human intervention studies to provide high-quality evidence for health benefits of dietary components derived from plants.
[Double fertilization in flowering plants: 1898-2008].
Kordium, E L
2008-01-01
A short review of the results of investigations in the field of plant embryology in vivo and in vitro which are directly connected with the discovery of double fertilization in flowering plants by S.G. Navashin is presented. These results have been obtained by using the methods of electron and fluorescence microscopy, cytophotometry, cultures of isolated ovules, sperms, eggs, and embryo sac central cells. The question on an origin of the female gametophyte of flowering plants, double fertilization, and endosperm are discussed. It is emphasized that the progress in this field is connected mostly with the study of molecular processes which control the development and functioning of a female gametophyte and sporophyte at the early stages of ontogenesis.
The Relevance of Higher Plants in Lead Compound Discovery Programs⊥
Kinghorn, A. Douglas; Pan, Li; Fletcher, Joshua N.; Chai, Heebyung
2011-01-01
Along with compounds from terrestrial microorganisms, the constituents of higher plants have provided a substantial number of the natural product-derived drugs used currently in western medicine. Interest in the elucidation of new structures of the secondary metabolite constituents of plants has remained high among the natural products community over the first decade of the 21st century, particularly of species that are used in systems of traditional medicine or are utilized as botanical dietary supplements. In this review, progress made in the senior author’s laboratory in research work on naturally occurring sweeteners and other taste-modifying substances and on potential anticancer agents from tropical plants will be described. PMID:21650152
IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Zahle, Frederik; Merz, Karl
This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among differentmore » levels of fidelity in the system.« less
Extraction and purification methods in downstream processing of plant-based recombinant proteins.
Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz
2016-04-01
During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.
Deception in plants: mimicry or perceptual exploitation?
Schaefer, H Martin; Ruxton, Graeme D
2009-12-01
Mimicry involves adaptive resemblance between a mimic and a model. However, despite much recent research, it remains contentious in plants. Here, we review recent progress on studying deception by flowers, distinguishing between plants relying on mimicry to achieve pollination and those relying on the exploitation of the perceptual biases of animals. We disclose fundamental differences between both mechanisms and explain why the evolution of exploitation is less constrained than that of mimicry. Exploitation of perceptual biases might thus be a precursor for the gradual evolution of mimicry. Increasing knowledge on the sensory and cognitive filters in animals, and on the selective pressures that maintain them, should aid researchers in tracing the evolutionary dynamics of deception in plants.
A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle.
Müller, Nico; Wenzel, Sandra; Zou, Yong; Künzel, Sandra; Sasso, Severin; Weiß, Daniel; Prager, Katja; Grossman, Arthur; Kottke, Tilman; Mittag, Maria
2017-05-01
Cryptochromes are flavin-binding proteins that act as blue light receptors in bacteria, fungi, plants, and insects and are components of the circadian oscillator in mammals. Animal and plant cryptochromes are evolutionarily divergent, although the unicellular alga Chlamydomonas reinhardtii ( Chlamydomonas throughout) has both an animal-like cryptochrome and a plant cryptochrome (pCRY; formerly designated CPH1). Here, we show that the pCRY protein accumulates at night as part of a complex. Functional characterization of pCRY was performed based on an insertional mutant that expresses only 11% of the wild-type pCRY level. The pcry mutant is defective for central properties of the circadian clock. In the mutant, the period is lengthened significantly, ultimately resulting in arrhythmicity, while blue light-based phase shifts show large deviations from what is observed in wild-type cells. We also show that pCRY is involved in gametogenesis in Chlamydomonas pCRY is down-regulated in pregametes and gametes, and in the pcry mutant, there is altered transcript accumulation under blue light of the strictly light-dependent, gamete-specific gene GAS28 pCRY acts as a negative regulator for the induction of mating ability in the light and for the loss of mating ability in the dark. Moreover, pCRY is necessary for light-dependent germination, during which the zygote undergoes meiosis that gives rise to four vegetative cells. In sum, our data demonstrate that pCRY is a key blue light receptor in Chlamydomonas that is involved in both circadian timing and life cycle progression. © 2017 American Society of Plant Biologists. All Rights Reserved.
Zhao, Yunde
2018-04-29
It has been a dominant dogma in plant biology that the self-organizing polar auxin transport system is necessary and sufficient to generate auxin maxima and minima that are essential for almost all aspects of plant growth and development. However, in the past few years, it has become clear that local auxin biosynthesis is required for a suite of developmental processes, including embryogenesis, endosperm development, root development, and floral initiation and patterning. Moreover, it was discovered that local auxin biosynthesis maintains optimal plant growth in response to environmental signals, including light, temperature, pathogens, and toxic metals. In this article, I discuss the recent progress in auxin biosynthesis research and the paradigm shift in recognizing the important roles of local auxin biosynthesis in plant biology.
Hormonal control of cold stress responses in plants.
Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte
2016-02-01
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.
Life cycle performances of log wood applied for soil bioengineering constructions
NASA Astrophysics Data System (ADS)
Kalny, Gerda; Strauss-Sieberth, Alexandra; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. Soil bioengineering is a construction technique that uses biological components for hydraulic and civil engineering solutions. Soil bioengineering solutions are based on the application of living plants and other auxiliary materials including among others log wood. This kind of construction material supports the soil bioengineering system as long as the plants as living construction material overtake the stability function. Therefore it is important to know about the durability and the degradation process of the wooden logs to retain the integral performance of a soil bio engineering system. These aspects will be considered within the framework of the interdisciplinary research project „ELWIRA Plants, wood, steel and concrete - life cycle performances as construction materials". Therefore field investigations on soil bioengineering construction material, specifically European Larch wood logs, of different soil bioengineering structures at the river Wien have been conducted. The drilling resistance as a parameter for particular material characteristics of selected logs was measured and analysed. The drilling resistance was measured with a Rinntech Resistograph instrument at different positions of the wooden logs, all surrounded with three different backfills: Fully surrounded with air, with earth contact on one side and near the water surface in wet-dry conditions. The age of the used logs ranges from one year old up to 20 year old. Results show progress of the drilling resistance throughout the whole cross section as an indicator to assess soil bioengineering construction material. Logs surrounded by air showed a higher drilling resistance than logs with earth contact and the ones exposed to wet-dry conditions. Hence the functional capability of wooden logs were analysed and discussed in terms of different levels of degradation. The results contribute to a sustainable and resource conserving handling with building materials in frame of construction and maintenance works of soil bioengineering structures.
Okumura, Tetsu; Tokuno, Shinichi
2015-01-01
In Japan, participants in the disaster-specific medical transportation system have received ongoing training since 2002, incorporating lessons learned from the Great Hanshin Earthquake. The Great East Japan Earthquake occurred on March 11, 2011, and the very first disaster-specific medical transport was performed. This article reviews in detail the central government's control and coordination of the disaster medical transportation process following the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant Accident. In total, 124 patients were air transported under the coordination of the C5 team in the emergency response headquarter of the Japanese Government. C5 includes experts from the Cabinet Office, Cabinet Secretariat, Fire Defense Agency, Ministry of Health, Labour and Welfare, and Ministry of Defense. In the 20-30 km evacuation zone around the Fukushima Daiichi nuclear power plant, 509 bedridden patients were successfully evacuated without any fatalities during transportation. Many lessons have been learned in disaster-specific medical transportation. The national government, local government, police, and fire agencies have made significant progress in their mutual communication and collaboration. Fortunately, hospital evacuation from the 20-30 km area was successfully performed with the aid of local emergency physicians and Disaster Medical Assistance Teams (DMATs) who have vast experience in patient transport in the course of day-to-day activities. The emergency procedures that are required during crises are an extension of basic daily procedures that are performed by emergency medical staff and first responders, such as fire fighters, emergency medical technicians, or police officers. Medical facilities including nursing homes should have a plan for long-distance (over 100 km) evacuation, and the plan should be routinely reevaluated with full-scale exercises. In addition, hospital evacuation in disaster settings should be supervised by emergency physicians and be handled by disaster specialists who are accustomed to patient transportation on a daily basis.
Acuña-Rodríguez, Ian S.; Torres-Díaz, Cristian; Hereme, Rasme
2017-01-01
The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species’ physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread. PMID:28948096
[Research progress on mutation by spaceflight in medicinal plants breeding].
Yan, Shuo; Gao, Wenyuan; Lu, Fuping; Zhao, Runhuai
2010-02-01
Space breeding in medicinal plants is special characteristics in China. Compared with other plants, in spite of a relatively small number, Medicinal plants have more obvious characteristics and advantages. Research on medicinal plants has also been carried into all aspects, such as biological traits, physiology and biochemistry, genomics, as well as differences in chemical composition, and chemical composition analysis is also involved. However, compared with other plants, especially crops and vegetables, biological research is an obvious deficiency, that is mainly reflected in the insufficient genetics and breeding researches, the stability of genetic traits from generation to generation were not followed up and in-depth study in breeding areas was not carried out. If medicinal plants resources from space with the genetic stability good quality were selected, it would address the problem of lack of resources and ease the pressure on wild resources of medicinal plants. It would at the same time play an important role in promoting the development of medicinal botany space breeding and the implementation of modernization of traditional Chinese medicine.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarath, Gautam
This grant funded work was undertaken to develop fundamental biological knowledge of the factors affecting the complex plant trait “fitness” in switchgrass (Panicum virgatum L.), a plant being developed as a biomass crop. Using a diverse range of latitudinally-adapted switchgrass plants, genomic, molecular and physiological studies were performed to track a number of different aspects of plant genetics and physiology over the course of the growing season. Work was performed on both genetically unrelated and genetically related plants. Plants were established in the field from seedlings raised in a greenhouse, or from clones present in other field nurseries. Field grownmore » plants were used as the source of all tissues. The three objectives of this proposal were:(1) Transcript Profiling, Metabolomics, and C and N Partitioning and Recycling in Crowns and Rhizomes of Switchgrass over two growing seasons; (2) Gene Profiling During Regreening and Dormancy of Bulked Segregants; (3) Extent of Linkage Disequilibrium in Populations for Adaptation and Fitness Traits Being Developed for Central and Northern USA, that Show Significant Heterosis. Objective 1 results: Plants were labeled using 13CO2 (a stable isotope) using an acrylic chamber constructed specifically for this purpose. Plants became labeled with 13C and label decayed in aerial tissues over the course of the growing season. Varying amounts of 13C were recovered in the rhizomes. These data are being analyzed. Plants were also labeled with 15N-urea. Plants absorbed significant amounts of label that was remobilized to the growing shoots. N-dynamics would suggest that a portion of the 15N absorbed into the crowns and rhizomes is sequestered below ground. Variable amounts of 15N were translocated from the shoots to the roots over the course of the growing season. Polar metabolites extracted from a diverse array of rhizomes were analyzed using GCMS. Data indicated that there was a significant shift in metabolite pools over the course of the growing season, and differences in the levels of specific metabolites could be linked to the progression of dormancy. Several metabolites that accumulate in dormant rhizomes were identified. Some of these metabolites could be potentially linked to winter-survival of switchgrass. Extensive high-throughput sequencing was conducted on crown and rhizome samples collected from field grown plants. Initial work was performed on a Roche 454 system. All later work was performed on an Illumina sequencing-by-synthesis system. Some of these datasets have been published as peer-reviewed papers, other data are currently being analyzed and being readied for publication. Objective 2 results: Genetically related but phenotypically divergent plants from an octaploid switchgrass population were grown in a replicated field nursery. Rhizomes were harvested at four different times over the course of the growing season from plants with high winter survival and those with lower winter survival. RNA-Seq was performed on harvested materials. Initial analysis suggests that plants with lowered winter survival experience a greater level of cellular stress in dormant tissues. This aspect of plant function is being probed in greater depth. Objective 3 results: A total of 592 individual clones with three clonal replications in a randomized complete block design from each of five populations used in Objective 1 studies were rated for heading date in 2012 and 2014, green-up day of year in 2013, anthesis date in 2012, and yield in 2012, they were also subjected to NIR spectroscopy to derive cell wall composition estimates based on prior NIR calibrations. Plants were genotyped via a genotyping by sequencing (GBS) approach from reduced representation libraries constructed with adaptors that identified each individual. Libraries generated with the restriction enzyme PstI and called SNPs using Samtools after alignment to version 1.1 of the switchgrass genome sequence. A total of approximately 40,000 SNPs were found. These were then further filtered to eliminate markers with a minor allele frequency of < 0.05. The results of population analysis using STRUCTURE with expected population sizes or cluster numbers (K), clearly shows the hybrid composition of the KxS population and discriminated easily between upland (Summer) and lowland (Kanlow) populations. Under an assumption of 5 distinct populations there were detectable differences in allele frequencies between subpopulations within the three Kanlow populations particularly with respect to Kanlow EM and Kanlow base. We detected 110 SNPs with an allele frequency difference of ≥ 0.2 between Kanlow EM and Kanlow base populations, while 120 SNPs showed an allele frequency difference of ≥ 0.15 between Kanlow N1 and Kanlow base populations. These data are being readied for publication.« less
Initial Progress Rates as Related to Performance in a Personalized System of Instruction
ERIC Educational Resources Information Center
Henneberry, John K.
1976-01-01
Discusses research which explored the hypothesis that students who are fast starters in a personalized system of instruction psychology course would perform better and maintain faster course progress rates than slow starters. Findings indicate that students' starting pace is predictive of course performance and subsequent progress rates.…
Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.
2005-01-01
We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development. PMID:16040649
NASA Astrophysics Data System (ADS)
Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.
2012-12-01
The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.
US Efforts in Support of Examinations at Fukushima Daiichi – 2016 Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amway, P.; Andrews, N.; Bixby, Willis
Although it is clear that the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limitedmore » full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings (TEPCO) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document reports recent results from the US Forensics Effort to use information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. This Forensics Effort, which is sponsored by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of US experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO information from Daiichi that address these needs. Examples presented in this report demonstrate that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities.« less
Architectural switches in plant thylakoid membranes.
Kirchhoff, Helmut
2013-10-01
Recent progress in elucidating the structure of higher plants photosynthetic membranes provides a wealth of information. It allows generation of architectural models that reveal well-organized and complex arrangements not only on whole membrane level, but also on the supramolecular level. These arrangements are not static but highly responsive to the environment. Knowledge about the interdependency between dynamic structural features of the photosynthetic machinery and the functionality of energy conversion is central to understanding the plasticity of photosynthesis in an ever-changing environment. This review summarizes the architectural switches that are realized in thylakoid membranes of green plants.
An overview of plant centromeres.
Wang, Guixiang; Zhang, Xueyong; Jin, Weiwei
2009-09-01
The centromere is a defining region that mediates chromosome attachment to kinetochore microtubules and proper segregation of the sister chromatids. Intriguingly, satellite DNA and centromeric retrotransposon as major DNA constituents of centromere showed baffling diversification and species-specific. However, the key kinetochore proteins are conserved in both plants and animals, particularly the centromere-specific histone H3-like protein (CENH3) in all functional centromeres. Recent studies have highlighted the importance of epigenetic mechanisms in the establishment and maintenance of centromere identity. Here, we review the progress and compendium of research on plant centromere in the light of recent data.
Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony
2012-01-01
Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559
[Plant physiological and molecular biological mechanism in response to aluminium toxicity].
Liu, Qiang; Zheng, Shaojian; Lin, Xianyong
2004-09-01
Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.
Grettenberger, Ian M; Tooker, John F
2016-09-01
Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...) and (e) of this section. The progress reports must be in the form of implementation plan revisions...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...) and (e) of this section. The progress reports must be in the form of implementation plan revisions...
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
Genetic variation for sensitivity to a thyme monoterpene in associated plant species.
Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine
2010-04-01
Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.
Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues
Xu, Changcheng; Shanklin, John
2016-02-03
One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less
Production of novel biopolymers in plants: recent technological advances and future prospects.
Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M
2015-04-01
The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Self-organizing periodicity in development: organ positioning in plants.
Bhatia, Neha; Heisler, Marcus G
2018-02-08
Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding. © 2018. Published by The Company of Biologists Ltd.
Plant cellulose synthesis: CESA proteins crossing kingdoms.
Kumar, Manoj; Turner, Simon
2015-04-01
Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.
Xu, Changcheng; Shanklin, John
2016-04-29
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.