Science.gov

Sample records for plant simulation system

  1. Gravisensitivity of various host plant -virus systems in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  2. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  3. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  4. An advanced configuration management system for full scope power plant simulators

    SciTech Connect

    Storm, J.; Goemann, A.

    1996-11-01

    In August 1993 KSG Kraftwerks-Simulator-Gesellschaft, Germany, awarded a contract to STN ATLAS Elektronik for the delivery of two full scope replica training simulators for the German BWR plants Isar 1 and Philipsburg 1, known as the double simulator project S30 (S31/S32). For both projects a computer based Configuration Management System (CMS) was required to overcome deficiencies of older simulator systems in terms of limited upgrade and maintenance capabilities and incomplete documentation. The CMS allows complete control over the entire simulator system covering all software- and hardware-items and therewith exceed quality assurance requirements as defined in ISO 9000-3 which gives recommendations for software configuration management only. The system is realized under the project using the UNIX based relational database system EMPRESS and is in use as a development- and maintenance-tool to improve simulator quality and ensure simulator configuration integrity.

  5. SIMULATED COAL GAS MCFC POWER PLANT SYSTEM VERIFICATION

    SciTech Connect

    1998-10-31

    This is the Technical Progress Report covering October 1998. All tasks have been completed, except for those discussed on the following pages. Unocal estimated the costs of dismantling and packaging the test facility for storage and shipment. The scope of work for the contract has been modified to accommodate the dismantling and packaging of the plant. An amendment to Sub-Contract No. MCP-9-UNO between M-C Power and Unocal has been executed which includes the Scope of Work in Unocal's cost estimate.

  6. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    SciTech Connect

    Meng Lin; Dong Hou; Zhihong Xu; Yanhua Yang; Ronghua Zhang

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, just can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is

  7. Systems simulation of cotton gin waste as a supplemental fuel in a coal powered generating plant

    SciTech Connect

    Parnell, C.B.; Grubaugh, E.K.; Johnston, M.T.; Ladd, K.L.

    1981-01-01

    A systems simulation model of gin trash use at a Lamb County, Texas, power plant was developed. The model is being used to study gin trash supply, both quantity and transportation, fixed and variable cost, and economic benefit/costs of gin trash utilization. Preliminary results indicate the positive feasibility of using gin trash as a supplemental fuel in a coal fired power plant. (MHR)

  8. Simulation of the flue gas cleaning system of an RDF incineration power plant.

    PubMed

    Jannelli, E; Minutillo, M

    2007-01-01

    Because of the stringent pollutant emission standards introduced with the European Union guidelines for waste incineration, it is very important to optimize the flue gas cleaning systems which are able to result in a low environmental impact according to the emission limits. In this paper a thermochemical model has been proposed for the simulation of the flue gas cleaning system of an RDF incineration plant. The model simulates the operation of the flue-gas treatment section and the combustion section by using a simplified approach. The combustion includes the grate incinerator and the post-combustion chamber, while the cleaning section includes the NO(x) reduction process (urea injection) and the scrubbing of SO(2) and HCl (Ca(OH)(2) as sorbent). The modelling has been conducted by means of ASPEN PLUS code. The simulation results have been validated with the operating data. The model proposed by the authors can be a useful tool in both evaluating the efficiency of the gas cleaning system by verifying the environmental pollution of an incinerator power plant in nominal operating conditions and in forecasting the efficiency of the cleaning system in off-design operating conditions.

  9. Assessment of solar options for small power systems applications. Volume V. SOLSTEP: a computer model for solar plant system simulations

    SciTech Connect

    Bird, S.P.

    1980-09-01

    The simulation code, SOLSTEP, was developed at the Pacific Northwest Laboratory to facilitate the evaluation of proposed designs for solar thermal power plants. It allows the user to analyze the thermodynamic and economic performance of a conceptual design for several field size-storage capacity configurations. This feature makes it possible to study the levelized energy cost of a proposed concept over a range of plant capacity factors. The thermodynamic performance is analyzed on a time step basis using actual recorded meteorological and insolation data for specific geographic locations. The flexibility of the model enables the user to analyze both central and distributed generation concepts using either thermal or electric storage systems. The thermodynamic and economic analyses view the plant in a macroscopic manner as a combination of component subsystems. In the thermodynamic simulation, concentrator optical performance is modeled as a function of solar position; other aspects of collector performance can optionally be treated as functions of ambient air temperature, wind speed, and component power level. The power conversion model accounts for the effects of ambient air temperature, partial load operation, auxiliary power demands, and plant standby and startup energy requirements. The code was designed in a modular fashion to provide efficient evaluations of the collector system, total plant, and system economics. SOLSTEP has been used to analyze a variety of solar thermal generic concepts involving several collector types and energy conversion and storage subsystems. The code's straightforward models and modular nature facilitated simple and inexpensive parametric studies of solar thermal power plant performance.

  10. GAS-PASS/H : a simulation code for gas reactor plant systems.

    SciTech Connect

    Vilim, R. B.; Mertyurek, U.; Cahalan, J. E.; Nuclear Engineering Division; Texas A&M Univ.

    2004-01-01

    A simulation code for gas reactor plant systems has been developed. The code is intended for use in safety analysis and control studies for Generation-IV reactor concepts. We developed it anticipating an immediate application to direct cycle gas reactors. By programming in flexibility as to how components can be configured, we believe the code can be adapted for the indirect-cycle gas reactors relatively easy. The use of modular components and a general purpose equation solver allows for this. There are several capabilities that are included for investigating issues associated with direct cycle gas reactors. Issues include the safety characteristics of single shaft plants during coastdown and transition to shutdown heat removal following unprotected accidents, including depressurization, and the need for safety grade control systems. Basic components provided include turbine, compressor, recuperator, cooler, bypass valve, leak, accumulator, containment, and flow junction. The code permits a more rapid assessment of design concepts than is achievable using RELAP. RELAP requires detail beyond what is necessary at the design scoping stage. This increases the time to assemble an input deck and tends to make the code slower running. The core neutronics and decay heat models of GAS-PASS/H are taken from the liquid-metal version of MINISAS. The ex-reactor component models were developed from first principles. The network-based method for assembling component models into a system uses a general nonlinear solver to find the solution to the steady-state equations. The transient time-differenced equations are solved implicitly using the same solver. A direct cycle gas reactor is modeled and a loss of generator load transient is simulated for this reactor. While normally the reactor is scrammed, the plant safety case will require analysis of this event with failure of various safety systems. Therefore, we simulated the loss of load transient with a combined failure of the

  11. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    SciTech Connect

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  12. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    SciTech Connect

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  13. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language.

    PubMed

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe

    2012-01-01

    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  14. L-Py: An L-System Simulation Framework for Modeling Plant Architecture Development Based on a Dynamic Language

    PubMed Central

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe

    2012-01-01

    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom. PMID:22670147

  15. Simulating solar power plant variability :

    SciTech Connect

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  16. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  17. Geographical information systems and air pollution simulation for Megalopolis' electric power plant in Peloponnese, Greece.

    PubMed

    Theophanides, Mike; Anastassopoulou, Jane; Theophanides, Theophile

    2014-01-01

    The growth and sophistication of geographic information systems (GIS) have propelled us into a new era of environmental analyses. Air pollution is a growing concern in populated areas as many recent studies have associated high levels of pollution with increased illnesses and mortality. The study will focus on the toxicity levels incurred by radioactive lignite-burning Power Generation facilities located in Megalopolis, Greece. An estimate of pollution emissions followed by dispersion simulations for various atmospheric conditions will be given. The exercise will be integrated with a Geographical Information System (GIS) for defining the emission sources and visualizing the dispersion of pollutants over the geographical terrain. Data samples were collected from vegetation in the surrounding areas and analyzed for radioactivity. High energy levels (up to 4-5 times higher than recommended standards, (UNCEAR, 1982) were found in several samples containing (226)Ra, (232)Th, (234)Th, (40)K and (238)U. The study concludes that air quality and vegetation of the neighbouring areas is adversely affected by industrial waste. Greater pollution controls and air quality monitoring should be applied for the benefit and health of its citizens. Radioactivity in food and water and inhaled air become very dangerous for public health thus, the levels of radioactivity should be kept within UNCEAR 1982 limits.

  18. Dynamic simulator for PEFC propulsion plant

    SciTech Connect

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  19. Web- and system-code based, interactive, nuclear power plant simulators

    SciTech Connect

    Kim, K. D.; Jain, P.; Rizwan, U.

    2006-07-01

    Using two different approaches, on-line, web- and system-code based graphical user interfaces have been developed for reactor system analysis. Both are LabVIEW (graphical programming language developed by National Instruments) based systems that allow local users as well as those at remote sites to run, interact and view the results of the system code in a web browser. In the first approach, only the data written by the system code in a tab separated ASCII output file is accessed and displayed graphically. In the second approach, LabVIEW virtual instruments are coupled with the system code as dynamic link libraries (DLL). RELAP5 is used as the system code to demonstrate the capabilities of these approaches. From collaborative projects between teams in geographically remote locations to providing system code experience to distance education students, these tools can be very beneficial in many areas of teaching and R and D. (authors)

  20. Simulation of systems for shock wave/compression waves damping in technological plants

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.

    2016-09-01

    At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.

  1. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  2. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  3. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1987-01-01

    Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.

  4. Simulation of action potential propagation in plants.

    PubMed

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity.

  5. Plant Systems Biology (editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  6. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  7. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Venketeswaran, S.

    1988-01-01

    Experiments were carried out on plant tissue cultures, seed germination, seedling development and plants grown on Simulated Lunar Soil to evaluate the potential of future development of lunar based agriculture. The studies done to determine the effect of the placement of SLS on tissue cultures showed no adverse effect of SLS on tissue cultures. Although statistically insignificant, SLS in suspension showed a comparatively higher growth rate. Observations indicate the SLS, itself cannot support calli growth but was able to show a positive effect on growth rate of calli when supplemented with MS salts. This positive effect related to nutritive value of the SLS was found to have improved at high pH levels, than at the recommended low pH levels for standard media. Results from seed germination indicated that there is neither inhibitory, toxicity nor stimulatory effect of SLS, even though SLS contains high amounts of aluminum compounds compared to earth soil. Analysis of seeding development and growth data showed significant reduction in growth rate indicating that, SLS was a poor growth medium for plant life. This was confirmed by the studies done with embryos and direct plant growth on SLS. Further observations attributed this poor quality of SLS is due to it's lack of essential mineral elements needed for plant growth. By changing the pH of the soil, to more basic conditions, the quality of SLS for plant growth could be improved up to a significant level. Also it was found that the quality of SLS could be improved by almost twice, by external supply of major mineral elements, directly to SLS.

  8. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  9. Distribution system simulator

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Kirkham, H.; Rahman, S.

    1986-01-01

    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.

  10. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  11. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  12. Virtual Simulation of Vision 21 Energy Plants

    SciTech Connect

    Syamlal, Madhava; Felix, Paul E.; Osawe, Maxwell O.; Fiveland, Woodrow A.; Sloan, David G.; Zitney, Stephen E.; Joop, Frank; Cleetus, Joseph; Lapshin, Igor B.

    2001-11-06

    The Vision 21 Energy plants will be designed by combining several individual power, chemical, and fuel-conversion technologies. These independently developed technologies or technology modules can be interchanged and combined to form the complete Vision 21 plant that achieves the needed level of efficiency and environmental performance at affordable costs. The knowledge about each technology module must be captured in computer models so that the models can be linked together to simulate the entire Vision 21 power plant in a Virtual Simulation environment. Eventually the Virtual Simulation will find application in conceptual design, final design, plant operation and control, and operator training. In this project we take the first step towards developing such a Vision 21 Simulator. There are two main knowledge domains of a plant--the process domain (what is in the pipes), and the physical domain (the pipes and equipment that make up the plant). Over the past few decades, commercial software tools have been developed for each of these functions. However, there are three main problems that inhibit the design and operation of power plants: (1) Many of these tools, largely developed for chemicals and refining, have not been widely adopted in the power industry. (2) Tools are not integrated across functions. For example, the knowledge represented by computational fluid dynamics (CFD) models of equipment is not used in process-level simulations. (3) No tool exists for readily integrating the design and behavioral knowledge about components. These problems must be overcome to develop the Vision 21 Simulator. In this project our major objective is to achieve a seamless integration of equipment-level and process-level models and apply the integrated software to power plant simulations. Specifically we are developing user-friendly tools for linking process models (Aspen Plus) with detailed equipment models (FLUENT CFD and other proprietary models). Such integration will

  13. Plant model of KIPT neutron source facility simulator

    SciTech Connect

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.; Gohar, Yousry

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  14. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  15. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  16. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  17. Software simulator for multiple computer simulation system

    NASA Technical Reports Server (NTRS)

    Ogrady, E. P.

    1983-01-01

    A description is given of the structure and use of a computer program that simulates the operation of a parallel processor simulation system. The program is part of an investigation to determine algorithms that are suitable for simulating continous systems on a parallel processor configuration. The simulator is designed to accurately simulate the problem-solving phase of a simulation study. Care has been taken to ensure the integrity and correctness of data exchanges and to correctly sequence periods of computation and periods of data exchange. It is pointed out that the functions performed during a problem-setup phase or a reset phase are not simulated. In particular, there is no attempt to simulate the downloading process that loads object code into the local, transfer, and mapping memories of processing elements or the memories of the run control processor and the system control processor. The main program of the simulator carries out some problem-setup functions of the system control processor in that it requests the user to enter values for simulation system parameters and problem parameters. The method by which these values are transferred to the other processors, however, is not simulated.

  18. Data Systems Dynamic Simulator

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip

    1993-01-01

    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.

  19. Characterization of Minnesota lunar simulant for plant growth

    NASA Technical Reports Server (NTRS)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  20. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive

  1. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    SciTech Connect

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-07-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  2. Multivariable control of grinding plants: a comparative simulation study.

    PubMed

    Duarte, Manuel; Castillo, Alejandro; Sepúlveda, Florencio; Contreras, Angel; Giménez, Patricio; Castelli, Luis

    2002-01-01

    In this paper five multivariable adaptive and classical control strategies have been studied and implemented in a simulator of the copper grinding plant of CODELCO-Andina. The strategies presented were compared and, according to theory, exhibit good behavior. The extended horizon, pole-placement and model reference multivariable adaptive control strategies were formulated in discrete-time and use a model of the plant whose parameters are updated on line using the recursive least squares method along with UD factorization of the covariance matrix and variable forgetting factor. The direct Nyquist array and sequential loop closing techniques were also studied and simulated. The two-by-two multivariable system chosen to represent the grinding plant has the percentage of solids (density) of the pulp fed to the hydrocyclones (which is highly correlated with the percentage of +65 mesh in the overflow of hydrocyclones) and the sump level as output (controlled) variables. The water flow added to the sump and the speed of the pump are its input (manipulated) variables. All the algorithms tested by simulation exhibited good performance and were able to control the grinding plant in a stable fashion. Adaptive algorithms showed better performance than classical techniques, with the extended horizon and pole-placement algorithms proving to be the best. The fact that adaptive algorithms continuously adjust their parameters renders such controllers superior to those based on fixed parameters.

  3. Estimating reprocessing plant in-process inventories by simulation

    SciTech Connect

    Coulter, C.A.; Burr, T.L.; Hakkila, E.A.; Ai, H.; Kadokura, I.; Fujimaki, K.

    1995-09-01

    The Safeguards Systems Group`s generic simulation program FacSim was used to model the operation of the proposed Rokkasho Reprocessing Plant during an operating cycle consisting of a start-up phase, a period of steady-state operation, and a flush-out phase. The simulation results give a detailed account of nuclear material inventories in various process vessels as a function of time. As expected, it is found that the pulsed columns and the concentrator determine the rate at which the system responds to feed variations and transients; but the in-process inventory is dominated by the contents of the concentrator and tanks, and particularly by the contents of the tanks downstream from the concentrator. The results of the simulation were used for statistical studies of diversion detection, as described elsewhere in the Proceedings.

  4. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    PubMed

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2016-11-24

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release.

  5. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  6. Coupling expert systems and simulation

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Padalkar, S.; Rodriguez-Moscoso, J.; Hsieh, B. J.; Vinz, F.; Fernandez, K. R.

    1988-01-01

    A prototype coupled system called NESS (NASA Expert Simulation System) is described. NESS assists the user in running digital simulations of dynamic systems, interprets the output data to performance specifications, and recommends a suitable series compensator to be added to the simulation model.

  7. Transportation Anslysis Simulation System

    SciTech Connect

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at the level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account

  8. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  9. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Adel Sarofim; Bene Risio

    2002-07-28

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No.: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of the IGCC workbench. A series of parametric CFD simulations for single stage and two stage generic gasifier configurations have been performed. An advanced flowing slag model has been implemented into the CFD based gasifier model. A literature review has been performed on published gasification kinetics. Reactor models have been developed and implemented into the workbench for the majority of the heat exchangers, gas clean up system and power generation system for the Vision 21 reference configuration. Modifications to the software infrastructure of the workbench have been commenced to allow interfacing to the workbench reactor models that utilize the CAPE{_}Open software interface protocol.

  10. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Zumao Chen; Temi Linjewile; Adel Sarofim; Bene Risio

    2003-04-25

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two gasifier types. An improved process model for simulating entrained flow gasifiers has been implemented into the workbench. Model development has focused on: a pre-processor module to compute global gasification parameters from standard fuel properties and intrinsic rate information; a membrane based water gas shift; and reactors to oxidize fuel cell exhaust gas. The data visualization capabilities of the workbench have been extended by implementing the VTK visualization software that supports advanced visualization methods, including inexpensive Virtual Reality techniques. The ease-of-use, functionality and plug-and-play features of the workbench were highlighted through demonstrations of the workbench at a DOE sponsored coal utilization conference. A white paper has been completed that contains recommendations on the use of component architectures, model interface protocols and software frameworks for developing a Vision 21 plant simulator.

  11. Simulating neural systems with Xyce.

    SciTech Connect

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  12. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  13. Portable plant health measurement system

    NASA Astrophysics Data System (ADS)

    Aksoy, Nejat

    1999-01-01

    This system is designed to assist diagnosis of the plant health globally. The system is formed by portable plant health measurement devices connected to a diagnosis and analysis center through a flexible information network. A flexible network is formed so that users from the remote areas as well as internet are able to use the system. The hardware and software is designed in an open technology for easier upgrades. Portable plant health measurement instrument is a networkable leaf flash spectrophotometer capable of measuring Qa, Electrochromy, P700, Fluorescence, S Fluorescence, reflectance spectra, temperature, humidity and image of the leaf with GPS information. The network and intelligent user interface options of the system can be used by any commercially or user designed instrument.

  14. Water balance measurements and simulations of maize plants on lysimeters

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2016-04-01

    simulated leaf area indexes (LAIs) at the beginning of the analyzed period. At the end of the measurement period, green LAI decreases and thus Tpot gets lower. At daily time steps transpiration simulated by SPASS agrees well with the measurements while CERES simulations overestimate Tact. Differences in ETact simulations compared to the lysimeter measurements mainly occur due to the different choice of ETpot-models. In conclusion, with the help of canopy models the water balance of the lysimeter system can be reasonably well simulated. However, the applied crop models oversimplify plant water transport and thus may not describe the water uptake and hence crop growth dynamics well enough for application of expected future climate scenarios.

  15. Plant-wide dynamic simulation of an IGCC plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    To eliminate the harmful effects of greenhouse gases, especially that of CO2, future coalfired power plants need to consider the option for CO2 capture. The loss in efficiency for CO2 capture is less in an Integrated Gasification Combined Cycle (IGCC) plant compared to other conventional coal combustion processes. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. With this objective in mind, a detailed plant-wide dynamic simulation of an IGCC plant with CO2 capture has been developed. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of about 96 mol% of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. The clean syngas is sent to a gas turbine (GT) followed by a heat recovery steam generator (HRSG). The steady state results are validated with data from a commercial gasifier. A 5 % ramp increase in the flowrate of coal is introduced to study the system dynamics. To control the conversion of CO at a desired level in the WGS reactors, the steam/CO ratio is manipulated. This strategy is found to be efficient for this operating condition. In the absence of an efficient control strategy in the AGR process, the environmental emissions exceeded the limits by a great extent.

  16. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three.

  17. Developing Higher Plant Systems in Space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1983-01-01

    The effects of hypogravity and microgravity environments on plant cells are discussed. Experiments on embryos of carrots are discussed. Simulation and spacecraft environments were used in experiments.

  18. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  19. Block Oriented Simulation System (BOSS)

    NASA Technical Reports Server (NTRS)

    Ratcliffe, Jaimie

    1988-01-01

    Computer simulation is assuming greater importance as a flexible and expedient approach to modeling system and subsystem behavior. Simulation has played a key role in the growth of complex, multiple access space communications such as those used by the space shuttle and the TRW-built Tracking and Data Relay Satellites (TDRS). A powerful new simulator for use in designing and modeling the communication system of NASA's planned Space Station is being developed. Progress to date on the Block (Diagram) Oriented Simulation System (BOSS) is described.

  20. Using a data-assimilation system to assess the influence of fire on simulated carbon fluxes and plant traits for the Australian continent

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Natural disturbances, such as fire, play an important role in the carbon balance of terrestrial ecosystems. Both burned emissions and the impact of fire on plant growth must be considered to quantify the magnitude of the current and future terrestrial carbon sink. However, fire is rarely represented in Earth System Models, and the usual classification of ecosystems in a limited number of global plant functional types does not take into account local adaptations to fire regimes that enable resilience of ecosystems. We show the importance of these mechanisms with a terrestrial model-data fusion scheme applied to the fire-prone Australian continent. We use the CARbon DAta-MOdel fraMework (CARDAMOM) to assimilate time series of MODIS LAI and GFED burned area and use the Harmonized World Soil Database and remote-sensing based estimates of Above-Ground Biomass as prior knowledge for initial conditions. In each pixel, a Markov Chain Monte-Carlo algorithm is used to optimise parameters according to observations. Meanwhile, ecological and dynamical constraints representative of real world processes constrain parameter inter-dependencies and long-term pool dynamics. CARDAMOM outputs maps of ecosystem carbon fluxes and parameters as well as their uncertainty sampled from the posterior distribution provided by the MCMC. We perform two data-assimilations over Australia. The first experiment is a control run that includes fire drivers while the second experiment does not consider the occurrence of fires. Results of the first experiment are comparable to previous estimates and show that Australian ecosystems have most likely been acting as a carbon sink since the year 2000 with a large fire-driven inter-annual variability (best estimate of 264 ± 172 Tg C yr-1). However, our results indicate that the most intense fire seasons may temporarily turn the continent into a net source of carbon offsetting the natural carbon sink of the same year. Comparing the parameter maps generated

  1. Simulating The SSF Information System

    NASA Technical Reports Server (NTRS)

    Deshpande, Govind K.; Kleine, Henry; Younger, Joseph C.; Sanders, Felicia A.; Smith, Jeffrey L.; Aster, Robert W.; Olivieri, Jerry M.; Paul, Lori L.

    1993-01-01

    Freedom Operations Simulation Test (FROST) computer program simulates operation of SSF information system, tracking every packet of data from generation to destination, for both uplinks and downlinks. Collects various statistics concerning operation of system and provides reports of statistics at intervals specified by user. FROST also incorporates graphical-display capability to enhance interpretation of these statistics. Written in SIMSCRIPT 11.5.

  2. Solar power plant performance evaluation: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  3. A model for plant lighting system selection

    NASA Technical Reports Server (NTRS)

    Ciolkosz, D. E.; Albright, L. D.; Sager, J. C.; Langhans, R. W.

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  4. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  5. Large-Eddy Simulation of Wind-Plant Aerodynamics

    SciTech Connect

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

    2012-01-01

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.

  6. Simulating Groundwater-Plant-Atmosphere Interactions in a Semiarid Savanna

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2013-12-01

    Groundwater serves as one of the main water sources for deep rooted phreatophytic vegetation. Such vegetation acts as the linkage between groundwater, land surface and atmosphere. Through plant groundwater uptake and hydraulic redistribution (HR), the dynamics of relatively deep groundwater can influence ET and soil moisture of top soil layers. In this work, we first developed a plant scale model to simulate groundwater uptake and HR driven by the potential gradients along the groundwater-soil-plant-atmosphere continuum (GSPAC). The model included a new plant water stress function based on the 'vulnerability curve' theory in order to integrate the influences of both soil water and groundwater on transpiration. The model was calibrated and validated with measured ET, soil moisture, and leaf water potential data and was able to capture both energy and water dynamics along the GSPAC. We then coupled this plant scale model into a spatial distributed groundwater-land surface model (ParFlow.CLM). The revisions to ParFlow.CLM allow it to explicitly describe root water uptake and HR of different species, allowing for the study of how plant groundwater use and HR influence regional water budget and climate. This new uptake formulation was applied to simulate a heterogeneous savanna system at an AmeriFlux site in California. The site is dominated by blue oaks which can access both soil water and groundwater and grasses which only depend on soil water. The results match previous field measurements indicating that the oaks use most soil water during wet season and switch to groundwater use in dry season to buffer the impacts of drought. Therefore, the water and energy dynamics at this site showed the soil moisture controlled pattern in wet season, and the vegetation and groundwater controlled pattern in dry season. With HR, the rainfall is distributed into deeper soil in wet season by hydraulic descent. Such water will be lifted into shallower soil to promote transpiration in

  7. MCFC and microturbine power plant simulation

    NASA Astrophysics Data System (ADS)

    Orecchini, F.; Bocci, E.; Di Carlo, A.

    The consistent problem of the CO 2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad © to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).

  8. Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint

    SciTech Connect

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

    2012-01-01

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.

  9. Equivalencing the Collector System of a Large Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hocheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    As the size and number of wind power plants (also called wind farms) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large wind power plant may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies. The layout of the wind power plant, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the wind power plant. Our effort to develop an equivalent representation of the collector system for wind power plants is an attempt to simplify power system modeling for future developments or planned expansions of wind power plants. Although we use a specific large wind power plant as a case study, the concept is applicable for any type of wind power plant.

  10. LED Systems Target Plant Growth

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  11. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit

  12. Chitosan Effects on Plant Systems

    PubMed Central

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  13. A multiprocessor operating system simulator

    SciTech Connect

    Johnston, G.M.; Campbell, R.H. . Dept. of Computer Science)

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  14. A Multiprocessor Operating System Simulator

    NASA Technical Reports Server (NTRS)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  15. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  16. Total simulation of operator team behavior in emergencies at nuclear power plants.

    PubMed

    Takano, K; Sunaoshi, W; Suzuki, K

    2000-09-01

    In a large and complex system (i.e., a space aeronautics and nuclear power plant) it would be valuable to conduct operator training and support to demonstrate standard operators' behavior in coping with an anomaly caused by multiple malfunctions in which procedures would not have been stipulated previously. A system simulating operator team behavior including individual operator's cognitive behavior, his operations and physical behavior, and even verbal communication among team members, has been developed for a typical commercial nuclear power plant. This simulation model is not a scenario-based system but a complete knowledge-based system, based on the mental model that was envisaged by detailed analyses of experimental results obtained in the full-scope plant simulator. This mental model is composed of a set of knowledge bases and rules able to generate both diagnosis and prognosis depending on the observed situation even for multiple malfunctions. Simulation results of operator team behavior and plant dynamics were compared with corresponding experiments in several anomalies of multiple malfunctions. The comparison showed a reasonable agreement, so the simulation conditions were varied on cognitive task processing speed of individual operators, on team role sharing scheme, and on human machine interface (1st generation to 2nd generation control panel) to assess the sensitivity of this simulation model. Finally, it was shown that this simulation model has applications for the use of training standards and computer aided operator support systems.

  17. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-04-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of our IGCC workbench. Preliminary CFD simulations for single stage and two stage ''generic'' gasifiers using firing conditions based on the Vision 21 reference configuration have been performed. Work is continuing on implementing an advanced slagging model into the CFD based gasifier model. An investigation into published gasification kinetics has highlighted a wide variance in predicted performance due to the choice of kinetic parameters. A plan has been outlined for developing the reactor models required to simulate the heat transfer and gas clean up equipment downstream of the gasifier. Three models that utilize the CCA software protocol have been integrated into a version of the IGCC workbench. Tests of a CCA implementation of our CFD code into the workbench demonstrated that the CCA CFD module can execute on a geographically remote PC (linked via the Internet) in a manner that is transparent to the user. Software tools to create ''walk-through'' visualizations of the flow field within a gasifier have been demonstrated.

  18. Construction of Simulation Model for OTEC Plant Using Uehara Cycle

    NASA Astrophysics Data System (ADS)

    Goto, Satoru; Motoshima, Yoshiki; Sugi, Takenao; Yasunaga, Takeshi; Ikegami, Yasuyuki; Nakamura, Masatoshi

    Ocean Thermal Energy Conversion (OTEC) converts heat energy into electricity using 20-27[°C] temperature difference between warm seawater at surface and cold seawater in depth. In this paper, a simulation model for an OTEC plant, which uses the Uehara cycle with an ammonia-water mixture as working fluid, is constructed based on the mass balance and the heat balance. Moreover, a method of the initial value determination for numerical simulation is developed. Accuracy of the simulation model was evaluated by comparing with the experimental results of a pilot OTEC plant.

  19. A Computational Workbench Environment For Virtual Power Plant Simulation

    SciTech Connect

    Bockelie, Michael J.; Swensen, David A.; Denison, Martin K.; Sarofim, Adel F.

    2001-11-06

    In this paper we describe our progress toward creating a computational workbench for performing virtual simulations of Vision 21 power plants. The workbench provides a framework for incorporating a full complement of models, ranging from simple heat/mass balance reactor models that run in minutes to detailed models that can require several hours to execute. The workbench is being developed using the SCIRun software system. To leverage a broad range of visualization tools the OpenDX visualization package has been interfaced to the workbench. In Year One our efforts have focused on developing a prototype workbench for a conventional pulverized coal fired power plant. The prototype workbench uses a CFD model for the radiant furnace box and reactor models for downstream equipment. In Year Two and Year Three, the focus of the project will be on creating models for gasifier based systems and implementing these models into an improved workbench. In this paper we describe our work effort for Year One and outline our plans for future work. We discuss the models included in the prototype workbench and the software design issues that have been addressed to incorporate such a diverse range of models into a single software environment. In addition, we highlight our plans for developing the energyplex based workbench that will be developed in Year Two and Year Three.

  20. Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation

    SciTech Connect

    Zitney, S.E.; McCorkle, D.; Yang, C.; Jordan, T.; Swensen, D.; Bryden, M.

    2007-05-01

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

  1. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  2. Heartbeat Model for Component Failure in Simulation of Plant Behavior

    SciTech Connect

    R. W. Youngblood; R. R. Nourgaliev; D. L. Kelly; C. L. Smith; T-N. Dinh

    2011-03-01

    As part of the Department of Energy’s “Light Water Reactor Sustainability Program” (LWRSP), tools and methodology for risk-informed characterization of safety margin are being developed for use in supporting decision-making on plant life extension after the first license renewal. Beginning with the traditional discussion of “margin” in terms of a “load” (a physical challenge to system or component function) and a “capacity” (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize realistic probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system behavior. This way of thinking about margin comports with work done in the last 10 years. However, current capabilities to model in this way are limited: it is currently possible, but difficult, to validly simulate enough time histories to support quantification in realistic problems, and the treatment of environmental influences on reliability is relatively artificial in many existing applications. The INL is working on a next-generation safety analysis capability (widely referred to as “R7”) that will enable a much better integration of reliability-related and phenomenology-related aspects of margin. In this paper, we show how to implement cumulative damage (“heartbeat”) models for component reliability that lend themselves naturally to being included as part of the phenomenology simulation. Implementation of this modeling approach relies on the way in which the phenomenology simulation implements its dynamic time step management. Within this approach, component failures influence the phenomenology, and the phenomenology influences the component failures.

  3. The development of the fast-running simulation pressurized water reactor plant analyzer code (NUPAC-1)

    SciTech Connect

    Sasaki, K.; Terashita, N.; Ogino, T. . Central Research Lab.)

    1989-06-01

    This article discusses a pressurized water reactor plant analyzer code (NUPAC-1) has been developed to apply to an operator support system or an advanced training simulator. The simulation code must produce reasonably accurate results as well as fun in a fast mode for realizing functions such as anomaly detection, estimation of unobservable plant internal states, and prediction of plant state trends. The NUPAC-1 code adopts fast computing methods, i.e., the table fitting method of the state variables, time-step control, and calculation control of heat transfer coefficients, in order to attain accuracy and fast-running capability.

  4. Software Framework for Advanced Power Plant Simulations

    SciTech Connect

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  5. Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor.

    PubMed

    Vitale, Alessandro; Pedrazzini, Emanuela

    2005-08-01

    The production of safe pharmaceuticals at affordable costs is one of the great challenges of our times. Research has proven that transgenic plants can fulfill this need. This review focuses on the peculiar features of plant cells that allow high accumulation of recombinant proteins. The endomembrane system and the secretory pathway of plant cells in themselves offer a fascinating model of protein sorting, and in practical terms, represent the potential for the facile and very low-cost purification of recombinant pharmaceutical proteins.

  6. Simulation and experimental research of 1MWe solar tower power plant in China

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Wang, Zhifeng; Xu, Ershu

    2016-05-01

    The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.

  7. Torque Simulator for Rotating Systems

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1982-01-01

    New torque brake simulates varying levels of friction in bearings of rotating body. Rolling-tail torque brake uses magnetic force to produce friction between rotating part and stationary part. Simulator electronics produce positive or negative feedback signal, depending on direction of rotation. New system allows for first time in-depth study of effects of tail-fin spin rates on pitch-, yaw-, and roll-control characteristics.

  8. Simulation Systems for Cognitive Psychology

    DTIC Science & Technology

    1982-08-01

    the deve )pment of SNOBOL). 5.1 The First Generation Of Psychological Simulation Languages Therefore, the first generatiov’ of specialized languages...SIMULATION SYSTEMS FOR COGNITIVE PSYCHOLOGY Robert Neche University of Pittsburgh. August 1982 Technical Report No. UPITT/LRDC/ONR/APS-12 This...research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014

  9. New data on the effects of simulated microgravity on viral infection development in wheat plants

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya

    The aim of research was to identify the effects of simulated microgravity on plant relations with the most widespread and damageful viruses of important agricultural crops, particularly wheat with wheat streak mosaic virus (WSMV). The experiments were carried out in autumn of 2007. The object of research were spring wheat plants of the Apogee variety (third reproduction) grown by us under clinorotation in 2002 - 2003 and multiplied in 2005 in the hothouse of the biological faculty of Kyiv National Taras Shevchenko University and the wheat streak mosaic virus. Microgravity was simulated using KG - 8 and "Cycle- 2" clinostats with horizontal and vertical clinorotation (HC and VC). In the first variant the axis of plant growth is placed horizontally and coincides with the axis of container rotation; in the second variant the axis is placed vertically and perpendicular to the axis of rotation. Virus identification in plants and quantitative determination of antigens were carried out using ELISA procedure and electron microscopy. Under the action of simulated microgravity, in KG -8 the lowering of height of infected plants as compared with healthy did not exceed this parameter in plants grown in motionless containers, as the percent of lowering in both variants with WSMV infection was the same - about 15 It was detected, that "WSMV - host plant" system was endowed with a certain gravisensitivity, and the action of simulated microgravity on this system was connected with the formation of reactions in host plant, which limit the reproduction of viruses in the cells. Longterm influence of simulated microgravity lowered the activity of viral pathogens in the system "virus - host" even in the third reproduction. Te influence of simulated microgravity caused the stress in wheat plants but its intensity was not threshold and plants could adapt themselves to the action of stress agent. This proves the possibility of the growth and development of plants under conditions of

  10. Modeling, simulation, and control of an extraterrestrial oxygen production plant

    NASA Technical Reports Server (NTRS)

    Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.

    1991-01-01

    The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.

  11. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  12. Process simulation and modeling for gas processing plant

    NASA Astrophysics Data System (ADS)

    Alhameli, Falah Obaid Kenish Mubarak

    Natural gas is one of the major energy sources and its demand is increasing rapidly due to its environmental and economic advantages over other fuels. Gas processing is an essential component of natural gas system. In this work, gas processing plant is introduced with the objective of meeting pipeline gas quality. It consists of separation, sweetening and dehydration units. The separation unit contains phase separators along with stabilizer (conventional distillation column). The sweetening unit is an amine process with MDEA (Methyl DiEthanol Amine) solvent. The dehydration unit is glycol absorption with TEG (TriEthyleneGlycol) solvent. ProMaxRTM 3.2 was used to simulate the plant. Box-Behnken design was applied to build a black-box model using design of experiments (DoE). MinitabRTM 15 was used to generate and analyse the design. The chosen variables for the model were 10. They represent the gas feed conditions and units' parameters. The total runs were 170. They were successfully implemented and analysed. Total energy of the plant and water content for the product gas models were obtained. Case study was conducted to investigate the impact of H2S composition increase in the feed gas. The models were used for the case study with the objective of total energy minimization and constraint of 4 lb/MMscf for water content in the product gas. Lingo 13 was used for the optimization. It was observed that the feed pressure had the highest influence among the other parameters. Finally, some recommendations were pointed out for the future works.

  13. Systems Engineering Simulator (SES) Simulator Planning Guide

    NASA Technical Reports Server (NTRS)

    McFarlane, Michael

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  14. Plant health sensing system for determining nitrogen status in plants

    NASA Astrophysics Data System (ADS)

    Thomasson, J. A.; Sui, Ruixiu; Read, John J.; Reddy, K. R.

    2004-03-01

    A plant health sensing system was developed for determining nitrogen status in plants. The system consists of a multi-spectral optical sensor and a data-acquisition and processing unit. The optical sensor"s light source provides modulated panchromatic illumination of a plant canopy with light-emitting diodes, and the sensor measures spectral reflectance through optical filters that partition the energy into blue, green, red, and near-infrared wavebands. Spectral reflectance of plants is detected in situ, at the four wavebands, in real time. The data-acquisition and processing unit is based on a single board computer that collects data from the multi-spectral sensor and spatial information from a global positioning system receiver. Spectral reflectance at the selected wavebands is analyzed, with algorithms developed during preliminary work, to determine nitrogen status in plants. The plant health sensing system has been tested primarily in the laboratory and field so far, and promising results have been obtained. This article describes the development, theory of operation, and test results of the plant health sensing system.

  15. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  16. Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods.

    PubMed

    Ludwig, T; Kern, P; Bongards, M; Wolf, C

    2011-01-01

    The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.

  17. Systems simulations supporting NASA telerobotics

    NASA Technical Reports Server (NTRS)

    Harrison, F. W., Jr.; Pennington, J. E.

    1987-01-01

    Two simulation and analysis environments have been developed to support telerobotics research at the Langley Research Center. One is a high-fidelity, nonreal-time, interactive model called ROBSIM, which combines user-generated models of workspace environment, robots, and loads into a working system and simulates the interaction among the system components. Models include user-specified actuator, sensor, and control parameters, as well as kinematic and dynamic characteristics. Kinematic, dynamic, and response analyses can be selected, with system configuration, task trajectories, and arm states displayed using computer graphics. The second environment is a real-time, manned Telerobotic Systems Simulation (TRSS) which uses the facilities of the Intelligent Systems Research Laboratory (ISRL). It utilizes a hierarchical structure of functionally distributed computers communicating over both parallel and high-speed serial data paths to enable studies of advanced telerobotic systems. Multiple processes perform motion planning, operator communications, forward and inverse kinematics, control/sensor fusion, and I/O processing while communicating via common memory. Both ROBSIM and TRSS, including their capability, status, and future plans are discussed. Also described is the architecture of ISRL and recent telerobotic system studies in ISRL.

  18. Dynamics of a plant-herbivore-predator system with plant-toxicity

    USGS Publications Warehouse

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  19. Automated calculation and simulation systems

    NASA Astrophysics Data System (ADS)

    Ohl, Thorsten

    2003-04-01

    I briefly summarize the parallel sessions on Automated Calculation and Simulation Systems for high-energy particle physics phenomenology at ACAT 2002 (Moscow State University, June 2002) and present a short overview over the current status of the field and try to identify the important trends.

  20. Simulation of Biomolecular Nanomechanical Systems

    DTIC Science & Technology

    2006-10-01

    Funding for this effort came from the Defense Advanced Research Project Agency’s Simulation of Biological System ( SIMBIOSYS ) Program. The work can...DNA Hybridization Efficiency Based on the discussions at a SIMBIOSYS Principal Investigator’s Meeting (Sept. 2003 in Monterrey, CA), experiments

  1. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).

  2. Plant morphological characteristics and resistance to simulated trampling

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Liddle, Michael J.

    1993-07-01

    The relationship between responses of plants to trampling and their morphological characteristics was studied in a glasshouse experiment. Thirteen species with four different growth forms were used in this experiment. They were five tussock species. Chloris gayana, Eragrostis tenuifolia, Lolium perenne, Panicum maximum, and Sporobolus elongatus; three prostate grasses, Axonopus compressus, Cynodon dactylon, and Trifolium repens, two herbaceous species, Daucus glochidiatus and Hypochoeris radicata; and three woody species, Acacia macradenia, Acrotriche aggregata, and Sida rhombifolia. These species were subjected to three levels of simulated trampling. For each species, measurements were taken of aboveground biomass, root biomass, leaf length, leaf width, leaf thickness, leaf number, broken leaf number and plant height. Overall, these measurements were greatest in the control plants, moderate in the level of light trampling, and the lowest in the level of heavy trampling. Biomass was used as a basis of the assessment of plant resistance to trampling. Three tussock species, Eragrostis tenuifolia, Lolium perenne, and Sporobolus elongatus had a high resistance. Woody and erect herbaceous plants were more intolerant to trampling. There appear to be two processes involved in the reduction of the plant parameters: direct physical damage with portions of the plants detached, and physiological changes, which slow down vegetative growth rates. Plant height was found to be the most sensitive indicator of trampling damage.

  3. Aided targeting system simulation evaluation

    NASA Technical Reports Server (NTRS)

    Demaio, Joe; Becker, Curtis

    1994-01-01

    Simulation research was conducted at the Crew Station Research and Development Facility on the effectiveness and ease of use of three targeting systems. A manual system required the aviator to scan a target array area with a simulated second generation forward looking infrared (FLIR) sensor, locate and categorize targets, and construct a target hand-off list. The interface between the aviator and the system was like that of an advanced scout helicopter (manual mode). Two aided systems detected and categorized targets automatically. One system used only the FLIR sensor and the second used FLIR fused with Longbow radar. The interface for both was like that of an advanced scout helicopter aided mode. Exposure time while performing the task was reduced substantially with the aided systems, with no loss of target hand-off list accuracy. The fused sensor system showed lower time to construct the target hand-off list and a slightly lower false alarm rate than the other systems. A number of issues regarding system sensitivity and criterion, and operator interface design are discussed.

  4. Modeling of an industrial alcohol fermentation and simulation of the plant by a process simulator

    SciTech Connect

    Pascal, F.; Corriou, J.P.; Pons, M.N.; Dagot, C.; Engasser, J.M.; Pingaud, H.

    1995-05-05

    The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production.

  5. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  6. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  7. Simulator verification techniques study. Integrated simulator self test system concepts

    NASA Technical Reports Server (NTRS)

    Montoya, G.; Wenglinski, T. H.

    1974-01-01

    Software and hardware requirements for implementing hardware self tests are presented in support of the development of training and procedures development simulators for the space shuttle program. Self test techniques for simulation hardware and the validation of simulation performance are stipulated. The requirements of an integrated simulator self system are analyzed. Readiness tests, fault isolation tests, and incipient fault detection tests are covered.

  8. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  9. Plant production systems for vaccines.

    PubMed

    Streatfield, Stephen J; Howard, John A

    2003-12-01

    Plants offer an attractive alternative for the production and delivery of subunit vaccines. Various antigens have been expressed at sufficiently high levels in plants to render vaccine development practical. An increasing body of evidence demonstrates that these plant-produced antigens can induce immunogenic responses and confer protection when delivered orally. Plant-based vaccines are relatively inexpensive to produce and production can be rapidly scaled up. There is also the potential for oral delivery of these vaccines, which can dramatically reduce distribution and delivery costs. Here we describe the technology to develop plant-based vaccines, review their advantages and discuss potential roadblocks and concerns over their commercialization. We also speculate on likely future developments with these vaccines and on their potential impact in the realms of human and animal health.

  10. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  11. Stochastic simulation in systems biology.

    PubMed

    Székely, Tamás; Burrage, Kevin

    2014-11-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.

  12. A model framework to represent plant-physiology and rhizosphere processes in soil profile simulation models

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.

    2013-12-01

    Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation

  13. Representing Ground Robotic Systems in Battlefield Simulations

    DTIC Science & Technology

    2002-08-01

    representations of intelligent system performance for its battlefield simulation tools . These simulation tools differ considerably in their level of...simulation study, 2) the overall fidelity of the target simulation tool , and 3) the elements of the robotic system that are relevant to the...simulation study. In this paper, we discuss a framework for modeling robotic system performance in the context of a battlefield simulation tool . We apply

  14. Dynamics of plant-pollinator-robber systems.

    PubMed

    Wang, Yuanshi

    2013-05-01

    Plant-pollinator-robber systems are considered, where the plants and pollinators are mutualists, the plants and nectar robbers are in a parasitic relation, and the pollinators and nectar robbers consume a common limiting resource without interfering competition. My aim is to show a mechanism by which pollination-mutualism could persist when there exist nectar robbers. Through the dynamics of a plant-pollinator-robber model, it is shown that (i) when the plants alone (i.e., without pollination-mutualism) cannot provide sufficient resources for the robbers' survival but pollination-mutualism can persist in the plant-pollinator system, the pollination-mutualism may lead to invasion of the robbers, while the pollinators will not be driven into extinction by the robbers' invasion. (ii) When the plants alone cannot support the robbers' survival but persistence of pollination-mutualism in the plant-pollinator system is density-dependent, the pollinators and robbers could coexist if the robbers' efficiency in translating the plant-robber interactions into fitness is intermediate and the initial densities of the three species are in an appropriate region. (iii) When the plants alone can support the robbers' survival, the pollinators will not be driven into extinction by the robbers if their efficiency in translating the plant-pollinator interactions into fitness is relatively larger than that of the robbers. The analysis leads to an explanation for the persistence of pollination-mutualism in the presence of nectar robbers in real situations.

  15. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  16. Design of virtual SCADA simulation system for pressurized water reactor

    SciTech Connect

    Wijaksono, Umar Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  17. A predictive controller based on transient simulations for controlling a power plant

    NASA Astrophysics Data System (ADS)

    Svingen, B.

    2016-11-01

    A predictive governor based on an embedded, online transient simulation was commissioned at Tonstad power plant in Norway in December 2014. This governor controls each individual turbine governor by feeding them modified setpoints. Tonstad power plant consists of 4 × 160 MW + 1 × 320 MW high head Francis turbines. With a yearly production of 3888 GWh, it is the largest in Norway. The plant is a typical high head Norwegian plant with very long tunnels and correspondingly active dynamic behaviour. This new governor system continuously simulates the entire plant, and appropriate actions are taken automatically by special algorithms. The simulations are based on the method of characteristics (MOC). The governing system has been in full operational mode since December 19 2014. The testing period also included special acceptance tests to be able to deliver FRR, both on the Nordic grid and on DC cable to Denmark. Although in full operational mode, this system is still a prototype under constant development. It shows a new way of using transient analysis that may become increasingly important in the future with added power from un-regulated sources such as wind, solar and bio.

  18. Simulation of linear mechanical systems

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1993-01-01

    A dynamics and controls analyst is typically presented with a structural dynamics model and must perform various input/output tests and design control laws. The required time/frequency simulations need to be done many times as models change and control designs evolve. This paper examines some simple ways that open and closed loop frequency and time domain simulations can be done using the special structure of the system equations usually available. Routines were developed to run under Pro-Matlab in a mixture of the Pro-Matlab interpreter and FORTRAN (using the .mex facility). These routines are often orders of magnitude faster than trying the typical 'brute force' approach of using built-in Pro-Matlab routines such as bode. This makes the analyst's job easier since not only does an individual run take less time, but much larger models can be attacked, often allowing the whole model reduction step to be eliminated.

  19. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  20. Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants

    SciTech Connect

    Fleming, Paul; Aho, Jake; Gebraad, Pieter; Pao, Lucy; Zhang, Yingchen

    2016-08-01

    This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power control in waked conditions but also the potential methods for improving this performance.

  1. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  2. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a

  3. Computer simulation of coal preparation plants. Part 2. User's manual. Final report

    SciTech Connect

    Gottfried, B.S.; Tierney, J.W.

    1985-12-01

    This report describes a comprehensive computer program that allows the user to simulate the performance of realistic coal preparation plants. The program is very flexible in the sense that it can accommodate any particular plant configuration that may be of interest. This allows the user to compare the performance of different plant configurations and to determine the impact of various modes of operation with the same configuration. In addition, the program can be used to assess the degree of cleaning obtained with different coal feeds for a given plant configuration and a given mode of operation. Use of the simulator requires that the user specify the appearance of the plant configuration, the plant operating conditions, and a description of the coal feed. The simulator will then determine the flowrates within the plant, and a description of each flowrate (i.e., the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, and Btu content). The simulation program has been written in modular form using the Fortran language. It can be implemented on a great many different types of computers, ranging from large scientific mainframes to IBM-type personal computers with a fixed disk. Some customization may be required, however, to ensure compatibility with the features of Fortran available on a particular computer. Part I of this report contains a general description of the methods used to carry out the simulation. Each of the major types of units is described separately, in addition to a description of the overall system analysis. Part II is intended as a user's manual. It contains a listing of the mainframe version of the program, instructions for its use (on both a mainframe and a microcomputer), and output for a representative sample problem.

  4. A process simulator/trainer for the process inventory control system 20-MW freezer/sublimer

    SciTech Connect

    Tapp, P.A.; Carnal, C.L.; Wells, J.C.; Belcher, J.D.; Gibson, F.R.; Ruppel, F.R.

    1991-05-01

    This report describes the development of a process simulator/trainer for the Process Inventory Control System project. The main objective of this work was to build a plant simulator that accepts control signals from the Texas Instruments D/3 distributed control system and produces plant signals to mimic the behavior of a 20-MW freezer/sublimer unit. The simulator/trainer will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new D/3 distributed control system without disturbing the processing of the Paducah Gaseous Diffusion Plant. 4 refs., 28 figs., 8 tabs.

  5. Open systems for plant process computers

    SciTech Connect

    Norris, D.L.; Pate, R.L.

    1995-03-01

    Arizona Public Service (APS) Company recently upgraded the Emergency Response Facility (ERF) computer at the Palo Verde Nuclear Generating Stations (PVNGS). The project was initiated to provide the ability to record and display plant data for later analysis of plant events and operational problems (one of the great oversights at nearly every nuclear plant constructed) and to resolve a commitment to correct performance problems on the display side of the system. A major forming objective for the project was to lay a foundation with ample capability and flexibility to provide solutions for future real-time data needs at the plants. The Halliburton NUS Corporation`s Idaho Center (NUS) was selected to develop the system. Because of the constant changes occurring in the computer hardware and software industry, NUS designed and implemented a distributed Open Systems solution based on the UNIX Operating System. This Open System is highly portable across a variety of computer architectures and operating systems and is based on NUS` R*TIME{reg_sign}, a mature software system successfully operating in 14 nuclear plants and over 80 fossil plants. Along with R*TIME, NUS developed two Man-Machine Interface (MMI) versions: R*TIME/WIN, a Microsoft Windows application designed for INTEL-based personal computers operating either Microsoft`s Windows 3.1 or Windows NT operating systems; and R*TIME/X, based on the standard X Window System utilizing the Motif Window Manager.

  6. Course in power plant systems interactions

    SciTech Connect

    Robinson, G.E.; Baratta, A.J.

    1987-01-01

    Like most nuclear engineering programs, the Pennsylvania State Univ. (Penn State) program includes in-depth studies of reactor theory and thermal hydraulics, heat transfer, and fluid flow. The compartmentalization of these topics results in a distinct lack of understanding of the way that typical systems in a nuclear power plant interact to produce the transients that occur in a plant. To correct the deficiency, attempts have been made to develop a comprehensive systems course, which not only educates the students about power plant systems but also teaches them the way they interact. This paper describes the various approaches used and the problems encountered with each approach.

  7. Darlington tritium removal facility and station upgrading plant dynamic process simulation

    SciTech Connect

    Busigin, A.; Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A.

    2008-07-15

    Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D{sub 2}O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

  8. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  9. [Transgenic plants as medicine production systems].

    PubMed

    Okada, Y

    1997-10-01

    Transgenic plants are emerging as an important system for the expression of many recombinant proteins, especially those intended for therapeutic purpose. The production of foreign proteins in plants has several advantages. In terms of required equipment and cost, mass production in plants is far easier to achieve than techniques involving animal cells. Successful production of several proteins in plants, including human serum albumin, haemoglobin, monoclonal antibodies, viral antigens (vaccines), enkephalin, and trichosanthin, has been reported. Particularly, the demonstration that vaccine antigens can be produced in plants in their native, immunogenic forms opens exciting possibilities for the "bio-farming" of vaccines. If the antigens are orally active, food-based "edible vaccines" could allow economical production. In this review, I will discuss the progress that has been made by several groups in what is now an expanding area of medicine research that utilizes transgenic plants.

  10. Calcium messenger system in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1987-01-01

    The purpose of this review is to delineate the ubiquitous and pivotal role of Ca2+ in diverse physiological processes. Emphasis will be given to the role of Ca2+ in stimulus-response coupling. In addition to reviewing the present status of research, our intention is to critically evaluate the existing data and describe the newly developing areas of Ca2+ research in plants.

  11. [Bacteria ecology in planting-culturing system].

    PubMed

    Huang, Fenglian; Xia, Beicheng; Dai, Xin; Chen, Guizhu

    2004-06-01

    Planting-culturing system in inter-tidal zone is a new type eco-culturing model. The survey on bacteria biomass and water quality in the designed planting-culturing system in inter-tidal zone showed that the mangrove planted in the system improved water quality and made water quality to II-III type, better than the IV and V type in the control pond. Designed ponds made heterotrophic bacteria, vibrio, phosphorus bacteria and enzyme-producing bacteria populations 1-2 order lower than the control pond without mongrove planting. Correlation analyses with CORREL software showed that the biomass of these bacteria was positively related with the nitrogen and phosphorus contents in water of the system, and the correlation coefficient for heterogeneous bacteria and vibrio was up to 0.9205. Heterotrophic bacteria and vibrio could be used as the water-quality monitoring organisms.

  12. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  13. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  14. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  15. Systems biology for enhanced plant nitrogen nutrition.

    PubMed

    Gutiérrez, Rodrigo A

    2012-06-29

    Nitrogen (N)-based fertilizers increase agricultural productivity but have detrimental effects on the environment and human health. Research is generating improved understanding of the signaling components plants use to sense N and regulate metabolism, physiology, and growth and development. However, we still need to integrate these regulatory factors into signal transduction pathways and connect them to downstream response pathways. Systems biology approaches facilitate identification of new components and N-regulatory networks linked to other plant processes. A holistic view of plant N nutrition should open avenues to translate this knowledge into effective strategies to improve N-use efficiency and enhance crop production systems for more sustainable agricultural practices.

  16. Simulation of Production Lines Supply within Internal Logistics Systems

    NASA Astrophysics Data System (ADS)

    Čujan, Zdeněk

    2016-11-01

    Supplying of production lines is a complex logistic process, which is very difficult with regards to the requirements of its operation and scheduling. For this reason, this supplying process demands an increased attention. Application of a computer simulation is an efficient tool suitable for solution of the supplying logistic questions. In this paper the application possibilities of the software Tecnomatix Plant Simumlation specified for simulation of the supplying process by means of the system Milk Run will be presented.

  17. Computer models and simulations of IGCC power plants with Canadian coals

    SciTech Connect

    Zheng, L.; Furimsky, E.

    1999-07-01

    In this paper, three steady state computer models for simulation of IGCC power plants with Shell, Texaco and BGL (British Gas Lurgi) gasifiers will be presented. All models were based on a study by Bechtel for Nova Scotia Power Corporation. They were built by using Advanced System for Process Engineering (ASPEN) steady state simulation software together with Fortran programs developed in house. Each model was integrated from several sections which can be simulated independently, such as coal preparation, gasification, gas cooling, acid gas removing, sulfur recovery, gas turbine, heat recovery steam generation, and steam cycle. A general description of each process, model's overall structure, capability, testing results, and background reference will be given. The performance of some Canadian coals on these models will be discussed as well. The authors also built a computer model of IGCC power plant with Kellogg-Rust-Westinghouse gasifier, however, due to limitation of paper length, it is not presented here.

  18. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  19. Forest biomass supply logistics for a power plant using the discrete-event simulation approach

    SciTech Connect

    Mobini, Mahdi; Sowlati, T.; Sokhansanj, Shahabaddine

    2011-04-01

    This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted average cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.

  20. Operational development of small plant growth systems

    NASA Technical Reports Server (NTRS)

    Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.

    1986-01-01

    The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.

  1. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  2. An Integrated Approach To Payload System Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.; Swartz, R. L., Jr.; Teng, A.; Weidner, R. J.

    1996-01-01

    This paper describes a payload system simulation implemented at JPL as part of a comprehensive mission simulation facility. The flight software function includes communication with other process modules, instrument control, and data management. The payload system simulation software consists of: a camera subsystem, a virtual world, and a mission visualization toolset.

  3. Simulation and comparison of different operational strategies for storage utilization in concentrated solar power plants

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Erdocia, Ioseba

    2016-05-01

    The increase of electric power demand and the wish to protect the environment are leading to a change in the energy sources. Conventional energy plants are losing strength against the renewable energy plants and, in particular, solar energy plants have a huge potential to provide clean energy supply for the increasing world's energy demand. Among the existing solar technologies, Concentrating Solar Power (CSP) is one of the most promising technologies. One of the major advantages of CSP plants is the technically feasible and cost-effective integration of Thermal Energy Storage (TES) systems. To increase the plant dispatchability, it is possible to create different operational strategies defining how such TES system is used. In this work, different strategies with different overall goals have been simulated over a complete year and the results are presented and compared here to demonstrate the capabilities of the operational strategies towards an increased dispatchability and plant economic effectiveness. The analysis shows that different strategies may lead to significant differences in the plant annual production, expected economic incomes, number of power block stops, mean efficiency, etc. Specifically, it has been found that the economic incomes of a plant can be increased (+1.3%) even with a decreased total energy production (-1.5%) if the production is scheduled to follow a demand/price curve. Also, dramatic reduction in the number of turbine stops (-67%) can be achieved if the plant is operated towards this objective. The strategies presented in this study have not been optimized towards any specific objective, but only created to show the potential of well designed operational strategies in CSP plants. Therefore, many other strategies as well as optimized versions of the strategies explained below are possible and will be analyzed in future works.

  4. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  5. The renewable electric plant information system

    SciTech Connect

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  6. Carbonate fuel cell power plant systems

    NASA Astrophysics Data System (ADS)

    Reinstrom, R. M.

    1981-12-01

    Carbonate fuel cells are an attractive means of developing highly efficient power plants capable of achieving low atmospheric emissions. Because carbonate fuel cells can be used with coal derived fuel gases and their operating temperatures allow the use of turbomachinery bottoming cycles, they are well suited for large installations like central utility stations. Presently, system development activity is directed toward evaluating the readiness of gasifier and fuel processor technology, defining candidate cycle configurations, and calculating projected plant efficiencies.

  7. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  8. Resilient Plant Monitoring System: Design, Analysis, and Performance Evaluation

    SciTech Connect

    Humberto E. Garcia; Wen-Chiao Lin; Semyon M. Meerkov; Maruthi T. Ravichandran

    2013-12-01

    Resilient monitoring systems are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools, and the performance of the overall system is evaluated using simulations. The measure of resiliency of the resulting system is evaluated using Kullback Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  9. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  10. Improvements to information management systems simulator

    NASA Technical Reports Server (NTRS)

    Bilek, R. W.

    1972-01-01

    The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.

  11. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  12. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    SciTech Connect

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energy’s Light Water Reactor

  13. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink.

    PubMed

    Rosen, C; Vrecko, D; Gernaey, K V; Pons, M N; Jeppsson, U

    2006-01-01

    The IWA Anaerobic Digestion Model No.1 (ADM1) was presented in 2002 and is expected to represent the state-of-the-art model within this field in the future. Due to its complexity the implementation of the model is not a simple task and several computational aspects need to be considered, in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model interfacing with the ASM family, mass balances, acid-base equilibrium and algebraic solvers for pH and other troublesome state variables, numerical solvers and simulation time are discussed. The main conclusion is that if implemented properly, the ADM1 will also produce high-quality results in dynamic plant-wide simulations including noise, discrete sub-systems, etc. without imposing any major restrictions due to extensive computational efforts.

  14. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    PubMed Central

    Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040

  15. Analysis of the use of industrial control systems in simulators: state of the art and basic guidelines.

    PubMed

    Carrasco, Juan A; Dormido, Sebastián

    2006-04-01

    The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.

  16. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    PubMed

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process.

  17. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  18. Method for simulating discontinuous physical systems

    DOEpatents

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  19. A computer management system for patient simulations.

    PubMed

    Finkelsteine, M W; Johnson, L A; Lilly, G E

    1991-04-01

    A series of interactive videodisc patient simulations is being used to teach clinical problem-solving skills, including diagnosis and management, to dental students. This series is called Oral Disease Simulations for Diagnosis and Management (ODSDM). A computer management system has been developed in response to the following needs. First, the sequence in which students perform simulations is critical. Second, maintaining records of completed simulations and student performance on each simulation is a time-consuming task for faculty. Third, the simulations require ongoing evaluation to ensure high quality instruction. The primary objective of the management system is to ensure that each student masters diagnosis. Mastery must be obtained at a specific level before advancing to the next level. The management system does this by individualizing the sequence of the simulations to adapt to the needs of each student. The management system generates reports which provide information about students or the simulations. Student reports contain demographic and performance information. System reports include information about individual patient simulations and act as a quality control mechanism for the simulations.

  20. Simulation of cooling-water discharges from power plants.

    PubMed

    Wu, J; Buchak, E M; Edinger, J E; Kolluru, V S

    2001-01-01

    Accurate simulation of the temperature distribution in a cooling lake or reservoir is often required for feasibility studies of engineering options that increase the cooling capacity of the waterbody. A three-dimensional hydrodynamic and temperature model has been developed and applied to several cooling lakes in the south-eastern United States. In this paper, the details of the modeling system are presented, along with the application to the Flint Creek Lake.

  1. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    SciTech Connect

    Butcher, B.M. ); Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C. )

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs.

  2. Integrating Existing Simulation Components into a Cohesive Simulation System

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    A tradition of leveraging the re-use of components to help manage costs has evolved in the development of complex system. This tradition continues on in the Joint Polar Satellite System (JPSS) Program with the cloning of the Suomi National Polar-orbiting Partnership (NPP) satellite for the JPSS-1 mission, including the instrument complement. One benefit of re-use on a mission is the availability of existing simulation assets from the systems that were previously built. An issue arises in the continual shift of technology over a long mission, or multi-mission, lifecycle. As the missions mature, the requirements for the observatory simulations evolve. The challenge in this environment becomes re-using the existing components in that ever-changing landscape. To meet this challenge, the system must: establish an operational architecture that minimizes impacts on the implementation of individual components, consolidate the satisfaction of new high-impact requirements into system-level infrastructure, and build in a long-term view of system adaptation that spans the full lifecycle of the simulation system. The Flight Vehicle Test Suite (FVTS) within the JPSS Program is defining and executing this approach to ensure a robust simulation capability for the JPSS multi-mission environment

  3. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  4. Helmet mounted display systems for helicopter simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Bucher, Nancy; Runnings, David

    1989-01-01

    Simulation scientists continually pursue improved flight simulation technology with the goal of closely replicating the 'real world' physical environment. The presentation/display of visual information for flight simulation is one such area enjoying recent technical improvements that are fundamental for conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for Nap-Of-the-Earth (NOE) helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper elaborates on the visually coupled Wide Field Of View Helmet Mounted Display (WFOVHMD) system technology as a viable visual display system for helicopter simulation. In addition the paper discusses research conducted on the NASA-Ames Vertical Motion Simulator that examined one critical research issue for helmet mounted displays.

  5. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  6. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  7. Interoperability Standards for Medical Simulation Systems

    NASA Technical Reports Server (NTRS)

    Tolk, Andreas; Diallo, Saikou Y.; Padilla, Jose J.

    2012-01-01

    The Modeling and Simulation Community successfully developed and applied interoperability standards like the Distributed Interactive Simulation (DIS) protocol (IEEE 1278) and the High Level Architecture (HLA) (IEEE 1516). These standards were applied for world-wide distributed simulation events for several years. However, this paper shows that some of the assumptions and constraints underlying the philosophy of these current standards are not valid for Medical Simulation Systems. This paper describes the standards, the philosophy and the limits for medical applications and recommends necessary extensions of the standards to support medical simulation.

  8. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  9. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  10. Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy.

    PubMed

    Nopens, I; Benedetti, L; Jeppsson, U; Pons, M-N; Alex, J; Copp, J B; Gernaey, K V; Rosen, C; Steyer, J-P; Vanrolleghem, P A

    2010-01-01

    The COST/IWA Benchmark Simulation Model No 1 (BSM1) has been available for almost a decade. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the research work related to the benchmark simulation models has resulted in more than 300 publications worldwide demonstrates the interest in and need of such tools within the research community. Recent efforts within the IWA Task Group on "Benchmarking of control strategies for WWTPs" have focused on an extension of the benchmark simulation model. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently, includes both pretreatment of wastewater as well as the processes describing sludge treatment. The motivation for the extension is the increasing interest and need to operate and control wastewater treatment systems not only at an individual process level but also on a plant-wide basis. To facilitate the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one week BSM1 evaluation period. In this paper, the finalised plant layout is summarised and, as was done for BSM1, a default control strategy is proposed. A demonstration of how BSM2 can be used to evaluate control strategies is also given.

  11. An electronic notebook for physical system simulation

    NASA Astrophysics Data System (ADS)

    Kelsey, Robert L.

    2003-09-01

    A scientist who sets up and runs experiments typically keeps notes of this process in a lab notebook. A scientist who runs computer simulations should be no different. Experiments and simulations both require a set-up process which should be documented along with the results of the experiment or simulation. The documentation is important for knowing and understanding what was attempted, what took place, and how to reproduce it in the future. Modern simulations of physical systems have become more complex due in part to larger computational resources and increased understanding of physical systems. These simulations may be performed by combining the results from multiple computer codes. The machines that these simulations are executed on are often massively parallel/distributed systems. The output result of one of these simulations can be a terabyte of data and can require months of computing. All of these things contribute to the difficulty of keeping a useful record of the process of setting up and executing a simulation for a physical system. An electronic notebook for physical system simulations has been designed to help document the set up and execution process. Much of the documenting is done automatically by the simulation rather than the scientist running the simulation. The simulation knows what codes, data, software libraries, and versions thereof it is drawing together. All of these pieces of information become documented in the electronic notebook. The electronic notebook is designed with and uses the eXtensible Markup Language (XML). XML facilitates the representation, storage, interchange, and further use of the documented information.

  12. Global Positioning System Simulator Field Operational Procedures

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Quinn, David A.; Day, John H. (Technical Monitor)

    2002-01-01

    Global Positioning System (GPS) simulation is an important activity in the development or qualification of GPS signal receivers for space flight. Because a GPS simulator is a critical resource it is highly desirable to develop a set of field operational procedures to supplement the basic procedures provided by most simulator vendors. Validated field procedures allow better utilization of the GPS simulator in the development of new test scenarios and simulation operations. These procedures expedite simulation scenario development while resulting in scenarios that are more representative of the true design, as well as enabling construction of more complex simulations than previously possible, for example, spacecraft maneuvers. One difficulty in the development of a simulation scenario is specifying various modes of test vehicle motion and associated maneuvers requiring that a user specify some (but not all) of a few closely related simulation parameters. Currently this can only be done by trial and error. A stand-alone procedure that implements the simulator maneuver motion equations and solves for the motion profile transient times, jerk and acceleration would be of considerable value. Another procedure would permit the specification of some configuration parameters that would determine the simulated GPS signal composition. The resulting signal navigation message, for example, would force the receiver under test to use only the intended C-code component of the simulated GPS signal. A representative class of GPS simulation-related field operational procedures is described in this paper. These procedures were developed and used in support of GPS integration and testing for many successful spacecraft missions such as SAC-A, EO-1, AMSAT, VCL, SeaStar, sounding rockets, and by using the industry standard Spirent Global Simulation Systems Incorporated (GSSI) STR series simulators.

  13. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  14. Characteristics of flight simulator visual systems

    NASA Technical Reports Server (NTRS)

    Statler, I. C. (Editor)

    1981-01-01

    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.

  15. The 3D reconstruction of greenhouse tomato plant based on real organ samples and parametric L-system

    NASA Astrophysics Data System (ADS)

    Xin, Longjiao; Xu, Lihong; Li, Dawei; Fu, Daichang

    2014-04-01

    In this paper, a fast and effective 3D reconstruction method for the growth of greenhouse tomato plant is proposed by using real organ samples and a parametric L-system. By analyzing the stereo structure of tomato plant, we extracts rules and parameters to assemble an L-system that is able to simulate the plant growth, and then the components of the L-system are translated into plant organ entities via image processing and computer graphics techniques. This method can efficiently and faithfully simulate the growing process of the greenhouse tomato plant.

  16. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  17. Quantum Simulation for Open-System Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  18. PFLOTRAN Simulation of Waste Isolation Pilot Plant Single Waste Panel

    NASA Astrophysics Data System (ADS)

    Park, H.; Hammond, G. E.

    2015-12-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the deep geologic disposal of transuranic (TRU) waste. WIPP performance assessment (PA) calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment arising from events and processes that could occur over the 10,000 year regulatory period. The conceptual model estimates three possible cases and the combinations of these cases: 1) undisturbed condition of the repository, 2) human borehole intrusion condition that penetrates the repository, and 3) human borehole intrusion that penetrates pressurized brine underlying the repository. To date, WIPP PA calculations have employed multiple two-dimensional (2D) numerical models requiring simplification of the mesh and processes including homogenization of materials and regions while maintaining volume aspect ratio. Introducing three-dimensional (3D) numerical models within WIPP PA enables increasingly realistic representations of the WIPP subsurface domain and improved flexibility for incorporating relevant features. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that will be implemented to enhance PA with more physically realistic 3D flow and transport models; eliminating the need for multiple related, but decoupled 2D models. This paper demonstrates PFLOTRAN simulation of a single waste panel of the WIPP undisturbed condition in 3D. The simulation also employs newly implemented WIPP specific functionalities to PFLOTRAN: 1) gas generation from the wastes, 2) creep closure of bedded salt formation, 3) fractures of marker beds near the excavation, 4) Klinkenberg effect on gas permeability in low-permeable materials, and 5) Redlich-Kwong-Soave equation of state for gas density.

  19. EPICS simulation tools for control system development

    SciTech Connect

    Wright, R.M.; Kerstiens, D.M.; Vaughn, G.D.; Weiss, R.E.

    1994-09-01

    When developing control system software there are many times when the ability to simulate the response of the instrumentation can be very useful. Examples are: (i) when the operator interface is being designed and the users want an idea of what the finished system might took like; (ii) when the interface hardware is not yet available; (iii) when the reaction of the control system to an error condition must be tested, but the actual occurrence of such an error would cause undesirable side effects; (iv) when operators are being trained to use the system; (v) when an improvement or bug fix needs to be tested, but the running system cannot be shut down for long. The Experimental Physics and Industrial Control System (EPICS) provides tools for building simple simulations and interfacing to more complex simulations of accelerator hardware. At the lowest level an individual data channel can be switched to take its input from either a simulated data location or from the actual hardware. At a slightly higher level, sequences can be run on the real-time interface processor so that output to the hardware is intercepted and an appropriate substitute value is provided for the corresponding read-back records. At a still higher level a program can use the Channel Access software bus facility of EPICS to control some global aspect of an accelerator or can interface to an external accelerator simulation instead of the actual accelerator. The goal of testing control system software using simulated hardware is to minimize the changes required in shifting between the simulated system and the real system. The degree of success of the EPICS tools in meeting the minimum change goal will be addressed with suggestions for improvements. The implementation of simulated responses using EPICS tools will be discussed and examples of experience using the EPICS tools to create and interface to simulations will be given.

  20. Computer simulation of breathing systems for divers

    SciTech Connect

    Sexton, P.G.; Nuckols, M.L.

    1983-02-01

    A powerful new tool for the analysis and design of underwater breathing gas systems is being developed. A versatile computer simulator is described which makes possible the modular ''construction'' of any conceivable breathing gas system from computer memory-resident components. The analysis of a typical breathing gas system is demonstrated using this simulation technique, and the effects of system modifications on performance of the breathing system are shown. This modeling technique will ultimately serve as the foundation for a proposed breathing system simulator under development by the Navy. The marriage of this computer modeling technique with an interactive graphics system will provide the designer with an efficient, cost-effective tool for the development of new and improved diving systems.

  1. Modeling and Simulation For A Variable Sprayerrate System

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Liang, Anbo; Yuan, Haibo; Zhang, Chunmei; Li, Junlong

    Variable spraying technology is an important content and developing direction in current plant protection machinery, which can effectively save pesticide and lighten burden of ecological environment in agriculture according to characteristic of spraying targets and speed of aircraft crew. Paper established mathematic model and delivery function of variable spraying system based on designed hardware of variable spraying machine, making use of PID controlling algorithm to simulate in MATLAB. Simulating result explained that the model can conveniently control gushing amounts and can arrive at satisfied controlling.

  2. Modeling and Simulation For A Variable Sprayerrate System

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Liang, Anbo; Yuan, Haibo; Zhang, Chunmei; Li, Junlong

    Variable spraying technology is an important content and developing direction in current plant protection machinery, which can effectively save pesticide and lighten burden of ecological environment in agriculture according to characteristic of spraying targets and speed of aircraft crew. Paper established mathematic model and delivery function of variable spraying system based on designed hardware of variable spraying machine, making use of PID controlling algorithm to simulate in matlab. Simulating result explained that the model can conveniently control gushing amounts and can arrive at satisfied controlling.

  3. Channel simulation for optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is reported for simulating the signal fading that will be experienced by typical optical communication systems. The desired irradiance or amplitude fading statistics can be simulated by incorporating a linearized optical modulator subsystem between the transmitter and receiver. This technique has been implemented in the design and construction of a laboratory channel simulator. The design of the processing electronics is discussed along with the results of tests performed for each mode of operation.

  4. ROBOSIM, a simulator for robotic systems

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  5. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  6. Simulation Model of Mobile Detection Systems

    SciTech Connect

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  7. Particle simulation of plasmas and stellar systems

    SciTech Connect

    Tajima, T.; Clark, A.; Craddock, G.G.; Gilden, D.L.; Leung, W.K.; Li, Y.M.; Robertson, J.A.; Saltzman, B.J.

    1985-04-01

    A computational technique is introduced which allows the student and researcher an opportunity to observe the physical behavior of a class of many-body systems. A series of examples is offered which illustrates the diversity of problems that may be studied using particle simulation. These simulations were in fact assigned as homework in a course on computational physics.

  8. The SAO {AXAF} Simulation System

    NASA Astrophysics Data System (ADS)

    Jerius, D.; Freeman, M.; Gaetz, T.; Hughes, J. P.; Podgorski, W.

    As part of our efforts to support the AXAF program, the SAO AXAF Mission Support Team has developed a software suite to simulate the AXAF telescope. The software traces the fate of photons through the telescope, from the X-ray source through apertures, baffles, the telescope optics, and finally to the photons' ultimate interactions with the focal plane detectors. We model relevant physical processes, including geometrical reflection, scattering due to surface microroughness, distortions of the optics due to the mirror mounts, attenuation through baffles, etc. The software is composed of programs and scripts, each specialized to a given task, which communicate through UNIX pipes. Software tasks are centered about functional components of the telescope (e.g., apertures, mirrors, detectors) and provide a comfortable and flexible paradigm for performing simulations. The use of separate programs and the UNIX pipe facility allows great flexibility in building different configurations of the telescope and distilling diagnostics from the photon stream through the telescope. We are able to transparently use symmetric multi-processing (e.g., SPARCStation 10s and SGI Challenges) and can easily use sequential multi-processing (via workstation clusters). Some of the tasks are amenable to parallel processing and have been implemented using the MPI standard.

  9. Waste receiving and processing plant control system; system design description

    SciTech Connect

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  10. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    PubMed

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature

  11. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  12. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-output single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  13. Interactive communication systems simulation model - ICSSM

    NASA Astrophysics Data System (ADS)

    Wade, W. D.; Mortara, M. E.; Leong, P. K.; Frost, V. S.

    1984-01-01

    The design of ICSSM, a nonreal time computer-aided simulation and analysis tool for communications systems, is presented, ICSSM is capable of supporting modeling, simulation, and analysis of any system representable in terms of a network of multiport functional blocks. Its applicability is limited only by the modeler's ingenuity to decompose the system to functional blocks and to represent these functional blocks algorithmically. ICSSM has been constructed modularly, consisting of five subsytems to facilitate the tasks of formulating the model, exercising the model, evaluating and showing the simulation results, and storing and maintaining a library of modeling elements, analysis, and utility subroutines. It is written exclusively in ANSI Standard Fortran IV language, and is now operational in a Honeywell DPS 7/80 M computer under the MULTICS Operating System. Description of a recent simulation using ICSSM and some generic modules of general interest developed as a result of the modeling work are also presented.

  14. Water system modeling for dispatcher training simulators

    SciTech Connect

    Rajagopal, S.; Sigari, P.G. ); Allen, J.E.; Assadian, M. )

    1993-08-01

    This paper addresses the existing need for training dispatchers in the operation of power systems where it involves managing large water systems. The problem formulation and implementation of water system modeling for the Dispatcher Training Simulators (DTS) are presented in this paper. The method systematically builds the water network descriptions. The model periodically calculates the water system flows, storage values, and currently available hydro generation capacities. The model is controllable by the instructor and provides the simulated telemetry of water system data to the control center functions in the DTS. The water system modeling enhances the power system modeling subsystem of the DTS. The method is validated on a large water system and power system data. The results and the benefits of water system modeling are discussed.

  15. Digital simulation of stiff linear dynamic systems.

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Kerr, J. H.

    1972-01-01

    A method is derived for digital computer simulation of linear time-invariant systems when the insignificant eigenvalues involved in such systems are eliminated by an ALSAP root removal technique. The method is applied to a thirteenth-order dynamic system representing a passive RLC network.

  16. Weightlessness simulation system and process

    NASA Technical Reports Server (NTRS)

    Vykukal, Hubert C. (Inventor)

    1987-01-01

    A weightlessness simulator has a chamber and a suit in the chamber. O-rings and valves hermetically seal the chamber. A vacuum pump connected to the chamber establishes a pressure in the chamber less than atmospheric pressure. A water supply tank and water supply line supply a body of water to the chamber as a result of partial vacuum created in the chamber. In use, an astronaut enters the pressure suit through a port, which remains open to ambient atmosphere, thus supplying air to the astronaut during use. The pressure less than atmospheric pressure in the chamber is chosen so that the pressure differential from the inside to the outside of the suit corresponds to the pressure differential with the suit in outer space.

  17. Human Systems Modeling and Simulation

    DTIC Science & Technology

    2005-12-01

    individuals, organizations, and other social forms as systems of practices. A rereading of the propositional and system forms shows that they make no... social inter-dependencies that underwrite human behavior: designing, prototyping, testing and delivering extensions to Synergia’s ACCORD technology for...also and primarily the cognitive and social inter-dependencies that underwrite human behavior. • Develop technology for the computational specification

  18. Numerical propulsion system simulation: An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  19. Numerical propulsion system simulation - An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  20. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  1. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1981-01-01

    A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.

  2. Colorimetric calibration of coupled infrared simulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  3. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  4. Construction of the real patient simulator system.

    PubMed

    Chan, Richard; Sun, C T

    2012-05-01

    Simulation for perfusion education has been used for at least the past 25 years. The earlier models were either electronic (computer games) or fluid dynamic models and provided invaluable adjuncts to perfusion training and education. In 2009, the *North Shore-LIJ Health System at Great Neck, New York, opened an innovative "Bioskill Center" dedicated to simulated virtual reality advanced hands-on surgical training as well as perfusion simulation. Professional cardiac surgical organizations now show great interest in using simulation for training and recertification. Simulation will continue to be the direction for future perfusion training and education. This manuscript introduces a cost-effective system developed from discarded perfusion products and it is not intended to detail the actual lengthy process of its construction.

  5. Another Program Simulates A Modular Manufacturing System

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Wang, Jian

    1996-01-01

    SSE5 computer program provides simulation environment for modeling manufacturing systems containing relatively small numbers of stations and operators. Designed to simulate manufacturing of apparel, also used in other manufacturing domains. Valuable for small or medium-size firms, including those lacking expertise to develop detailed mathematical models or have only minimal knowledge in describing manufacturing systems and in analyzing results of simulations on mathematical models. Two other programs available bundled together as SSE (MFS-26245). Each program models slightly different manufacturing scenario. Written in Turbo C v2.0 for IBM PC-series and compatible computers running MS-DOS and successfully compiled using Turbo C++ v3.0.

  6. Aspects of adaptive answering formation in virus-host plant pathosystem for different wheat cultivars under simulating microgravity condition.

    PubMed

    Mishchenko, L T

    2007-07-01

    Investigations of prolonged clinorotation effect on some morphological and physiological parameters under Wheat streak mosaic virus WSMW-infection of Apogee and Lada wheat cultivars were carried out. Experiments were held on universal clinostat CYCLE-2. Clinorotation caused changing of WSMV virions shape and reducing of the virus reproduction. Apogee wheat plants grown under two stress factors (infection and clinorotation) produced more kernels than stationary (motionless) plants, but the average weight of kernel was lower. Under clinorotation changes in host plant-virus system take place and adaptive reactions for simulated microgravity conditions form. These lead to reduction of potyvirus replication.

  7. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  8. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  9. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  10. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs.

    PubMed

    Jeppsson, U; Rosen, C; Alex, J; Copp, J; Gernaey, K V; Pons, M N; Vanrolleghem, P A

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently, includes both pre-treatment of wastewater as well as the processes describing sludge treatment. The motivation for the extension is the increasing interest and need to operate and control wastewater treatment systems not only at an individual process level but also on a plant-wide basis. To facilitate the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant layout is proposed and the new suggested process models are described briefly. Models for influent file design, the benchmarking procedure and the evaluation criteria are also discussed. And finally, some important remaining topics, for which consensus is required, are identified.

  11. Efficiency of monolaurin in mitigating ruminal methanogenesis and modifying C-isotope fractionation when incubating diets composed of either C3 or C4 plants in a rumen simulation technique (Rusitec) system.

    PubMed

    Klevenhusen, Fenja; Bernasconi, Stefano M; Hofstetter, Thomas B; Bolotin, Jakov; Kunz, Carmen; Soliva, Carla R

    2009-11-01

    Mitigation of methanogenesis in ruminants has been an important goal for several decades. Free lauric acid, known to suppress ruminal methanogenesis, has a low palatability; therefore, in the present study the aim was to evaluate the mitigation efficacy of its esterified form (monolaurin). Further, 13C-isotope abundance (delta13C) and 13C-12C fractionation during methanogenesis and fermentation were determined to evaluate possible microbial C-isotope preferences. Using the rumen simulation technique, four basal diets, characterised either by the C3 plants grass (hay) and wheat (straw and grain), or the C4 plant (13C excess compared with C3 plants) maize (straw and grain), and a mixture of the latter two, were incubated with and without monolaurin (50 g/kg dietary DM). Added to hay, monolaurin did not significantly affect methanogenesis. When added to the other diets (P < 0.05 for the wheat-based diet) methane formation was lowered. Monolaurin decreased fibre disappearance (least effect with the hay diet), acetate:propionate ratio, and protozoal counts. Feed residues and SCFA showed the same delta13C as the diets. Methane was depleted in 13C while CO2 was enriched in 13C compared with the diets. Monolaurin addition resulted in 13C depletion of CO2 and enrichment in CH4 (the latter only in the hay diet). In conclusion, monolaurin proved to effectively decrease methanogenesis in the straw-grain diets although this effect might partly be explained by the concomitantly reduced fibre disappearance. The influence on 13C-isotope abundance and fractionation supports the hypothesis that ruminal microbes seem to differentiate to some extent between C-isotopes during methanogenesis and fermentation.

  12. PRELIMINARY SYSTEMS ANALYSIS AND SIMULATION

    DTIC Science & Technology

    stability augmentation system specification; the development of the bridge concept for roll and yaw louver control; support of various hardware tests; the generation of the specification for the DeFlorez point light source visual display; furnishing consolation services during the DeFlorez display installation and testing, and developing the yaw, roll and pitch direction cosine

  13. Electric-Power System Simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, R. W.; Grumm, R. L.; Biedebach, B. L.

    1984-01-01

    Shows different combinations of generation, storage, and load components: display, video monitor with keyboard input to microprocessor, and video monitor for display of load curves and power generation. Planning tool for electric utilities, regulatory agencies, and laymen in understanding basics of electric-power systems operation.

  14. Computer simulation of equilibrium conditions following a plant 'trip'

    NASA Astrophysics Data System (ADS)

    Limb, D.

    When a process or part of a process experiences an emergency 'trip', the contained fluids redistribute themselves based upon the prevailing pressure gradients and depending upon the positions of valves at the time of the trip. Reverse flow through rotating compression machinery may occur, depending upon the locations of non-return valves. Reduction in pressure and mixing of cryogenic fluids of different compositions and/or temperatures can both lead to generation of significant volumes of vapour. This equilibration process is usually largely over in a matter of seconds rather than minutes. Key questions facing process and mechanical designers are: what is the settle-out pressure, and can we ensure relief valves do not lift following a trip? To answer these related questions it is necessary to analyse the state of the system prior to the trip, and then, based upon valve positions, etc., construct a model of the worst case probable scenarios for the qualitative redistribution of fluid inventory. At this point the simulation program may be employed to help calculate rigorously the final settle out conditions for each of the possible scenarios. This technique is particularly appropriate for cryogenic processes including refrigeration cycles. It is illustrated here with the help of a multistage hydrocarbon compressor example. Other related non-standard applications of the steady state process simulation program are identified.

  15. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Temi Linjewile; Mike Maguire; Adel Sarofim; Connie Senior; Changguan Yang; Hong-Shig Shim

    2004-04-28

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused primarily on completing a prototype detachable user interface for the framework and on integrating Carnegie Mellon Universities IECM model core with the computational engine. In addition to this work, progress has been made on several other development and modeling tasks for the program. These include: (1) improvements to the infrastructure code of the computational engine, (2) enhancements to the model interfacing specifications, (3) additional development to increase the robustness of all framework components, (4) enhanced coupling of the computational and visualization engine components, (5) a series of detailed simulations studying the effects of gasifier inlet conditions on the heat flux to the gasifier injector, and (6) detailed plans for implementing models for mercury capture for both warm and cold gas cleanup have been created.

  16. TRANSIMS: Transportation analysis and simulation system

    SciTech Connect

    Smith, L.; Beckman, R.; Baggerly, K.

    1995-07-01

    This document summarizes the TRansportation ANalysis and SIMulation System (TRANSIMS) Project, the system`s major modules, and the project`s near-term plans. TRANSIMS will employ advanced computational and analytical techniques to create an integrated regional transportation systems analysis environment. The simulation environment will include a regional population of individual travelers and freight loads with travel activities and plans, whose individual interactions will be simulated on the transportation system, and whose environmental impact will be determined. We will develop an interim operational capability (IOC) for each major TRANSIMS module during the five-year program. When the IOC is ready, we will complete a specific case study to confirm the IOC features, applicability, and readiness.

  17. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  18. How to solve complex problems in foundry plants - future of casting simulation -

    NASA Astrophysics Data System (ADS)

    Ohnaka, I.

    2015-06-01

    Although the computer simulation of casting has progressed dramatically over the last decades, there are still many challenges and problems. This paper discusses how to solve complex engineering problems in foundry plants and what we should do in the future, in particular, for casting simulation. First, problem solving procedures including application of computer simulation are demonstrated and various difficulties are pointed-out exemplifying mainly porosity defects in sand castings of spheroidal graphite cast irons. Next, looking back conventional scientific and engineering research to understand casting phenomena, challenges and problems are discussed from problem solving view point, followed by discussion on the issues we should challenge such as how to integrate huge amount of dispersed knowledge in various disciplines, differentiation of science-oriented and engineering-oriented models, professional ethics, how to handle fluctuating materials, initial and boundary conditions, error accumulation, simulation codes as black-box, etc. Finally some suggestions are made on how to challenge the issues such as promotion of research on the simulation based on the science- oriented model and publication of reliable data of casting phenomena in complicated-shaped castings including reconsideration of the evaluation system.

  19. Numerically simulating the sandwich plate system structures

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng

    2010-09-01

    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  20. Nonlinear plants, factorizations and stable feedback systems

    NASA Technical Reports Server (NTRS)

    Desoer, Charles A.; Kabuli, M. Guntekin

    1987-01-01

    For nonlinear plants represented by causal maps defined over extended spaces, right factorization and normalized right-coprime factorization concepts are discussed in terms of well-posed stable feedback systems. This setup covers continuous-time, discrete-time, time-invariant or time-varying input-output maps. The nonlinear maps are factored in terms of causal bounded-input bounded-output stable maps. In factored form, all instabilities of the original map are represented by the inverse of a causal stable `denominator' map. The existence of maps with right factorizations and normalized right-coprime factorizations is shown using a well-posed stable unity-feedback system. In the case where one of the subsystems has a normalized right-coprime factorization, the stability of the feedback system is equivalent to the stability of the pseudostate map.

  1. Communication Simulations for Power System Applications

    SciTech Connect

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  2. Field Guide to Plant Model Systems.

    PubMed

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.

  3. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rumel, John D.

    1987-01-01

    Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here the biochemical stoichiometry is developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source.

  4. Simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  5. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  6. Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Finotti, S.; Simani, S.; Alvisi, S.; Venturini, M.

    2017-01-01

    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system.

  7. Observing System Simulation Experiments: An Overview

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2016-01-01

    An overview of Observing System Simulation Experiments (OSSEs) will be given, with focus on calibration and validation of OSSE frameworks. Pitfalls and practice will be discussed, including observation error characteristics, incestuousness, and experimental design. The potential use of OSSEs for investigation of the behaviour of data assimilation systems will be explored, including some results from experiments using the NASAGMAO OSSE.

  8. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

  9. An Open Source Simulation System

    NASA Technical Reports Server (NTRS)

    Slack, Thomas

    2005-01-01

    An investigation into the current state of the art of open source real time programming practices. This document includes what technologies are available, how easy is it to obtain, configure, and use them, and some performance measures done on the different systems. A matrix of vendors and their products is included as part of this investigation, but this is not an exhaustive list, and represents only a snapshot of time in a field that is changing rapidly. Specifically, there are three approaches investigated: 1. Completely open source on generic hardware, downloaded from the net. 2. Open source packaged by a vender and provided as free evaluation copy. 3. Proprietary hardware with pre-loaded proprietary source available software provided by the vender as for our evaluation.

  10. Dynamic simulation of sulfur-removal systems. Final report

    SciTech Connect

    Alexander, J.H.; Blake, T.R.; Brownell, D.H. Jr.; Henline, W.D.; Wilkins, D.E.

    1982-01-01

    A generalized computer simulation has been developed to predict the dynamic response of alternate gas absorption systems for selective removal of sulfur compounds or ammonia from fuel gas or synthesis gas produced from coal or other fossil fuels. The models use numerical methods based upon finite difference techniques to determine the spatial distribution of process variables within both the absorption and regeneration columns of such gas cleanup processes. The simulator may be applied to systems for selective gas absorption based on either chemical or physical principles. Examples of such systems include the Benfield process based on absorption by chemical reaction with an activated alkali carbonate solvent, and the Allied SELEXOL Solvent Process based on physical absorption as a result of partial pressure differences of the gas components above an organic solvent system. Simulations of either individual process units or an entire integrated plant can be performed. This computer program has specifically been structured to permit convenient flow sheet modification, as well as addition of new units. This research has emphasized the development of a general theoretical structure which can be easily modified by substituting alternate sets of data on the physicochemical properties of the appropriate liquid solvent. This model has been applied to Selexol Solvent Processes using both published and proprietary data on solvent properties. Test calculations have been performed to simulate open loop response of individual scrubber towers, and the complete system, to input composition and flow rate transients.

  11. Program Simulates A Modular Manufacturing System

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Wang, Jian

    1996-01-01

    SSE computer program provides simulation environment for modeling manufacturing systems containing relatively small numbers of stations and operators. Designed to simulate manufacturing of apparel, also used in other manufacturing domains. Excellent for small or medium-size firms including those lacking expertise to develop detailed models or have only minimal knowledge in describing manufacturing systems and in analyzing results of simulations on mathematical models. User does not need to know simulation language to use SSE. Used to design new modules and to evaluate existing modules. Originally written in Turbo C v2.0 for IBM PC-compatible computers running MS-DOS and successfully implemented by use of Turbo C++ v3.0.

  12. Biomass Production System (BPS) Plant Growth Unit

    NASA Astrophysics Data System (ADS)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  13. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.

  14. Federated Simulations for Systems of Systems Integration

    DTIC Science & Technology

    2008-12-01

    It calls for a common definition of requirements via the Mili- tary Missions and Means framework (Sheehan, Dietz, Bray, Harris, and Wong 2004). It... missions and means framework . Technical Report TR-756, Army Material Systems Analysis Activity. Tolk, A., T. Litwin, and R. Kewley. 2008, December. A

  15. Plant architecture and growth response of kudzu (fabaceae: Fabaceae) to simulated insect herbivory.

    PubMed

    Frye, M J; Hough-Goldstein, J

    2013-10-01

    Kudzu [Pueraria montana variety lobata (Willd.) Maesen & S. M. Almeida] plant architecture and growth were compared for plants subjected to 4 wk of simulated herbivory (75% leaf cutting) and no damage. Simulated herbivory reduced above-ground and root biomass by 40 and 47%, respectively, whereas total vine length and average length of the 10 longest vines were reduced by 48 and 43%, respectively, compared with control plants. Plant architecture was also affected, with damaged plants showing a significantly reduced proportion of primary vines, shorter secondary vines, and reduced average internode distances compared with the control plants. In natural situations, these changes would reduce the ability of kudzu to compete for light and other resources by affecting the plant's climbing habit.

  16. Thermal enclosure system functional simulation user's manual

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1994-01-01

    A form and function simulation of the thermal enclosure system (TES) for a microgravity protein crystal growth experiment has been developed as part of an investigation of the benefits and limitations of intravehicular telerobotics to aid in microgravity science and production. A user can specify the time, temperature, and sample rate profile for a given experiment, and menu options and status are presented on an LCD display. This report describes the features and operational procedures for the functional simulation.

  17. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  18. Population dynamics of a monocarpic thistle: simulated effects of reproductive timing and grazing of flowering plants

    NASA Astrophysics Data System (ADS)

    Ramula, Satu

    2008-03-01

    In monocarpic plants, which die after flowering once, the timing of reproduction plays an important role. The optimal time for reproduction is when reproductive output and survival are maximized. This optimum may be altered by herbivores that consume reproductive plants of different sizes disproportionally. I examined plant survival, flowering probability, reproductive output and the probability of becoming grazed in relation to plant size in two populations of the short-lived monocarpic herb Cirsium palustre. Moreover, I simulated the consequences of changes in reproductive timing and grazing preference for population dynamics. Plant survival, flowering probability and reproductive output tended to increase with plant size, whereas the probability of becoming grazed was unaffected by plant size. According to the stochastic simulations, intense grazing would have been required to significantly reduce the stochastic population growth rate (log λs) and therefore, the observed levels of grazing had no impact on log λs in the study populations. Stochastic simulations conducted with selective grazing focusing on either early or late flowering plants and with different reproductive timings revealed that the grazing of early flowering plants had a constant effect on log λs despite the proportions of early and late flowering plants in the population, suggesting that there is no optimal time for reproduction. The grazing of late flowering plants reduced log λs with delayed reproduction, favouring reproduction early in the life cycle.

  19. Multipurpose simulation systems for regional development forecasting

    SciTech Connect

    Kostina, N.I.

    1995-09-01

    We examine the development of automaton-modeling multipurpose simulation systems as an efficient form of simulation software for MIS. Such systems constitute a single problem-oriented package of applications based on a general simulation model, which is equipped with a task source language, interaction tools, file management tools, and an output document editor. The simulation models are described by the method of probabilistic-automaton modeling, which ensures standard representation of models and standardization of the modeling algorithm. Examples of such systems include the demographic forecasting system DEPROG, the VOKON system for assessing the quality of consumer services in terms of free time, and the SONET system for servicing partially accessible customers. The development of computer-aided systems for production and economic control is now moving to the second state, namely operationalization of optimization and forecasting problems, whose solution may account for the main economic effect of MIS. Computation and information problems, which were the main focus of the first stage of MIS development, are thus acquiring the role of a source of information for optimization and forecasting problems in addition to their direct contribution to preparation and analysis of current production and economic information.

  20. Spatial Aspects in Biological System Simulations

    PubMed Central

    Resat, Haluk; Costa, Michelle N.; Shankaran, Harish

    2012-01-01

    Mathematical models of the dynamical properties of biological systems aim to improve our understanding of the studied system with the ultimate goal of being able to predict system responses in the absence of experimentation. Despite the enormous advances that have been made in biological modeling and simulation, the inherently multiscale character of biological systems and the stochasticity of biological processes continue to present significant computational and conceptual challenges. Biological systems often consist of well-organized structural hierarchies, which inevitably lead to multiscale problems. This chapter introduces and discusses the advantages and shortcomings of several simulation methods that are being used by the scientific community to investigate the spatiotemporal properties of model biological systems. We first describe the foundations of the methods and then describe their relevance and possible application areas with illustrative examples from our own research. Possible ways to address the encountered computational difficulties are also discussed. PMID:21187236

  1. 2001 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2002-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to

  2. 2000 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2001-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to

  3. Modeling and Fault Simulation of Propellant Filling System

    NASA Astrophysics Data System (ADS)

    Jiang, Yunchun; Liu, Weidong; Hou, Xiaobo

    2012-05-01

    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  4. Water-Conserving Plant-Growth System

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  5. Efficient event-driven simulations shed new light on microtubule organization in the plant cortical array

    NASA Astrophysics Data System (ADS)

    Tindemans, Simon H.; Deinum, Eva E.; Lindeboom, Jelmer J.; Mulder, Bela M.

    2014-04-01

    The dynamics of the plant microtubule cytoskeleton is a paradigmatic example of the complex spatiotemporal processes characterising life at the cellular scale. This system is composed of large numbers of spatially extended particles, each endowed with its own intrinsic stochastic dynamics, and is capable of non-equilibrium self-organisation through collisional interactions of these particles. To elucidate the behaviour of such a complex system requires not only conceptual advances, but also the development of appropriate computational tools to simulate it. As the number of parameters involved is large and the behaviour is stochastic, it is essential that these simulations be fast enough to allow for an exploration of the phase space and the gathering of sufficient statistics to accurately pin down the average behaviour as well as the magnitude of fluctuations around it. Here we describe a simulation approach that meets this requirement by adopting an event-driven methodology that encompasses both the spontaneous stochastic changes in microtubule state as well as the deterministic collisions. In contrast with finite time step simulations this technique is intrinsically exact, as well as several orders of magnitude faster, which enables ordinary PC hardware to simulate systems of ˜ 10^3 microtubules on a time scale ˜ 10^{3} faster than real time. In addition we present new tools for the analysis of microtubule trajectories on curved surfaces. We illustrate the use of these methods by addressing a number of outstanding issues regarding the importance of various parameters on the transition from an isotropic to an aligned and oriented state.

  6. System Equivalent for Real Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  7. Systems simulation for an airport trailing vortex warning system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1972-01-01

    The approach, development, and limited system studies associated with a system simulation for an Airport Trailing Vortex Warning System are documented. The usefulness is shown of a systems engineering approach to the problem of developing a system, as dictated by aircraft vortices, which will increase air-traffic flow in the takeoff/landing corridors of busy airports while maintaining the required safety factor for each operation. The simulation program has been developed in a modular form which permits new, more sophisticated component models, when they become available and are required, to be incorporated into the program with a minimum of program modifications. This report documents a limited system study that has been performed using this Total System Simulation Model. The resulting preliminary system requirements, conclusions, and recommendations are given.

  8. Pepper banker plant systems and predatory mitespepper banker plant systems and predatory mites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While developing the ornamental pepper banker plant system for greenhouse grown vegetables and ornamental crops we discovered that the predatory mites we were using could survive and reproduce on ornamental pepper without their prey especially if they were provided supplemental pollen or if the bank...

  9. Plant MetGenMAP: an integrative analysis system for plant systems biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  10. Computer simulations of learning in neural systems.

    PubMed

    Salu, Y

    1983-04-01

    Recent experiments have shown that, in some cases, strengths of synaptic ties are being modified in learning. However, it is not known what the rules that control those modifications are, especially what determines which synapses will be modified and which will remain unchanged during a learning episode. Two postulated rules that may solve that problem are introduced. To check their effectiveness, the rules are tested in many computer models that simulate learning in neural systems. The simulations demonstrate that, theoretically, the two postulated rules are effective in organizing the synaptic changes. If they are found to also exist in biological systems, these postulated rules may be an important element in the learning process.

  11. Simulation of a continuous lignite excavation system

    SciTech Connect

    Michalakopoulos, T.N.; Arvaniti, S.E.; Panagiotou, G.N.

    2005-07-01

    A discrete-event simulation model using the GPSS/H simulation language has been developed for a excavation system at a multi- level terrace mine. The continuous excavation system consists of five bucket wheel excavators and a network of 22 km of belt conveyors. Ways of dealing with the continuous material flow and frequent changes of material type are considered. The principal model output variables are production and arrival rate at the transfer point of mineral and waste. Animation and comparison with previous production data have been used to validate the model. 14 refs., 6 figs., 1 tab.

  12. Expert system for scheduling simulation lab sessions

    NASA Technical Reports Server (NTRS)

    Lund, Chet

    1990-01-01

    Implementation and results of an expert system used for scheduling session requests for the Systems Engineering Simulator (SES) laboratory at the NASA Johnson Space Center (JSC) are discussed. Weekly session requests are received from astronaut crew trainers, procedures developers, engineering assessment personnel, software developers, and various others who wish to access the computers, scene generators, and other simulation equipment available to them in the SES lab. The expert system under discussion is comprised of a data acquisition portion - two Pascal programs run on a personal computer - and a CLIPS program installed on a minicomputer. A brief introduction to the SES lab and its scheduling background is given. A general overview of the system is provided, followed by a detailed description of the constraint-reduction process and of the scheduler itself. Results from a ten-week trial period using this approach are discussed. Finally, a summary of the expert system's strengths and shortcomings are provided.

  13. MEDICINAL PLANTS OF RAJASTHAN IN INDIAN SYSTEM OF MEDICINE

    PubMed Central

    Tripathi, Y.C.; Prabhu, V.V.; Pal, R.S.; Mishra, R.N.

    1996-01-01

    Medicinal plants used in Indian system of medicine from Rajasthan state have been surveyed and catagorised systematically. The paper deals with 205 medicinal plants, thoroughly indexed along with their important traditional application for the cure of various ailments. PMID:22556743

  14. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Mike Maguire; Adel Sarofim; Changguan Yang; Hong-Shig Shim

    2004-01-28

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.

  15. Simulating fast and slow dynamic effects in power systems

    SciTech Connect

    de Mello, F.P.; Feltes, J.W.; Laskowski, T.F.; Oppel, L.J. )

    1992-07-01

    Electric power systems comprise a nearly infinite number of devices, exhibiting dynamic characteristics in a wide range of bandwidths and with significant nonlinear effects. Historically, the nature of these devices, the robust configuration of the electric power system, and its loading were such that the interaction between devices became relatively unimportant in system performance several seconds after disturbances. Greater utilization of electric plant, through heavier system loadings, interconnections, and increasing use of controls, has at times necessitated predictions of system performance through simulation extending over a time range of tens of seconds to several minutes. The phenomena occurring over this extended time frame has been referred to as long-term dynamics. There are basically two classes of problems involving long-term dynamics. One is the problem of islanding with significant imbalances between load and generation where prime mover action in response to frequency deviations is significant. The other concerns problems of insufficient damping and/or synchronizing power, and voltage collapse.

  16. Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Ubani, Nora

    2016-05-01

    The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.

  17. Argonne simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Canfield, T.; Brown-VanHoozer, A.; Tentner, A.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically to reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  18. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  19. New Aerodynamics Simulations Provide Better Understanding of Wind Plant Underperformance and Loading (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) develop a high-fidelity large-eddy simulation model designed to predict the performance of large wind plants with a higher degree of accuracy than current models.

  20. Preparation of plant and system design description documents

    SciTech Connect

    Not Available

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute`s Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants.

  1. Preparation of plant and system design description documents

    SciTech Connect

    Not Available

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute's Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants.

  2. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome.

    PubMed

    Andersen, Simone Nyholm; Broberg, Ole

    2015-11-01

    Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria.

  3. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  4. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  5. Photovoltaic-electrolyzer system transient simulation results

    SciTech Connect

    Leigh, R.W.; Metz, P.D.; Michalek, K.

    1986-05-01

    Brookhaven National Laboratory has developed a Hydrogen Technology Evaluation Center to illustrate advanced hydrogen technology. The first phase of this effort investigated the use of solar energy to produce hydrogen from water via photovoltaic-powered electrolysis. A coordinated program of system testing, computer simulation, and economic analysis has been adopted to characterize and optimize the photovoltaic-electrolyzer system. This paper presents the initial transient simulation results. Innovative features of the modeling include the use of real weather data, detailed hourly modeling of thermal characteristics of the PV array and of system control strategies, and examination of systems over a wide range of power and voltage ratings. The transient simulation system TRNSYS was used, incorporating existing, modified or new component subroutines as required. For directly coupled systems, the authors found the PV array voltage which maximizes hydrogen production to be quite near the nominal electrolyzer voltage for a wide range of PV array powers. The array voltage which maximizes excess electricity production is slightly higher. The use of an ideal (100 percent efficient) maximum power tracking system provides only a six percent increase in annual hydrogen production. An examination of the effect of the PV array tilt indicates, as expected, that annual hydrogen production is insensitive to tilt angle within +-20 deg of latitude. Summer production greatly exceeds winter generation. Tilting the array, even to 90 deg, produces no significant increase in winter hydrogen production.

  6. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  7. LHC RF System Time-Domain Simulation

    SciTech Connect

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  8. Electric System Intra-hour Operation Simulator

    SciTech Connect

    Lu, Shuai; Meng, PNNL Da; Guillen, PNNL Zoe; PNNL,

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resource dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.

  9. An artificial intelligence system for assisting nuclear power plant operators in the diagnosis of and response to plant faults and transients

    SciTech Connect

    Hajek, B.K.; Stasenko, J.E.; Bhatnagar, R.; Hashemi, S.

    1987-12-01

    This report discusses the Artificial Intelligence (AI) system being developed using the Conceptual Structures and Representation Language (CSRL) developed at the Ohio State University Laboratory for Artificial Intelligence Research (LAIR). This system combines three sub-systems which have been independently developed to perform the tasks of: detecting changes in the state of the plant that may lead to conditions requiring operator response, and then managing the actions taken by the other two subsystems; diagnosing the plant status independent of alarm states by analyzing the status of basic operating parameters such as flow rates, pressures, temperatures, and water levels, and providing a determination of the validity of sensor indications; and providing and/or synthesizing an appropriate procedure for the operator to follow to correct the transient or abnormal state of the plant. These three systems are tied into the main plant computers, including both the process computer and the safety parameter and display system computer, through the use of a compatible database. The architecture of the system is shown in Figure 1. The system is being developed using the Perry Nuclear Power Plant (a BWR/6) as the reference plant, and the General Electric ERIS and GEPAC Plus systems as key data sources. Scenarios are run on the Perry plant referenced simulator for testing of the AI system. Future testing plans call for the system to be interfaced directly to the Perry simulator.

  10. Wheels within wheels: the plant circadian system.

    PubMed

    Hsu, Polly Yingshan; Harmer, Stacey L

    2014-04-01

    Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.

  11. Compressed Air System Redesign Results in Increased Production at a Fuel System Plant (Caterpillar Fuel Systems Pontiac Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Caterpillar's Pontiac Plant project.

  12. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  13. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off

  14. Initial dynamic simulation of an HTGR sensible energy transport and storage plant

    SciTech Connect

    Ball, S.J.; Clapp, N.E. Jr.

    1982-06-01

    Dynamic models were developed for a General Atomic Company reference design of a high-temperature gas-cooled reactor sensible energy transport and storage (SETS) plant. The resulting computer code uses the IBM simulation language CSMP. The purpose of the program was to investigate the basic dynamic response behavior and controllability. The plant was found to have excellent inherent stability and control features.

  15. Estimating plant available water for general crop simulations in ALMANAC/APEX/EPIC/SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based simulation models ALMANAC/APEX/EPIC/SWAT contain generalized plant growth subroutines to predict biomass and crop yield. Environmental constraints typically restrict plant growth and yield. Water stress is often an important limiting factor; it is calculated as the sum of water use f...

  16. A simulation of data acquisition system for SSC experiments

    SciTech Connect

    Watase, Y.; Ikeda, H.

    1989-04-01

    A simulation on some parts of the data acquisition system was performed using a general purpose simulation language GPSS. Several results of the simulation are discussed for the data acquisition system for the SSC experiment.

  17. Introduction to Observing System Simulation Experiments (OSSEs)

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2014-01-01

    This presentation gives a brief overview of Observing System Simulation Experiments (OSSEs), including what OSSEs are, and how and why they are performed. The intent is to educate the audience in light of the OSSE-related sections of the Forecast Improvement Act (H.R. 2413).

  18. The systems biology simulation core algorithm

    PubMed Central

    2013-01-01

    Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941

  19. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  20. Integrated simulation of the Escatron PFBC power plant

    SciTech Connect

    Romeo, L.M.; Cortes, C.; Martinez, D.

    1997-12-31

    The study of the phenomena in fluidized beds has a great importance for the knowledge and development of FBC technologies. But nowadays, and from an operational point of view, the interest lies not only in fluidized bed behavior, but also in the influence of fluidized bed variables in the rest of the power plant. Although there is a great variety of designs and studies on FBC power stations (AFBC, CFBC and PFBC, with different types of cycles and first and second generation fluidized beds), there is a lack of detailed studies considering the interactions between the bed variables and the performance of the cycles (steam and gas). In order to improve the knowledge from this particular standpoint, an integrated model of the Escatron PFBC 80 MWe power plant (Spain) has been developed. The model has been validated with actual plant data, being able to predict the behavior of the plant as a whole. To do this, it estimates the most important variables of the fluidized bed (i.e., bed temperature profiles, bed density, fuel feed rate, heat transfer, entrainment, gas and steam flow rates), as well as the operating parameters of the power cycles (i.e., steam and gas turbine loads, temperatures and pressures). A practical application of this model is the evaluation of operational and design changes affecting the response of the fluidized bed, the steam and gas cycles, and, in turn, the power plant efficiency and availability.

  1. Plans for wind energy system simulation

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.

    1978-01-01

    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.

  2. Fidelity Optimization of Microprocessor System Simulations.

    DTIC Science & Technology

    1981-03-01

    I. TIT LE (end Su.btitle) 5 TYPE OF REPORT A PERIOD COVERED " Fidelity Optimization of Microprocessor THESIS /DgW&YON/ System Simulations...MICROPROCESSOR SYSTEM SIHULATIONS Earnest Taylor Landrum, Jr. A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the...Taylor Landrum, Jr. Permission is herewith granted to Auburn University to make copies of this thesis at its discretion, upon the request of

  3. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  4. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  5. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  6. Java simulations of embedded control systems.

    PubMed

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  7. Simulation System for Training in Laparoscopic Surgery

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao

    2003-01-01

    A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set

  8. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  9. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation

  10. An Investigation of System Identification Techniques for Simulation Model Abstraction

    DTIC Science & Technology

    2000-02-01

    This report summarizes research into the application of system identification techniques to simulation model abstraction. System identification produces...34Mission Simulation," a simulation of a squadron of aircraft performing battlefield air interdiction. The system identification techniques were...simplified mathematical models that approximate the dynamic behaviors of the underlying stochastic simulations. Four state-space system

  11. Simulation of Flywheel Energy Storage System Controls

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  12. Parachute system design, analysis, and simulation tool

    SciTech Connect

    Sundberg, W.D.; McBride, D.D.; Gwinn, K.W.; Waye, D.E.; Hailey, C.E.

    1992-01-01

    For over twenty years designers at Sandia National Laboratories have developed various parachute simulation codes to model deployment, inflation, loading, trajectories, aircraft downwash and line sail. In addition to these codes, material property data bases have been acquired. Recently we have initiated project to integrate these codes and data bases into a single software tool entitled SPARSYS (Sandia PARachute SYstem Simulation). We have constructed a graphical user interface as the driver and framework for SPARSYS. In this paper we present a status report on SPARSYS describing progress in developing and incorporating independent modules, in developing an integrated trajectory package, and in developing a materials data base including high-rate-of-strain data.

  13. Simulation of Soil-Plant Nitrogen Interactions for Educational Purposes.

    ERIC Educational Resources Information Center

    Huck, M. G.; Hoeft, R. G.

    1994-01-01

    Describes a computer model characterizing the balance of soil-plant Nitrogen that allows students to see the likely consequences of different biological and weather-related parameters. Proposes three uses for the model: (1) orienting beginning students to understand the soil Nitrogen cycle; (2) providing information for advanced students; and (3)…

  14. Simulating Complex Window Systems using BSDF Data

    SciTech Connect

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  15. A system of infrared scene simulation

    NASA Astrophysics Data System (ADS)

    Hu, Haihe; Li, Yujian; Huo, Yi; Kuang, Wenqing; Zhang, Ting

    2016-10-01

    We propose an integral infrared scene simulation system. The proposed system, which is based on the parameters of the thermal physical property and optical property, computes the radiation distribution of the scenery on the focus plane of the camera according to the scene of the geometrical parameter, the position and intensity of the light source, the location and direction of the camera and so on. Then the radiation distribution is mapped to the space of gray, and we finally obtain the virtual image of the scene. The proposed system includes eight modules namely basic data maintaining, model importing, scene saving, geometry parameters setting and infrared property parameters of the scene, data pre-processing, infrared scene simulation, and scene loading. The proposed system organizes all the data by the mode of database lookup table that stores all relative parameters and computation results of different states to avoid repetitive computation. Experimental results show that the proposed system produces three dimension infrared images in real time to some extent, and can reach 60 frames/second in simple scene drawing and 20 frames/second in complex scene drawing. Experimental results also show that the simulated images can represent infrared features of the scenery to a certain degree.

  16. Presentation of Fukushima Analyses to U.S. Nuclear Power Plant Simulator Operators and Vendors

    SciTech Connect

    Osborn, Douglas; Kalinich, Donald A.; Cardoni, Jeffrey N

    2015-02-01

    This document provides Sandia National Laboratories’ meeting notes and presentations at the Society for Modeling and Simulation Power Plant Simulator conference in Jacksonville, FL. The conference was held January 26-28, 2015, and SNL was invited by the U.S. nuclear industry to present Fukushima modeling insights and lessons learned.

  17. A Genetic/Heuristic Approach to Simulating Plant Height in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A challenge for crop simulation modeling is to incorporate existing and rapidly emerging genomic information into models to develop new and improved algorithms. The objective of this effort was to simulate plant height in winter wheat (Triticum aestivum L.) across a range of environments in Nebraska...

  18. Quantifying Phenotypic Plasticity Using Genetic Information for Simulating Plant Height in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A challenge for crop simulation modeling is to incorporate existing and rapidly emerging genomic information into models to develop new and improved algorithms. The objective of this effort was to simulate plant height in winter wheat (Triticum aestivum L.) across a range of environments in Nebraska...

  19. Evaluation of solar thermal power plants using economic and performance simulations

    NASA Technical Reports Server (NTRS)

    El-Gabawali, N.

    1980-01-01

    An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.

  20. System-Level Reuse of Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Hazen, Michael R.; Williams, Joseph C.

    2004-01-01

    One of the best ways to enhance space systems simulation fidelity is to leverage off of (reuse) existing high-fidelity simulations. But what happens when the model you would like to reuse is in a different coding language or other barriers arise that make one want to just start over with a clean sheet of paper? Three diverse system-level simulation reuse case studies are described based on experience to date in the development of NASA's Space Station Training Facility (SSTF) at the Johnson Space Center in Houston, Texas. Case studies include (a) the Boeing/Rocketdyne-provided Electrical Power Simulation (EPSIM), (b) the NASA Automation and Robotics Division-provided TRICK robotics systems model, and (c) the Russian Space Agency- provided Russian Segment Trainer. In each case, there was an initial tendency to dismiss simulation reuse candidates based on an apparent lack of suitability. A more careful examination based on a more structured assessment of architectural and requirements-oriented representations of the reuse candidates revealed significant reuse potential. Specific steps used to conduct the detailed assessments are discussed. The steps include the following: 1) Identifying reuse candidates; 2) Requirements compatibility assessment; 3) Maturity assessment; 4) Life-cycle cost determination; and 5) Risk assessment. Observations and conclusions are presented related to the real cost of system-level simulation component reuse. Finally, lessons learned that relate to maximizing the benefits of space systems simulation reuse are shared. These concepts should be directly applicable for use in the development of space systems simulations in the future.

  1. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  2. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  3. Protoplast Transformation as a Plant-Transferable Transient Expression System.

    PubMed

    Duarte, Patrícia; Ribeiro, Diana; Carqueijeiro, Inês; Bettencourt, Sara; Sottomayor, Mariana

    2016-01-01

    The direct uptake of DNA by naked plant cells (protoplasts) provides an expression system of exception for the quickly growing research in non-model plants, fuelled by the power of next-generation sequencing to identify novel candidate genes. Here, we describe a simple and effective method for isolation and transformation of protoplasts, and illustrate its application to several plant materials.

  4. National Plant Germplasm System: Critical Role of Customer Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Plant Germplasm System (NPGS) conserves plant genetic resources, not only for use by future generations, but for immediate use by scientists and educators around the world. With a great deal of interaction between genebank curators and users of plant genetic resources, customer service...

  5. The National Plant Germplasm System and GRIN-Global

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Plant Germplasm System (NPGS) is a cooperative effort by public and private organizations to preserve plant genetic diversity. Federal and State personnel at 20 sites are responsible for approximately 547,000 unique accessions of a wide array of plant genetic resources (PGR) representi...

  6. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  7. Problem reporting management system performance simulation

    NASA Technical Reports Server (NTRS)

    Vannatta, David S.

    1993-01-01

    This paper proposes the Problem Reporting Management System (PRMS) model as an effective discrete simulation tool that determines the risks involved during the development phase of a Trouble Tracking Reporting Data Base replacement system. The model considers the type of equipment and networks which will be used in the replacement system as well as varying user loads, size of the database, and expected operational availability. The paper discusses the dynamics, stability, and application of the PRMS and addresses suggested concepts to enhance the service performance and enrich them.

  8. Runway Incursion Prevention System Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2002-01-01

    A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.

  9. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  10. An artificial intelligence system for assisting nuclear power plant operators in the diagnosis of the response to plant faults and transients

    SciTech Connect

    Hajek, B.K.; Stasenko, J.E.; Bhatnagar, R.; Hashemi, S.

    1987-01-01

    An artificial intelligence system is being developed using the Conceptual Structures and Representation Language (CSRL) developed at The Ohio State University Laboratory for Artificial Intelligence Research (LAIR). This system combines three subsystems, which have been independently developed to perform the following tasks: (1) detecting changes in the state of the plant that may lead to conditions requiring operator response and then managing the actions taken by the other two subsystems, (2) diagnosing the plant status independent of alarm states by analyzing the status of basic operating parameters, such as flow rates, pressures, temperatures, and water levels, and providing a determination of the validity of sensor indications, and (3) providing and/or synthesizing an appropriate procedure for the operator to follow to correct the transient of abnormal state of the plant. These three system are tied into the main plant computers, including both the process computer and the safety parameter and display system computer, through the use of a compatible data base. The system is being developed using the Perry Nuclear Power Plant (a BWR/6) as the reference plant, and the General Electric ERIS and GEPAC Plus systems as key data sources. Scenarios are run on by the Perry plant referenced simulator for testing of the artificial intelligence system. Future testing plans call for the system to be interfaced directly to the Perry simulator.

  11. Modeling of an industrial alcohol fermentation and simuiation of the plant by a process simulator.

    PubMed

    Pascal, F; Dagot, C; Pingaud, H; Corriou, J P; Pons, M N; Engasser, J M

    1995-05-05

    The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production. (c) 1995 John Wiley & Sons, Inc.

  12. Numerical Simulation of a Compartment Fire in a Nuclear Power Plant Containment Building

    SciTech Connect

    Jason Floyd

    2002-07-01

    The current trend towards the increased use of risk assessment in the regulation of nuclear power plants will inevitably result in changes in the analysis of fire protection systems and the methods of analysis. Before fire protection can be regulated on a risk basis, a consensus must be reached on a number of issues. One key issue is what types of computational tools will be allowable for analyzing fire events, and what types of scenarios those tools will be approved for use. Reaching this consensus will require an understanding of the types of computational tools available and their inherent advantages and disadvantages. To aid with this understanding, three different methods of fire simulation are applied to an oil pool fire test in the HDR (Heiss Dampf Reaktor) containment test facility. These methods are a hand calculation, the zone model code CFAST (Consolidated Model of Fire Growth and Smoke Transport), and the computational fluid dynamics code FDS (Fire Dynamics Simulator). Each is applied to a steady-state portion of the test using, to the extent possible, the same set of input parameters. The results of the computation are compared to the test data. The comparisons show that each method is potentially suitable for use depending on the information required from the simulation. Each method will potentially have a role to play in risk based regulation depending on the scenario. (authors)

  13. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  14. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  15. Process simulation in digital camera system

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  16. Nuclear power plant status diagnostics using simulated condensation: An auto-adaptive computer learning technique

    SciTech Connect

    Bartlett, E.B.

    1990-01-01

    The application of artificial neural network concepts to engineering analysis involves training networks, and therefore computers, to perform pattern classification or function mapping tasks. This training process requires the near optimization of network inter-neural connections. A new method for the stochastic optimization of these interconnections is presented in this dissertation. The new approach, called simulated condensation, is applied to networks of generalized, fully interconnected, continuous preceptrons. Simulated condensation optimizes the nodal bias, gain, and output activation constants as well as the usual interconnection weights. In this work, the simulated condensation network paradigm is applied to nuclear power plant operating status recognition. A set of standard problems such as the exclusive-or problem and others are also analyzed as benchmarks for the new methodology. The objective of the nuclear power plant accidient condition diagnosis effort is to train a network to identify both safe and potentially unsafe power plant conditions based on real time plant data. The data is obtained from computer generated accident scenarios. A simulated condensation network is trained to recognize seven nuclear power plant accident conditions as well as the normal full power operating condition. These accidents include, hot and cold leg loss of coolant, control rod ejection and steam generator tube leak accidents. Twenty-seven plant process variables are used as input to the neural network. Results show the feasibility of using simulated condensation as a method for diagnosing nuclear power plant conditions. The method is general and can easily be applied to other types of plants and plant processes.

  17. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    SciTech Connect

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  18. Green pathways: Metabolic network analysis of plant systems.

    PubMed

    Dersch, Lisa Maria; Beckers, Veronique; Wittmann, Christoph

    2016-03-01

    Metabolic engineering of plants with enhanced crop yield and value-added compositional traits is particularly challenging as they probably exhibit the highest metabolic network complexity of all living organisms. Therefore, approaches of plant metabolic network analysis, which can provide systems-level understanding of plant physiology, appear valuable as guidance for plant metabolic engineers. Strongly supported by the sequencing of plant genomes, a number of different experimental and computational methods have emerged in recent years to study plant systems at various levels: from heterotrophic cell cultures to autotrophic entire plants. The present review presents a state-of-the-art toolbox for plant metabolic network analysis. Among the described approaches are different in silico modeling techniques, including flux balance analysis, elementary flux mode analysis and kinetic flux profiling, as well as different variants of experiments with plant systems which use radioactive and stable isotopes to determine in vivo plant metabolic fluxes. The fundamental principles of these techniques, the required data input and the obtained flux information are enriched by technical advices, specific to plants. In addition, pioneering and high-impacting findings of plant metabolic network analysis highlight the potential of the field.

  19. Towards a functional–structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure

    PubMed Central

    Buck-Sorlin, Gerhard; de Visser, Pieter H. B.; Henke, Michael; Sarlikioti, Vaia; van der Heijden, Gerie W. A. M.; Marcelis, Leo F. M.; Vos, Jan

    2011-01-01

    Background and Aims The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity. Methods The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model. Key Results The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios. Conclusions The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants. PMID:21856634

  20. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  1. Simulation of a Production Facility with an Automated Transport System

    SciTech Connect

    ABRAMCZYK, GLENN

    2004-04-07

    A model was needed to assess material throughput and validate the conceptual design of a production facility, including equipment lists and layout. The initial desire was to use a commercially available discrete event simulation package. However, the available software was found to be too limited in capability. Database interface software was used to develop autonomous intelligent manufacturing workstations and material transporters. The initial Extend model used to assess material throughput and develop equipment lists for the preconceptual design effort was upgraded with software add-ons from Simulation Dynamics, Inc. (SDI). Use of the SDI database interface allowed the upgraded model to include: 1. a material mass balance at any level of detail required by the user, and 2. a transport system model that includes all transport system movements, time delays, and transfers between systems. This model will assist in evaluating transport system capacity, sensitive time delays in the system, and optimal operating strategies. An additional benefit of using the SDI database interface is dramatically improved run time performance. This allows significantly more runs to be completed to provide better statistics for overall plant performance. The model has all system and process parameters entered into sub-component accessible tables. All information for the manufactured items and process data is automatically generated and written to the database. The standard software is used for the movement of manufactured items between workstations, and for sequence and timing functions. Use of the database permits almost unlimited process control and data collection with an insignificant effect on run time.

  2. Design and Development of the Simulation System for Marine LNG Fuel Reliquefaction

    NASA Astrophysics Data System (ADS)

    Li, Boyang; Zhang, Yunqiu; Liu, Yunxin; Li, Diyang

    This paper introduced the background of LNG powered ship reliquefaction plant and its working principle, established the calculation model of simulation system, taking the VLCC ship LNG powered ship as the mother ship, provided the thermodynamic calculation flow chart, developed the software for the operation simulation system and the developed the assessment system and the equipment management system. This software can simulate the operation process and carry out the numerical calculation. It is good for the purpose of training students and has great reference value for research.

  3. HSI Prototypes for Human Systems Simulation Laboratory

    SciTech Connect

    Jokstad, Håkon; McDonald, Rob

    2015-09-01

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy’s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  4. Data Systems Dynamic Simulation - A total system for data system design assessments and trade studies

    NASA Technical Reports Server (NTRS)

    Hooper, J. W.; Rowe, D. W.

    1978-01-01

    Data Systems Dynamic Simulation is a simulation system designed to reduce cost and time and increase the confidence and comprehensiveness of Data Systems Simulation. It is designed to simulate large data processing and communications systems from end-to-end or by subsystem. Those features relevant to system timing, control, sizing, personnel support activities, cost and external influences are modeled. Emphasis is placed on ease of use, comprehensive system performance measures, and extensive post simulation analysis capability. The system has been used to support trade studies of the NASA data system needs in the 1985 to 1990 time frame.

  5. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  6. Computer Simulation of Shipboard Electrical Distribution Systems

    DTIC Science & Technology

    1989-06-01

    variable. If used properly, the Euler Backward method for integrating differential equations approaches the same solution. Fast modes can also be...synchronous machines as well as other elements of a power network. EMTP handles stiff systems by using the Euler Backward method for integration. In general...simulations - 29 - however, there are three methods that work well. The f’irst is the Euler Forward method which is considered an explicit technique since it

  7. Optical simulations for Ambilight TV systems

    NASA Astrophysics Data System (ADS)

    Bruyneel, Filip; Lanoye, Lieve

    2012-06-01

    Ambilight is a unique Philips feature, where RGB LEDs are used to create a dynamic light halo around the television. This extends the screen and hence increases the viewing experience, as it draws the viewer more into the action on the screen. The feature receives very positive consumer feedback. However, implementing Ambilight in the increasingly stringent design boundary conditions of a slim and thin TV set is a challenging task. Optical simulations play a vital role in each step of the Ambilight development. Ranging from prototype to final product, we use simulations, next to prototyping, to aid the choice of LEDs, optical materials and optical systems during different phases of the design process. Each step the impact of the optical system on the mechanical design and TV set dimensions needs to be taken into account. Moreover, optical simulations are essential to guarantee the required optical performance given a big spread in LED performance, mechanical tolerances and material properties. Next to performance, optical efficiency is also an important parameter to evaluate an optical design, as it establishes the required number of LEDs and the total LED power. As such optical efficiency defines the thermal power which needs to be dissipated by the LED system. The innovation roadmap does not stop here. For future systems we see a miniaturization trend, where smaller LED packages and smaller dies are used. This evolution makes the impact of mechanical tolerances on the optical design more severe. Consequentially, this approach poses a whole new challenge to the way we use optical simulations in our design process.

  8. Infrared Simulation System (IRSS). Phase I.

    DTIC Science & Technology

    1977-07-01

    Advanced Concepts Development Facility ( ACDF ) nownder construction. I This report covers, in addition to the detailed description of the design...1.2 Purpose and Use . ............... . ........ 1 1 .1. General ......... .............. 1 1.2. 2 Purpose of the ACDF ................... 1 1.2.3...2 1-2 Placement of Apparatus in ACDF Room 102 ................. 3 3-1 Functional Entities in the Infrared Simulation System

  9. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  10. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  11. The circadian system in higher plants.

    PubMed

    Harmer, Stacey L

    2009-01-01

    The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.

  12. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes

    PubMed Central

    Dasgupta, Ranjit; Garcia, Bradley H.; Goodman, Robert M.

    2001-01-01

    Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants. PMID:11296259

  13. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    SciTech Connect

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  14. Lipid peroxidation of plants under microgravity and its simulation.

    PubMed

    Zhadko, S I; Polulyakh YuA; Vorobyeva, T V; Baraboy, V A

    1994-01-01

    In series of space experiments aboard the biosatellites "Cosmos 1887", "Bion 9", the orbital stations "Salut", "Mir" and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character; three steps of response were established: LPO decreasing accompanied by AOA increase; stabilization LPO <==> AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.

  15. Lipid peroxidation of plants under microgravity and its simulation

    NASA Astrophysics Data System (ADS)

    Zhadko, S. I.; Polulyakh, Yu. A.; Vorobyeva, T. V.; Baraboy, V. A.

    1994-08-01

    In series of space experiments a board the biosatellites ``Cosmos 1887'', ``Bion 9'', the orbital stations ``Salut'', ``Mir'' and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character three steps of response were established; LPO decreasing accompanied by AOA increase; stabilization LPO⇄AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.

  16. System Identification and Simulation of a Triaxial Shaker System,

    DTIC Science & Technology

    1996-01-01

    methods. Results of the system identification process are discussed. Certain methods are found to produce models that are in good agreement with measured response data from the actual shaker system....implemented in the simulation. The first is a physically-based model derived from a finite element analysis together with a model-updating system ... identification scheme; the second is a parametric model without direct physical significance. The advantages and disadvantages of each model for this

  17. Two-flow simulation of the natural light field within a canopy of submerged aquatic plants

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1986-01-01

    A two-flow model is developed to simulate a light field composed of both collimated and diffuse irradiance within natural waters containing a canopy of bottom-adhering plants. To account for the effects of submerging a canopy, the transmittance and reflectance terms associated with each plant structure (leaves, stems, fruiting bodies, etc.) are expressed as functions of the ratio of the refractive index of the plant material to the refractive index of the surrounding media and the internal transmittance of the plant stucture. Algebraic solutions to the model are shown to yield plausible physical explanations for unanticipated variations in volume reflectance spectra. The effect of bottom reflectance on the near-bottom light field is also investigated. These indicate that within light-limited submerged aquatic plant canopies, substrate reflectance may play an important role in determining the amount of light available to the plants and, therefore, canopy productivity.

  18. Methods and systems for seed planting management and control

    DOEpatents

    Svoboda, John M.; Hess, J. Richard; Hoskinson, Reed L.; Harker, David J.

    2002-01-01

    A seed planting system providing optimal seed spacing in an agricultural field. The seed planting system includes a mobile seed planter having one or more planting shoes, or members being adapted for towing by a farm vehicle or being self-propelled. Sensors, disposed proximate to respective planting shoes, detect seed planting events and send corresponding signals to a computer. Contemporaneously, a geospatial locator acquires, and transmits to the computer, the geospatial location of each planted seed. The computer correlates the geospatial location data with the seed deposition data and generates a seed distribution profile indicating the location of each seed planted in a zone of interest to enable the control of speed spacing.

  19. Marshall system for aerospace system simulation (MARSYAS), user's manual

    NASA Technical Reports Server (NTRS)

    Ventre, A.; Sevigny, R.; Mccollum, W.; Balentine, T.

    1973-01-01

    The capabilities of the Marshall system for aerospace system simulation (MARSYAS) and how to use it are described. MARSYAS is a software system that allows easy setup and control of the simulation of the dynamics of large physical systems on a digital computer. The physical systems are modeled in the form of block diagrams or equations. The blocks can have multiple inputs and multiple outputs, and they can be nested to form hierarchies. The block diagrams can contain transfer functions, nonlinear and logical functions, equations, analog computer elements and FORTRAN programs. The input format of the equations can be combinations of nonlinear, time-varying differential equations and algebraic equations in their original format. MARSYAS could also serve as a storage and retrieval system for models as a basis for a model configuration control system on a central time-shared computer. The outputs of the simulation system can be not only time-responses but also other analysis data such as frequency response, power spectrum and stability parameters. The MARSYAS translator is written in FORTRAN running on the Univac 1108 computer under the EXEC 8 operating system.

  20. PACKAGE PLANTS FOR SMALL SYSTEMS: A FIELD STUDY

    EPA Science Inventory

    A joint field study was conducted by AWWA and the Drinking Water Research Division of USEPA to evaluate existing small community systems that use package plant technology. Forty-eight package plant systems representing a geographic and technological cross section were evaluated t...

  1. Software V & V methods for digital plant protection system

    SciTech Connect

    Kim, Hung-Jun; Han, Jai-Bok; Chun, Chong-Son; Kim, Sung; Kim, Kern-Joong

    1997-12-01

    Careful thought must be given to software design in the development of digital based systems that play a critical role in the successful operation of nuclear power plants. To evaluate the software verification and validation methods as well as to verify its system performance capabilities for the upgrade instrumentation and control system in the Korean future nuclear power plants, the prototype Digital Plant, Protection System (DPPS) based on the Programmable Logic Controller (PLC) has been constructed. The system design description and features are briefly presented, and the software design and software verification and validation methods are focused. 6 refs., 2 figs.

  2. Hydrogen generation in CSP plants and maintenance of DPO/BP heat transfer fluids - A simulation approach

    NASA Astrophysics Data System (ADS)

    Kuckelkorn, Thomas; Jung, Christian; Gnädig, Tim; Lang, Christoph; Schall, Christina

    2016-05-01

    The ageing of diphenyl oxide/ biphenyl (DPO/BP) Heat Transfer Fluids (HTFs) implies challenging tasks for operators of parabolic trough power plants in order to find the economic optimum between plant performance and O&M costs. Focusing on the generation of hydrogen, which is effecting from the HTF ageing process, the balance of hydrogen pressure in the HTF is simulated for different operation scenarios. Accelerated build-up of hydrogen pressure in the HTF is causing increased permeation into the annular vacuum space of the installed receivers and must be avoided in order to maintain the performance of these components. Therefore, the effective hydrogen partial pressure in the HTF has to be controlled and limited according to the specified values so that the vacuum lifetime of the receivers and the overall plant performance can be ensured. In order to simulate and visualize the hydrogen balance of a typical parabolic trough plant, initially a simple model is used to calculate the balance of hydrogen in the system and this is described. As input data for the simulation, extrapolated hydrogen generation rates have been used, which were calculated from results of lab tests performed by DLR in Cologne, Germany. Hourly weather data, surface temperatures of the tubing system calculated by using the simulation tool from NREL, and hydrogen permeation rates for stainless steel and carbon steel grades taken from literature have been added to the model. In a first step the effect of HTF ageing, build-up of hydrogen pressure in the HTF and hydrogen loss rates through piping and receiver components have been modeled. In a second step a selective hydrogen removal process has been added to the model. The simulation results are confirming the need of active monitoring and controlling the effective hydrogen partial pressure in parabolic trough solar thermal power plants with DPO/BP HTF. Following the results of the simulation, the expected plant performance can only be achieved

  3. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  4. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  5. Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2012-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  6. Energetic metabolism response in algae and higher plant species from simulation experiments with the clinostat

    NASA Astrophysics Data System (ADS)

    Vasilenko, A.; Popova, A. F.

    Adenylate state is acknowledged to be among the most convenient approaches in the study of physiological changes in plant cells under simulation of altered gravity condition with the clinostat. Adenylate levels and the ATP/ADP ratio in cytoplasmic and mitochondrial extracts of cultivated cells of Haplopappus gracilis and algae cells of Chlorella vulgaris under initial stages of the fast-rotating and slow-rotating clinorotation, as well as the long-term clinorotation, have been investigated. For analysis of ATP and ADP levels in the plant cells under the clinorotation, we applied a high-sensitive bioluminescence method using the luciferase and piruvate kinase enzyme systems. It has been shown that the adenylate ratio is already increased during at the start of clinorotation with the different speed of rotation in the biological material tested. The considerable changes in mitochondrial ultrastructure of Chlorella cells, as well as the rising ATP level and dropping of the ATP/ADP ratio appear after long-duration clinorotation if compared to control material. It is probably connected with the distinctions in ATP-synthetase functioning in mitochondria of the cells under the clinorotation conditions.

  7. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition.

    PubMed

    Chen, Juan; Wu, Fei-Hua; Liu, Ting-Wu; Chen, Lei; Xiao, Qiang; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C(3) herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C(3) herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget.

  8. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  9. Simulation of paraequilibrium growth in multicomponent systems

    NASA Astrophysics Data System (ADS)

    Ghosh, G.; Olson, G. B.

    2001-03-01

    A methodology to simulate paraequilibrium (PE) growth in multicomponent systems using the DIC-TRA (Diffusion-Controlled Transformation) software is presented. For any given multicomponent system containing substitutional and interstitial elements, the basic approach is to define a hypothetical element Z, whose thermodynamic and mobility parameters are expressed in terms of the weighted average (with respect to site fraction) of the thermodynamic parameters and mobilities of the substitutional alloying elements. This procedure facilitates the calculation of PE phase diagrams and the PE growth simulations directly in the Thermo-Calc and DICTRA software, respectively. The results of two distinct case studies in multicomponent alloys are presented. In the first example, we simulate the isothermal growth of PE cementite in an Fe-C-Co-Cr-Mo-Ni secondary hardening steel during tempering. This is of practical importance in modeling the carbide precipitation kinetics during secondary hardening. In the second example, we have presented the results of PE ferrite growth during continuous cooling from an intercritical temperature in an Fe-Al-C-Mn-Si low-alloy steel. This is of importance to the design of triple-phase steels containing an austenite that has optimum stability, to facilitate stress-induced transformation under dynamic loading. The results of both simulations are in good accord with experimental results. The model calculations do not consider any resistive or dissipative forces, such as the interfacial energy, strain energy, or solute drag, and, as a result, the interface velocities represent an upper limit under the available chemical driving force.

  10. VOCs monitoring system simulation and design

    NASA Astrophysics Data System (ADS)

    Caldararu, Florin; Vasile, Alexandru; Vatra, Cosmin

    2010-11-01

    The designed and simulated system will be used in the tanning industry, for Volatile Organic Compound (VOC) measurements. In this industry, about 90% of the solvent contained in the emulsions evaporates during its application, giving rise to VOC, which are at the same time hazardous atmospheric pollutants and one of the sources of ground level photochemical ozone formation. It results that a monitoring system is necessary in a leather finishing process, in order to detect hazardous VOC concentration and conducting process in order of VOC concentration diminishing. The paper presents the design of a VOC monitoring system, which includes sensors for VOCs and temperature, the conditioning circuitry for these sensors, the suction system of the gas in the hood, the data acquisition and the computing system and graphic interface. The used sensor in the detection system is a semiconductor sensor, produced by Figaro Engineering Inc., characterized by a short response time, high sensitivity at almost all VOC substances. The design of the conditioning circuitry and data acquisition is done in order to compensate the sensor response variation with temperature and to maintain the low response time of the sensor. The temperature compensation is obtained by using a thermistor circuitry, and the compensation is done within the software design. A Mitsubishi PLC is used to receive the output signals of the circuits including the sensor and of the thermistor, respectively. The acquisition and computing system is done using Mitsubishi ALPHA 2 controller and a graphical terminal, GOT 1000.

  11. Aquatic Plant Control Research Program. Simulated Mechanical Control of Aquatic Plants in Buffalo Lake, Wisconsin.

    DTIC Science & Technology

    1983-10-01

    eastern two thirds of the lake. The Aquamarine H8-650 and H-400 harvester were selected for simulation. Mechanical control operations were simulated in the...treatment area for the two summer periods using each harvester working alone and with a single Aquamarine T-650 transport unit. Surface-topped growth... Aquamarine Corporation have received the most widespread usage (Cannellos 1981). Aquamarine harvesters are owned by many contractors, governmental agencies

  12. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chowdhury, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  13. Ornamental Plants and the US National Plant Germplasm System: Conserving, Evaluating, Seeking, and Sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents an overview of the US National Plant Germplasm System (NPGS) for an audience of plant propagators from the nursery industry, academia, and public gardens. It describes the active sites that conserve germplasm of interest to propagators and how those sites conserve their germpla...

  14. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  15. The vascular plants: open system of growth.

    PubMed

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs

  16. Computer Simulator for OTEC System Design : Pump Control of Flow Rate

    NASA Astrophysics Data System (ADS)

    Nakamura, Masatoshi; Ikegami, Yasuyuki; Uehara, Haruo

    The purpose of ocean thermal energy conversion (OTEC) is to extract power from temperature differences existing in the oceans. The OTEC system design mainly comprises an OTEC plant design and an OTEC control design. The main purpose of this paper is to demonstrate the importance of a computer simulator for the OTEC system design. The computer simulator, constructed by a computer with A/D and D/A converters, produces analogue input and output signals which are equivalent to those of an actual OTEC plant. By using the computer simulator of an OTEC plant, we can estimate properties of any OTEC plant easily, economically and safely. The computer simulator also plays an important role in detecting difficulties in designing the OTEC controller. We furthermore described the procedure for designing the OTEC controller as follows: (i) statement of the control objective, (ii) modeling of the controlled object, (iii) application of control theory to the model, (iv) characterization of the detector and the input signal part, and (v) construction of the controller. We constructed the computer simulator and the controller for pump flow rate as part of the OTEC plant. We then obtained satisfactory control performance for flow rate control of experiments.

  17. Computer simulations of athermal and glassy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ning

    2005-12-01

    We performed extensive molecular dynamics simulations to better understand athermal and glassy systems near jamming transitions. We focused on four related projects. In the first project, we decomposed the probability distribution P(φ) of finding a collectively jammed state at packing fraction φ into two distinct contributions: the density of CJ states rho(φ) and their basins of attraction beta(φ). In bidisperse systems, it is likely that rho(φ) controls the shape of P(φ) in the large system size limit, and thus the most likely random jammed state may be used as a protocol independent definition of random close packing in this system. In the second project, we measured the yield stress in two different ensembles: constant shear rate and constant stress. The yield stress measured in the constant stress ensemble is larger than that measured in the constant shear rate ensemble, however, the difference between these two measurements decreases with increasing system size. In the third project, we investigated under what circumstances nonlinear velocity profiles form in frictionless granular systems undergoing boundary driven planar shear flow. Nonlinear velocity profiles occur at short times, but evolve into linear profiles at long times. Nonlinear velocity profiles can be stabilized by vibrating these systems. The velocity profile can become highly localized when the shear stress of the system is below the constant force yield stress, provided that the granular temperature difference across the system is sufficiently large. In the fourth project, we measured the effective temperature defined from equilibrium fluctuation-dissipation relations in athermal and glassy systems sheared at constant pressure. We found that the effective temperature is strongly controlled by pressure in the slowly sheared regime. Thus, this effective temperature and pressure are not independent variables in this regime.

  18. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-08-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent

  19. Engineering simulations for cancer systems biology.

    PubMed

    Bown, James; Andrews, Paul S; Deeni, Yusuf; Goltsov, Alexey; Idowu, Michael; Polack, Fiona A C; Sampson, Adam T; Shovman, Mark; Stepney, Susan

    2012-11-01

    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions.

  20. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  1. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  2. The GEM Detector projective alignment simulation system

    SciTech Connect

    Wuest, C.R.; Belser, F.C.; Holdener, F.R.; Roeben, M.D.; Paradiso, J.A.; Mitselmakher, G.; Ostapchuk, A.; Pier-Amory, J.

    1993-07-09

    Precision position knowledge (< 25 microns RMS) of the GEM Detector muon system at the Superconducting Super Collider Laboratory (SSCL) is an important physics requirement necessary to minimize sagitta error in detecting and tracking high energy muons that are deflected by the magnetic field within the GEM Detector. To validate the concept of the sagitta correction function determined by projective alignment of the muon detectors (Cathode Strip Chambers or CSCs), the basis of the proposed GEM alignment scheme, a facility, called the ``Alignment Test Stand`` (ATS), is being constructed. This system simulates the environment that the CSCs and chamber alignment systems are expected to experience in the GEM Detector, albeit without the 0.8 T magnetic field and radiation environment. The ATS experimental program will allow systematic study and characterization of the projective alignment approach, as well as general mechanical engineering of muon chamber mounting concepts, positioning systems and study of the mechanical behavior of the proposed 6 layer CSCs. The ATS will consist of a stable local coordinate system in which mock-ups of muon chambers (i.e., non-working mechanical analogs, representing the three superlayers of a selected barrel and endcap alignment tower) are implemented, together with a sufficient number of alignment monitors to overdetermine the sagitta correction function, providing a self-consistency check. This paper describes the approach to be used for the alignment of the GEM muon system, the design of the ATS, and the experiments to be conducted using the ATS.

  3. Effect of Mulch Surface Color on Root-knot of Tomato Grown in Simulated Planting Beds.

    PubMed

    Fortnum, B A; Kasperbauer, M J; Decoteau, D R

    2000-03-01

    The effect of different-colored polyethylene mulches on quantity and spectra of reflected light, plant morphology, and root-knot disease was studied in tomato (Lycopersicon esculentum) grown in simulated planting beds. Tomato plants were inoculated with Meloidogyne incognita at initial populations (Pi) of 0, 1,000, 10,000, or 50,000 eggs/plant, and grown in a greenhouse for 50 days over white, red, or black mulch. Soil temperature was kept constant among the mulch treatments by placing an insulation barrier between the colored mulch and the soil surface. Soil temperature varied less than 0.5 degrees C between soil chambers at solar noon. Tomatoes grown over white mulch received more reflected photosynthetic light and had greater shoot weights (27%), root weights (32%), and leaf area (20%) than plants grown over black mulch. Plants grown over red mulch received a higher far-red-to-red ratio in the reflected light. Mulch color altered the plant's response to root-knot nematode infection by changing the distribution of mass in axillary shoots. At high Pi, axillary leaf area and leaf weight were greater in tomato grown over white mulch than when grown over red mulch. The root-gall index was lower for plants grown over white mulch than similar plants grown over red mulch.

  4. Carbon and fullerene nanomaterials in plant system.

    PubMed

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-04-25

    Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL-1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized.

  5. Some features of secretory systems in plants.

    PubMed

    Juniper, B E; Gilchrist, A J; Robins, R J

    1977-09-01

    Recent work on secretion in plants is reviewed, with emphasis on the anatomy and physiology of root cap cells in higher plants, the stalked glands of Drosera capensis, and the secretory mechanism of Dionaea muscipula. Cells of the root cap of higher plants switch from a geo-perceptive role to one of mucilage secretion at maturation. Features of this process, the role of the Golgi and the pathway for mucilage distribution are reviewed. In contrast, the stalked glands of the leaves of Drosera capensis are much longer lived and have a complex anatomy. The mechanisms for mucilage secretion, protein absorption and the role of the cell membranes in the internal secretion of the protein are described, using data from X-ray microscopv. The secretion of fluid and protein by Dionaea is stimulated by various nitrogen-containing compounds. Uric acid, often excreted by captured insects, is particularly effective in this respect.

  6. Carbon and fullerene nanomaterials in plant system

    PubMed Central

    2014-01-01

    Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL−1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized. PMID:24766786

  7. Engineering system co-design with limited plant redesign

    NASA Astrophysics Data System (ADS)

    Allison, James T.

    2014-02-01

    Rather than designing engineering systems from the ground up, engineers often redesign strategic portions of existing systems to accommodate emerging needs. In the redesign of mechatronic systems, engineers typically seek to meet the requirements of a new application via control redesign only, but this is often insufficient and physical system (plant) design changes must be explored. Here, an integrated approach is presented for the redesign of mechatronic systems involving partial plant redesign that avoids costly complete redesign. Candidate plant modifications are identified using sensitivity analysis, and then an optimization problem is solved that minimizes redesign cost while satisfying system requirements. This formal methodology for Plant-Limited Co-Design (PLCD) is demonstrated using a robotic manipulator design problem. The PLCD result costs significantly less than the full redesign, and parametric studies illustrate the tradeoff between redesign cost and performance. It is shown that the proposed sensitivity analysis results in the lowest cost limited redesign.

  8. Visual Simulation of Microalgae Growth in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.

  9. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  10. Analysis of plant harvest indices for bioregenerative life support systems

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Kohlmann, K. L.; Westgate, P. J.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Harvest indices, which are measures of the ratio of edible to total plant weight, are redefined to include edible sugars derived from enzymatic hydrolysis of the cellulose content of inedible plant components. Compositional analysis and carbohydrate contents of rapeseed, rice, soybeans, cowpea, wheat, sweet potato, white potato, and lettuce were analyzed to develop such generalized harvest indices. Cellulose conversion is shown to extend considerably the food available from plants otherwise grown for their oil and protein content in a bioregenerative life support system.

  11. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER

    NASA Astrophysics Data System (ADS)

    Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi

    2016-08-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.

  12. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.

    PubMed

    Wang, Chuan; Zhou, Qiaohong; Zhang, Liping; Zhang, Yan; Xiao, Enrong; Wu, Zhenbin

    2013-01-01

    Six wetland plants were investigated for their effect on the degradation characteristics of chlorpyrifos in nonsterile hydroponic system at constant temperature of 28 degrees C. The results showed that the removal rates of chlorpyrifos in the water of plant systems were 1.26-5.56% higher than that in the control without plants. Scirpus validus and Typha angustifolia were better than other hygrophytes in elimination of chlorpyrifos. The removal rates of the two systems were up to 88%. Plants of acaulescent group had an advantage over caulescent group in removing chlorpyrifos. Phytoaccumulation of chlorpyrifos was observed, and the order of chlorpyrifos concentration in different plant tissues was root > stem > leaf. It was also found that chlorpyrifos and its metabolite TCP decreased rapidly at the initial step of the experiment.

  13. A modelling framework to simulate foliar fungal epidemics using functional–structural plant models

    PubMed Central

    Garin, Guillaume; Fournier, Christian; Andrieu, Bruno; Houlès, Vianney; Robert, Corinne; Pradal, Christophe

    2014-01-01

    Background and Aims Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions inside these dynamic systems and may lead to innovative protection strategies. In particular, functional–structural plant models (FSPMs) have been identified as a means to optimize the use of architecture-related traits. A current limitation lies in the inherent complexity of this type of modelling, and thus the purpose of this paper is to provide a framework to both extend and simplify the modelling of pathosystems using FSPMs. Methods Different entities and interactions occurring in pathosystems were formalized in a conceptual model. A framework based on these concepts was then implemented within the open-source OpenAlea modelling platform, using the platform's general strategy of modelling plant–environment interactions and extending it to handle plant interactions with pathogens. New developments include a generic data structure for representing lesions and dispersal units, and a series of generic protocols to communicate with objects representing the canopy and its microenvironment in the OpenAlea platform. Another development is the addition of a library of elementary models involved in pathosystem modelling. Several plant and physical models are already available in OpenAlea and can be combined in models of pathosystems using this framework approach. Key Results Two contrasting pathosystems are implemented using the framework and illustrate its generic utility. Simulations demonstrate the framework's ability to simulate multiscaled interactions within pathosystems, and also show that models are modular components within the framework and can be extended. This is illustrated by testing the impact of canopy architectural traits on fungal dispersal. Conclusions This study provides a framework for modelling a large number of pathosystems

  14. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  15. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  16. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  17. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  18. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  19. Epidemilogical Simulation System, Version 2.4

    SciTech Connect

    2004-01-30

    EpiSims uses a detailed simulation of disease spread to evaluate demographically and geographically targeted biological threat reduction strategies. Abstract: EpiSims simulates the spread of disease and analyzes the consequences of intervention strategies in a large urban area at the level of individuals. The simulation combines models of three dynamical systems: urban social networks, disease transmission, and within-host progression of a disease. Validated population mobility and activity generation technology provides the social network models, Disease models are based on fusion of expert opinion and available data. EpiSims provides a previously unavailable detailed representation of the course of an outbreak in urban area. A letter of August 16, 2002 from the Office of Homeland Security states: "Ability of EpiSims to provide comprehensive data on daily activity patterns of individuals makes it far superior to traditional SIR models — clearly had an impact on pre-attack smallpox vaccination policy." EpiSims leverages a unique Los Alamos National Laboratory resource — the population mobility and activity data developed by TRANSIMS (Transportation Analysis and SiMulation System) — to create epidemiological analyses at an unprecedented level of detail. We create models of microscopic (individual-level) physical and biological processes from which, through simulation, emerge the macroscopic (urban regional level) quantities that are the inputs to alternative models. For example, the contact patterns of individuals in different demographic groups determine the overall mixing rates those groups. The characteristics of a person-to-person transmission together with their contact patterns determine the reproductive numbers — how many people will be infected on average by each case. Mixing rates and reproductive numbers are the basic parameters of other epidemiological models. Because interventions — and people’s reactions to them — are ultimately applied at the

  20. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    NASA Technical Reports Server (NTRS)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  1. Use of expert systems in nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  2. RNAi control of aflatoxins in peanut plants, a multifactorial system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...

  3. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  4. Comment on 'Carbon and fullerene nanomaterials in plant system'.

    PubMed

    Dasgupta-Schubert, N; Tiwari, D K; Villaseñor Cendejas, L M

    2016-04-12

    A recent review article entitled "Carbon and fullerene nanomaterials in plant system" published in this journal, misinterprets a component of our (published) work on the interactions of carbon nanotubes with plants. In this comment, we provide the rationale to counter this misconstruction.

  5. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  6. A modular BLSS simulation model. [Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    The coordination of material flows in earth's biosphere is largely made possible by the buffering effect of huge material reservoirs. Without similarly-sized buffers, a bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on earth. A related problem in BLSS design is providing an interface between the various life-support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processor or the plants themselves, drive transient responses in the model system, allowing examination of the effectiveness of the system reservoirs as buffers. The results from simulations of this sort will help to determine control strategies and BLSS design requirements. An evolved version of this model could be used as an interactive control aid in a future BLSS.

  7. On sequential dynamical systems and simulation

    SciTech Connect

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  8. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    NASA Astrophysics Data System (ADS)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  9. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  10. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  11. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  12. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  13. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect

    None, None

    1996-05-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems(ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  14. Observing System Simulation Experiments for Hurricanes

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.; Hoffman, R. N.; Bucci, L. R.; Annane, B.; Murillo, S.

    2015-12-01

    Observing System Simulation Experiments (OSSEs), when done correctly, provide an effective means to evaluate the potential impact of a proposed observing system, as well as to determine tradeoffs in their design, and to evaluate data assimilation methodology. Great care must be taken to ensure the realism of the OSSEs and in the interpretation of OSSE results. While early OSSEs focused on large-scale numerical weather prediction, more recent OSSEs have included evaluation of the impact of proposed observing systems on smaller-scale phenomena. These have included global OSSEs to evaluate impact on hurricane track forecasting and regional OSSEs aimed at evaluating both track and intensity prediction. Two global OSSEs conducted using the fvGCM nature runs showed a substantial impact of space-based lidar wind profiles on hurricane track predictions. Current OSSEs are using multiple nature runs in which the WRF model, at very high resolution, is embedded within a global T511 nature run that had been generated by ECMWF. These OSSEs are evaluating the potential impact of new (proposed) observing systems on hurricane track and intensity prediction and trade-offs in the design and configuration of these observing systems They are also being used to optimize sampling strategies for current and future airborne and spaceborne observing systems and to evaluate and improve data assimilation and vortex initialization methodology for hurricane prediction. Results from recent OSSEs show the relative impact of alternative lidar technologies and the relative impact of global and regional assimilation on hurricane track and intensity prediction. OSSEs are currently underway to evaluate advanced concepts for hyperspectral infrared (IR) sounding from both polar and geostationary orbit, as well as to evaluate a variety of aspects of hurricane predictability.

  15. Therapeutically important proteins from in vitro plant tissue culture systems.

    PubMed

    Doran, Pauline M

    2013-01-01

    Plant cells cultured in liquid medium in bioreactors are now being used commercially to produce biopharmaceutical proteins. The emergence of in vitro plant cell culture as a production vehicle reflects the importance of key biosafety and biocontainment concerns affecting the competitiveness of alternative systems such as mammalian cell culture and agriculture. Food plant species are particularly attractive as hosts for in vitro protein production: the risk of transgene escape and food chain contamination is eliminated using containment facilities, while regulatory approval for oral delivery of drugs may be easier than if non-edible species were used. As in whole plants, proteolysis in cultured plant cells can lead to significant degradation of foreign proteins after synthesis; however, substantial progress has been made to counter the destructive effects of proteases in plant systems. Although protein secretion into the culture medium is advantageous for product recovery and purification, measures are often required to minimise extracellular protease activity and product losses due to irreversible surface adsorption. Disposable plastic bioreactors, which are being used increasingly in mammalian cell bioprocessing, are also being adopted for plant cell culture to allow rapid scale-up and generation of saleable product. This review examines a range of technical and regulatory issues affecting the choice of industrial production platform for foreign proteins, and assesses progress in the development of in vitro plant systems for biopharmaceutical production.

  16. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  17. Expression systems and developments in plant-made vaccines.

    PubMed

    Rigano, M Manuela; Walmsley, Amanda M

    2005-06-01

    Delivery of vaccines to mucosal surfaces can elicit humoral and cell-mediated responses of the mucosal and systemic immune systems, evoke less pain and discomfort than parenteral delivery, and eliminate needle-associated risks. Transgenic plants are an ideal means by which to produce oral vaccines, as the rigid walls of the plant cell protect antigenic proteins from the acidic environment of the stomach, enabling intact antigen to reach the gut associated lymphoid tissue. In the past few years, new techniques (such as chloroplast transformation and food processing) have improved antigen concentration in transgenic plants. In addition, adjuvants and targeting proteins have increased the immunogenicity of mucosally administered plant-made vaccines. These studies have moved plant-made vaccines closer to the development phase.

  18. Organelle-localized potassium transport systems in plants.

    PubMed

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.

  19. Cardiovascular system simulation in biomedical engineering education.

    NASA Technical Reports Server (NTRS)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  20. Plants for space plantations. [crops for closed life support systems

    NASA Technical Reports Server (NTRS)

    Nikishanova, T. I.

    1978-01-01

    Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.

  1. Simulated microgravity impacts the plant plasmalemma lipid bilayer

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy

    Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and

  2. Design and implementation of power system stabilizers in wind plants

    NASA Astrophysics Data System (ADS)

    Martinez, Carlos

    Wind energy, increasing its share in the generation mix, is intended to replace fossil fuel plants in order to reduce green house gas emissions. However, the replacement of conventional synchronous units by wind generators reduces the number of online Power Systems Stabilizers (PSS) and may therefore deteriorate the damping of critical swing modes, leading to a reduction of the power transfer capacity in transmission corridors. Several reports indicate that angular instability, due to insufficient damping and inadequate tuning or disabling of power system stabilizers, is one of the major events that lead and/or contributed to wide area blackouts. Variable speed wind turbine generators are capable of fast decoupled real and reactive power control. A damping torque can be generated by modulating a fraction of the real and reactive power output of the wind farm. Supplementary active and reactive power control loops are designed and integrated in the wind turbine controls. Operating limits are added to restrict the kinetic energy exchange of the supplementary control loop within a specified turbine speed. An analytical method is developed in order to assess the effectiveness of real and reactive power modulation in damping inter-area oscillations and to justify the use and commissioning of wind based PSS. A wide area measurement based power system stabilizer suitable for wind farms is designed and integrated in the global and local controls of wind turbines. Feedback signals are selected based on an observability index of the selected mode(s). The proposed stabilizer transfer function is derived via a constrained Hinfinity optimization. The controller is tested in time domain simulations using a two area four generators benchmark suffering from interarea oscillatory mode within the range of 0.4-0.6Hz. Testing scenarios show the resiliency and effectiveness of the wind based PSS in damping angular oscillations and stabilizing the power system. The damping contribution

  3. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  4. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  5. Interface problems between material recycling systems and plants.

    PubMed

    Nitta, K; Oguchi, M; Otsubo, K

    1992-01-01

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling systems to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifiers, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystem introduced in Plant Cultivation Modules.

  6. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-11-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10-20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current

  7. History of visual systems in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Christianson, David C.

    1989-01-01

    The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward.

  8. Determining MTF of digital detector system with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Seon; Lee, Hyung Won; Nam, Sang Hee

    2005-04-01

    We have designed a detector based on a-Se(amorphous Selenium) and done simulation the detector with Monte Carlo method. We will apply the cascaded linear system theory to determine the MTF for whole detector system. For direct comparison with experiment, we have simulated 139um pixel pitch and used simulated X-ray tube spectrum.

  9. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment

    NASA Astrophysics Data System (ADS)

    Coyne, Kevin Anthony

    The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional

  10. Bioelectric potentials in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  11. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.; Ziegler, C.

    1983-01-01

    A software simulator to help NASA in the design of the LMSS was developed. The simulator will be used to study the characteristics of implementation requirements of the LMSS's configuration with specifications as outlined by NASA.

  12. Simulation of a human circulatory system.

    PubMed

    Menon, Vinay

    2012-01-01

    This article describes a mathematically based human circulatory model. The model consists of lumped elements made of venous, arterial, peripheral, pulmonary vein and artery segments. A heart model is simulated using 4 chambers (left and right atriums and ventricles). The heart pump mechanism is operated by a simple piston based models for each of the chambers. The simulation consists of 19 (states) first order differential equations. and simulated with Matlab and Simulink. The simulation computes volume, flow rate and pressures in each segment.

  13. Global biogeography of mating system variation in seed plants.

    PubMed

    Moeller, David A; Briscoe Runquist, Ryan D; Moe, Annika M; Geber, Monica A; Goodwillie, Carol; Cheptou, Pierre-Olivier; Eckert, Christopher G; Elle, Elizabeth; Johnston, Mark O; Kalisz, Susan; Ree, Richard H; Sargent, Risa D; Vallejo-Marin, Mario; Winn, Alice A

    2017-03-01

    Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant-pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self-incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self-incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant-pollinator interactions.

  14. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  15. The Soil-Plant-Atmosphere System - Past and Present.

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.

    2012-12-01

    Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.

  16. B-Plant Canyon Ventilation Control System Description

    SciTech Connect

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  17. Qualification of concentrating mirror systems with the Hermes measurement system and the Helios simulation program

    NASA Astrophysics Data System (ADS)

    Kleih, Juergen

    1991-02-01

    An overview of methods (direct and indirect) for measuring highly concentrated solar radiation, which were used for qualifying solar power plants (from the parabolic mirror up to the tower plant) is provided. In particular, it goes into the Hermes measuring system which was used to measure two membrane mirrors (of diameter 17 and 7.5 m respectively). Measurements were made of maximum radiant flux densities of more than 2 MW/sq m for the 17 m mirror and of more than 9 MW/sq m for the 7.5 m mirror. The HELIOS simulation program was used to check the measurement results. The agreement between measurement and calculation was satisfactory over all.

  18. Chemotaxis signaling systems in model beneficial plant-bacteria associations.

    PubMed

    Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M

    2016-04-01

    Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.

  19. Plants as bioassay systems for monitoring atmospheric pollutants

    PubMed Central

    Feder, William A.

    1978-01-01

    Plant species act as natural bioindicators of atmospheric pollutants. Plants can be used as bioassay systems for monitoring atmospheric pollutants. Plant injury symptoms, altered growth and reproductive pattern, changes in yield and/or productivity, and changes in species distribution can be used singly or in combination as monitoring devices. The results must be accepted as semiquantitative, but within that constraint, air quality can be sufficiently well defined to enable the setting of air quality standards. Genetic variability of higher plant species has yielded cultivars which display a range of tolerance to gaseous and particulate atmospheric pollutants. Asexual propagation of these cultivars provides pollutant-sensitive and pollutant-tolerant plant material which can be grown on selected sites for observation. Gymnosperm and Angiosperm species as well as species of lichens and mosses have been used to establish field monitoring networks in Europe, Canada, and the United States. White pine, shade tobacco, mosses, and lichens have proven particularly useful as bioassay tools. Pollen from pollutant-sensitive and pollutant-tolerant plant cultivars has also been used as a sensitive laboratory bioassay tool for studying air quality. Epiphytic mosses are particularly efficient as monitors of particulate pollutants, especially heavy metals, some of which may act as chemical mutagens. The cost, complexity, and lack of reliability of instrumented systems for air quality monitoring make imperative the need to develop successful plant bioassay systems for monitoring air quality. PMID:738233

  20. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  1. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  2. ASPEN simulation of the SNG production process in an indirect coal-liquefaction plant

    SciTech Connect

    Bistline, J E; Shafer, T B

    1982-08-01

    The synthetic natural gas (SNG) production process (methanation, CO-shift, and hydrogen removal) in an indirect coal-liquefaction plant was simulated using the Advanced System for Process Engineering (ASPEN). The simulation of the methanation unit agreed to within 12% of Fluor's design for converting carbon monoxide and carbon dioxide. A parametric study examined the effect of four important operating parameters on product composition, process thermal efficiency, and outlet temperature from the second methanation reactor. The molar split of gas feed to the CO-shift unit before methanation was varied from 0.2 to 0.6; variations of molar recycle ratio (0.01 - 0.67), molar steam-to-feed ratio (0.04 - 0.19), and feed temperature (478 - 533 K, 400-500/sup 0/F) to the first methanation reactor were also studied. A 50%-lower split improved thermal efficiency by 6%, but the mole % hydrogen and carbon monoxide in the product SNG required to meet pipeline-quality standards and temperature constraints were not met. Increasing the steam-to-feed ratio from 0.04 to 0.19 improved product quality but decreased thermal efficiency by 8%. By decreasing the feed temperature from 533 to 477 K (500 to 400/sup 0/F), product specifications and temperature constraints were met with no effect on thermal efficiency. However, it may be impractical to operate the reactor at 477 K (400/sup 0/F) because the kinetics are too slow. Increasing the recycle ratio from 0.4 to 0.67 had no effect on thermal efficiency, and temperature constraints and product specifications were met. The SNG production process should be optimized at recycle ratios above 0.67.

  3. Data simulation for the Associated Particle Imaging system

    SciTech Connect

    Tunnell, L.N.

    1994-06-01

    A data simulation procedure for the Associated Particle Imaging (API) system has been developed by postprocessing output from the Monte Carlo Neutron Photon (MCNP) code. This paper compares the simulated results to our experimental data.

  4. Sensitivity of the climate simulations to update of Plant Functional Type distributions

    NASA Astrophysics Data System (ADS)

    Georgievski, Goran; Hagemann, Stefan; Khlystova, Iryna

    2015-04-01

    In the frame of the European Space Agency (ESA) Climate Change Initiative (CCI), a new global land cover (LC) data set is produced. Land cover is classified as one of Essential Climate Variables (ECV), and defined as the physical material at the surface of the earth (for example: trees, grass, bare soil, water). The ESA-CCI-LC product complies with the United Nations Land Cover Classification Scheme (UNLCCS). However, the UNLCCS set of rules is not suitable for climate modelling. Therefore, ESA-CCI-LC categorical classes need to be converted to model specific plant functional types (PFT) distributions. Here we present a conversion method of ESA-CCI-LC classes to PFT fractions and the impact of the new PFT distributions to climate simulations using the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and its land surface component (JSBACH). The main features of the updated PFT distributions are less trees and more herbaceous types. We conducted SST driven climate simulations with MPI-ESM and offline JSBACH simulations driven by WATCH forcing data based on ERA-Interim (WFDEI) at T63 resolution. These simulations are evaluated for the 1981-2010 period. Sensitivities of the hydrological, energy and carbon cycles are investigated. The following variables are compared between simulations with the new ESA-CCI-LC and the old reference PFT distributions: (i) evapotranspiration and runoff as an indicator of changes in hydrological cycle, (ii) temperature and albedo as an indicator of energy cycle and (iii) gross primary production (GPP) as an indicator of carbon cycle sensitivity. First results indicate increased annual mean albedo in northern extra tropical latitudes and therefore cooling at those latitudes. Furthermore, the annual cycle of albedo is in better agreement with satellite observation (GLOBALBEDO-DHR and GLOBALBEDO-BHR). GPP is slightly decreased in the annual mean, while evapotranspiration shows slight increase in southern tropical latitudes

  5. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    SciTech Connect

    Adamson, D.; Nash, C.; Mcclane, D.; McCabe, D.

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  6. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  7. Elucidating the regulation of complex signalling systems in plant cells.

    PubMed

    Liu, Junli; Lindsey, Keith; Hussey, Patrick J

    2014-02-01

    The pollen tube represents a model system for the study of tip growth, and the root provides a valuable system to study gene and signalling networks in plants. In the present article, using the two systems as examples, we discuss how to elucidate the regulation of complex signalling systems in plant cells. First, we discuss how hormones and related genes in plant root development form a complex interacting network, and their activities are interdependent. Therefore their roles in root development must be analysed as an integrated system, and elucidation of the regulation of each component requires the adaptation of a novel modelling methodology: regulation analysis. Secondly, hydrodynamics, cell wall and ion dynamics are all important properties that regulate plant cell growth. We discuss how regulation analysis can be applied to study the regulation of hydrodynamics, cell wall and ion dynamics, using pollen tube growth as a model system. Finally, we discuss future prospects for elucidating the regulation of complex signalling systems in plant cells.

  8. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    SciTech Connect

    Sabundjian, Gaiane; Andrade, Delvonei A.; Belchior, Antonio Jr.; Silva Rocha, Marcelo da; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; Souza Lima, Ana Cecilia de

    2013-05-06

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm{sup 2}, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  9. Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking

    PubMed Central

    Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.

    2013-01-01

    The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits

  10. Frugivory in Canopy Plants in a Western Amazonian Forest: Dispersal Systems, Phylogenetic Ensembles and Keystone Plants.

    PubMed

    Stevenson, Pablo R; Link, Andrés; González-Caro, Sebastian; Torres-Jiménez, María Fernanda

    2015-01-01

    Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles) played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores.

  11. Frugivory in Canopy Plants in a Western Amazonian Forest: Dispersal Systems, Phylogenetic Ensembles and Keystone Plants

    PubMed Central

    Stevenson, Pablo R.; Link, Andrés; González-Caro, Sebastian; Torres-Jiménez, María Fernanda

    2015-01-01

    Frugivory is a widespread mutualistic interaction in which frugivores obtain nutritional resources while favoring plant recruitment through their seed dispersal services. Nonetheless, how these complex interactions are organized in diverse communities, such as tropical forests, is not fully understood. In this study we evaluated the existence of plant-frugivore sub-assemblages and their phylogenetic organization in an undisturbed western Amazonian forest in Colombia. We also explored for potential keystone plants, based on network analyses and an estimate of the amount of fruit going from plants to frugivores. We carried out diurnal observations on 73 canopy plant species during a period of two years. During focal tree sampling, we recorded frugivore identity, the duration of each individual visit, and feeding rates. We did not find support for the existence of sub assemblages, such as specialized vs. generalized dispersal systems. Visitation rates on the vast majority of canopy species were associated with the relative abundance of frugivores, in which ateline monkeys (i.e. Lagothrix and Ateles) played the most important roles. All fruiting plants were visited by a variety of frugivores and the phylogenetic assemblage was random in more than 67% of the cases. In cases of aggregation, the plant species were consumed by only primates or only birds, and filters were associated with fruit protection and likely chemical content. Plants suggested as keystone species based on the amount of pulp going from plants to frugivores differ from those suggested based on network approaches. Our results suggest that in tropical forests most tree-frugivore interactions are generalized, and abundance should be taken into account when assessing the most important plants for frugivores. PMID:26492037

  12. pysimm: A python package for simulation of molecular systems

    NASA Astrophysics Data System (ADS)

    Fortunato, Michael E.; Colina, Coray M.

    In this work, we present pysimm, a python package designed to facilitate structure generation, simulation, and modification of molecular systems. pysimm provides a collection of simulation tools and smooth integration with highly optimized third party software. Abstraction layers enable a standardized methodology to assign various force field models to molecular systems and perform simple simulations. These features have allowed pysimm to aid the rapid development of new applications specifically in the area of amorphous polymer simulations.

  13. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  14. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    SciTech Connect

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    2016-06-26

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator must process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation

  15. Chromosome aberrations in plants as a monitoring system.

    PubMed Central

    Grant, W F

    1978-01-01

    The potential of higher plants as a first-tier assay system for detecting chemical mutagens is evaluated. The use of plant tissue (primarily root tips and pollen mother cells) for studying the induction of chromosomal aberrations is one of the oldest, simplest, most reliable, and inexpensive methods available. Specific types of abnormalities have been induced by different classes of pesticides. Chromosome clumping, contraction, stickiness, paling, fragmentation, dissolution, chromosome and chromatid bridges, C-mitosis, and endoploidy have been reported in the literature. Examples of cytogenetic studies with pesticides demonstrating the usefulness of higher plants as a monitoring system are reviewed. Pesticides which cause chromosome aberrations in plant cells also produce chromosome aberrations in cultured animal cells. Frequently, the aberrations are identical. For example, studies have shown that compounds which have a C-mitotic effect on plant cells have the same effect on animal cells. It is recommended that plant systems be accepted as a first-tier assay system for the detection of possible genetic damage by environmental chemicals. PMID:367773

  16. Simulation of P systems with active membranes on CUDA.

    PubMed

    Cecilia, José M; García, José M; Guerrero, Ginés D; Martínez-del-Amor, Miguel A; Pérez-Hurtado, Ignacio; Pérez-Jiménez, Mario J

    2010-05-01

    P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than CPUs to simulate P systems due to their highly parallel nature.

  17. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected.

  18. The role of plants on isolation barrier systems

    SciTech Connect

    Link, S.O.; Downs, J.L.; Waugh, W.J.

    1994-11-01

    Surface barriers are used to isolate buried wastes from the environment. Most have been built for short-term isolation. The need to isolate radioactive wastes from the environment requires that the functional integrity of a barrier be maintained for thousands of years. Barrier function strongly depends on vegetation. Plants reduce wind and water erosion and minimize drainage, but may transport contaminants if roots extend into buried wastes. Our review of the function of plants on surface barriers focuses on the role of plants across mesic to arid environments and gives special consideration to studies done at Hanford. The Hanford Barrier Development Program was created to design and test an earthen cover system to inhibit water infiltration, plant and animal intrusion, and wind and water erosion, while isolating buried wastes for at least 1000 years. Studies at the Hanford have shown that plants will significantly interact with the barrier. Plants transpire soil water back into the atmosphere. Deep-rooted perennials best recycle water; soil water may drain through the root zone of shallow-rooted annuals. Lysimeter studies indicate that a surface layer of fine soil with deep-rooted plants precludes drainage even with three times normal precipitation. The presence of vegetation greatly reduces water and wind erosion, but deep-rooted plants pose a threat of biointrusion and contaminant transport. The Hanford barrier includes a buried rock layer and asphalt layer to prevent biointrusion.

  19. Dynamic simulation models for selective sulfur removal in coal gasification systems. Final report

    SciTech Connect

    Vysniauskas, T.; Sim, W.D.

    1985-07-01

    A study was conducted, under EPRI Agreement RP1038-6, to investigate the feasibility of using computer simulation models to predict the steady-state and transient behavior of selective acid gas treating units. One of the prime objectives was to determine whether these models could be used to simulate the acid gas absorption units in coal gasification-combined cycle (GCC) power plants. Two dynamic simulation models were investigated; one model was developed by S-Cubed (formerly Systems, Science and Software) and the other was an in-house program developed by Hyprotech Ltd. These models were tailored specifically for the Norton Co. SELEXOL process for this study and incorporated an empirically fitted property package to represent the solvent. Both models used the same property package and were tested against SELEXOL plant data provided from the Bi-Gas pilot plant in Homer City, Pennsylvania, the Texaco pilot plant in Montebello, California and the TVA pilot plant in Muscle Shoals, Alabama. The results of this study are presented in this report. Although there were inconsistencies in some of the plant data, the models appeared to compare favorably with the plant data. The S-Cubed and Hyprotech model yielded nearly identical results when tested against the Bi-Gas plant data. Overall, the Hyprotech model proved to be faster than the S-Cubed version by about an order of magnitude and therefore offered the more attractive option for general simulation applications. However, further work is still needed to improve the solvent property predictions in the model. 7 refs.

  20. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  1. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  2. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.

    PubMed

    Gertsch, Jürg

    2008-05-01

    Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

  3. Advanced system design for solar power plants

    NASA Astrophysics Data System (ADS)

    Cordes, V.; Korupp, K. H.

    The state-of-the-art in applied photovoltaic (PV) systems and system subcomponents is assessed. The control systems vary from microcomputers in large installations to analogous control units and simpler systems with increasingly less output. Module wiring aand various module connection techniques are reviewed, including the usage of shunt diodes to isolate malfunctioning modules. Junction boxes anad plug connections are cited as the most economic connection technique. Charge regulators are required to match the gassing voltage threshold with the temperature of the lead-acid batteries to optimize the charging as well as introduce a delay in the protective circuit against overdischarge. Inverters are necessarily matched to the load, and several types are discussed.

  4. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  5. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    SciTech Connect

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  6. Explosive simulants for testing explosive detection systems

    DOEpatents

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  7. The effects of HGMFs on the plant gravisensing system

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A. V.; Hasenstein, K. H.

    High Gradient Magnetic Fields (HGMFs) offer new opportunities for studying the gravitropic system of plants. However, it is necessary to analyze the influence that HGMF can have on cellular processes and structures that may not be related to amyloplasts displacement. This paper considers possible HGMF effects on plants, which may accompany HGMF stimulation of amyloplasts and contribute to the mechanisms of the HGMF-induced curvature.

  8. The effects of HGMFs on the plant gravisensing system.

    PubMed

    Kondrachuk, A V; Hasenstein, K H

    2001-01-01

    High Gradient Magnetic Fields (HGMFs) offer new opportunities for studying the gravitropic system of plants. However, it is necessary to analyze the influence that HGMF can have on cellular processes and structures that may not be related to amyloplasts displacement. This paper considers possible HGMF effects on plants, which may accompany HGMF stimulation of amyloplasts and contribute to the mechanisms of the HGMF-induced curvature.

  9. Reproductive systems and evolution in vascular plants

    PubMed Central

    Holsinger, Kent E.

    2000-01-01

    Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises. PMID:10860968

  10. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  11. The effects of age on nuclear power plant containment cooling systems

    SciTech Connect

    Lofaro, R.; Subudhi, M.; Travis, R.; DiBiasio, A.; Azarm, A.; Davis, J.

    1994-04-01

    A study was performed to assess the effects of aging on the performance and availability of containment cooling systems in US commercial nuclear power plants. This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The effects of age were characterized for the containment cooling system by reviewing and analyzing failure data from national databases, as well as plant-specific data. The predominant failure causes and aging mechanisms were identified, along with the components that failed most frequently. Current inspection, surveillance, and monitoring practices were also examined. A containment cooling system unavailability analysis was performed to examine the potential effects of aging by increasing failure rates for selected components. A commonly found containment spray system design and a commonly found fan cooler system design were modeled. Parametric failure rates for those components in each system that could be subject to aging were accounted for in the model to simulate the time-dependent effects of aging degradation, assuming no provisions are made to properly manage it. System unavailability as a function of increasing component failure rates was then calculated.

  12. Workflow simulation and its system development

    NASA Astrophysics Data System (ADS)

    Li, Renwang; Zhu, Zefei; Wang, Xianmei; Liu, Lei; Jiang, Xuefeng

    2005-12-01

    Workflow technique is a research hotspot in the field of advanced manufacturing technology. However, up to now workflow simulation still lacks necessary evaluation of rationality and validity. Therefore, a principle of workflow simulation was set forth; a kind of workflow simulation mechanism is proposed. It is divided into presentation layer, business logic layer and database layer. Then, taking process of handling business orders as example, and taking time, quality, cost and service as key factors, a feasible method was developed. Its simulation results of 30 days were listed and analyzed. At last, an amended process of handling business orders is brought forward.

  13. SuperB Simulation Production System

    NASA Astrophysics Data System (ADS)

    Tomassetti, L.; Bianchi, F.; Ciaschini, V.; Corvo, M.; Del Prete, D.; Di Simone, A.; Donvito, G.; Fella, A.; Franchini, P.; Giacomini, F.; Gianoli, A.; Longo, S.; Luitz, S.; Luppi, E.; Manzali, M.; Pardi, S.; Paolini, A.; Perez, A.; Rama, M.; Russo, G.; Santeramo, B.; Stroili, R.

    2012-12-01

    The SuperB asymmetric e+e- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75 ab-1 and a peak luminosity of 1036 cm-2 s-1. The SuperB Computing group is working on developing a simulation production framework capable to satisfy the experiment needs. It provides access to distributed resources in order to support both the detector design definition and its performance evaluation studies. During last year the framework has evolved from the point of view of job workflow, Grid services interfaces and technologies adoption. A complete code refactoring and sub-component language porting now permits the framework to sustain distributed production involving resources from two continents and Grid Flavors. In this paper we will report a complete description of the production system status of the art, its evolution and its integration with Grid services; in particular, we will focus on the utilization of new Grid component features as in LB and WMS version 3. Results from the last official SuperB production cycle will be reported.

  14. Distributed adaptive simulation through standards-based integration of simulators and adaptive learning systems.

    PubMed

    Bergeron, Bryan; Cline, Andrew; Shipley, Jaime

    2012-01-01

    We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware.

  15. Parabolic trough collector power plant performance simulation for an interactive solar energy Atlas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Frasquet, Miguel; Al Rished, Abdulaziz; Tuomiranta, Arttu; Gasim, Sami; Ghedira, Hosni

    2016-05-01

    The collaboration between the Research Center for Renewable Energy Mapping and Assessment (ReCREMA) at Masdar Institute of Science and Technology and the King Abdullah City for Atomic & Renewable Energy (KACARE) aims to create an interactive web tool integrated in the Renewable Resource Atlas where different solar thermal electricity (STE) utility-scale technologies will be simulated. In this paper, a methodology is presented for sizing and performance simulation of the solar field of parabolic trough collector (PTC) plants. The model is used for a case study analysis of the potential of STE in three sites located in the central, western, and eastern parts of Saudi Arabia. The plant located in the north (Tayma) has the lowest number of collectors with the best production along the year.

  16. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2016-12-13

    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speed was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The

  17. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    SciTech Connect

    David Gertman; Katya Le Blanc; alan mecham; william phoenix; Magdy Tawfik; Jeffrey Joe

    2010-06-01

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the

  18. Seed Germination and Seedling Growth under Simulated Microgravity Causes Alterations in Plant Cell Proliferation and Ribosome Biogenesis

    NASA Astrophysics Data System (ADS)

    Matía, Isabel; van Loon, Jack W. A.; Carnero-Díaz, Eugénie; Marco, Roberto; Medina, Francisco Javier

    2009-01-01

    The study of the modifications induced by altered gravity in functions of plant cells is a valuable tool for the objective of the survival of terrestrial organisms in conditions different from those of the Earth. We have used the system "cell proliferation-ribosome biogenesis", two inter-related essential cellular processes, with the purpose of studying these modifications. Arabidopsis seedlings belonging to a transformed line containing the reporter gene GUS under the control of the promoter of the cyclin gene CYCB1, a cell cycle regulator, were grown in a Random Positioning Machine, a device known to accurately simulate microgravity. Samples were taken at 2, 4 and 8 days after germination and subjected to biometrical analysis and cellular morphometrical, ultrastructural and immunocytochemical studies in order to know the rates of cell proliferation and ribosome biogenesis, plus the estimation of the expression of the cyclin gene, as an indication of the state of cell cycle regulation. Our results show that cells divide more in simulated microgravity in a Random Positioning Machine than in control gravity, but the cell cycle appears significantly altered as early as 2 days after germination. Furthermore, higher proliferation is not accompanied by an increase in ribosome synthesis, as is the rule on Earth, but the functional markers of this process appear depleted in simulated microgravity-grown samples. Therefore, the alteration of the gravitational environmental conditions results in a considerable stress for plant cells, including those not specialized in gravity perception.

  19. Plutonium Finishing Plant assessment of confinement system bypass leakage

    SciTech Connect

    Dick, J.D.

    1996-09-30

    The purpose of this report is to document walk-through`s of the safety class confinement systems at the Plutonium Finishing Plant (PFP). In addition this document outlines the actions taken to assess the confinement system for bypass leakage as well as establishing disposition for discovered deficiencies at the PFP.

  20. Transient expression systems for plant-derived biopharmaceuticals.

    PubMed

    Komarova, Tatiana V; Baschieri, Selene; Donini, Marcello; Marusic, Carla; Benvenuto, Eugenio; Dorokhov, Yuri L

    2010-08-01

    In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.

  1. Simulation of thermal aspects of residential photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hart, G. W.; Raghuraman, P.

    1982-06-01

    A program was developed to simulate the performance of utility interactive residential photovoltaic (PV) energy systems. The PV system is divided into its major functional components, which are individually described with computer models. These models are described in detail. The results of simulation and actual measured data are compared. The thermal influences on the design of such PV energy systems are given particular attention.

  2. Removal of actinides from nuclear reprocessing wastes: a pilot plant study using non-radioactive simulants

    SciTech Connect

    Maxey, H.R.; McIsaac, L.D.; Chamberlain, D.B.; McManus, G.J.

    1980-01-01

    Nuclear fuel reprocessing wastes generated at the ICPP contain small amounts of actinides, primarily Pu and Am. Removal of these actinides reduces the long term storage hazards of the waste. The development of a flowsheet to remove trivalent actinides is discussed in this paper. Pilot plant studies used actinide simulants. As a result of these studies, the Height of a Transfer Unit (HTU) was selected as the better measure of pulse column separation efficiency.

  3. Numerical simulation and comparison of conventional and sloped solar chimney power plants: the case for Lanzhou.

    PubMed

    Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights.

  4. Numerical Simulation and Comparison of Conventional and Sloped Solar Chimney Power Plants: The Case for Lanzhou

    PubMed Central

    Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515

  5. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  6. Modeling, simulation, and high-autonomy control of a Martian oxygen production plant

    NASA Technical Reports Server (NTRS)

    Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.

    1992-01-01

    Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.

  7. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    SciTech Connect

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  8. A HILS System for the Simulation of MAV Flight

    DTIC Science & Technology

    2014-11-17

    A HILS System for the Simulation of MAV Flight In this research a HILS system in which a small autopilot can experience flight stimuli, such as...pitch, roll, yaw, and GPS is investigated. These stimuli are controlled by a flight simulator hosting an airframe model that the autopilot in question...fly’s. Such a system allows the autopilot to fly the virtual model of the flight simulator while experiencing all flight stimuli as if it is in real

  9. Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants.

    PubMed

    Scofield, Douglas G; Schultz, Stewart T

    2006-02-07

    There is a long-recognized association in plants between small stature and selfing, and large stature and outcrossing. Inbreeding depression is central to several hypotheses for this association, but differences in the evolutionary dynamics of inbreeding depression associated with differences in stature are rarely considered. Here, we propose and test the Phi model of plant mating system evolution, which assumes that the per-generation mutation rate of a plant is a function of the number of mitoses (Phi) that occur from zygote to gamete, and predicts fundamental differences between low-Phi (small-statured) and high-Phi (large-statured) plants in the outcomes of the joint evolution of outcrossing rate and inbreeding depression. Using a large dataset of published population genetic studies of angiosperms and conifers, we compute fitted values of inbreeding depression and deleterious mutation rates for small- and large-statured plants. Consistent with our Phi model, we find that populations of small-statured plants exhibit a range of mating systems, significantly lower mutation rates, and intermediate inbreeding depression, while large-statured plants exhibit very high mutation rates and the maximum inbreeding depression of unity. These results indicate that (i) inbred progeny typically observed in large-statured plant populations are completely lost prior to maturity in nearly all populations; (ii) evolutionary shifts from outcrossing to selfing are generally not possible in large-statured species, rather, large-statured species are more likely to evolve mating systems that avoid selfing such as self-incompatibility and dioecy; (iii) destabilization of the mating system-high selfing rate with high-inbreeding depression-might be a common occurrence in large-statured species; and (iv) large-statured species in fragmented populations might be at higher risk of extinction than previously thought. Our results help to unify and simplify a large and diverse field of

  10. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis

    NASA Astrophysics Data System (ADS)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas

    2016-10-01

    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  11. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming

    NASA Astrophysics Data System (ADS)

    Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.

    2016-11-01

    The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.

  12. A Runtime Verification Framework for Control System Simulation

    SciTech Connect

    Ciraci, Selim; Fuller, Jason C.; Daily, Jeffrey A.; Makhmalbaf, Atefe; Callahan, Charles D.

    2014-08-02

    n a standard workflow for the validation of a control system, the control system is implemented as an extension to a simulator. Such simulators are complex software systems, and engineers may unknowingly violate constraints a simulator places on extensions. As such, errors may be introduced in the implementation of either the control system or the simulator leading to invalid simulation results. This paper presents a novel runtime verification approach for verifying control system implementations within simulators. The major contribution of the approach is the two-tier specification process. In the first tier, engineers model constraints using a domain-specific language tailored to modeling a controller’s response to changes in its input. The language is high-level and effectively hides the implementation details of the simulator, allowing engineers to specify design-level constraints independent of low-level simulator interfaces. In the second tier, simulator developers provide mapping rules for mapping design-level constraints to the implementation of the simulator. Using the rules, an automated tool transforms the design-level specifications into simulator-specific runtime verification specifications and generates monitoring code which is injected into the implementation of the simulator. During simulation, these monitors observe the input and output variables of the control system and report changes to the verifier. The verifier checks whether these changes follow the constraints of the control system. We describe application of this approach to the verification of the constraints of an HVAC control system implemented with the power grid simulator GridLAB-D.

  13. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  14. A System for Interactive Behaviour Simulation.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    A psycho-ecological model is used as the basis for a simulation of interactive behavior strategies. The basic unit is an event, and each event has been recorded on closed circuit television videotape. The three basic paradigms of behavioral science--association, structure, and process--are used to anchor the simulations. The empirical foundation…

  15. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  16. A View on Future Building System Modeling and Simulation

    SciTech Connect

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  17. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  18. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. )

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  19. Plant experience with temporary reverse osmosis makeup water systems

    SciTech Connect

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment.

  20. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  1. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.

    1989-01-01

    This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  2. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  3. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  4. Co-simulation of innovative integrated HVAC systems in buildings

    SciTech Connect

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  5. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  6. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  7. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  8. Indel-associated mutation rate varies with mating system in flowering plants.

    PubMed

    Hollister, Jesse D; Ross-Ibarra, Jeffrey; Gaut, Brandon S

    2010-02-01

    A recently proposed mutational mechanism, indel-associated mutation (IDAM), posits that heterozygous insertions/deletions (indels) increase the point mutation rate at nearby nucleotides due to errors during meiosis. This mechanism could have especially dynamic consequences for the evolution of plant genomes, because the high degree of variation in the rate of self-fertilization among plant species causes differences in the heterozygosity of alleles, including indel alleles, segregating in plant species. In this study, we investigated the consequences of IDAM for species differing in mating system using both forward population genetic simulations and genomewide DNA resequencing data from Arabidopsis thaliana, Oryza sativa, and Oryza rufipogon. Simulations of different levels of selfing suggest that the effect of IDAM on surrounding nucleotide diversity should decrease with increasing selfing rate. Further simulations incorporating selfing rates and the time of onset of selfing suggest that the time since the switch to selfing also affects patterns of nucleotide diversity due to IDAM. Population genetic analyses of A. thaliana and Oryza DNA sequence data sets empirically confirmed our simulation results, revealing the strongest effect of IDAM in the outcrossing O. rufipogon, a weaker effect in the recently evolved selfer O. sativa, and the weakest effect in the relatively ancient selfer A. thaliana. These results support the novel idea that differences in life history, such as the level of selfing, can affect the per-individual mutation rate among species.

  9. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  10. Accumulation of radionuclides by plants as a monitor system.

    PubMed Central

    Koranda, J J; Robison, W L

    1978-01-01

    The accumulation of radionuclides by plants acting as a monitoring system in the environment may occur by two modes; foliar absorption by the leaves and shoot of the plant, or by root uptake from the soil. Data on plant accumulation of radionuclides may be obtained from studies of fission product radionuclides deposited as worldwide fallout, and from tracer studies of plant physiology. The epidermal features of plant foliage may exert an effect upon particle retention by leaves, and subsequent uptake of radionuclides from the surface. The transport of radionuclides across the cuticle and epidermis of plant leaves is determined in part by the anatomy of the leaf, and by physiological factors. The foliar uptake of fallout radionuclides, 99Sr, 131I, and 137Cs, is described with examples from the scientific literature. The environmental half-life of 131I, for example, is considerably shorter than its physical half-life because of physical and biological factors which may produce a half-life as short as 0.23/day. 99Sr and 137Cs are readily taken up by the leaf, but 137Cs undergoes more translocation into fruit and seeds than 99Sr which tends to remain in the plant part in which it was initially absorbed. Soil-root uptake is conditioned primarily by soil chemical and physical factors which may selectively retain a radionuclide, such as 137Cs. The presence of organic matter, inorganic colloids (clay), and competing elements will strongly affect the uptake of 99Sr and 137Cs by plants from the soil. The role of plants as monitors of radionuclides is twofold: as monitors of recent atmospheric releases of radionuclides; and as indicators of the long-term behavior of aged deposits of radionuclides in the soil. PMID:367767

  11. Model Validation for Simulations of Vehicle Systems

    DTIC Science & Technology

    2012-08-01

    a large number of replicate samples via Monte- Carlo simulation. The test data, on the other hand, is usually provided as a collection of point...can be determined by Monte Carlo simulation. Classical hypothesis testing techniques depend on a normality assumption except for the modified...criteria”, Computer Methods in Applied Mechanics and Engineering, 197:2517-2539, 2008. [14] S. Ferson, W. L. Oberkampf and L. Ginzburg , “Model

  12. Plant disease management in organic farming systems.

    PubMed

    van Bruggen, Ariena H C; Gamliel, Abraham; Finckh, Maria R

    2016-01-01

    Organic farming (OF) has significantly increased in importance in recent decades. Disease management in OF is largely based on the maintenance of biological diversity and soil health by balanced crop rotations, including nitrogen-fixing and cover crops, intercrops, additions of manure and compost and reductions in soil tillage. Most soil-borne diseases are naturally suppressed, while foliar diseases can sometimes be problematic. Only when a severe disease outbreak is expected are pesticides used that are approved for OF. A detailed overview is given of cultural and biological control measures. Attention is also given to regulated pesticides. We conclude that a systems approach to disease management is required, and that interdisciplinary research is needed to solve lingering disease problems, especially for OF in the tropics. Some of the organic regulations are in need of revision in close collaboration with various stakeholders.

  13. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.

  14. Sex determination in flowering plants: papaya as a model system.

    PubMed

    Aryal, Rishi; Ming, Ray

    2014-03-01

    Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants.

  15. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  17. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  18. Hybrid Concurrent Constraint Simulation Models of Several Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Adam

    2003-01-01

    This distribution contains several simulation models created for the hybrid simulation language, Hybrid Concurrent Constraint (HCC). An HCC model contains the information specified in the widely-accepted academic definition of a hybrid system: this includes expressions for the modes of the systems to be simulated and the differential equations that apply in each mode. These expressions are written in the HCC syntax. The models included here were created by either applying basic physical laws or implementing equations listed in previously published papers.

  19. CFD-based turbulent reactive flow simulations of power plant plumes

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Zhang, K. Max

    2017-02-01

    This paper examined the capabilities of computational fluid dynamics (CFD) techniques in modeling the transport and chemical transformation of power plant plumes. Based on turbulence characteristics, we divided the plume evolution into two stages. The first stage is referred to as the jet-dominated region (JDR), characterized by a high momentum jet flow of flue gas. The second stage is referred to as the ambient-dominated region (ADR), driven by atmospheric boundary layer turbulence. Then, we compared the three methods in simulating plume transport in the JDR, i.e., Reynolds-averaged Navier-Stokes (RANS) model with velocity inlet (RANS-VI), RANS with volume source (RANS-VS) and Large-Eddy Simulation (LES). The VI method treats the stack exit as a surface inlet to the simulation domain, while the VS method defines a volume region containing the source with a specific emission rate. Our evaluation against a relevant wind tunnel experiment suggested that RANS-VI is most appropriate for power plant plume transport in the JDR. LES can achieve more accurate results, but the improvement in accuracy over RANS-VI may not justify its high computational costs. Nevertheless, LES is still preferable for JDR simulations if computational costs are not a constraint. The VS method requires refined mesh in the source region in order to achieve accurate results, making it no different from the VI method in the JDR. Next, for our ADR evaluation, we simulated plume chemical evolution in a well-characterized 1999 TVA Cumberland aircraft plume transect field study. RANS-VS was adopted, as proper RANS-VI and LES simulations would be exceedingly expensive in terms of computational costs. The overall model performance was satisfactory, evinced by the predicted concentrations of SO2, O3, NOx as well as NO2/NOx ratios fell within the variations in the observed values for large portions of the plume distributions. An indirect JDR evaluation by comparing the predicted plume centerline

  20. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    SciTech Connect

    Arlin Olson

    2012-02-28

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].