Science.gov

Sample records for plant transpiration rate

  1. Aquaporins and plant transpiration.

    PubMed

    Maurel, Christophe; Verdoucq, Lionel; Rodrigues, Olivier

    2016-11-01

    Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth.

  2. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    PubMed

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2016-12-09

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.

  3. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    PubMed

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  4. Silver and zinc inhibitors influence transpiration rate and aquaporin transcript levels in intact soybean plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some soybean (Glycine max (L.) Merr.) have been identified that expressed limited transpiration rate (TR) above a threshold vapor pressure deficit (VPD). Restriction of TR at high VPD conditions is considered a water conservation trait that allows water to be retained in the soil to benefit of crop...

  5. Plant transpiration distillation of water

    SciTech Connect

    Virostko, M.K.; Spielberg, J.I.

    1986-01-01

    A project using solar energy and the transpiration of plants for the distillation of water is described. Along with determining which of three plants thrived best growing in a still, the experiment also revealed that the still functioned nearly as well in inclement weather as in fair weather.

  6. Surface Acoustic Waves to Drive Plant Transpiration

    PubMed Central

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-01-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems. PMID:28361922

  7. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  8. Zinc uptake by young wheat plants under two transpiration regimes

    SciTech Connect

    Grifferty, A.; Barrington, S.

    2000-04-01

    Treated wastewater for crop irrigation is an alternative for countries with a shortage of fresh water. Such practice requires strict wastewater application criteria and a better understanding of the effects of transpiration rate on plant heavy metal uptake. The experiment measured Zn uptake by young wheat plants (Triticum aestvum L.) grown in triplicated experimental pots and held in two growth chambers with constant environmental conditions (relative humidity, light and temperature) but with a different air water vapor pressure deficit to produce two different transpiration rates. After 5 wk of growth in a greenhouse, the plants were transferred to the controlled chambers and irrigated using a fertilized solution with five different levels of Zn: 0, 2, 10, 25, and 50 mg/L. These Zn levels were low enough to have no significant effect on plant growth and transpiration rate. The wheat plants started to produce their grain at 6 wk. Plants were collected at 0, 3, and 10 d of incubation in the controlled chambers and analyzed for dry matter and total Zn content. The pots were weighed daily to measure their transpiration rates. On Day 10, the remaining plants were collected and their roots, shoots, and grain were separated, weighed, dried, and analyzed for total Zn. Time and plant transpiration rate were found to affect significantly plant Zn uptake. The higher transpiration rate enhanced plant Zn uptake. The roots had the highest Zn uptake followed by the shoots and then the grain.

  9. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.

    PubMed

    Duursma, R A; Kolari, P; Perämäki, M; Nikinmaa, E; Hari, P; Delzon, S; Loustau, D; Ilvesniemi, H; Pumpanen, J; Mäkelä, A

    2008-02-01

    The effect of drought on forest water use is often estimated with models, but comprehensive models require many parameters, and simple models may not be sufficiently flexible. Many tree species, Pinus species in particular, have been shown to maintain a constant minimum leaf water potential above the critical threshold for xylem embolism during drought. In such cases, prediction of the relative decline in daily maximum transpiration rate with decreasing soil water content is relatively straightforward. We constructed a soil-plant water flow model assuming constant plant conductance and daily minimum leaf water potential, but variable conductance from soil to root. We tested this model against independent data from two sites: automatic shoot chamber data and sap flow measurements from a boreal Scots pine (Pinus sylvestris L.) stand; and sap flow measurements from a maritime pine (Pinus pinaster Ait.) stand. To focus on soil limitations to water uptake, we expressed daily maximum transpiration rate relative to the rate that would be obtained in wet soil with similar environmental variables. The comparison was successful, although the maritime pine stand showed carry-over effects of the drought that we could not explain. For the boreal Scots pine stand, daily maximum transpiration was best predicted by water content of soil deeper than 5 cm. A sensitivity analysis revealed that model predictions were relatively insensitive to the minimum leaf water potential, which can be accounted for by the importance of soil resistance of drying soil. We conclude that a model with constant plant conductance and minimum leaf water potential can accurately predict the decline in daily maximum transpiration rate during drought for these two pine stands, and that including further detail about plant compartments would add little predictive power, except in predicting recovery from severe drought.

  10. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  11. Transpiration rates of urban trees, Aesculus chinensis.

    PubMed

    Wang, Hua; Wang, Xiaoke; Zhao, Ping; Zheng, Hua; Ren, Yufen; Gao, Fuyuan; Ouyang, Zhiyun

    2012-01-01

    Transpiration patterns of Aesculus chinensis in relation to explanatory variables in the microclimatic, air quality, and biological phenomena categories were measured in Beijing, China using the thermal dissipation method. The highest transpiration rate measured as the sap flux density of the trees took place from 10:00 am to 13:00 pm in the summer and the lowest was found during nighttime in the winter. To sort out co-linearity, principal component analysis and variation and hierarchical partitioning methods were employed in data analyses. The evaporative demand index (EDI) consisting of air temperature, soil temperature, total radiation, vapor pressure deficit, and atmospheric ozone (O3), explained 68% and 80% of the hourly and daily variations of the tree transpiration, respectively. The independent and joint effects of EDI variables together with a three-variable joint effect exerted the greatest influences on the variance of transpiration rates. The independent effects of leaf area index and atmospheric O3 and their combined effect exhibited minor yet significant influences on tree transpiration rates.

  12. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species.

    PubMed

    Warren, C R; Livingston, N J; Turpin, D H

    2003-08-01

    This study examined the autonomy of branches with respect to the control of transpiration (E) in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn) seedlings. Experiments were conducted on whole seedlings in a gas exchange system with a dual-cuvette that permitted independent manipulation and measurement of E in the upper and lower cuvettes. The value of E in one cuvette was manipulated by varying vapor pressure deficit (D) between 2.2 and 0.2 kPa, whereas D in the other cuvette was held at 2.2 kPa. Reducing D, while increasing stomatal conductance (gs), resulted in an overall decrease in E. In western red cedar, this decrease was almost threefold, and in Douglas-fir, approximately fourfold. In well-watered western red cedar, a reduction of whole-plant E by 46% (brought about by reducing D in the upper cuvette) resulted in a 12% increase in gs, a 12% increase in E and a 7% increase in net assimilation (A) of untreated foliage in the lower cuvette. Responses of gs, E and A of untreated foliage were similar irrespective of whether foliage was at the top or bottom of the seedling. When D in the treatment cuvette was restored to 2.2 kPa, gs, E and A of foliage in the untreated cuvette returned to pretreatment values. In contrast, in well-watered Douglas-fir, there was almost no change in gs, E or A of untreated foliage in one cuvette when D in the other cuvette was reduced, causing a 52% reduction in whole-plant E. However, similar manipulations on drought-stressed Douglas-fir led to 7-19% increases in gs, E and A of untreated foliage. In well-watered western red cedar, daytime leaf water potential (Psil) was maintained near -0.9 MPa over a wide range of D, whereas Psil of Douglas-fir decreased from -1.2 to -1.5 MPa as D increased. The tighter (isohydric) regulation of Psil in western red cedar may partly explain its greater stomatal response to D and variation in whole-plant E compared with Douglas-fir. In response to a

  13. Effects of gravity on transpiration of plant leaves.

    PubMed

    Hirai, Hiroaki; Kitaya, Yoshiaki

    2009-04-01

    To clarify effects of gravity on the water vapor exchange between plants and the ambient air, we evaluated the transpiration rate of plant leaves at 0.01, 1.0, and 2.0 g for 20 s each during parabolic airplane flights. The transpiration rates of a strawberry leaf and a replica leaf made of wet cloth were determined using a chamber method with humidity sensors. Absolute humidity at 3 and 8 mm below the lower surface of leaves was measured to evaluate the effect of gravity on humidity near leaves and estimate their transpiration rate. The transpiration rate of the replica leaf decreased by 42% with decreasing gravity levels from 1.0 to 0.01 g and increased by 31% with increasing gravity levels from 1.0 to 2.0 g. Absolute humidity near the intact strawberry leaf was 5 g m(-3) at ambient absolute humidity of 2.3 g m(-3) and gravity of 1.0 g. The absolute humidity increased by 2.5 g m(-3) with decreasing gravity levels from 1.0 to 0.01 g. The transpiration rate of the intact leaf decreased by 46% with decreasing gravity levels from 1.0 to 0.01 g and increased by 32% with increasing gravity levels from 1.0 to 2.0 g. We confirmed that the transpiration rate of leaves was suppressed by retarding the water vapor transfer due to restricted free air convection under microgravity conditions.

  14. Characterizing photosynthesis and transpiration of plant communities in controlled environments

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1996-01-01

    CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.

  15. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  16. How-to-Do-It: Using Computers in Measuring Transpiration Rate.

    ERIC Educational Resources Information Center

    Seligmann, Peter F.; Thompson, Steven R.

    1989-01-01

    Described is an activity in which a computer is used to acquire temperature and humidity data useful in investigating transpiration in plants. Materials and procedures are discussed and examples of results are presented. Factors which influence the rate of transpiration are discussed. (CW)

  17. [The study of transpiration influence on plant infrared radiation character].

    PubMed

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  18. Cytokinin activity increases stomatal density and transpiration rate in tomato

    PubMed Central

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-01-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions. PMID:27811005

  19. Cytokinin activity increases stomatal density and transpiration rate in tomato.

    PubMed

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-12-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

  20. Root water compensation sustains transpiration rates in an Australian woodland

    NASA Astrophysics Data System (ADS)

    Verma, Parikshit; Loheide, Steven P.; Eamus, Derek; Daly, Edoardo

    2014-12-01

    We apply a model of root-water uptake to a woodland in Australia to examine the regulation of transpiration by root water compensation (i.e., the ability of roots to regulate root water uptake from different parts of the soil profile depending on local moisture availability). We model soil water movement using the Richards equation and water flow in the xylem with Darcy's equation. These two equations are coupled by a term that governs the exchange of water between soil and root xylem as a function of the difference in water potential between the two. The model is able to reproduce measured diurnal patterns of sap flux and results in leaf water potentials that are consistent with field observations. The model shows that root water compensation is a key process to allow for sustained rates of transpiration across several months. Scenarios with different root depths showed the importance of having a root system deeper than about 2 m to achieve the measured transpiration rates without reducing the leaf water potential to levels inconsistent with field measurements. The model suggests that the presence of more than 5 % of the root system below 0.6 m allows trees to maintain sustained transpiration rates keeping leaf water potential levels within the range observed in the field. According to the model, a large contribution to transpiration in dry periods was provided by the roots below 0.3 m, even though the percentage of roots at these depths was less than 40 % in all scenarios.

  1. [Plant transpiration in a maize/soybean intercropping system measured with heat balance method].

    PubMed

    Gao, Yang; Duan, Ai-wang; Qiu, Xin-qiang; Zhang, Jun-peng; Sun, Jing-sheng; Wang, He-zhou

    2010-05-01

    In an experimental field with maize/soybean strip intercropping, the transpiration of maize and soybean plants was measured with sap flow gauge based on heat balance method. In the intercropping system, the diurnal change of the sap flow rates of the plants fitted single-peak curve in sunny day and multi-peak curve in cloudy day. The plant sap flow rates were affected by many environmental factors, among which, solar radiation was the most important meteorological factor. The daily sap flow per maize or soybean plant showed significant correlations with solar radiation, air temperature, relative humidity, wind speed, and soil heat flux. During the observation period (June 1-30, 2008), the mean daily transpiration of maize plant (1.44 mm x d(-1)) was about 1.8 times of that of soybean plant (0.79 mm x d(-1)). Maize transpiration and soybean transpiration contributed 64% and 36% to the total transpiration of the intercropping system, respectively. Due to the spatial variation of stem diameter and leaf area, it would be necessary to install more sap flow gauges to accurately measure the sap flow of maize and soybean plants.

  2. Global separation of plant transpiration from groundwater and streamflow.

    PubMed

    Evaristo, Jaivime; Jasechko, Scott; McDonnell, Jeffrey J

    2015-09-03

    Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir--the soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater and streamflow. These findings have not yet been widely tested. Here we use hydrogen and oxygen isotopic data ((2)H/(1)H (δ(2)H) and (18)O/(16)O (δ(18)O)) from 47 globally distributed sites to show that ecohydrological separation is widespread across different biomes. Precipitation, stream water and groundwater from each site plot approximately along the δ(2)H/δ(18)O slope of local precipitation inputs. But soil and plant xylem waters extracted from the 47 sites all plot below the local stream water and groundwater on the meteoric water line, suggesting that plants use soil water that does not itself contribute to groundwater recharge or streamflow. Our results further show that, at 80% of the sites, the precipitation that supplies groundwater recharge and streamflow is different from the water that supplies parts of soil water recharge and plant transpiration. The ubiquity of subsurface water compartmentalization found here, and the segregation of storm types relative to hydrological and ecological fluxes, may be used to improve numerical simulations of runoff generation, stream water transit time and evaporation-transpiration partitioning. Future land surface model parameterizations should be closely examined for how vegetation, groundwater recharge and streamflow are assumed to be coupled.

  3. Global separation of plant transpiration from groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    Evaristo, Jaivime; Jasechko, Scott; McDonnell, Jeffrey J.

    2015-09-01

    Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir--the soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater and streamflow. These findings have not yet been widely tested. Here we use hydrogen and oxygen isotopic data (2H/1H (δ2H) and 18O/16O (δ18O)) from 47 globally distributed sites to show that ecohydrological separation is widespread across different biomes. Precipitation, stream water and groundwater from each site plot approximately along the δ2H/δ18O slope of local precipitation inputs. But soil and plant xylem waters extracted from the 47 sites all plot below the local stream water and groundwater on the meteoric water line, suggesting that plants use soil water that does not itself contribute to groundwater recharge or streamflow. Our results further show that, at 80% of the sites, the precipitation that supplies groundwater recharge and streamflow is different from the water that supplies parts of soil water recharge and plant transpiration. The ubiquity of subsurface water compartmentalization found here, and the segregation of storm types relative to hydrological and ecological fluxes, may be used to improve numerical simulations of runoff generation, stream water transit time and evaporation-transpiration partitioning. Future land surface model parameterizations should be closely examined for how vegetation, groundwater recharge and streamflow are assumed to be coupled.

  4. Transpiration response of boreal forest plants to permafrost thaw

    NASA Astrophysics Data System (ADS)

    Cable, J.; Ogle, K.; Welker, J. M.

    2011-12-01

    Shifts in the rate and patterns of evapotranspiration with permafrost thaw, vegetation change, and altered climatic conditions are unknown in boreal systems. Specifically, the response of transpiration is not well understood but critical to quantify given its non-linear response to climate. We asked: what is the effect of permafrost thaw on the transpiration dynamics of sub-Arctic boreal plants? We utilized a Bayesian analysis approach to quantify the responses of plants located in areas with and without stable permafrost to current and antecedent vapor pressure deficit, soil moisture, soil temperature, and the prior year's soil temperature. We measured stomatal conductance (gs) on six species of plants over two summers. For the analysis, the plants were grouped into three functional types: deciduous shrubs, evergreen sub-shrubs, and black spruce trees. The model we constructed includes a VPD (current and antecedent) sensitivity term modeled as a function of soil moisture (current and antecedent), and a "base" gs term modeled as a function of current soil temperature (at different depths), thaw depth, and the prior growing season's soil temperature (for each month, May - September). Current VPD was more important early in the growing season, but antecedent VPD was more important later in the growing season. The memory of gs for antecedent VPD was ~ three weeks in the past. The daily trends were less resolved for the site with degrading permafrost. Deeper thaw resulted in higher sensitivity to VPD and higher gs, particularly at the site with stable permafrost. Deciduous shrubs showed the strongest effect. At the site with thawing permafrost, soil water positively affected the sensitivity of gs to VPD for the deciduous shrubs but had a negative effect on black spruce. Current soil moisture was important early in the growing season but antecedent moisture was important at the end. The site with thawing permafrost had a longer memory (two weeks) for antecedent moisture

  5. Investigation of transpiration and/or accumulation of volatile organic compounds (VOCs) by plants

    SciTech Connect

    Goodrich, R.L.; Carlsen, T.M.

    1994-12-31

    The authors are in the planning stages of an investigation to explore plant transpiration and/or accumulation of VOCs (primarily Trichloroethylene [TCE]) by native vegetation. Such processes may naturally remediate these compounds in shallow ground water. To adequately quantify the amount of TCE in ground water prior to vegetation uptake, the authors will first install shallow piezometers adjacent to existing vegetation. Vegetation sampling will be synchronized with the ground water sampling to establish baseline conditions. They will conduct a literature search to identify potential structures with high lipid content in the plant species of interest (Populus fremontii, Typha latifolia and Salix). To investigate VOC distribution in the plant, individual morphological segments of the plant will be analyzed. The vegetation will be dissected into distinct segments, such as the vegetative (stem and leaves) and reproductive structures, to determine the possible accumulation of TCE at various points within the plant. They have completed preliminary development of analytical methods that they will use to analyze the samples. In the field, plastic (Tedlar) bags will be tightly secured onto the vegetation and a direct head-space analysis will be conducted on the bags, thus providing information on the rate of transpiration compared to the actual accumulation of VOCs within the plant. At a minimum, they expect to document VOC losses from the ground water via plant transpiration.

  6. Plant Transpiration and its Sensitivity to Increasing Carbon Dioxide Concentration at Leaf, Canopy and Regional Scales

    NASA Astrophysics Data System (ADS)

    Zhan, Xiwu

    1995-01-01

    This thesis assembles simulation models for plant transpiration and uses these models to investigate the sensitivity of transpiration rates to the elevation of atmospheric CO_2 concentration at leaf, canopy and regional scales. The leaf transpiration model assembly (LTMA) simulates stomatal conductance, leaf net photosynthesis, leaf boundary layer conductance, mass and energy transfer, leaf energy balance. The stomatal conductance model and the leaf photosynthesis model are selected from two candidate stomatal models and four candidate biochemical photosynthesis models, based on the comparison of the model results with literature-surveyed observations. Integration of the LTMA for all the leaves within a plant canopy, with the modeled canopy structure, wind speed profile, radiation distribution, and soil surface fluxes, produces a canopy evapotranspiration model assembly (CEMA). Coupling the CEMA with an atmospheric boundary layer model, a larger model assembly (REMA) for simulating the evapotranspiration from a region covered with a homogeneous canopy is obtained. From the outputs of the LTMA, it is found that in response to a doubling of atmospheric CO_2 concentration the modeled leaf transpiration rate will be reduced by around -23.0% for C _3 plants and -26.6% for C4 plants. The simulated reduction in stomatal conductance resulting from the CO_2 doubling is 37.0% for C_3 plants and 37.7% for C_4 plants. The difference of the responses of stomatal conductance and leaf transpiration to CO_2 changes is found to be the results of the leaf boundary layer damping effect and the leaf temperature feedback effect. The CO_2 sensitivity of canopy evapotranspiration is found to be smaller still than that of leaf transpiration: the corresponding percentage changes with a CO_2 doubling are -15.7% and -16.1% respectively for C_3 and C_4 canopies. The cause is found to be the extension of the air within the canopy to the leaf boundary layers. The temperature feedback and the

  7. Development of the deuterium tracing method for the estimation of transpiration rates and transpiration parameters of trees

    SciTech Connect

    Calder, I.R.

    1992-12-31

    Recent developments relating to the theory and practice of the deuterium tracing method are reviewed. Theoretical developments have shown that the method is applicable to the fluctuating flow regime which occurs in trees and that the method provides an estimate of the weighted mean flow over the time period that the tracer is present at the sampling point. A practical development of the method for estimating transpiration rates and transpiration parameters which uses time averaged sampling is described and it is shown that with this method only one deuterium tracer concentration analysis is required per tree compared with 90 using an earlier method. The calculation of surface resistance through solution of the convolution integral of the transpiration rate and the tracer concentration-time curve is also described and the sensitivity of the surface resistance estimate to the flow parameters is investigated using as an example observations made on a three year old plantation of Eucalyptus tereticornis growing in Karnataka, southern India.

  8. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  9. Abscisic acid controlled sex before transpiration in vascular plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  10. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    PubMed

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.

  11. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    PubMed

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P < 0.001) and was relatively conserved among plant types (for a given plant size), while increasing across climates following the atmospheric evaporative demand. The fact that E(max) was roughly conserved across plant types and scales with the product of xylem saturated conductivity and water potential at 50% cavitation was used here to explain the safety-efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics.

  12. A Transpiration Experiment Requiring Critical Thinking Skills.

    ERIC Educational Resources Information Center

    Ford, Rosemary H.

    1998-01-01

    Details laboratory procedures that enable students to understand the concept of how differences in water potential drive the movement of water within a plant in response to transpiration. Students compare transpiration rates for upper and lower surfaces of leaves. (DDR)

  13. Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean.

    PubMed

    Outlaw, W H; De Vlieghere-He, X

    2001-08-01

    Evaporation of water from the guard cell wall concentrates apoplastic solutes. We hypothesize that this phenomenon provides two mechanisms for responding to high transpiration rates. First, apoplastic abscisic acid is concentrated in the guard cell wall. Second, by accumulating in the guard cell wall, apoplastic sucrose (Suc) provides a direct osmotic feedback to guard cells. As a means of testing this second hypothesized mechanism, the guard cell Suc contents at a higher transpiration rate (60% relative humidity [RH]) were compared with those at a lower transpiration rate (90% RH) in broad bean (Vicia faba), an apoplastic phloem loader. In control plants (constant 60% RH), the guard cell apoplast Suc content increased from 97 +/- 81 femtomol (fmol) guard cell pair(-1) to 701 +/- 142 fmol guard cell pair(-1) between daybreak and midday. This increase is equivalent to approximately 150 mM external, which is sufficient to decrease stomatal aperture size. In plants that were shifted to 90% RH before daybreak, the guard cell apoplast Suc content did not increase during the day. In accordance, in plants that were shifted to 90% RH at midday, the guard cell apoplast Suc content declined to the daybreak value. Under all conditions, the guard cell symplast Suc content increased during the photoperiod, but the guard cell symplast Suc content was higher (836 +/- 33 fmol guard cell pair(-1)) in plants that were shifted to 90% RH. These results indicate that a high transpiration rate may result in a high guard cell apoplast Suc concentration, which diminishes stomatal aperture size.

  14. Plant transpiration and groundwater dynamics in water-limited climates: Impacts of hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Luo, Xiangyu; Liang, Xu; Lin, Jeen-Shang

    2016-06-01

    The role of groundwater in sustaining plant transpiration constitutes an important but not well-understood aspect of the interactions between groundwater, vegetation, the land surface, and the atmosphere. The effect of the hydraulic redistribution (HR) process by plant roots on the interplay between plant transpiration and groundwater dynamics under water-limited climates is investigated by using the Variable Infiltration Capacity Plus (VIC+) land surface model. Numerical experiments, with or without explicitly considering HR, are conducted on soil columns over a range of groundwater table depths (GWTDs) under different vegetative land covers, soil types, and precipitation conditions. When HR is not included, this study obtains transpiration-GWTD relationships consistent with those from watershed studies that do not include HR. When HR is included, the transpiration-GWTD relationships are modified. The modification introduced by HR is manifested in the soil moisture of the root zone. The mechanism of HR is explained by detailing the roles of the hydraulically redistributed water, the upward diffusion of soil water, and the daytime root uptake. We have found that HR is particularly important in water-limited climates under which plants have high transpiration demand. At the beginning stage of a dry period, HR modulates the severe impacts that climate has on plant transpiration. Only after a prolonged dry period, impacts of HR are lessened when the groundwater table drops below the depth of water uptake by roots and are diminished when plant transpiration is decoupled from groundwater dynamics.

  15. A Microfluidic Pump/Valve Inspired by Xylem Embolism and Transpiration in Plants

    PubMed Central

    Jingmin, Li; Chong, Liu; Zheng, Xu; Kaiping, Zhang; Xue, Ke; Liding, Wang

    2012-01-01

    In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic “leaf” composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow) of the fluid is only 2∼3 s. This micropump/valve can be used as a “plug and play” fluid-driven unit. It has the potential to be used in many application fields. PMID:23209709

  16. Radon transport from uranium mill tailings via plant transpiration. Final report

    SciTech Connect

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium.

  17. FPGA-based fused smart sensor for real-time plant-transpiration dynamic estimation.

    PubMed

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  18. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    PubMed Central

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  19. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  20. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand.

  1. Plant canopy transpiration in bioregenerative life support systems - The link between mechanistic and empirical models

    NASA Technical Reports Server (NTRS)

    Sirko, Robert J.; Mccormack, Ann C.; Edeen, Marybeth A.

    1992-01-01

    A model of water transpiration in a plant canopy that combines two approaches is presented. The first approach is to account for underlying physical processes, while the second is to empirically incorporate transpiration data now being generated at the Johnson Center Variable Pressure Growth Chamber. The two approaches, physical modeling and data analysis, make it possible to produce a model that is more robust than either the standard first-principles model or a straightforward empirical model. It is shown that the present transpiration model is able to efficiently capture the dynamic behavior of the plant canopy over the entire range of environmental parameters now envisioned to be important in an operating controlled ecological life support system (CELSS). Examples of the use of this model in assessing plant canopy dynamics and CELSS design options are also presented.

  2. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    PubMed

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P < 0.01) in late June than in early August, with the daily average value being (43.11 +/- 1.26) micromol CO2 x m(-2) x s(-1) and (24.53 +/- 0.60) micromol CO2 x m(-2) x s(-1), respectively. The diurnal variation of canopy transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P < 0.01). The daily average value of canopy water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  3. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.).

    PubMed

    Liu, Haiwei; Wang, Haiyun; Ma, Yibing; Wang, Haohao; Shi, Yi

    2016-02-01

    Tobacco plants grown in pots and in hydroponic culture accumulated cadmium (Cd) particularly: the Cd content of tobacco leaves exceeded 100 mg/kg and the enrichment factor (the ratio of Cd in leaves to that in soil) was more than 4. These high levels of accumulation identify tobacco as a hyperaccumulator of Cd. Two transpiration inhibitors (paraffin or CaCl2) and shade decreased the Cd content of tobacco leaves, and the decrease showed a linear relationship with the leaf transpiration rate. A metabolism inhibitor, namely 2,4-dinitrophenol (DNP), and low temperature (4 °C) also lowered the Cd content of tobacco leaves, but the inhibitory effect of low temperature was greater. In the half number of leaves that were shaded, the Cd content decreased to 26.5% of that in leaves that were not shaded in the same tobacco plants. These results suggests that translocation of Cd from the medium to the leaves is driven by the symplastic and the apoplastic pathways. Probably, of the two crucial steps in the translocation of Cd in tobacco plants, one, namely uptake from the medium to the xylem, is energy-dependent whereas the other, namely the transfer from the xylem to the leaves, is driven mainly by transpiration.

  4. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    PubMed Central

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  5. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs.

    PubMed

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-03-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common.

  6. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis

    NASA Astrophysics Data System (ADS)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas

    2016-10-01

    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  7. Transpirational Supply and Demand: Plant, Soil, and Atmospheric Effects Evaluated by Simulation

    NASA Astrophysics Data System (ADS)

    Federer, C. Anthony

    1982-04-01

    The assumption that transpiration is the lesser of an atmospheric demand function and a water supply function was tested by simulation with Federer's (1979) soil-plant-atmosphere model. The best estimate of atmospheric demand is called unstressed transpiration, defined as the transpiration that would occur in ambient conditions if stomata were unaffected by plant-water potential. For practical purposes the Penman equation provides a good estimate of unstressed transpiration for short vegetation but not for forests. Even when atmospheric variables and the Penman estimate are held constant among forest canopies, unstressed transpiration can vary by a factor of two because of variation both in the maximum value of leaf conductance and in the ratio of canopy conductance to leaf conductance. The best water supply function incorporates depth variation of soil water potential and of root and soil properties. A more practical supply function uses the ratio of available water in the root zone, W, to maximum available water WM. The maximum available water is soil water held at potentials less than that at which the hydraulic conductivity is 2 mm/d and greater than the critical leaf water potential at which stomata are completely closed. Using a mature hardwood forest as a standard, various parameters were varied to examine their effects on a water supply function defined as a supply constant times W/WM. The supply constant was found to be independent of soil texture and physical properties. Root density and the internal resistance of the plant to water flow were the most important determinants of the supply constant. Reasonable variation of root density and internal resistance produced variation in the constant from 1.9 mm/h, which implies that supply is less than demand only when soil is very dry, to 0.5 mm/hr, which implies that supply cannot meet the demand even when the soil is wet.

  8. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.

    PubMed

    Hu, Jia; Moore, David J P; Riveros-Iregui, Diego A; Burns, Sean P; Monson, Russell K

    2010-03-01

    *Understanding controls over plant-atmosphere CO(2) exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO(2) assimilation rate (A(Tree)) in a subalpine forest ecosystem. *We analysed the carbon isotope ratio (delta(13)C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate A(Tree). Estimates of A(Tree) for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. *A sensitivity analysis showed that estimates of A(Tree) were more sensitive to dynamics in E than delta(13)C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. *The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales.

  9. A Laboratory Exercise to Assess Transpiration.

    ERIC Educational Resources Information Center

    Schrock, Gould F.

    1982-01-01

    Procedures are outlined for a laboratory exercise in which students use a gravimetric method to determine the rate of transpiration in sunflower seedlings. Discusses the data in terms of the effectiveness of stomatal openings, mechanisms for water movement in plants, and the role of transpiration in the environment. (DC)

  10. From evaporating pans to transpiring plants (John Dalton Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Roderick, Michael

    2013-04-01

    observations that win. That is the basis of science. In this Dalton Medal lecture we first examine pan evaporation observations and show why pan evaporation has declined. Armed with that knowledge we then investigate the consequences for plant water use and how this is directly coupled to the catchment water balance.

  11. A bio-inspired micropump based on stomatal transpiration in plants.

    PubMed

    Li, Jing-min; Liu, Chong; Xu, Zheng; Zhang, Kai-ping; Ke, Xue; Li, Chun-yu; Wang, Li-ding

    2011-08-21

    Stomatal transpiration, which is an efficient way to carry water from the roots up to the leaves, can be described by "diameter-law". According to the law, the flow rate induced by micropore transpiration far exceeded that induced by macroscale evaporation, and it can be controlled by opening (or closing) some micropores. In this research, a bio-inspired micropump based on stomatal transpiration is presented. The micropump is composed of three layers: the top layer is a 93 μm-thick PVC (polyvinylchloride) film with a group of slit-like micropores; the second layer is a PMMA sheet with adhesives to join the other two layers together; the third layer is a microporous membrane. Using this pump, controllable flow rates of 0.13-3.74 μl min(-1) can be obtained. This micropump features high and adjustable flow-rates, simple structure and low fabrication cost. It can be used as a "plug and play" fluid-driven unit without any external power sources and equipment.

  12. Mesoscopic aspects of root water uptake modeling - Hydraulic resistances and root geometry interpretations in plant transpiration analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dusek, Jaromir; Dohnal, Michal

    2016-02-01

    In the context of soil water flow modeling, root water uptake is often evaluated based on water potential difference between the soil and the plant (the water potential gradient approach). Root water uptake rate is modulated by hydraulic resistance of both the root itself, and the soil in the root vicinity. The soil hydraulic resistance is a function of actual soil water content and can be assessed assuming radial axisymmetric water flow toward a single root (at the mesoscopic scale). In the present study, three approximate solutions of mesoscopic root water uptake - finite difference approximation, steady-state solution, and steady-rate solution - are examined regarding their ability to capture the pressure head variations in the root vicinity. Insignificance of their differences when implemented in the macroscopic soil water flow model is demonstrated using the critical root water uptake concept. Subsequently, macroscopic simulations of coupled soil water flow and root water uptake are presented for a forest site under temperate humid climate. Predicted soil water pressure heads and actual transpiration rates are compared with observed data. Scenario simulations illustrate uncertainties associated with estimates of root geometrical and hydraulic properties. Regarding the actual transpiration prediction, the correct characterization of active root system geometry and hydraulic properties seems far more important than the choice of a particular mesoscopic model.

  13. The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.

    PubMed

    Nir, Ido; Moshelion, Menachem; Weiss, David

    2014-01-01

    Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA-deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole-plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf-epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.

  14. Measuring diurnal cycles of plant transpiration fluxes in the Arctic with an automated clear chamber

    NASA Astrophysics Data System (ADS)

    Cohen, L. R.; Raz Yaseef, N.; Curtis, J. B.; Rahn, T. A.; Young, J. M.; Newman, B. D.

    2013-12-01

    Evapotranspiration is an important greenhouse gas and a major component of the hydrological cycle, but methodological challenges still limit our knowledge of this flux. Measuring evapotranspiration is even more difficult when aiming to partition plant transpiration and soil evaporation. Information on this process for arctic systems is very limited. In order to decrease this gap, our objective was to directly measure plant transpiration in Barrow, Alaska (71.3°N 156.7°W). A commercial system allows measuring carbon soil respiration fluxes with an automated clear chamber connected to an infrared gas-analyzer (Licor 8100), and while it simultaneously measures water concentrations, it is not calibrated to measure vapor fluxes. We calibrated the clear chamber against a previously established method based on a Licor 6400 soil chamber, and we developed a code to calculate fluxes. We performed laboratory comparisons in New Mexico and field comparisons in the Arctic, suggesting that this is a valid tool for a large range of climates. In the field we found a strong correlation between the two instruments with R2 of 0.79. Even with 24 hours of daylight in the Arctic, the system captures a clear diurnal transpiration flux, peaking at 0.9 mmol m-2 s-1 and showing no flux at the lowest points. This new method should be a powerful approach for long term measurements of specific vegetation types or surface features. Such Data can also be used to help understand controls on larger scale eddy covariance tower measurements of evapotranspiration.

  15. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration

    PubMed Central

    Hosy, Eric; Vavasseur, Alain; Mouline, Karine; Dreyer, Ingo; Gaymard, Frédéric; Porée, Fabien; Boucherez, Jossia; Lebaudy, Anne; Bouchez, David; Véry, Anne-Aliénor; Simonneau, Thierry; Thibaud, Jean-Baptiste; Sentenac, Hervé

    2003-01-01

    Microscopic pores present in the epidermis of plant aerial organs, called stomata, allow gas exchanges between the inner photosynthetic tissue and the atmosphere. Regulation of stomatal aperture, preventing excess transpirational vapor loss, relies on turgor changes of two highly differentiated epidermal cells surrounding the pore, the guard cells. Increased guard cell turgor due to increased solute accumulation results in stomatal opening, whereas decreased guard cell turgor due to decreased solute accumulation results in stomatal closing. Here we provide direct evidence, based on reverse genetics approaches, that the Arabidopsis GORK Shaker gene encodes the major voltage-gated outwardly rectifying K+ channel of the guard cell membrane. Expression of GORK dominant negative mutant polypeptides in transgenic Arabidopsis was found to strongly reduce outwardly rectifying K+ channel activity in the guard cell membrane, and disruption of the GORK gene (T-DNA insertion knockout mutant) fully suppressed this activity. Bioassays on epidermal peels revealed that disruption of GORK activity resulted in impaired stomatal closure in response to darkness or the stress hormone azobenzenearsonate. Transpiration measurements on excised rosettes and intact plants (grown in hydroponic conditions or submitted to water stress) revealed that absence of GORK activity resulted in increased water consumption. The whole set of data indicates that GORK is likely to play a crucial role in adaptation to drought in fluctuating environments. PMID:12671068

  16. Photosynthesis, transpiration and water use efficiencies of a plant canopy and plant leaves under restricted air current conditions

    NASA Astrophysics Data System (ADS)

    Kitaya, Yoshiaki; Shibuya, Toshio; Tsuruyama, Joshin

    A fundamental study was conducted to obtain the knowledge for culturing plants and exchanging gases with plants under restricted air circulation conditions in space agriculture. The effects of air velocities less than 1.3 m s-1 on net photosynthetic rates (Pn), transpiration rates (Tr) and Pn/Tr, water use efficiencies (WUE), of a canopy of cucumber seedlings and of single leaves of cucumber, sweet potato and barley were assessed with assimilation chamber methods in ground based experiments. The cucumber seedling canopy, which had a LAI of 1.4 and height of 0.1 m, was set in a wind tunnel installed in a plant canopy assimilation chamber. Each of the attached single leaves was set in a leaf assimilation chamber. The Pn and Tr of the plant canopy increased to 1.2 and 2.8 times, respectively, and WUE decreased to 0.4 times with increasing the air velocity from 0.02 to 1.3 m s-1. The Pn and Tr of the single leaves of all the species increased by 1.3-1.7 and 1.9-2.2 times, respectively, and WUE decreased to 0.6-0.8 times as the air velocity increased from 0.05 to 0.8 m s-1. The effect of air velocity was more significant on Tr than on Pn and thus WUE decreased with increasing air velocity in both the plant canopy and the individual leaves. The leaf boundary layer resistance was approximately proportional to the minus 1/3 power of the air velocity. Stomatal resistance was almost constant during the experiment. The CO2 concentrations in the sub-stomatal cavity in leaves of cucumber, sweet potato and barley, respectively, were 43, 31 and 58 mmol mol-1 lower at the air velocity of 0.05 m s-1 than at the air velocity of 0.8 m s-1, while the water vapor pressure in the sub-stomatal cavity was constant. We concluded that the change in the CO2 concentration in the sub-stomatal cavity was a cause of the different effect of the air velocity on Pn and Tr, and thus on WUE. The phenomenon will be more remarkable under restricted air convection conditions at lower gravity in space.

  17. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    PubMed

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology.

  18. Validation of canopy transpiration in a mixed-species foothill eucalypt forest using a soil-plant-atmosphere model

    NASA Astrophysics Data System (ADS)

    Gharun, Mana; Turnbull, Tarryn L.; Adams, Mark A.

    2013-06-01

    Studies of the hydrology of native eucalypt forests in south-east Australia have focused on ash-type eucalypt species that are largely confined to Victoria and Tasmania. Mixed species foothill forests comprise the largest proportion of the forest estate in south-east Australia, yet are poorly known hydrologically. The ability to predict forest transpiration, both with reasonable accuracy and in response to changes in the environment, is essential for catchment management. A soil-plant-atmosphere model (SPA) was validated for 222 days in a mature, mixed species forest of north-east Victoria using measurements of overstorey transpiration (Eucalyptus radiata and Eucalyptus goniocalyx) and site-specific climate and vegetation parameters. There was a stronger relationship between average daily transpiration (0.71 mm day-1) and daily minimum relative humidity (R2 = 0.71), than between average daily transpiration and daily maximum temperature (R2 = 0.65). Stand water use could be predicted best from vapour pressure deficit (R2 = 0.89). SPA successfully predicted stand transpiration (R2 = 0.85) over a range of soil water and climatic conditions. A sensitivity analysis suggests that among the various required inputs, leaf area index (LAI) was the most important, and accurate estimates of LAI could significantly improve estimation of stand transpiration.

  19. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton.

    PubMed

    Liu, Guanze; Li, Xuelin; Jin, Shuangxia; Liu, Xuyan; Zhu, Longfu; Nie, Yichun; Zhang, Xianlong

    2014-01-01

    The SNAC1 gene belongs to the stress-related NAC superfamily of transcription factors. It was identified from rice and overexpressed in cotton cultivar YZ1 by Agrobacterium tumefaciens-mediated transformation. SNAC1-overexpressing cotton plants showed more vigorous growth, especially in terms of root development, than the wild-type plants in the presence of 250 mM NaCl under hydroponic growth conditions. The content of proline was enhanced but the MDA content was decreased in the transgenic cotton seedlings under drought and salt treatments compared to the wild-type. Furthermore, SNAC1-overexpressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in the greenhouse. The performances of the SNAC1-overexpressing lines under drought and salt stress were significantly better than those of the wild-type in terms of the boll number. During the drought and salt treatments, the transpiration rate of transgenic plants significantly decreased in comparison to the wild-type, but the photosynthesis rate maintained the same at the flowering stage in the transgenic plants. These results suggested that overexpression of SNAC1 improve more tolerance to drought and salt in cotton through enhanced root development and reduced transpiration rates.

  20. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  1. Transpiration cooling of hypersonic blunt bodies with finite rate surface reactions

    NASA Technical Reports Server (NTRS)

    Henline, William D.

    1989-01-01

    The convective heat flux blockage to blunt body and hypersonic vehicles by transpiration cooling are presented. The general problem of mass addition to laminar boundary layers is reviewed. Results of similarity analysis of the boundary layer problem are provided for surface heat flux with transpiration cooling. Detailed non-similar results are presented from the numerical program, BLIMPK. Comparisons are made with the similarity theory. The effects of surface catalysis are investigated.

  2. High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat

    PubMed Central

    Schoppach, Rémy; Taylor, Julian D; Majerus, Elisabeth; Claverie, Elodie; Baumann, Ute; Suchecki, Radoslaw; Fleury, Delphine; Sadok, Walid

    2016-01-01

    Atmospheric vapor pressure deficit (VPD) is a key component of drought and has a strong influence on yields. Whole-plant transpiration rate (TR) response to increasing VPD has been linked to drought tolerance in wheat, but because of its challenging phenotyping, its genetic basis remains unexplored. Further, the genetic control of other key traits linked to daytime TR such as leaf area, stomata densities and – more recently – nocturnal transpiration remains unknown. Considering the presence of wheat phenology genes that can interfere with drought tolerance, the aim of this investigation was to identify at an enhanced resolution the genetic basis of the above traits while investigating the effects of phenology genes Ppd-D1 and Ppd-B1. Virtually all traits were highly heritable (heritabilities from 0.61 to 0.91) and a total of mostly trait-specific 68 QTL were detected. Six QTL were identified for TR response to VPD, with one QTL (QSLP.ucl-5A) individually explaining 25.4% of the genetic variance. This QTL harbored several genes previously reported to be involved in ABA signaling, interaction with DREB2A and root hydraulics. Surprisingly, nocturnal TR and stomata densities on both leaf sides were characterized by highly specific and robust QTL. In addition, negative correlations were found between TR and leaf area suggesting trade-offs between these traits. Further, Ppd-D1 had strong but opposite effects on these traits, suggesting an involvement in this trade-off. Overall, these findings revealed novel genetic resources while suggesting a more direct role of phenology genes in enhancing wheat drought tolerance. PMID:27001921

  3. High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat.

    PubMed

    Schoppach, Rémy; Taylor, Julian D; Majerus, Elisabeth; Claverie, Elodie; Baumann, Ute; Suchecki, Radoslaw; Fleury, Delphine; Sadok, Walid

    2016-04-01

    Atmospheric vapor pressure deficit (VPD) is a key component of drought and has a strong influence on yields. Whole-plant transpiration rate (TR) response to increasing VPD has been linked to drought tolerance in wheat, but because of its challenging phenotyping, its genetic basis remains unexplored. Further, the genetic control of other key traits linked to daytime TR such as leaf area, stomata densities and - more recently - nocturnal transpiration remains unknown. Considering the presence of wheat phenology genes that can interfere with drought tolerance, the aim of this investigation was to identify at an enhanced resolution the genetic basis of the above traits while investigating the effects of phenology genes Ppd-D1 and Ppd-B1 Virtually all traits were highly heritable (heritabilities from 0.61 to 0.91) and a total of mostly trait-specific 68 QTL were detected. Six QTL were identified for TR response to VPD, with one QTL (QSLP.ucl-5A) individually explaining 25.4% of the genetic variance. This QTL harbored several genes previously reported to be involved in ABA signaling, interaction with DREB2A and root hydraulics. Surprisingly, nocturnal TR and stomata densities on both leaf sides were characterized by highly specific and robust QTL. In addition, negative correlations were found between TR and leaf area suggesting trade-offs between these traits. Further, Ppd-D1 had strong but opposite effects on these traits, suggesting an involvement in this trade-off. Overall, these findings revealed novel genetic resources while suggesting a more direct role of phenology genes in enhancing wheat drought tolerance.

  4. Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation.

    PubMed

    Bloemen, Jasper; McGuire, Mary Anne; Aubrey, Doug P; Teskey, Robert O; Steppe, Kathy

    2013-05-01

    The effect of transpiration rate on internal assimilation of CO2 released from respiring cells has not previously been quantified. In this study, detached branches of Populus deltoides were allowed to take up (13)CO2-labelled solution at either high (high label, HL) or low (low label, LL) (13)CO2 concentrations. The uptake of the (13)CO2 label served as a proxy for the internal transport of respired CO2, whilst the transpiration rate was manipulated at the leaf level by altering the vapour pressure deficit (VPD) of the air. Simultaneously, leaf gas exchange was measured, allowing comparison of internal CO2 assimilation with that assimilated from the atmosphere. Subsequent (13)C analysis of branch and leaf tissues revealed that woody tissues assimilated more label under high VPD, corresponding to higher transpiration, than under low VPD. More (13)C was assimilated in leaf tissue than in woody tissue under the HL treatment, whereas more (13)C was assimilated in woody tissue than in leaf tissue under the LL treatment. The ratio of (13)CO2 assimilated from the internal source to CO2 assimilated from the atmosphere was highest for the branches under the HL and high VPD treatment, but was relatively small regardless of VPD×label treatment combination (up to 1.9%). These results showed that assimilation of internal CO2 is highly dependent on the rate of transpiration and xylem sap [CO2]. Therefore, it can be expected that the relative contribution of internal CO2 recycling to tree carbon gain is strongly dependent on factors controlling transpiration, respiration, and photosynthesis.

  5. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents.

  6. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation.

  7. Transpiration modulates phosphorus acquisition in tropical tree seedlings.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2011-08-01

    Several experiments were conducted with tropical tree and liana seedlings in which transpiration ratio and leaf phosphorus to carbon ratio (P:C) were measured. Transpiration ratio was expressed as kg H(2)O transpired g(-1) C incorporated into plant biomass, and leaf P:C as mg P g(-1) C. Leaf P:C was positively correlated with transpiration ratio across 19 species for plants grown under similar conditions (R(2) = 0.35, P < 0.01, n = 19). For five species in the dataset, multiple treatments were imposed to cause intra-specific variation in transpiration ratio. Within four of these five species, leaf P:C correlated positively with transpiration ratio. The slope and strength of the correlation varied among species. In one experiment, whole-plant P:C was measured in addition to leaf P:C. Patterns of correlation between whole-plant P:C and transpiration ratio were similar to those between leaf P:C and transpiration ratio. Together, these observations suggest that transpiration can influence the rate of P uptake from soil in tropical tree and liana seedlings. We suggest that this occurs through transport of inorganic phosphate and organic P compounds to root surfaces by transpiration-induced mass flow of the soil solution. The positive correlation between leaf P:C and transpiration ratio suggests that leaf P:C could decline in tropical forests as atmospheric CO(2) concentration rises, due to decreasing transpiration ratios.

  8. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  9. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    PubMed

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.

  10. Stomatal control of transpiration.

    PubMed

    Meinzer, F C

    1993-08-01

    The role of stomata in regulating transpiration from vegetation has historically been controversial among those working either at the single leaf, or at the extensive canopy scales. Recently, the role of unstirred air layers surrounding leaves and canopies in limiting the impact of stomatal movements on transpiration has received renewed recognition. This has led to notable progress in quantitatively describing the effectiveness of stomata in controlling transpiration and in reconciling contrasting viewpoints concerning the role of stomata at the leaf, stand and regional scales. Considerable progress has also been made in understanding how variations in aerial factors such as evaporative demand and edaphic factors such as soil water availability are sensed and transduced into appropriate stomatal regulatory responses. These developments indicate that studies carried out at multiple scales of observation are needed to understand how external environmental factors and intrinsic plant properties interact to determine the role of stomata in regulating transpiration from different types of vegetation.

  11. Transpiration cooling in hypersonic flight

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo; Roberts, Leonard

    1989-01-01

    A preliminary numerical study of transpiration cooling applied to a hypersonic configuration is presented. Air transpiration is applied to the NASA all-body configuration flying at an altitude of 30500 m with a Mach number of 10.3. It was found that the amount of heat disposal by convection is determined primarily by the local geometry of the aircraft for moderate rates of transpiration. This property implies that different areas of the aircraft where transpiration occurs interact weakly with each other. A methodology for quick assessments of the transpiration requirements for a given flight configuration is presented.

  12. The significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach.

    PubMed

    Fricke, Wieland

    2015-02-01

    In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381-392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water is energized through the co-transport of ions such as K(+) and Cl(-) through plasma membrane-located transporters. The emphasis of the model is on the thermodynamic feasibility of the co-transport mechanism per se. However, what is lacking is a quantitative evaluation of the energy input required at the organismal level to sustain such a co-transport mechanism in the face of considerable net (transpirational) flows of water through the system. Here, we use a ratio of 500 water molecules being co-transported for every pair of K(+) and Cl(-) ions, as proposed for the animal system, to calculate the energy required to sustain daytime and night-time transpirational water flow in barley plants through a water co-transport mechanism. We compare this energy with the total daily net input of energy through photosynthetic carbon assimilation. Water co-transport can facilitate the filling of xylem against a difference in Ψ of 1.0MPa and puts a minor drain on the energy budget of the plant. Based on these findings it cannot be excluded that water co-transport in plants contributes significantly to xylem filling during night-time and possibly also daytime transpiration.

  13. Transpiration rates and canopy conductance of Pinus radiata growing with different pasture understories in agroforestry systems.

    PubMed

    Miller, Blair J.; Clinton, Peter W.; Buchan, Graeme D.; Robson, A. Bruce

    1998-01-01

    We measured tree transpiration and canopy conductance in Pinus radiata D. Don at two low rainfall sites of differing soil fertility in Canterbury, New Zealand. At the more fertile Lincoln site, we also assessed the effects of two common pasture grasses on tree transpiration and canopy conductance. At the less fertile Eyrewell Forest site, the effect of no understory, and the effects of irrigation in combination with mixtures of grass or legume species were determined. Tree xylem sap flux (F(d)') was measured by the heat pulse method. Total canopy conductance to diffusion of water vapor (G(t)) was calculated by inverting a simplified Penman-Monteith model. The different treatment effects were modeled by the simple decaying exponential relationship G(t) = G(tmax)e((-bD)), where D = air saturation deficit. At the Lincoln site, trees with an understory of cocksfoot had lower F(d)' and G(tmax) than trees with an understory of ryegrass, although the sensitivity of G(t) to increasing D (i.e., the value of b) did not differ between treatments. At the Eyrewell site, irrigation only increased F(d)' in the absence of an understory, whereas the presence of understory vegetation, or lack of irrigation, or both, significantly reduced G(tmax) and increased b. We conclude that the selection of understory species is critical in designing successful agroforestry systems for low rainfall areas.

  14. Measuring forest evaporation and transpiration rates with fibre optic temperature sensing

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Luxemburg, Wim; Hessels, Tim; de Kloe, Arjan; Elbers, Jan

    2014-05-01

    Evaporation is one of the most important fluxes of the water balance as it accounts for 55-80% of the precipitation. However, measuring evaporation remains difficult and requires sophisticated and expensive equipment. In this paper we propose a new measuring technique based on the existing Bowen ratio method. With a fibre optic cable a temperature and a vapour pressure profile can be measured by the principle of a psychrometer and combined with the net radiation (and ground heat flux) the latent heat can be calculated. Compared to the conventional Bowen ratio method the advantages of this method is that the profiles are measured with a single sensor (resulting in a smaller error), and contain more measuring points in the vertical and therefore give more insight into the developed profiles. The method also allows to measure through a forest canopy. Applying the Bowen ratio above and below the canopy an estimation of the transpiration flux can be obtained. As a first test, we compared in a pine forest in The Netherlands (Loobos) the transpiration estimates of the fibre optic cable with sapflow measurements, and eddy covariance measurements above and below the canopy. The experiment was carried out on three days in September 2013 and the preliminary results show reasonable correlation with the eddy covariance estimates, but not with the sapflow observations. To explain the differences further investigation is needed and a longer measuring period is required.

  15. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  16. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    PubMed

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  17. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  18. Quantifying the Components of Evapotranspiration from Plant Communities, Soil Evaporation and Plant Transpiration, with Isotopes and Micrometeorology

    NASA Astrophysics Data System (ADS)

    Denmead, O. Tom; Heng, L.; Zeeman, Matthias

    2016-04-01

    Isotope fractionation has been used in recent years to separate the components of evapotranspiration (ET):soil evaporation (E) and plant transpiration T. The technique estimates the ratio of T to ET, but without further information on the magnitude of ET, can not estimate the magnitudes of the components. To accomplish this, we conducted a study using the micrometeorological technique of eddy covariance to determine ET for a developing crop of winter wheat in conjunction with measurement of enrichment of the isotopes 18O and H2 in the vertical profiles of water vapour within and above the crop canopy. As well, the study employed a second micrometeorological technique based on a Lagrangian description of dispersion in the canopy (Raupach, 1989) to infer the source strengths for water vapour at the soil surface and in the various foliage layers in the canopy. Lagrangian dispersion analysis provides a means of linking canopy sources and sinks with mean concentration profiles using statistics of the turbulence in and above the canopy. Forward Lagrangian dispersion analysis predicts mean concentration profiles generated by given canopy source distributions. It uses a Lagrangian (fluid-following) framework to track an ensemble of "marked fluid particles" as they disperse. Inverse Lagrangian dispersion analysis does the reverse of the forward analysis: it predicts source profiles from mean concentration profiles. The dispersion equation uses information on the turbulence and gas concentrations in the canopy to relate the concentrations at any level to the source strengths at all levels. The necessary turbulence statistics are the friction velocity (a measure of vertical turbulent exchange in the air flow over the plant canopy), the standard deviation of the vertical wind velocity, and the Lagrangian time scale (a measure of eddy coherence). The analysis calculates the contributions of the various canopy layers to the net flux. In this study, agreement between the

  19. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1985-01-01

    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  20. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    PubMed

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth.

  1. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  2. Climate Change at Northern Latitudes: Rising Atmospheric Humidity Decreases Transpiration, N-Uptake and Growth Rate of Hybrid Aspen

    PubMed Central

    Tullus, Arvo; Kupper, Priit; Sellin, Arne; Parts, Leopold; Sõber, Jaak; Tullus, Tea; Lõhmus, Krista; Sõber, Anu; Tullus, Hardi

    2012-01-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008–2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect – inhibition of above-ground growth rate – was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO3− in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO2 concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place. PMID:22880067

  3. Uncertainties in transpiration estimates.

    PubMed

    Coenders-Gerrits, A M J; van der Ent, R J; Bogaard, T A; Wang-Erlandsson, L; Hrachowitz, M; Savenije, H H G

    2014-02-13

    arising from S. Jasechko et al. Nature 496, 347-350 (2013)10.1038/nature11983How best to assess the respective importance of plant transpiration over evaporation from open waters, soils and short-term storage such as tree canopies and understories (interception) has long been debated. On the basis of data from lake catchments, Jasechko et al. conclude that transpiration accounts for 80-90% of total land evaporation globally (Fig. 1a). However, another choice of input data, together with more conservative accounting of the related uncertainties, reduces and widens the transpiration ratio estimation to 35-80%. Hence, climate models do not necessarily conflict with observations, but more measurements on the catchment scale are needed to reduce the uncertainty range. There is a Reply to this Brief Communications Arising by Jasechko, S. et al. Nature 506, http://dx.doi.org/10.1038/nature12926 (2014).

  4. Impacts of forest thinning and climate change on transpiration and runoff rates in Sierra Nevada mixed-conifer headwater catchments

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Ray, R. L.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    Using a spatially explicit hydro-ecological model, impacts from forest thinning and climate change on snowpack, evapotranspiration (ET) rates, soil moisture storage, and runoff were investigated in Sierra Nevada headwater catchments spanning elevations of 1,500 to 2,000-m. Along this elevation gradient, precipitation changes from rain-dominated to snow-dominated, so precipitation phase will be strongly impacted by increases in temperature. Mixed-conifer forests in the Sierra Nevada near the 2,000-m elevation band also transpire at a high rate relative to upper elevation forests that are more restricted by colder winter temperatures and lower elevation forests that are more restricted by lower summer soil moisture, increasing the potential of reduced transpiration with vegetation thinning. Forest treatment and climate change scenarios were modeled using the Regional Hydro-Ecological Simulation System (RHESSys), calibrated with two years of snow, soil moisture, and streamflow observations. Simulations of forest thinning at moderate (66% of current vegetation density) and restoration (33% density) levels were combined with precipitation changes up to 20% and temperature increases up to 6οC for projecting impacts on ET and runoff rates. Model results indicated that moderate thinning alone could increase runoff by 3%, but additional temperature increases of 2-4οC could increase runoff rates another 6% - similar to a restoration level thinning. Modifying temperature and precipitation separately showed that the two methods of climate forcing both led to fluctuations in soil moisture, caused by changes in precipitation phase (snow/rain) and final day of snowpack melt. The snowmelt timing affected runoff rates by causing changes in the spring soil moisture recession, and showed that it may be one of the critical processes that affects annual runoff rates, not just runoff timing. Simulations of precipitation and temperature changes together showed that precipitation would

  5. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry

    2014-01-01

    In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration. PMID:25381432

  6. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought.

    PubMed

    Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry

    2014-11-01

    In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration.

  7. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    PubMed

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  8. Sap flow measurements to determine the transpiration of facade greenings

    NASA Astrophysics Data System (ADS)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  9. Development of a simplified plant stomatal resistance model and its validation for potentially transpiring and water-stressed water hyacinths

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    A simple model of upper-canopy plant stomatal resistance ( ruC) was developed which requires but four input parameters: canopy aerodynamic resistance, upper-canopy foliage temperature, and air vapor pressure deficit and temperature. The model was tested against upper-canopy sunlit leaf stomatal resistance ( r l) measurements of both potentially and non-potentially transpiring water hyacinth plants over the upper-canopy-intercepted net radiation range of 300-450 W m -2 and over a 10-fold range of r l. In all instances, and indicative of the model's good performance, the ratio of r uC/r l consistently averaged about 1.25, due to partial self-shading of the upper-canopy foliage. The significance of this finding to air pollution studies arises from the facts that (1) contemporary knowledge of a plant canopy's leaf area index would allow the transformation of ruC to rC, the total canopy diffusive resistance, and (2) the proper accounting for different trace gas diffusivities would allow the transformation of rc for water vapor to the variety of rC values required to infer the gaseous deposition of important pollutant gas species at vegetated surfaces.

  10. Plant δ15N Correlates with the Transpiration Efficiency of Nitrogen Acquisition in Tropical Trees1[OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Turner, Benjamin L.

    2009-01-01

    Based upon considerations of a theoretical model of 15N/14N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant δ15N (δP) should vary as a function of the transpiration efficiency of nitrogen acquisition (FN/v) and the difference between δP and root δ15N (δP − δR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both FN/v and δP − δR were significant sources of variation in δP, and the relationship between δP and FN/v differed between non-N2-fixing and N2-fixing species. We interpret the correlation between δP and FN/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in δ15N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems. PMID:19726571

  11. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components.

    PubMed

    Jetter, Reinhard; Riederer, Markus

    2016-02-01

    Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.

  12. Plant water resource partitioning and isotopic fractionation during transpiration in a seasonally dry tropical climate

    NASA Astrophysics Data System (ADS)

    De Wispelaere, Lien; Bodé, Samuel; Hervé-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2017-01-01

    Lake Chala (3°19' S, 37°42' E) is a steep-sided crater lake situated in equatorial East Africa, a tropical semiarid area with a bimodal rainfall pattern. Plants in this region are exposed to a prolonged dry season, and we investigated if (1) these plants show spatial variability and temporal shifts in their water source use; (2) seasonal differences in the isotopic composition of precipitation are reflected in xylem water; and (3) plant family, growth form, leaf phenology, habitat and season influence the xylem-to-leaf water deuterium enrichment. In this study, the δ2H and δ18O of precipitation, lake water, groundwater, plant xylem water and plant leaf water were measured across different plant species, seasons and plant habitats in the vicinity of Lake Chala. We found that plants rely mostly on water from the short rains falling from October to December (northeastern monsoon), as these recharge the soil after the long dry season. This plant-available, static water pool is only slightly replenished by the long rains falling from February to May (southeastern monsoon), in agreement with the two water worlds hypothesis, according to which plants rely on a static water pool while a mobile water pool recharges the groundwater. Spatial variability in water resource use exists in the study region, with plants at the lakeshore relying on a water source admixed with lake water. Leaf phenology does not affect water resource use. According to our results, plant species and their associated leaf phenology are the primary factors influencing the enrichment in deuterium from xylem water to leaf water (ɛl/x), with deciduous species giving the highest enrichment, while growth form and season have negligible effects. Our observations have important implications for the interpretation of δ2H of plant leaf wax n-alkanes (δ2Hwax) from paleohydrological records in tropical East Africa, given that the temporal variability in the isotopic composition of

  13. Transpiration-induced changes in the photosynthetic capacity of leaves.

    PubMed

    Sharkey, T D

    1984-02-01

    High transpiration rates were found to affect the photosynthetic capacity of Xanthium strumarium L. leaves in a manner analagous to that of low soil water potential. The effect was also looked for and found in Gossypium hirsutum L., Agathis robusta (C. Moore ex Muell.) Bailey, Eucalyptus microcarpa Maiden, Larrea divaricata Cav., the wilty flacca tomato mutant (Lycopersicon esculentum (L.) Mill.) and Scrophularia desertorum (Munz) Shaw. Two methods were used to distinguish between effects on stomatal conductance, which can lower assimilation by reducing CO2 availability, and effects on the photosynthetic capacity of the mesophyll. First, the response of assimilation to intercellular CO2 pressure (C i) was compared under conditions of high and low transpiration. Second, in addition to estimating C i using the usual Ohm's law analogy, C i was measured directly using the closed-loop technique of T.D. Sharkey, K. Imai, G.D. Farquhar and I.R. Cowan (1982, Plant Physiol, 60, 657-659). Transpiration stress responses of Xanthium strumarium were compared with soil drought effects. Both stresses reduced photosynthesis at high C i but not at low C i; transpiration stress increased the quantum requirement of photosynthesis. Transpiration stress could be induced in small sections of leaves. Total transpiration from the plant did not influence the photosynthetic capacity of a leaf kept under constant conditions, indicating that water deficits develop over small areas within the leaf. The effect of high transpiration on photosynthesis was reversed approximately half-way by returning the plants to low-transpiration conditions. This reversal occurred as fast as measurements could be made (5 min), but little further recovery was observed in subsequent hours.

  14. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.

    PubMed

    Song, Xin; Barbour, Margaret M; Farquhar, Graham D; Vann, David R; Helliker, Brent R

    2013-07-01

    Stable oxygen isotope ratio of leaf water (δ(18)O(L)) yields valuable information on many aspects of plant-environment interactions. However, current understanding of the mechanistic controls on δ(18)O(L) does not provide complete characterization of effective path length (L) of the Péclet effect,--a key component of the leaf water model. In this study, we collected diurnal and seasonal series of leaf water enrichment and estimated L in six field-grown angiosperm and gymnosperm tree species. Our results suggest a pivotal role of leaf transpiration rate (E) in driving both within- and across-species variations in L. Our observation of the common presence of an inverse scaling of L with E in the different species therefore cautions against (1) the conventional treatment of L as a species-specific constant in leaf water or cellulose isotope (δ(18)O(p)) modelling; and (2) the use of δ(18)O(p) as a proxy for gs or E under low E conditions. Further, we show that incorporation of a multi-species L-E scaling into the leaf water model has the potential to both improve the prediction accuracy and simplify parameterization of the model when compared with the conventional approach. This has important implications for future modelling of oxygen isotope ratios.

  15. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    PubMed

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  16. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    PubMed

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  17. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  18. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers.

  19. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  20. The effects of CO2 on growth and transpiration of radish (Raphanus sativus) in hypobaria

    NASA Astrophysics Data System (ADS)

    Gohil, H. L.; Bucklin, R. A.; Correll, M. J.

    2010-04-01

    Plants grown on long-term space missions will likely be grown in low pressure environments (i.e., hypobaria). However, in hypobaria the transpiration rates of plants can increase and may result in wilting if the water is not readily replaced. It is possible to reduce transpiration by increasing the partial pressure of CO2 (pCO2), but the effects of pCO2 at high levels (>120 Pa) on the growth and transpiration of plants in hypobaria are not known. Therefore, the effects of pCO2 on the growth and transpiration of radish (Raphanus sativus var. Cherry Bomb II) in hypobaria were studied. The fresh weight (FW), leaf area, dry weight (DW), CO2 assimilation rates (CA), dark respiration rates (DR), and transpiration rates from 26 day-old radish plants that were grown for an additional seven days at different total pressures (33, 66 or 101 kPa) and pCO2 (40 Pa, 100 Pa and 180 Pa) were measured. In general, the dry weight of plants increased with CO2 enrichment and with lower total pressure. In limiting pCO2 (40 Pa) conditions, the transpiration for plants grown at 33 kPa was approximately twice that of controls (101 kPa total pressure with 40 Pa pCO2). Increasing the pCO2 from 40 Pa to 180 Pa reduced the transpiration rates for plants grown in hypobaria and in standard atmospheric pressures. However, for plants grown in hypobaria and high pCO2 (180 Pa) leaf damage was evident. Radish growth can be enhanced and transpiration reduced in hypobaria by enriching the gas phase with CO2 although at high levels leaf damage may occur.

  1. Solute Export Through Transpiration: A Possible Control of Soil Water Chemistry?

    NASA Astrophysics Data System (ADS)

    Alexander, S. C.; Boyle, D. B.; Alexander, E. C.

    2005-12-01

    Recent studies of soil and ground water interactions in western Minnesota have produced seemingly anomalous results. The soil waters beneath highly transpirative plants (Typha sp., Salix sp. and Populus sp.) in a ground water discharge area developed high calcium sulfate concentrations with only minor enrichment of sodium and chloride. It was expected that concentration of solutes by evapo-transpiration would enrich all ions in the originating ground water more equally. Transpired water is generally assumed to be essentially distilled water although there is little analytical data to support this hypothesis. Given the very high evapotranspiration rates of Western Minnesota, greater than 95% of total water movement, even relatively dilute ion concentrations in the transpired water may be significant in the total chemical budget. To investigate the chemistry of transpired water we adapted techniques that have been used to study total transpiration rates as well as isotopic composition of transpired waters. Our initial results from typha sp. have produced waters that while relatively dilute are distinctly not distilled water. Control samples using de-ionized water over dead vegetation produced minor ion enrichment. All results are in ppm. Ion - Ca, Mg, Na, K, P, Mn, Cl , SO4, NO3-N soil water - 18.5, 2.9, 4.8, 3.8, 0.2, 0.2, 5.6, 2.4, 0.5 transpiration - 1.9, 0.6, 1.5, 8.5, 0.3, 0.4, 9.0, 1.6, <0.1 DI control - 0.1, <0.1, 0.1, <0.1, <0.1, <0.1, <0.1, 1.6, <0.1 The observed transpiration chemistries are in rough agreement with reported literature values for plant stem water. While many plants are known to excrete large molecules the expulsion of ions in transpired water would represent a novel chemical plant pathway.

  2. Wheat Transpiration Response to Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Langensiepen, M.; Kupisch, M.; Cai, G.; Vanderborght, J.; Stadler, A.; Hüging, H.; Ewert, F.

    2014-12-01

    Measuring sap-flow in thin wheat tillers has been difficult so far due to technical difficulties associated with the application of the heat-balance method for this purpose. We developed a new method which solved this problem (Langensiepen et al. 2014) and applied it during four consecutive vegetation seasons for determining tiller transpiration rates in a wheat field with strong soil heterogeneity. The transpiration rates differed insignificantly between different field sections characterized by strong differences in physical soil conditions, regardless whether the crop was irrigated or supplied with variable rainwater. Tiller transpiration in a sheltered section was slightly reduced. Maximum leaf vapor conductance didn't differ among these different conditions, except under severe water stress conditions. Leaf water potential varied considerably during daily cycles under all circumstances. These responses are typical for plants with anisohydric behaviors which are characterized by small sensitivities of guard cells to critical leaf water potential thresholds and high photosynthetic productivity under absent or mild water stress. Recent studies conducted in Eucalyptus, tomato, and Arabidopsis plants have shown that the transition from mild to severe stress in anisohydric plants is marked by an increasing sensitivity of stomatal control to the transpiration rate. The results of this study demonstrate that this also seems to be the case for wheat. This practically implies that the parameterization of models calculating wheat canopy flux responses to soil heterogeneity patterns must not only account for the crop-type specific soil-vegetation pattern interaction under absent or mild stress, but also for additional mechanisms which kick in when water stress becomes severe. Langensiepen, M., Kupisch, M., Graf, A., Schmidt, M., Ewert, F. (2014) Improving the stem heat balance method for determining sap-flow in wheat. Agric. For. Met. 186: 34-42

  3. Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broad-leaved tree species common in cool temperate forests in Japan.

    PubMed

    Saito, Takami; Tanaka, Tadashi; Tanabe, Hiromi; Matsumoto, Yoosuke; Morikawa, Yasushi

    2003-01-01

    To clarify mechanisms underlying variation in transpiration rate among deciduous broad-leaved tree species, we measured diurnal changes in stomatal conductance (gs) and leaf water potential, and calculated the maximum transpiration rate (Emax), leaf-specific hydraulic conductance (K(s-l)) and difference between the soil water potential and the daily minimum leaf water potential (Psis - Psi(l,min)). Pressure-volume (P-V) measurements were made on leaves. Saplings of eight broad-leaved tree species that are common in Japanese cool temperate forests were studied. Maximum transpiration rate varied significantly among species. There was a statistically significant difference in Psis - Psi(l,min), but not in K(s-l). Species with large Emax also had large Psis - Psi(l,min) and gs. The results of the P-V analyses showed that species with a large Psis - Psi(l,min) maintained turgor even at low leaf water potentials. The similar daily minimum leaf pressure potentials (Psip) across all eight species indicate that Psip values below this minimum are critical. Based on these results, we suggest that the leaf cell capacity for turgor maintenance strongly affects Psis - Psi(l,min) and consequently Emax via stomatal regulation.

  4. Nutrient availability moderates transpiration in Ehrharta calycina.

    PubMed

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients.

  5. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (<60 min.), intermediate (ca. 120 min.) and slow (>240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both

  6. Control of transpiration by radiation.

    PubMed

    Pieruschka, Roland; Huber, Gregor; Berry, Joseph A

    2010-07-27

    The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.

  7. Effects of Planting Density on Transpiration, Stem Flow and Interception for Two Clones Differing in Drought Tolerance in a High Productivity Eucalyptus Plantation in Brazil

    NASA Astrophysics Data System (ADS)

    Hubbard, R. M.; Hakemada, R.; Ferraz, S.

    2015-12-01

    Eucalypt plantations cover about 20 M hectares worldwide and expansion is expected to mainly occur in marginal growing areas where dry conditions may lead to water conflicts. One of the principal reasons for the expansion of Eucalyptus plantations is rapid wood growth but these forests also transpire large amounts of water. Genotype selection and planting density, are key factors regulating carbon and water tradeoffs at a stand scale, but few studies have examined these simultaneously especially in highly productive clonal plantations. Our goal in this study was to examine the effects of planting density on carbon and water interactions using a drought tolerant and drought sensitive eucalyptus clone. This work is part of a larger study (TECHS project - Tolerance of Eucalyptus Clones to Hydric and Thermal Stresses) and is located in a flat Oxisol in southeast of Brazil. A drought tolerant (E. grandis x E. camaldulensis (Grancam) and drought sensitive clone E. grandis x E. urophylla (Urograndis) were planted at four densities ranging from 600 to 3.000 stem ha-1. We measured transpiration using thermal heat dissipation probes, wood growth, canopy interception and stemflow during a full year (21 to 33 months old). Precipitation during the study period was 738 mm. Independently of genetics, growth increased with increasing density. Transpiration also increased with planting density and ranged from 515-595 mm at wider spacing to 735-978 mm at tighter spacing. Interception increased with planting density representing 18-22% of precipitation versus 13-14% in wider spacing while stem flow represented 2-5% in denser spacing and 1-2% at broader spacing. When density was higher than 1.250 and 1.750 stems ha-1 in Urograndis and Grancam clones, respectively, the water balance were negative. On a stand scale, results show both genetics and spacing can be used as silvicultural tools to better manage the tradeoff between wood growth and water consumption.

  8. Transpiration of urban forests in the Los Angeles metropolitan area.

    PubMed

    Pataki, Diane E; McCarthy, Heather R; Litvak, Elizaveta; Pincetl, Stephanie

    2011-04-01

    Despite its importance for urban planning, landscape management, and water management, there are very few in situ estimates of urban-forest transpiration. Because urban forests contain an unusual and diverse mix of species from many regions worldwide, we hypothesized that species composition would be a more important driver of spatial variability in urban-forest transpiration than meteorological variables in the Los Angeles (California, USA) region. We used constant-heat sap-flow sensors to monitor urban tree water use for 15 species at six locations throughout the Los Angeles metropolitan area. For many of these species no previous data on sap flux, water use, or water relations were available in the literature. To scale sap-flux measurements to whole trees we conducted a literature survey of radial trends in sap flux across multiple species and found consistent relationships for angiosperms vs. gymnosperms. We applied this relationship to our measurements and estimated whole-tree and plot-level transpiration at our sites. The results supported very large species differences in transpiration, with estimates ranging from 3.2 +/- 2.3 kg x tree(-1) x d(-1) in unirrigated Pinus canariensis (Canary Island pine) to 176.9 +/- 75.2 kg x tree(-1) x d(-1) in Platanus hybrida (London planetree) in the month of August. Other species with high daily transpiration rates included Ficus microcarpa (laurel fig), Gleditsia triacanthos (honeylocust), and Platanus racemosa (California sycamore). Despite irrigation and relatively large tree size, Brachychiton populneas (kurrajong), B. discolor (lacebark), Sequoia sempervirens (redwood), and Eucalyptus grandis (grand Eucalyptus) showed relatively low rates of transpiration, with values < 45 kg x tree(-1) x d(-1). When scaled to the plot level, transpiration rates were as high as 2 mm/d for sites that contained both species with high transpiration rates and high densities of planted trees. Because plot-level transpiration is highly

  9. Transpiration- and growth-induced water potentials in maize

    SciTech Connect

    Westgate, M.E.; Boyer, J.S.

    1984-01-01

    Recent evidence from leaves and stems indicates that gradients in water potential (psi/sub w/) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue psi/sub w/ and the behavior of these gradients has not been investigated in transpiring plants, the authors examined the water status of all the growing and mature vegetative tissues of maize (Zea mays L.) during high and low rates of transpiration. The psi/sub w/ measured in the mature regions of the plant responded primarily to transpiration, while the psi/sub w/ in the growing regions was affected both by transpiration and growth. The transpiration-induced potentials of the mature tissue formed a gradient of decreasing psi/sub w/ along the transpiration stream while the growth-induced potentials formed a gradient of decreasing psi/sub w/ from the transpiration stream to the expanding cells in the growing tissue. The growth-induced gradient in psi/sub w/ within the leaf remained fairly constant as the xylem psi/sub w/ decreased during the day and was associated with a decreased osmotic potential (psi/sub s/) of the growing region (osmotic adjustment). The growth-induced gradient in psi/sub w/ was not caused by excision of the tissue because intact maize stems exhibited a similar psi/sub w/. These observations support the concept that large gradients in psi/sub w/ are required to maintain water flow to expanding cells within all the vegetative tissues and suggest that the maintenance of a favorable gradient in psi/sub w/ for cell enlargement may be an important role for osmotic adjustment. 33 references, 7 figures, 1 table.

  10. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  11. Transpiration cooling using air as a coolant

    SciTech Connect

    Kikkawa, Shinzo; Senda, Mamoru; Sakagushi, Katsuji; Shibutani, Hideki )

    1993-02-01

    Transpiration cooling is one of the most effective techniques for protecting a surface exposed to a high-temperature gas stream. In the present paper, the transpiration cooling effectiveness was measured under steady state. Air as a coolant was transpired from the surface of a porous plate exposed to hot gas stream, and the transpiration rate was varied in the range of 0.001 [approximately] 0.006. The transpiration cooling effectiveness was evaluated by measuring the temperature of the upper surface of the plate. Also, a theoretical study was performed and it was clarified that the effectiveness increases with increasing transpiration rate and heat-transfer coefficient of the upper surface. Further, the effectiveness was expressed as a function of the blowing parameter only. The agreement between the experimental results and theoretical ones was satisfactory.

  12. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis.

    PubMed

    Kobayashi, Natsuko I; Saito, Takayuki; Iwata, Naoko; Ohmae, Yoshimi; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2013-08-01

    Magnesium (Mg) is an essential macronutrient supporting various functions, including photosynthesis. However, the specific physiological responses to Mg deficiency remain elusive. In this study, 2-week-old rice seedlings (Oryza sativa. cv. Nipponbare) with three expanded leaves (L2-L4) were transferred to Mg-free nutrient solution for 8 days. In the absence of Mg, on day 8, L5 and L6 were completely developed, while L7 just emerged. We also studied several mineral deficiencies to identify specific responses to Mg deficiency. Each leaf was analyzed in terms of chlorophyll, starch, anthocyanin and carbohydrate metabolites, and only absence of Mg was found to cause irreversible senescence of L5. Resupply of Mg at various time points confirmed that the borderline of L5 death was between days 6 and 7 of Mg deficiency treatment. Decrease in chlorophyll concentration and starch accumulation occurred simultaneously in L5 and L6 blades on day 8. However, nutrient transport drastically decreased in L5 as early as day 6. These data suggest that the predominant response to Mg deficiency is a defect in transpiration flow. Furthermore, changes in myo-inositol and citrate concentrations were detected only in L5 when transpiration decreased, suggesting that they may constitute new biological markers of Mg deficiency.

  13. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  14. Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The instantaneous transpiration efficiency (ITE, the ratio of photosynthesis rate to transpiration) is an important variable for crops, because it ultimately affects dry mass production per unit of plant water lost to the atmosphere. The theory that stomata optimize carbon uptake per unit water used...

  15. Fruit load governs transpiration of olive trees.

    PubMed

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs.

  16. Fruit load governs transpiration of olive trees

    PubMed Central

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  17. Comparison of corn transpiration, eddy covariance, and soil water loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  18. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat

    PubMed Central

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-01-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580

  19. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat.

    PubMed

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-09-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning.

  20. Uncertainty in sap flow-based transpiration due to xylem properties

    NASA Astrophysics Data System (ADS)

    Looker, N. T.; Hu, J.; Martin, J. T.; Jencso, K. G.

    2014-12-01

    Transpiration, the evaporative loss of water from plants through their stomata, is a key component of the terrestrial water balance, influencing streamflow as well as regional convective systems. From a plant physiological perspective, transpiration is both a means of avoiding destructive leaf temperatures through evaporative cooling and a consequence of water loss through stomatal uptake of carbon dioxide. Despite its hydrologic and ecological significance, transpiration remains a notoriously challenging process to measure in heterogeneous landscapes. Sap flow methods, which estimate transpiration by tracking the velocity of a heat pulse emitted into the tree sap stream, have proven effective for relating transpiration dynamics to climatic variables. To scale sap flow-based transpiration from the measured domain (often <5 cm of tree cross-sectional area) to the whole-tree level, researchers generally assume constancy of scale factors (e.g., wood thermal diffusivity (k), radial and azimuthal distributions of sap velocity, and conducting sapwood area (As)) through time, across space, and within species. For the widely used heat-ratio sap flow method (HRM), we assessed the sensitivity of transpiration estimates to uncertainty in k (a function of wood moisture content and density) and As. A sensitivity analysis informed by distributions of wood moisture content, wood density and As sampled across a gradient of water availability indicates that uncertainty in these variables can impart substantial error when scaling sap flow measurements to the whole tree. For species with variable wood properties, the application of the HRM assuming a spatially constant k or As may systematically over- or underestimate whole-tree transpiration rates, resulting in compounded error in ecosystem-scale estimates of transpiration.

  1. Modelling the impact of the light regime on single tree transpiration based on 3D representations of plant architecture

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Priesack, E.

    2012-04-01

    We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring

  2. Isotopic evidence for the role of plant development on transpiration in deciduous forests of southern United States

    NASA Astrophysics Data System (ADS)

    Mora, GermáN.; Jahren, A. Hope

    2003-06-01

    We evaluated D/H ratios of soil- and plant-extracted water during the 1997 growing season to assess the influence of temperature, humidity, and rainfall on water distribution in deciduous forests. Three state parks (Chicot in Arkansas; Natchez in Mississippi, and St. Bernard in Louisiana) were identified along a 13.5-cm precipitation gradient established during the studied growing season within the Mississippi River basin. Samples were collected for isotopic determinations from five to six species at each site early (March) and late (June) in the growing season. To capture the isotopic variability in water sources, samples of rainwater, groundwater, and soil water were collected. Isotopic results for rainwater showed an average increase of 4‰ from March to June. This increase did not transfer to soil water: soil water δD values throughout the growing season showed values close to those measured for March rainwater. In contrast, leaf water showed δD values that were 15‰ to 20‰ higher in March compared to June δD values. Elevated March δD values in leaf water were observed in virtually all species at the three sites. Change in leaf water δD value during the growing season was not correlated with precipitation rate, temperature, humidity, or changes in atmospheric water vapor isotopic composition. We propose that this widespread March isotopic enrichment resulted from enhanced evaporative demand induced by accelerated plant growth early in the growing season. This suggestion implies a decoupling of environmental factors and plant response, pointing to the important role of plant developmental timing in ecosystem functioning.

  3. [Measurement accuracy of granier calibration based on transpiration of Platycladus orientalis].

    PubMed

    Liu, Qing-Xin; Meng, Ping; Zhang, Jin-Song; Gao, Jun; Sun, Shou-Jia; Jia, Chang-Rong

    2012-06-01

    In order to understand the accuracy of Granier' s thermal dissipation method in measuring tree water consumption, a comparative study was made from May to June, 2010. The sap flow density of potted Platycladus orientalis was measured with thermal dissipation probe, which was compared with the whole-plant gravimetric measurement. There were significant linear relationships (R2 > 0.825) between the sap flow velocity in both north and south directions of P. orientalis measured by thermal dissipation probe and the transpiration rate measured by gravimetric method. The average daily sap flux in the north and south directions of P. orientalis were 10.6% and 15.1% lower than the daily average transpiration of P. orientalis, respectively, but the differences were not significant. Therefore, Granier's method had high reliability in the measurement of P. orientalis transpiration at daily scale, though the large temperature fluctuation between day and night could result in a lower daily sap flux than daily transpiration.

  4. [Study of the possibility of utilizing the transpired mositure condensate from sweet potato for growing plants in biological life support systems].

    PubMed

    Derendiaeva, T A

    1976-01-01

    The effect of nonpurified condensate obtained during prolonged cultivation of batata in a sealed chamber upon batata cuttings and seedlings of garden cress, radish and Chinese cabbage was studied. It was shown that nonpurified condensate produced an inhibitory effect on the formation of roots in batata cuttings and on the growth of previously developed roots of batata cuttings and seedlings. The studies which used a chemical model of 3,4-dihydroxy phenylalanine indicated that the condensate contained biologically active substance of organic origin. However, only experiments with the real continuous culture of batata, using real dilutions of the condensate that depend on the size of the greenhouse and the amount of the nutrient solution would clarify wheather condensate of transpiration water of batata plants can be repeatedly utilized in life support systems.

  5. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  6. Effects of overcast and foggy conditions on transpiration rates of Pinus patula trees along a chronosequence within the cloud belt of the Sierra Madre Oriental, central Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Alvarado-Barrientos, M. S.; Holwerda, F.; Asbjornsen, H.; Sauer, T.; Dawson, T. E.; Bruijnzeel, L. A.

    2010-12-01

    Pinus patula is a native tree species of the montane cloud belt of central Veracruz, Mexico, and one of the most popular species for regional reforestation efforts, both within and outside its natural range of occurrence. Projected regional climate change is likely to cause a rise in the average cloud condensation level by several hundred meters, thereby reducing fog occurrence, whilst overcast conditions are likely to remain similar. To improve our understanding of how water use of P. patula plantations is affected by changes in climatic conditions, we analyzed the response of transpiration rates to fine-scale variations in microclimate, particularly fog immersion and the occurrence of high clouds. We conducted measurements of micrometeorological parameters and transpiration (Et, using the heat ratio sap flow technique) of 15 pine trees representing a range of ages (10-34 years) and sizes (7-60 cm of dbh) during one and a half years (Nov 2008 - May 2010), covering two dry seasons and one wet season. Foggy days were defined using daytime “M-of-N” constructs (at least 4 hours with visibility <1000 m within 6 consecutive hourly observations), and days with overcast conditions as having a median daytime visibility > 1000 m and a maximum incoming solar radiation (Sin) < 700 W m-2. Precipitation and leaf wetness data were used to distinguish between (partly) wet and dry canopy conditions. Daily transpiration rates were normalized for climatic conditions using the FAO reference evaporation ETo to allow determination of the proportional contributions to Et suppression by reductions in Sin and VPD relative to leaf wetness. We found that both foggy and overcast conditions without rainfall produced similar % of Et reduction compared to sunny conditions (60-70%). The strongest Et suppression effects occurred when foggy or overcast conditions were associated with rainfall. However, there was just a slight and non significant difference between the average Et/ETo ratio for

  7. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    PubMed

    Tardieu, François; Parent, Boris

    2016-08-29

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level.

  8. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    NASA Astrophysics Data System (ADS)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation

  9. Terrestrial water fluxes dominated by transpiration.

    PubMed

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  10. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    PubMed

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.

  11. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    PubMed Central

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source–sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m-2 s-1) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant. PMID:25972884

  12. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components1[OPEN

    PubMed Central

    Jetter, Reinhard

    2016-01-01

    Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers. PMID:26644508

  13. Simple relations for different stomatal control mechanisms link partially drying soil and transpiration

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Stomata can close to regulate plant water loss under unfavourable water availability. This closure can be triggered by hydraulic ('H') and/or chemical signals ('C', 'H+C'). By combining plant hydraulic relations with a model for stomatal conductance, including chemical signalling, our aim was to derive a simple relation that links soil water availability, expressed as the fraction of roots in dry soil, to transpiration. We used the detailed mechanistic soil-root water flow model R-SWMS to verify this relation. Virtual split root experiments were simulated, comparing horizontally and vertically split domains with varying fractions of roots in dry soil and comparing different strengths of stomatal regulation by chemical and hydraulic signals. Transpiration predicted by the relation was in good agreement with numerical simulations. Under certain conditions H+C control leads to isohydric plant behaviour, which means that stomata close to keep leaf water potential constant after reaching a certain level. C control on the other hand exerts anisohydric behaviour, meaning that stomata remain fully open during changes in leaf water potential. For C control the relation between transpiration reduction and fraction of roots in dry soil becomes independent of transpiration rate whereas H+C control results in stronger reduction for higher transpiration rates. Simple relations that link effective soil and leaf water potential can describe different stomatal control resulting in contrasting behaviour.

  14. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.

    PubMed

    Ogée, J; Cuntz, M; Peylin, P; Bariac, T

    2007-04-01

    This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.

  15. Compensating effect of sap velocity for stand density leads to uniform hillslope-scale forest transpiration across a steep valley cross-section

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel

    2016-04-01

    Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.

  16. Tritium Concentrations in Environmental Samples and Transpiration Rates from the Vicinity of Mary's Branch Creek and Background Areas, Barnwell, South Carolina, 2007-2009

    USGS Publications Warehouse

    Vroblesky, Don A.; Canova, Judy L.; Bradley, Paul M.; Landmeyer, James E.

    2009-01-01

    Tritium in groundwater from a low-level radioactive waste disposal facility near Barnwell, South Carolina, is discharging to Mary's Branch Creek. The U.S. Geological Survey conducted an investigation from 2007 to 2009 to examine the tritium concentration in trees and air samples near the creek and in background areas, in groundwater near the creek, and in surface water from the creek. Tritium was found in trees near the creek, but not in trees from background areas or from sites unlikely to be in direct root contact with tritium-contaminated groundwater. Tritium was found in groundwater near the creek and in the surface water of the creek. Analysis of tree material has the potential to be a useful tool in locating shallow tritium-contaminated groundwater. A tritium concentration of 1.4 million picocuries per liter was measured in shallow groundwater collected near a tulip poplar located in an area of tritium-contaminated groundwater discharge. Evapotranspiration rates from the tree and tritium concentrations in water extracted from tree cores indicate that during the summer, this tulip poplar may remove more than 17.1 million picocuries of tritium per day from the groundwater that otherwise would discharge to Mary's Branch Creek. Analysis of air samples near the tree showed no evidence that the transpirative release of tritium to the air created a vapor hazard in the forest.

  17. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  18. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  19. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  20. Stomatal Closure in Flooded Tomato Plants Involves Abscisic Acid and a Chemically Unidentified Anti-Transpirant in Xylem Sap.

    PubMed Central

    Else, M. A.; Tiekstra, A. E.; Croker, S. J.; Davies, W. J.; Jackson, M. B.

    1996-01-01

    We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants. PMID:12226387

  1. Correlation of thermophoretically-modified small particle diffusional deposition rates in forced convection systems with variable properties, transpiration cooling and/or viscous dissipation

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A cooled object (heat exchanger tube or turbine blade) is considered to be immersed in a hot fluid stream containing trace amounts of suspended vapors and/or small particles. Numerical prediction calculations were done for self-similar laminar boundary layers and law-of-the-wall turbulent boundary layers. Correlations are presented for the effect of thermophoresis in the absence of transpiration cooling and viscous dissipation; the effect of real suction and blowing in the absence of thermophoresis; the effect of viscous dissipation on thermophoresis in the absence of transpiration cooling; and the combined effect of viscous dissipation and transpiration cooling on thermophoresis. The final correlation, St/St-sub-zero, is insensitive to particle properties, Euler number, and local mainstream temperature.

  2. Transpiration and CO/sub 2/ fixation of selected desert shrubs as related to soil-water potential

    SciTech Connect

    Clark, S.B.; Letey, J. Jr.; Lunt, O.R.; Wallace, A.; Kleinkopf, G.E.; Romney, E.M.

    1980-01-01

    In desert plants, transpiration rates decreased before photosynthetic rates when plants were entering a period of water stress. This may have adaptive consequences. A difference of -5 bars in the soil-moisture potential had considerable importance in reducing the rate of transpiration. In Helianthus annuus L. (sunflower) the photosynthetic rate decreased before the transpiration rate in contrast to Great Basin-Mojave Desert plants, and the changes occurred with a -1 bar difference in soil-moisture potential. Morphological changes in three desert plant species (Artemisia tridentata Nutt., Ambrosia dumosa (Gray) Payne, Larrea tridentata (Ses. Moc. ex DC) Cov.) as the soil-moisture potential decreased are given. With a mesic species, H. annuus, 20% reduction in photosynthesis and transpiration was reached at higher soil-moisture potentials than with the desert plants. Loss of net photosynthesis occurred in A. dumosa (a summer deciduous shrub) as PSI soil reached -48 bars in the field, whereas L. tridentata (an evergreen shrub) at the same time was able to maintain a water potential difference between soil and plant of -10 to -15 bars and continue net CO/sub 2/ gain well into the summer months.

  3. A high CO2 -driven decrease in plant transpiration leads to perturbations in the hydrological cycle and may link terrestrial and marine loss of biodiversity: deep-time evidence.

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Woodward, F. Ian; Surlyk, Finn; McElwain, Jennifer C.

    2013-04-01

    CO2 is obtained and water vapor simultaneously transpired through plant stomata, driving the water uptake of roots. Stomata are key elements of the Earth's hydrological cycle, since a large part of the evapotranspiration from the surface to the atmosphere takes place via stomatal pores. Plants exercise stomatal control, by adjusting stomatal size and/or density in order to preserve water while maintaining carbon uptake for photosynthesis. A global decrease in stomatal density and/or size causes a decrease in transpiration and has the potential to increase global runoff. Here we show, from 91 fossil leaf cuticle specimens from the Triassic/Jurassic boundary transition (Tr-J) of East Greenland, that both stomatal size and density decreased dramatically during the Tr-J, coinciding with mass extinctions, major environmental upheaval and a negative C-isotope excursion. We estimate that these developmental and structural changes in stomata resulted in a 50-60% drop in stomatal and canopy transpiration as calibrated using a stomatal model, based on empirical measurements and adjusted for fossil plants. We additionally present new field evidence indicating a change to increased erosion and bad-land formation at the Tr-J. We hypothesize that plant physiological responses to high carbon dioxide concentrations at the Tr-J may have increased runoff at the local and perhaps even regional scale. Increased runoff may result in increased flux of nutrients from land to oceans, leading to eutrophication, anoxia and ultimately loss of marine biodiversity. High-CO2 driven changes in stomatal and canopy transpiration therefore provide a possible mechanistic link between terrestrial ecological crisis and marine mass extinction at the Tr-J.

  4. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-08-01

    The significance of soil water redistribution by roots and nocturnal transpiration for nutrient acquisition were assessed for deep-rooted 3-year-old leguminous Aspalathus linearis shrubs of the Cape Floristic Region (South Africa). We hypothesised that hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition by releasing moisture in shallow soil to enable acquisition of shallow-soil nutrients during the summer drought periods and by driving water fluxes from deep to shallow soil powering mass-flow nutrient acquisition, respectively. A. linearis was supplied with sub-surface (1-m-deep) irrigation rates of 0, 2 or 4 L day(-1 )plant(-1). Some plants were unfertilized, whilst others were surface- or deep-fertilized (1 m depth) with Na(15)NO3 and CaP/FePO4. We also supplied deuterium oxide ((2)H2O) at 1 m depth at dusk and measured its predawn redistribution to shallow soil and plant stems. Hydraulic redistribution of deep water was substantial across all treatments, accounting for 34-72 % of surface-soil predawn moisture. Fourteen days after fertilization, the surface-fertilized plants exhibited increased hydraulic redistribution and increased (15)N and P acquisition with higher rates of deep-irrigation. Deep-fertilization also increased hydraulic redistribution to surface soils, although these plants additionally accumulated (2)H2O in their stem tissue overnight, probably due to nocturnal transpiration. Plants engaged in nocturnal transpiration also increased (15)N and P acquisition from deep fertilizer sources. Thus, both nocturnal transpiration and hydraulic redistribution increased acquisition of shallow soil N and P, possibly through a combination of increased nutrient availability and mobility.

  5. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  6. Connections between groundwater flow and transpiration partitioning

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  7. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  8. Transpiration purged optical probe

    SciTech Connect

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  9. Measurement of transpiration in Pinus taeda L. and Liquidambar styraciflua L. in an environmental chamber using tritiated water

    NASA Technical Reports Server (NTRS)

    Levy, G. F.; Sonenshine, D. E.; Czoch, J. K.

    1976-01-01

    Transpiration rates of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) were measured at two different atmospheric water vapor pressure deficits (V.P.D.) in a controlled environment growth chamber using tritiated water as a tracer. The trees were maintained in a sealed plant bed containing a hydroponic nutrient solution into which labeled water (spike) was introduced. Samples of leaves, chamber air, spiked nutrient solution and control water were assayed for ratio-activity using liquid scintillation techniques to determine transpiration rates. The transpiration rate of sweetgum in ml./hr./gm. (4.95) was found to be 5 times greater than that of loblolly pine (1.03) at 1.84 V.P.D. and 8 times greater at 6.74 V.P.D. (15.99 for sweetgum vs. 2.19 for pine). Transpiration (based on measurements of leaf radioactivity) in both species rose with increasing deficit; however sweetgum increased its output by 3 times while pine only doubled its rate. Cyclical changes in transpiration rates were noted in both species; the sweetgum cycle required a 6 hour interval whereas the pine cycle required a 9 hour interval.

  10. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  11. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA

    NASA Astrophysics Data System (ADS)

    Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M.

    2013-02-01

    SummaryApplication of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to "approximate" a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed

  12. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    PubMed

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.

  13. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    PubMed

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  14. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  15. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  16. Streamwise-varying steady transpiration control in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Blackburn, H. M.; Rudman, M.; Sharma, A. S.; McKeon, B. J.

    2016-06-01

    A study of the the main features of low- and high amplitude steady streamwise wall transpiration applied to pipe flow is presented. The effect of the two transpiration parameters, amplitude and wavenumber, on the flow have been investigated by means of direct numerical simulation at a moderate turbulent Reynolds number. The behaviour of the three identified mechanisms that act in the flow: modification of Reynolds shear stress, steady streaming and generation of non-zero mean streamwise gradients, have been linked to the transpiration parameters. The observed trends have permitted the identification of wall transpiration configurations able to reduce or increase the overall flow rate in -36.1% and 19.3% respectively. A resolvent analysis has been carried out to obtain a description of the reorganization of the flow structures induced by the transpiration.

  17. Idaho Chemical Processing Plant failure rate database

    SciTech Connect

    Alber, T.G.; Hunt, C.R.; Fogarty, S.P.; Wilson, J.R.

    1995-08-01

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included.

  18. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  19. Native Trees and Salt Cedar: Quantifying Transpiration at Intermittent and Perennial Streamflows on the San Pedro River

    NASA Astrophysics Data System (ADS)

    McGuire, R. R.; Glenn, E. P.; Scott, R. L.; Moran, M. S.

    2007-12-01

    Native cottonwood-willow forests that historically dominated south-western riparian areas are being replaced by salt cedar (Tamarix ramosissima) on the majority of regulated western rivers. Some studies of salt cedar have indicated its water use is considerably greater than native trees and depletes alluvial aquifers of groundwater; however, other studies have shown low to moderate water use by salt cedar. Results have varied on temporal and spatial scales making it difficult to draw firm conclusions. We compared whole plant transpiration by native riparian cottonwood (Populus fremontii) trees and salt cedar in co-occurring communities at the upper and lower San Pedro River in Arizona during 2006 and 2007, respectively. Water use by both species was monitored and quantified using the heat balance sap flow technique at intermittent and perennial reaches during the pre- monsoon season, a period of high atmospheric water demand. Our 2006 measurements in a riparian transition zone at an intermittent reach of the San Pedro River appeared to differ with earlier studies that salt cedar has higher transpiration rates, as cottonwoods and salt cedar demonstrated similar, low transpiration rates. However transpiration results from a 2007 study on these same species at a perennial reach of the San Pedro River indicate significantly higher transpiration by salt cedar and moderate increases for cottonwoods compared to the intermittent site.

  20. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content.

    PubMed

    Nagakura, Junko; Shigenaga, Hidetoshi; Akama, Akio; Takahashi, Masamichi

    2004-11-01

    To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.

  1. Environmental and biological controls of urban tree transpiration in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Peters, E. B.; McFadden, J.; Montgomery, R.

    2009-12-01

    Urban trees provide a variety of ecosystem services to urban and suburban areas, including carbon uptake, climate amelioration, energy reduction, and stormwater management. Tree transpiration, in particular, modifies urban water budgets by providing an alternative pathway for water after rain events. The relative importance of environmental and biological controls on transpiration are poorly understood in urban areas, yet these controls are important for quantifying and scaling up the ecosystem services that urban trees provide at landscape and regional scales and predicting how urban ecosystems will respond to climate changes. The objectives of our study were to quantify the annual cycle of tree transpiration in an urban ecosystem and to determine how different urban tree species and plant functional types respond to environmental drivers. We continuously measured whole-tree transpiration using thermal dissipation sap flow at four urban forest stands that were broadly representative of the species composition and tree sizes found in a suburban residential neighborhood of Minneapolis-Saint Paul, Minnesota. A total of 40 trees, representing different species, plant functional types, successional stages, and xylem anatomy, were sampled throughout the 2007 and 2008 growing seasons (April-November). At each site we monitored soil moisture, air temperature, and relative humidity continuously, and we measured leaf area index weekly. Urban tree transpiration was strongly correlated with diurnal changes in vapor pressure deficit and photosynthetically active radiation and with seasonal changes in leaf area index. We found that plant functional type better explained species differences in transpiration per canopy area than either successional stage or xylem anatomy, largely due to differences in canopy structure between conifer and broad-leaf deciduous trees. We also observed inter-annual differences in transpiration rates due to a mid-season drought and longer growing

  2. Elevated CO2 decreases both transpiration flow and concentrations of Ca and Mg in the xylem sap of wheat.

    PubMed

    Houshmandfar, Alireza; Fitzgerald, Glenn J; Tausz, Michael

    2015-02-01

    The impact of elevated atmospheric [CO2] (e[CO2]) on plants often includes a decrease in their nutrient status, including Ca and Mg, but the reasons for this decline have not been clearly identified. One of the proposed hypotheses is a decrease in transpiration-driven mass flow of nutrients due to decreased stomatal conductance. We used glasshouse and Free Air CO2 Enrichment (FACE) experiments with wheat to show that, in addition to decrease in transpiration rate, e[CO2] decreased the concentrations of Ca and Mg in the xylem sap. This result suggests that uptake of nutrients is not only decreased by reduced transpiration-driven mass flow, but also by as yet unidentified mechanisms that lead to reduced concentrations in the xylem sap.

  3. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  4. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  5. Quantifying Understory Transpiration in a Semiarid Riparian Area

    NASA Astrophysics Data System (ADS)

    McGuire, R. R.; Scott, R. L.

    2005-12-01

    One of the most challenging components to estimate when determining water budgets in semiarid basins is riparian evapotranspiration (ET). Much research has been conducted upon riparian overstory vegetation in these areas; however understory vegetation water use has been ignored due to measurement difficulties and the belief that its quantity is negligible. To better understand the magnitude of understory water use in a semiarid riparian ecosystem, we measured whole plant transpiration of the dominant understory shrub, seep willow (Baccharis salicifolia), along a perennial reach of the San Pedro River in southeastern Arizona. . Shrub transpiration was monitored using the heat balance sap flow technique and was compared under two environmental conditions: a shrub patch located in a more open environment with decreased overstory canopy cover, and a more closed shrub patch situated more directly underneath a cottonwood (Populus fremontii) forest canopy. Despite the differences in atmospheric forcing, stand-level transpiration at both sites was similar and indicated that transpiration was rarely demand-limited. Growing season transpiration totals for seep willow were much greater than precipitation and of comparable magnitude to the overstory cottonwood transpiration. These results suggest that understory water use can be an important component of a riparian water budget, especially in regions like the western U.S. where evaporative demand is often high.

  6. Water, heat, and airborne pollutants effects on transpiration of urban trees.

    PubMed

    Wang, Hua; Ouyang, Zhiyun; Chen, Weiping; Wang, Xiaoke; Zheng, Hua; Ren, Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered.

  7. Rising CO2 widens the transpiration-photosynthesis optimality space

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  8. Vapor pressure measurements by mass loss transpiration method with a thermogravimetric apparatus.

    PubMed

    Viswanathan, R; Narasimhan, T S Lakshmi; Nalini, S

    2009-06-18

    Thermobalances are used for equilibrium vapor pressure measurements based on both effusion and transpiration methods. In the case of the transpiration method, however, despite the numerous advantages a thermogravimetric apparatus can offer, it is not as widely used as is the conventional apparatus. In this paper, the difference that can exist in the vapor phase compositions in an effusion cell and in a transpiration cell is shown first with two examples. Subsequently, how a commercial thermobalance was utilized to perform transpiration experiments that conform to the basic principle of the transpiration method and yield vapor pressures consistent with the Knudsen effusion mass spectrometric method is described. The three systems investigated are CsI(s), TeO(2)(s), and Te(s), each known to vaporize congruently, but in different manner. A critical analysis was performed on the information available in the literature on transpiration measurements using thermogravimetric apparatuses, and the salient findings are discussed. Smaller plateau regions than with conventional transpiration apparatuses and the lack of evidence for perfect transpiration conditions in some transpiration thermogravimetric investigations are shown with a few examples. A recommendation is made for the use of the rate of mass loss versus flow rate plot to ascertain that the usual apparent vapor pressure versus flow rate plot corresponds to a meaningful transpiration experiment.

  9. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?

    PubMed

    Rogiers, Suzy Y; Greer, Dennis H; Hutton, Ron J; Landsberg, Joe J

    2009-01-01

    The hypothesis that vines of the Semillon wine grape variety show anisohydric behaviour was tested, i.e. that tissue hydration is unstable under fluctuating environmental conditions. Stomatal conductance and transpiration rates from leaves were measured during the day and at night. Leaf water potential (Psi(l)) in Semillon was negatively correlated to vapour pressure deficit (VPD) both predawn and during the day. Furthermore, Psi(l) fell to significantly lower values than in any of the nine other varieties examined. Night-time values of stomatal conductance (g(n)) and transpiration (E(n)) in Semillon were up to four times higher than in other varieties; plants enclosed in plastic bags overnight to reduce E(n) resulted in better plant-soil equilibration so that predawn Psi(l) in Semillon was the same as in Grenache. These data indicate that the hypothesis is supported, and that night-time transpiration contributes significantly to the low Psi(l) values in Semillon during warm, dry nights. The other contributing factor is daytime stomatal conductance (g(day)), which in Semillon leaves was higher than in other varieties, although the decline in g(day) with increasing VPD was greater in Semillon than in Shiraz or Grenache. The high values of g(day) were associated with high rates of transpiration (E(day)) by Semillon through a day when VPD reached 4.5 kPa. When compared to other varieties, Semillon was not unusual in terms of root length density, stomatal density, xylem sap abscisic acid, or leaf electrolyte leakage. Night-time and daytime water loss and insufficient stomatal regulation therefore account for the tendency to anisohydric behaviour shown by Semillon.

  10. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-01-01

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)—that is, the biomass produced per unit of water transpired—has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En. Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE. PMID:27457942

  11. Biophysical control of whole tree transpiration under an urban environment in Northern China

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan

    2011-05-01

    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  12. Impact of Leaf Traits on Temporal Dynamics of Transpired Oxygen Isotope Signatures and Its Impact on Atmospheric Vapor

    PubMed Central

    Dubbert, Maren; Kübert, Angelika; Werner, Christiane

    2017-01-01

    Oxygen isotope signatures of transpiration (δE) are powerful tracers of water movement from plant to global scale. However, a mechanistic understanding of how leaf morphological/physiological traits effect δE is missing. A laser spectrometer was coupled to a leaf-level gas-exchange system to measure fluxes and isotopic signatures of plant transpiration under controlled conditions in seven distinct species (Fagus sylvatica, Pinus sylvestris, Acacia longifolia, Quercus suber, Coffea arabica, Plantago lanceolata, Oxalis triangularis). We analyzed the role of stomatal conductance (gs) and leaf water content (W) on the temporal dynamics of δE following changes in relative humidity (rH). Changes in rH were applied from 60 to 30% and from 30 to 60%, which is probably more than covering the maximum step changes occurring under natural conditions. Further, the impact of gs and W on isotopic non-steady state isofluxes was analyzed. Following changes in rH, temporal development of δE was well described by a one-pool modeling approach for most species. Isofluxes of δE were dominantly driven by stomatal control on E, particularly for the initial period of 30 min following a step change. Hence, the deviation of isofluxes from isotopic steady state can be large, even though plants transpire near to isotopic steady state. Notably, not only transpiration rate and stomatal conductance, but also the leaf traits stomatal density (as a measure of gmax) and leaf water content are significantly related to the time constant (τ) and non-steady-state isofluxes. This might provide an easy-to-access means of a priori assumptions for the impact of isotopic non-steady-state transpiration in various ecosystems. We discuss the implications of our results from leaf to ecosystem scale. PMID:28149303

  13. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.

    PubMed

    Tausz-Posch, Sabine; Norton, Robert M; Seneweera, Saman; Fitzgerald, Glenn J; Tausz, Michael

    2013-06-01

    This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi-arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (A(net)), stomatal conductance (g(s)) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol⁻¹ or ambient CO₂ concentrations (approximately 390 µmol mol⁻¹). Mean A(net) (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO₂] than previously found in FACE-grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry-land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO₂] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO₂], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO₂] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates.

  14. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    PubMed

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  15. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem

    USGS Publications Warehouse

    Christensen, L.; Tague, C.L.; Baron, J.S.

    2008-01-01

    Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to

  16. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  17. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  18. Measurements of transpiration from Eucalyptus plantations, India, using deuterium tracing

    SciTech Connect

    Calder, I.R.; Swaminath, M.H.; Kariyappa, G.S.; Srinivasalu, N.V.; Murthy, K.V.; Mumtaz, J.

    1992-12-31

    Measurements of transpiration from individual trees in Eucalyptus plantations at four different sites in Karnataka, southern India, are presented. These show large (as much as tenfold) differences in the transpiration between pre and post monsoon periods; a reflection of the effects of soil moisture stress in the pre monsoon periods. For trees with diameters at breast height (DBH) less than 10 cm the transpiration rate of individual trees is proportional to the square of the DBH. For trees which are not experiencing soil water stress the daily transpiration rate of individual trees, q, is well represented by the relation: q= (6.6 {+-} 0.3)g m{sup 3}d{sup {minus}1} where g (m{sup 2}) is the tree basal area. On a unit ground area basis the transpiration rate, expressed as a depth per day, is given by the relation: E{sub t}= (0.66 {+-} 0.03)G (mm d{sup {minus}1}) where G (m{sup 2} ha{sup {minus}1}) is the total basal area per hectare. For all the sites studied, although there is evidence for the mining of soil water as roots penetrate deeper depths in the soil each year, there is no evidence for direct abstraction from the watertable.

  19. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  20. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  1. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  2. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  3. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.

    PubMed

    Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang

    2015-11-01

    Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67% decreased the shoot As concentration by 19∼56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae.

  4. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance.

  5. Deuterium tracing for the estimation of transpiration from trees Part 3. Measurements of transpiration from Eucalyptus plantation, India

    NASA Astrophysics Data System (ADS)

    Calder, Ian R.; Swaminath, M. H.; Kariyappa, G. S.; Srinivasalu, N. V.; Srinivasa Murty, K. V.; Mumtaz, J.

    1992-01-01

    Measurements of transpiration from individual trees of Eucalyptus from plantations at four different sites in Karnataka, Southern India, are presented. These show large (as much as tenfold) differences in the transpiration between premonsoon and postmonsoon periods, a reflection of the effects of soil-moisture stress in the premonsoon periods. For trees with diameters at breast height (DBH) less than 10 cm the transpiration rate of individual trees is proportional to the square of the DBH. For trees which are not experiencing soil-water stress the daily transpiration rate of individual trees, q, is well represented by the relation: q = (6.6 ± 0.3) g (m 3 day -1 where g (m 2) is the tree basal area. On a unit ground area basis the transpiration rate, expressed as a depth per day is given by the relation: Et = (0.66 ± 0.03) G (mm day -1 where g(m 2ha -1) is the total basal area per hectare. For all the sites studied, although there is evidence for the 'mining' of soil water as roots penetrate deeper depths in the soil each year, there is no evidence for direct abstraction from the water table.

  6. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00.

  7. Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.

    PubMed

    Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane

    2014-09-01

    The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications.

  8. Photosynthetic Rate of Soybean at Various Planting Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] yield is typically maximized by early planting in the upper Midwest USA. Seasonal carbon dioxide exchange rate (CER) has not been quantified to explain the positive yield response to early planting. Five planting dates were established between 18-April and 22-May nea...

  9. Transpiration during life cycle in controlled wheat growth

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1989-01-01

    A previously-developed model of wheat growth, designed for convenient incorporation into system-level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass, and an age factor which varies during the life cycle, are examined. Results indicate that during the main phase of vegetative growth in the first half of the life cycle, the rate of transpiration per unit mass of inedible biomass is more than double the rate during the phase of grain development and maturation during latter half of the life cycle.

  10. The positive effect of skin transpiration in peach fruit growth.

    PubMed

    Morandi, Brunella; Manfrini, Luigi; Losciale, Pasquale; Zibordi, Marco; Corelli-Grappadelli, Luca

    2010-09-01

    The effect of fruit transpiration on the mechanisms driving peach (Prunus persica (L.) Batsch) daily growth was investigated. In peach, fruit water losses increase during the season and might play a key role in determining fruit growth. Skin transpiration was reduced during the cell expansion stage by enclosing fruit in plastic bags fitted with holes. In the first year, diameter changes of bagged and control fruit were precisely monitored for 15 days, and percentage dry matter and soluble solids content were determined during the experiment and at harvest. In the second year, midday fruit water potential, daily patterns of fruit growth and of vascular and transpiration flows were monitored. Bagging reduced fruit daily growth on some days, and negatively affected both fruit dry matter percentage and soluble solids content. Fruit transpiration rate was reduced during the midday hours, thus increasing midday fruit water potential and lowering xylem inflows. In accordance with the Münch hypothesis on traslocation, these conditions likely decreased the necessary gradient needed for the transport of phloem sap to sink organs, as in the afternoon, bagged fruit showed lower phloem inflows. These data suggest that skin transpiration in peach has a positive effect on fruit growth, as it enhances fruit phloem import.

  11. Environmental controls on saltcedar (Tamarix spp.) transpiration and stomatal conductance and implications for determining evapotranspiration by remote sensing

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E. P.; morino, K.

    2012-12-01

    /day, while LAI varied over a narrower range, from 2.0 - 2.9. Differences in leaf-level transpiration were due to differences in stomatal conductance among sites. Sites close to the river had higher transpiration rates than sites further away, and sites with more saline water had lower leaf-level transpiration rates. Leaf-level transpiration rates were higher in June and July, when aquifers were closer to the surface, than in August and September, when water levels had dropped. High transpiration rates were associated with finer textured soil compared to plants growing in sandy soils. Low transpiration rates were manifested by moderate to severe midday depression of stomatal conductance and transpiration. These limitations constrained the rate of saltcedar ET to about 40% of ETo, and also reduced the accuracy of remote sensing estimates of ET, which assume a constant rate of stomatal conductance during midday.

  12. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  13. A global synthesis of plant extinction rates in urban areas.

    PubMed

    Hahs, Amy K; McDonnell, Mark J; McCarthy, Michael A; Vesk, Peter A; Corlett, Richard T; Norton, Briony A; Clemants, Steven E; Duncan, Richard P; Thompson, Ken; Schwartz, Mark W; Williams, Nicholas S G

    2009-11-01

    Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future.

  14. Seasonal transpiration pattern of Phragmites australis in a wetland of semi-arid Spain

    NASA Astrophysics Data System (ADS)

    Moro, María José; Domingo, Francisco; López, Germán

    2004-02-01

    Transpiration rates were measured in a flooded population of Phragmites australis ssp. altissima in a wetland located in El Hondo Natural Park (southeastern Spain) during the growing season of 2000. The heat balance method for measuring sap flow was used to calculate the rate of water transpiration on a whole-stem basis. Four series of measurements were carried out in selected weeks in May, June, August and October. Structure, biomass and leaf area index of the reed population were simultaneously quantified in order to scale transpiration on a plot-area basis.Overall, transpiration flux was high during the sampling period and showed a typical diurnal pattern with a maximum at about midday. Mean transpiration was highest at the end of June coinciding with the peak of reed growth and with the maximum leaf area both at individual and plot scales. Rates decreased abruptly in October, in parallel with the advanced foliar senescence. The variation of both midday and integrated daily transpiration is significantly related to that of the air temperature on clear days. Cloudy and rainy days exert a pronounced effect on water loss by decreasing transpiration. Our results highlight the potential use of the sap-flow method to measure transpiration in reed ecosystems and the relevance of this flux for the water balance in wetlands in semi-arid environments. Thus, it is suggested that water management in these areas could be favoured by acquiring high-quality experimental data.

  15. SK30 total energy plant rated at 73% efficiency

    SciTech Connect

    de Biasi, V.

    1980-07-01

    The City of Hague in Holland is building a combined cycle plant. The plant will be powered by two Rolls-Royce SK30 gas turbine generators site rated at 25,000 kW each, two unfired Stork waste heat recovery boilers, and a Delaval Stork steam turbine rated at 26,000 kW. On its own, without district heating, the combined cycle plant is rated for 77,000 kW output at around 44% efficiency. Heat output of the combined cycle plant is used to provide thermal power for district heating. In the maximum output mode, there is some drop in electric power output (around 70,000 kW) but this is accompanied by 60,000 kW thermal power output for a net plant efficiency of close to 74% overall. (MCW)

  16. Auxin metabolism rates and implications for plant development

    PubMed Central

    Kramer, Eric M.; Ackelsberg, Ethan M.

    2015-01-01

    Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h–1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The high rates of conjugation suggest that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed. PMID:25852709

  17. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  18. Tamarix transpiration along a semiarid river has negligible impact on water resources

    NASA Astrophysics Data System (ADS)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  19. Rate of Contamination Removal of Two Phyto-remediation Sites at the DOE Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Lewis, A.C.; Baird, D.R.

    2006-07-01

    relationship between plant transpiration, soil moisture, and groundwater flow in a phyto-remediation system. The existing monitoring program was expanded in 2004 in order to evaluate the interactions among these processes. The purpose of this monitoring program was to determine the rate of contaminant removal and to more accurately predict the amount of time needed to remediate the contaminated groundwater. Initial planting occurred in 1999 at the X-740 area, with additional replanting in 2001 and 2002. In 2003, coring of selected trees and chemical analyses illustrated the presence of TCE; however, little impact was observed in groundwater levels, analytical monitoring, and periodic tree diameter monitoring at the X-740 area. To provide better understanding of how these phyto-remediation systems work, a portable weather station was installed at the X-740 area to provide data for estimating transpiration and two different systems for measuring sap flow and sap velocity were outfitted to numerous trees. After evaluating and refining the groundwater flow and contaminant transport models, the data gathered by these two inventive methods can be used to establish a rate of contaminant removal and to better predict the time required in order to meet remediation goals for the phyto-remediation systems located at the PORTS site. (authors)

  20. Uncertainty in the response of transpiration to CO2 and implications for climate change

    NASA Astrophysics Data System (ADS)

    Mengis, Nadine; Keller, David; Eby, Michael; Oschlies, Andreas

    2015-04-01

    While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. The main source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration-sensitivities to CO2. Changing the sensitivity of transpiration to CO2 causes simulated terrestrial precipitation to change by -10 % to +27 % by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycle.

  1. Uncertainty in the response of transpiration to CO2 and implications for climate change

    NASA Astrophysics Data System (ADS)

    Mengis, N.; Keller, D. P.; Eby, M.; Oschlies, A.

    2015-09-01

    While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. An important source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration-sensitivities to CO2. Changing the sensitivity of transpiration to CO2 causes simulated terrestrial precipitation to change by -10% to +27% by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycles.

  2. Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene

    SciTech Connect

    Thompson, P.L.; Ramer, L.A.; Guffey, A.P.; Schnoor, J.L.

    1998-01-01

    The improper handling of the toxic compound 2,4,6-trinitrotoluene (TNT) has led to the contamination of soil and groundwater, and the uptake of TNT by a variety of plants has been established. This article discusses the effects of various concentrations of the explosive 2,4,6-trinitrotoluene (TNT) on the transpiration of hybrid poplar trees growing in hydroponic media. Transpiration was measured daily by gravimetric means. The rapid removal of TNT from hydroponic solutions was a result of plant uptake and required a daily dosage of TNT to ensure a relatively constant exposure over time. Transpiration decreased with increasing TNT concentrations {ge}5 mg/L. Decreases in transpiration were accompanied by leaf chlorosis and abscission. A comparison between a laboratory study and a pilot-scale experiment showed good scale-up potential.

  3. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    NASA Astrophysics Data System (ADS)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  4. Transpiration of urban trees and its cooling effect in a high latitude city

    NASA Astrophysics Data System (ADS)

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m-2 s-1 ( B. pendula) to over 3 mmol m-2 s-1 ( Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m-2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m-2, a cooling effect of tree transpiration was not observed during the day.

  5. Transpiration of urban trees and its cooling effect in a high latitude city.

    PubMed

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.

  6. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-06-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk

  7. Mostly Plants. Individualized Biology Activities on: I. Investigating Bread Mold; II. Transpiration; III. Botany Project; IV. Collecting/Preserving/Identifying Leaves; [and] V. Student Science Laboratory Write-Ups.

    ERIC Educational Resources Information Center

    Gibson, Paul R.

    Individualized biology activities for secondary students are presented in this teaching guide. The guide is divided into five sections: (1) investigating bread mold; (2) investigating transpiration; (3) completing a botany project; (4) collecting, preserving, and identifying leaves; and (5) writing up science laboratory investigations. The…

  8. Reduced atmospheric pressure in Radish: Alteration of NCER and transpiration at decreased oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Wehkamp, Cara Ann; Stasiak, Michael; Wheeler, Raymond; Dixon, Mike

    Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Significant research is focused on the development of bioregenerative life support systems to be used in conjunction with the current physico-chemical methods. These bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, oxygen and regenerate water while consuming carbon dioxide. The forthcoming exploration of the Moon and Mars has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressures will lessen the pressure gradient between the structure and the local environment thereby decreasing gas leakage and possibly the structural mass of the plant growth facility. In order to establish the optimal specifications for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for conventional plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of these minimal environments. The objective of this study was to test the hypothesis that reduced atmospheric pressure and decreased oxygen partial pressures had no effect on radish productivity. Radishes (Raphanus sativa L. cv. Cherry Bomb II) were grown from seed in the University of Guelph's Hypobaric Plant Growth Chambers for a period of 21 days. Treatments included total pressures of 10, 33, 66 and 96 kPa and oxygen partial pressures of 2, 7, 14 and 20 kPa. Experiments demonstrated that reduced partial pressures of oxygen had a greater effect on radish growth than hypobaria. Results showed a reduction in net carbon exchange rate and transpiration with decreasing oxygen partial pressures leading to diminished productivity. Keywords: hypobaric, radish, oxygen partial pressure, variable pressure chamber

  9. Towards modeling hydrodynamic stress limitations on transpiration

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.; Stoy, P. C.

    2011-12-01

    Evapotranspiration is one of the major forcing functions of Earth's climate, providing the link for the soil-plant-water continuum. Current models for transpiration assume a coupling between stomatal conductance and soil moisture through empirical relationships that do not resolve the hydrodynamic process of water movement from the soil to the leaves. This approach does not take advantage of recent advances in our understanding of water flow and storage in the trees, or of tree and canopy structure. It has been suggested that stomata respond to water potential in the leaf and branch, and that this hydrodynamic response is a mechanism for hydraulic limitation of stomatal conductance. Hydraulic limitations in forest ecosystems are common and are known to control transpiration when the soil is drying or when vapor pressure deficit (VPD) is very large. Hydraulic limitation can also impact stomatal apertures under conditions of adequate soil moisture and lower evaporative demand. Hydrodynamic stresses at the tree level act at several time scales, including the fast, minute-hour scale. These dynamics are faster than the time scales of hours to days at which drying soil will affect stomata conductance. The lack of representation of the tree-hydrodynamic process should therefore lead to atypical intra-daily patterns of error in results of current models. We use a large-scale comparison between observations and land-surface models to characterize the patterns of intra-daily error in simulated water flux. Through the use of the North American Carbon Program (NACP) dataset, more than 10 years of water flux data for 35 Fluxnet sites in the US and Canada have been analyzed. The diurnal error for each of the 24 models represented in this dataset allows the models to be categorized and evaluated on their ability to accurately predict the fast temporal dynamics of transpiration in different ecosystems and atmospheric forcing. Among well calibrated models, two general error

  10. On the unsteady Reynolds thermal transpiration law

    NASA Astrophysics Data System (ADS)

    Ziółkowski, P.; Badur, J.

    2016-10-01

    This paper presents the phenomenon of unsteady Reynolds thermal transpiration flow. The possible constitutive equations in the transpiration shell-like layer were studied analytically and numerically. There has been also examined experimental case of helium flow from cold to hot reservoir in nanopipe.

  11. Transpiration Cooling Of Hypersonic Blunt Body

    NASA Technical Reports Server (NTRS)

    Henline, William D.

    1991-01-01

    Results on analytical approximation and numerical simulation compared. Report presents theoretical study of degree to which transpiration blocks heating of blunt, axisymmetric body by use of injected air. Transpiration cooling proposed to reduce operating temperatures on nose cones of proposed hypersonic aerospace vehicles. Analyses important in design of thermal protection for such vehicles.

  12. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.

  13. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-10-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk

  14. Transpiration of A Mixed Forest Stand: Field Measurements and Model Estimations

    NASA Astrophysics Data System (ADS)

    Oltchev, A.; Cermak, J.; Nadezhdina, N.; Tatarinov, F.; Gravenhorst, G.

    Transpiration of a mixed spruce-aspen-birch forest stand at the southern part of the Valday Hills in Russia was determined using sap flow measurements and SVAT mod- els. The measurements showed a significant variability of transpiration rates between different species and different trees. Under non-limited soil water conditions broadleaf trees transpired about 10-20% more than spruces trees. Deficit of available water in the upper soil layers had a more pronounced influence on water uptake of spruce than of deciduous tree species due to the shallow spruce root system. Under surplus wa- ter in the upper soil layers the transpiration rates were slightly suppressed both for spruce and for broadleaf tree species. Two one-dimensional multi-layer SVAT mod- els were applied to describe energy and water exchanges between mixed forest stand and the atmosphere. A more simplified MLOD-SVAT model uses averaged biophys- ical properties of different tree species. Estimation of forest water uptake in a more sophisticated EWE-MF model is based on separate description of water uptakes for individual tree species. Comparisons of modelling and measuring results show that under non-limited soil water conditions both modelling approaches allow to describe in a representative way the water uptake and transpiration rates. Under limited soil water conditions more sophisticated model could deduce more representatively the effect of different tree species on forest transpiration. Application of more simplified MLOD-SVAT model can result in an overestimation of daily total forest transpiration up to 50%.

  15. Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Eun; Boyce, Kevin

    2010-12-01

    Angiosperms (flowering plants) have higher transpirational capacities than any other plants. Here we use climate model simulation to test the hypothesis that the high transpirational capacity of angiosperms plays a unique role in the maintenance of tropical rainforest. Their elevated transpiration rates are shown to increase recycling of precipitation up to ˜300 mm/yr (˜20% of total precipitation) averaged over the whole of tropical South America and to increase the wet season duration over the Amazon basin. Transpiration triggers convection by increasing moisture in the boundary layer and thereby decreasing atmospheric stability. If the moisture content of the boundary layer is sufficient, a double Intertropical Convergence Zone (ITCZ) is generated in October around 60°W-50°W, as observed in present-day climate, and the eastern part of the Amazon basin becomes wet (˜200 mm/month of precipitation). This double ITCZ is lost, however, and the region becomes dry (<50 mm/month of precipitation) in the absence of full angiosperm transpiration. Although higher water use efficiency is usually associated with plants with lower transpiration rates, water use efficiency actually increases with higher hydraulic capacity in our simulations as a result of the higher humidity and, thus, lower vapor pressure gradient between the intercellular air space within the leaf and the external atmosphere. We speculate that the high transpirational capacity of angiosperms played a significant role in the expansion of tropical rain forest.

  16. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature

    PubMed Central

    Adams, William W.; Stewart, Jared J.; Cohu, Christopher M.; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature – most strongly in Col-0 and least strongly in the Italian ecotype – and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  17. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    PubMed

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  18. A simple general method to evaluate intra-specific transpiration parameters within and among seedling families.

    PubMed

    Leonardi, Stefano; Piovani, Paolo; Magnani, Federico; Menozzi, Paolo

    2006-08-01

    A method to evaluate the genetic control of plant response to increasing soil water deficit is proposed. A description of single tree transpiration behavior was obtained considering parameters independent from air and soil conditions. We removed environmental effects by using two approaches: the normalization of drought data to control (watered) plants and the fitting of a process model. We analyzed the transpiration of 475 4-year-old European beech seedlings, belonging to eight full-sib families. Approximately, one-third of the seedlings were kept in well-watered conditions while the others were exposed to drought for 14 days. Daily plant transpiration was estimated as the difference between two subsequent gravimetric measurements. A mechanistic model was fitted to transpiration data separately for each tree. In the model, the relationship of transpiration with vapor pressure deficit and soil water deficit of each tree is modulated by three parameters: maximum leaf conductance (gM1), maximum transpiration in well-watered soil conditions E(M0)1 and a parameter describing stomatal sensitivity to soil water deficit (c). The model successfully fitted most single tree data and a distribution of estimates for the three parameters (gM1, E(M0)1 and c) was obtained. Predicted transpiration values were in good agreement with observed data (R (2) = 0.86). The model approach produced parameters significantly correlated with those of the "normalization to control" approach. Estimated parameters vary considerably among trees, suggesting the presence of individual differences in stomatal behavior and response to drought. In spite of a large among tree (within family) variation, the among families component for gM1, E(M0)1 and c explained 9.5, 3.3 and 0.1% of total parameters variation suggesting a significant genetic control of transpiration processes.

  19. Modeling the uptake and transpiration of TCE using phreatophytic trees. Master`s Thesis

    SciTech Connect

    Wise, D.P.

    1997-12-01

    Phytoremediation is a recent addition to the numerous methods used today to remediate ground water contaminants. It is proving more effective and efficient compared to existing remediation techniques. The use of phreatophytes, or water seeking trees, has great potential for phytoremediation. These trees are fast growing, long lived, grow their roots down to the ground water table, transpire large amounts of water, and are proven to actively remove contaminants from the soil horizon. The purpose of this research is to develop quantitative concepts for understanding the dynamics of TCE uptake and transpiration by phreatophytic trees over a short rotation woody crop time frame. This will he done by constructing a system dynamics model of this process and running it over a wide range of conditions. This research will offer managers a tool to simulate long-term uptake and transpiration of TCE at potential sites. The results of this study indicate that TCE is actively removed from the soil horizon by phreatophytic trees and a significant proportion of this TCE is then transpired. Changes in soil horizon parameters, xylem flow rates, and variables in the uptake equation greatly influence TCE uptake rates as well as transpiration. Also, parameters used in equations representing flows in and out of the leaf greatly influence transpiration. Better understanding of these processes is essential for managers to accurately predict the amount of TCE removed and transpired during potential phytoremediation projects.

  20. Material Response of One-Dimensional, Steady-State Transpiration Cooling in Radiative and Convective Environments

    NASA Technical Reports Server (NTRS)

    Kubota, Hirotoshi

    1975-01-01

    A simplified analytical solution for thermal response of a transpiration-cooled porous heat-shield material in an intense radiative-convective heating environment is presented. Essential features of this approach are "two-flux method" for radiative transfer process and "two-temperature" assumption for solid and gas temperatures. Incident radiative-convective heatings are specified as boundary conditions. Sample results are shown using porous silica with CO2 transpiration and some parameters quantitatively show the effect on this transpiration cooling system. Summarized maps for mass injection rate, porosity and blowing correction factor for radiation are obtained in order to realize such a cooling system.

  1. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  2. Transpiration And Regenerative Cooling Of Rocket Engine

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1989-01-01

    Transpiration cooling extends limits of performance. Addition of transpiration cooling to regeneratively-cooled rocket-engine combustion chamber proposed. Modification improves performance of engine by allowing use of higher chamber pressure. Throat section of combustion-chamber wall cooled by transpiration, while chamber and nozzle sections cooled by fluid flowing in closed channels. Concept applicable to advanced, high-performance terrestrial engines or some kinds of industrial combustion chambers. With proper design, cooling scheme makes possible to achieve higher chamber pressure and higher overall performance in smaller engine.

  3. Moisture detection through thermographic measurements of transpiration

    NASA Astrophysics Data System (ADS)

    Ludwig, Nicola; Rosina, Elisabetta

    1997-04-01

    Damage due to moisture and particularly to evaporation is one of the major causes of decay of wall surfaces in ancient buildings. The evaporative rate of water in building materials can be related to the alteration (chips, gallets) caused by salts crystallization when the water evaporates through the surface of the wall. Current and future usage of NDT heavily depends on the possibility to precisely measure physical variables which present large sensitivity to small variations of water content. A NDT thermography allows us to exactly determine the evaporation rate because of both the high value of water latent heat and the high sensibility of thermographic devices. The research has been carried out both in the laboratory and on the field measuring relative humidity and temperature in a frescoed wall of the castle of Malpaga (Northern Italy). In laboratory a climatic room has been set up using a thermovision system and a temperature & RH% probes, to analyze the evaporative phenomena. A mathematical model, although approximate, is proposed to describe the energy balance of the surface where evaporation is present. The model has been applied to the fresco to correlate the temperature to the evaporation rate. This method allows us to correlate the decay, due to the capillary raise of water in the masonry, to the transpiration phenomena.

  4. Transpiration characteristics of forests and shrubland under land cover change within the large caldera of Mt. Aso, Japan

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Inoue, A.; Maruyama, A.

    2013-12-01

    Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.

  5. [Photosynthesis and transpiration characteristics of female and male Trichosanthes kirilowii Maxim individuals].

    PubMed

    Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying

    2011-03-01

    A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.

  6. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  7. Motionless heat pump - A new application of thermal transpiration

    NASA Astrophysics Data System (ADS)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.

    2016-11-01

    A motionless heat pump system using a combination of thermal transpiration flow of a rarefied gas and a phase change of water has been proposed. This system consists primarily of a thermal transpiration pump, referred to as a Knudsen pump, and two chambers filled with water and water vapor, respectively. The Knudsen pump moves water vapor from one chamber to the other. The pressure drop in the outflow chamber promotes the evaporation of water and heat absorption, whereas the pressure increase in the inflow chamber promotes vapor condensation and heat generation. The maximum pressure difference and mass flow rate obtained by a Knudsen pump composed of a glass fiber filter were 57.6 Pa and 0.0484 mg/s/cm2, respectively, at a temperature difference across the filter of 120 K between the two chambers. The vapor delivery capacity of this pump was also measured experimentally.

  8. Transpiration Regulation of silver firs during and after severe droughts in relation to soil properties

    NASA Astrophysics Data System (ADS)

    Chanzy, A.; Nourtier, M.

    2011-12-01

    Silver fir is declining and dying in the Mediterranean area, at its southern margin where climate is expected to become warmer and drier. At regional scale, silver fir death seems to be located on dry areas while it depends on soil water availability at forest stand scale. To understand silver firs vulnerability to drought, factors involved in their transpiration regulation were studied. An experiment was carried out on Mont Ventoux (in Provence region in south of France) which is a karstic area. Soil properties were characterised by electric resistivity tomography for estimating soil water storage capacity through the determination of soil depth and stones content. Transpiration, predawn leaf water potential dynamic and crown surface temperature were measured on trees during three years. Vulnerability curves to embolism of coarse roots and branches were established. Finally, tree growth rate history was analysed using tree ring width analysis. The experiment covered three very different climatic years. 2008 was a wet year, whereas a severe drought occurred in summer 2009 and in less extent in 2010. Soils were well watered during winters thanks to exceptional snow falls. In the context of the experiment, silver firs strongly regulate their transpiration. Transpiration/potential transpiration ratio is mostly far below 1. The decrease in transpiration rate during drying periods were the quickest on soil having small and large water storage capacity whereas on the intermediate cases, the decrease was more gradual. Moreover, the water stress intensity, derived from predawn leaf water potential, was the largest on soil having large water storage capacity. After the 2009 severe drought, transpiration rate remains much low after fall rainfalls. The transpiration drop persisted after the winter while soils were well watered. Sap flow radial distributions have suggested that the deeps roots were not reactivated after the drought. Tring ring width analysis showed that the

  9. [Greenhouse tomato transpiration and its affecting factors: correlation analysis and model simulation].

    PubMed

    Yao, Yong-Zhe; Li, Jian-Ming; Zhang, Rong; Sun, San-Jie; Chen, Kai-Li

    2012-07-01

    A pot experiment was conducted to study the correlations between the daily transpiration of greenhouse tomato and the related affecting factors such as total leaf area per plant, soil relative moisture content, air temperature, relative humidity, and solar radiation under different treatments of supplementary irrigation. A regression model for the daily transpiration of greenhouse tomato was established. There existed significant linear correlations between the daily transpiration and the test affecting factors, and the affecting factors had complicated mutual effects. Soil relative moisture content was the main decision factor of the transpiration, with the decision coefficient being 27.4%, and daily minimum relative humidity was the main limiting factor, with the decision coefficient being -119.7%. The square value of the regression coefficient (R2) between the predicted and measured tomato daily transpiration was 0.81, root mean squared error (RMSE) was 68.52 g, and relative prediction error (RE) was 19.4%, suggesting that the regression model established by using the main affecting factors selected through path analysis could better simulate the daily transpiration of greenhouse tomato.

  10. 78 FR 78352 - Plant-E Corp; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Plant-E Corp; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding, of Plant-E Corp's application for market-based rate authority, with an...

  11. Disentangling effects of vector birth rate, mortality rate, and abundance on spread of a plant pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For insect-transmitted plant pathogens, rates of pathogen spread are a function of vector abundance. While vector abundance is recognized to be important, parameters that govern vector population size receive little attention. For example, epidemiological models often fix vector population size by a...

  12. Global transpiration, recharge and runoff tracked with stable isotopes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.

    2015-12-01

    The transformations of precipitation into soil-, ground- or stream-water constitute fundamental components of the hydrologic cycle. Hydrometric data are well suited to track propagations of pressures through the landscape, but tell us little about the transport of water itself. Conversely, isotopic data track movements of molecules, providing quantitative insights into subsurface processes. This presentation reviews recent uses of isotopic data to quantify the velocity, storage and mixing of precipitation as it flushes into plants (1. transpiration), aquifers (2. recharge) and streams (3. runoff). (1) Plant transpiration comprises the largest flux of fresh water from the continents, exceeding global river flows by a factor of ~1.5. Mounting evidence suggests that water used by plants is poorly connected to water flowing into streams and aquifers, contrasting most earth system model parameterizations. (2) This partitioning of precipitation into "blue" (recharge, runoff) and "green" (transpiration) water storages is further evidenced by relating precipitation and groundwater isotope contents. Global precipitation-groundwater isotope data show that snowmelt pulses (extratropics) and intensive rainfall (tropics) lead to disproportionately large groundwater recharge fluxes—that is, recharge/precipitation ratios exceeding the local annual average. Across the low latitudes, these results mean that the ongoing intensification of precipitation brought on by global warming may serve to promote groundwater recharge in the tropics, where, by 2050, half of the world's population is projected to live. (3) This presentation concludes by relating precipitation and streamflow isotope contents to show that ~1/3 of global river discharges are generated by precipitation that reaches the stream in less than 3 months (i.e., "young water" in rivers). Substantial and pervasive young, month(s)-old water in global rivers means that biogeochemical processes taking place in the critical

  13. Wind increases "evaporative demand" but reduces plant water requirements

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2015-12-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, determined by stomatal or canopy resistance. Therefore, so-called "atmospheric evaporative demand" or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. An increase in potential evaporation (e.g. due to climate change) is generally believed to cause increased transpiration and/or vegetation water stress, aggravating drought effects. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at the leaf scale. In fact, in a range of field measurements, we found that water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, enabling plants to conserve water during photosynthesis. We estimate that the observed global decrease in terrestrial near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric carbon dioxide concentrations. We conclude that trends in wind speed and atmospheric carbon dioxide concentrations have to be considered explicitly for the estimation of drought effects on

  14. Transpiration and canopy conductance variations of shelterbelt in an arid inland river basin of northwest China

    NASA Astrophysics Data System (ADS)

    Gao, G.

    2015-12-01

    The knowledge of plant water use characteristics under changing environmental conditions is essential for ecosystem management and water resources distribution in water-stressed environments. This study was conducted to quantify variations in transpiration and canopy conductance in a shelterbelt in the middle of the Heihe River Basin, China. Sap flow of eight Gansu Poplar trees (Populus gansuensis) with different diameters at breast height (DBH) was measured over three consecutive growing seasons (2012-2014). The evapotranspiration of groundwater via plant use was estimated by the White method, with diurnal water table fluctuations. Results showed that mean sap flow density varied between 30.62 ±11.44 and 101.88 ±28.98 kg m-2 h-1, and it increased linearly with the DBH. Variations of sap flow density were mainly controlled by meteorological factors in addition to water table depth. Average stand transpiration during the growing season was about 4.85 mm day-1, and it had a logarithmic relationship with reference crop evapotranspiration. Precipitation increased stand transpiration, but not at a statistically significant level (p>0.05). The recharge of soil water by irrigation significantly accelerated stand transpiration (p<0.05). Stand transpiration and canopy conductance increased by 27% and 31%, respectively, when soil water conditions changed from dry to wet. Canopy conductance decreased logarithmically with vapor pressure deficit, whereas there was no apparent relationship between canopy conductance and solar radiation. The sensitivity of canopy conductance to vapor pressure deficit decreased under dry soil conditions. Groundwater evapotranspiration (0.6-7.1 mm day-1) was linearly correlated with stand transpiration (1.1-6.5 mm day-1) (R2 = 0.71). During the drought period, approximately 80% of total stand transpiration came from groundwater evapotranspiration. This study highlighted the critical role of irrigation and groundwater for shelterbelts, and might

  15. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low water potentials in xylem can result in damaging levels of cavitation, yet little is understood about which hydraulic traits have most influence in delaying the onset of hydraulic dysfunction during periods of drought. We examined three traits contributing to longer desiccation times in excised ...

  16. Archaeological data reveal slow rates of evolution during plant domestication.

    PubMed

    Purugganan, Michael D; Fuller, Dorian Q

    2011-01-01

    Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits--nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change.

  17. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  18. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales.

    PubMed

    Massonnet, C; Regnard, J L; Lauri, P E; Costes, E; Sinoquet, H

    2008-05-01

    Both the spatial distribution of leaves and leaf functions affect the light interception, transpiration and photosynthetic capacities of trees, but their relative contributions have rarely been investigated. We assessed these contributions at the branch and tree scales in two apple cultivars (Malus x domestica Borkh. 'Fuji' and 'Braeburn') with contrasting architectures, by estimating their branch and tree capacities and comparing them with outputs from a radiation absorption, transpiration and photosynthesis (RATP) functional-structural plant model (FSPM). The structures of three 8-year-old trees of each cultivar were digitized to obtain 3-D representations of foliage geometry. Within-tree foliage distribution was compared with shoot demography, number of leaves per shoot and mean individual leaf area. We estimated branch and tree light interception from silhouette to total leaf area ratios (STAR), transpiration from sap flux measurements and net photosynthetic rates by the branch bag method. Based on a set of parameters we previously established for both cultivars, the outputs of the RATP model were tested against STAR values, sap fluxes and photosynthetic measurements. The RATP model was then used to virtually switch foliage distribution or leaf functions (stomatal and photosynthetic properties), or both, between cultivars and to evaluate the effects on branch and tree light interception, transpiration and photosynthetic capacities in each cultivar. 'Fuji' trees had a higher proportion of leaf area borne on long shoots, fewer leaves per unit shoot length and a larger individual leaf area than 'Braeburn' trees. This resulted in a lower leaf area density and, consequently, a higher STAR in 'Fuji' than in 'Braeburn' at both branch and tree scales. Transpiration and photosynthetic rates were significantly higher in 'Fuji' than in 'Braeburn'. Branch heterogeneity was greater in 'Braeburn' than in 'Fuji'. An analysis of the virtual switches of foliage distribution or

  19. Mercaptan removal rate exceeds 99% at Canadian gas plant

    SciTech Connect

    Judd, B. )

    1993-08-16

    Installation of a Selexol solvent unit at Pembina Resources Ltd.'s Diamond Valley gas plant has been effective in polishing mercaptans and other sulfur-bearing compounds from a variable gas stream. The actual removal rate exceeds 99%, and an absolute treated gas target of < 100 ppm total sulfur is maintained. In addition, hydrocarbon pick up is restricted sufficiently so that slugs of hydrocarbon are not carried through the system to destabilize incineration of the mercaptans. The paper discusses start-up problems, the gas treating process, mercaptans in the feed gas, the solvent unit, and its operation.

  20. Transpiration effects in perforated plate aerodynamics

    NASA Astrophysics Data System (ADS)

    Szwaba, R.; Ochrymiuk, T.

    2016-10-01

    Perforated walls find a wide use as a method of flow control and effusive cooling. Experimental investigations of the gas flow past perforated plate with microholes (110μm) were carried out. The wide range of pressure at the inlet were investigated. Two distinguishable flow regimes were obtained: laminar and turbulent regime.The results are in good agreement with theory, simulations and experiments on large scale perforated plates and compressible flows in microtubules. Formulation of the transpiration law was associated with the porous plate aerodynamics properties. Using a model of transpiration flow the “aerodynamic porosity” could be determined for microholes.

  1. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency

    NASA Astrophysics Data System (ADS)

    Yebra, Marta; van Dijk, Albert

    2015-04-01

    Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically

  2. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    PubMed Central

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  3. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models.

    PubMed

    Bauerle, William L; Bowden, Joseph D

    2011-08-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions.

  4. Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.

    1994-01-01

    This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the

  5. Partitioning evaporation and transpiration in a maize field using heat pulse sensors for evaporation measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is the sum of soil water evaporation (E) and plant transpiration (T). E and T occur simultaneously in many systems with varying levels of importance, yet it is often very challenging to distinguish these fluxes separately in the field. Few studies have measured all three term...

  6. The stem heat balance method to measure transpiration:Evaluation of a new sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direct measurement of crop transpiration (Tcrop) under field conditions and throughout the growing season is difficult to obtain. An available method uses stem flow gauge sensors, based on the stem heat balance. The sensor consists of a small heater that is wrapped around the stem of the plant a...

  7. Make Your Own Transpiring Tree

    ERIC Educational Resources Information Center

    Martinez Vilalta, Jordi; Sauret, Miquel; Duro, Alicia; Pinol, Josep

    2003-01-01

    In this paper we present a simple set-up that illustrates the mechanism of sap ascent in plants and demonstrates that it can easily draw water up to heights of a few meters. The set-up consists of a tube with the lower end submerged in water and the upper one connected to a filter supported by a standard filter-holder. The evaporation of water…

  8. Riparian buffer transpiration and watershed scale impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  9. Relating xylem cavitation to transpiration in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  10. Disentangling Effects of Vector Birth Rate, Mortality Rate, and Abundance on Spread of Plant Pathogens.

    PubMed

    Sisterson, Mark S; Stenger, Drake C

    2016-04-01

    Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.

  11. Free convection over a vertical porous plate with transpiration

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Moffat, R. J.; Kays, W. M.; Bershader, D.

    1974-01-01

    The problem of free convection over an isothermal vertical porous plate with transpiration is studied both numerically and experimentally. Numerical solutions to the variable-property transpired free-convection boundary layer equations have been obtained using the finite difference procedure of Patankar and Spalding (1967). The effects of uniform transpiration on heat transfer and on temperature and velocity profiles are predicted. Interferometrically measured nondimensional temperature profiles for the uniform wall temperature and transpiration case agreed closely with these numerical predictions.

  12. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  13. Oxygen isotope signatures of transpired water vapor - the role of isotopic non-steady-state transpiration of Mediterranean cork-oaks (Quercus suber L.)under natural conditions

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Werner, Christiane

    2014-05-01

    Oxygen isotope signatures of transpired water vapor (δT) are a powerful tracer of water movement from plants to the global scale, but little is known on short-term variability of δT as direct high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes and δT to evaluate a modeling approach and investigate the role of isotopic non-steady-state transpiration under natural conditions in distinct seasons in cork-oaks (Quercus suber L.). The isotope signature of transpiration (δT) always deviated from steady-state predictions (ΔT) throughout most of the day even when leaf water at the evaporating sites is near isotopic steady-state. Thus, ΔT is further amplified compared to deviations of leaf water isotopes from steady-state, specifically in dry conditions. High agreement was found for direct estimates and modeled ΔT assuming non-steady-state conditions of leaf-water at the evaporating sites. Strong isoforcing on the atmosphere of transpiration in isotopic non-steady-state imply that short-term variations in δT have likely consequences for large-scale applications, e.g. partitioning of ecosystem evapotranspiration or carbon fluxes using C18O16O, or satellite-based applications.

  14. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Roman, D. Tyler; Yi, Koong; Wang, Lixin; Phillips, Richard P.; Novick, Kimberly A.

    2016-09-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south central Indiana, USA, to quantify how transpiration and photosynthesis respond to fluctuations in VPD versus SWC. High VPD and low SWC both explained reductions in photosynthesis relative to its long-term mean, as well as reductions in transpiration relative to potential transpiration estimated with the Penman-Monteith equation. Flux responses to typical fluctuations in SWC and VPD had similar magnitudes. Integrated over the year, VPD fluctuations accounted for significant reductions of GPP in both nondrought and drought years. Our results suggest that increasing VPD under climatic warming could reduce forest CO2 uptake regardless of changes in SWC.

  15. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    NASA Astrophysics Data System (ADS)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr-1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  16. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  17. Two-Site Comparison of Transpiration by Larrea Tridentata

    NASA Astrophysics Data System (ADS)

    Cavanaugh, M. L.; Kurc, S. A.; Scott, R. L.; Bryant, R. B.

    2008-12-01

    As a result of landscape changes within the desert southwestern U.S. such as increased grazing, reduced wildfire frequency, and changes in atmospheric conditions, the native creosotebush (Larrea tridentata) has encroached upon historically grass-dominated ecosystems, expanding in range and land cover density. To understand how creosotebush influences the water budget of ecosystems, heat balance sap flow sensors were employed on creosotebush stems at both the Santa Rita Experimental Range (SRER) and Walnut Gulch Experimental Watershed (WGEW). Additionally, both sites are equipped with eddy covariance towers, associated micrometeorological measurements, and profiles of water content reflectometers for soil moisture. The differences found between the two sites, including soil type and precipitation regime, are the basis of the following hypotheses. Firstly, we hypothesize that we will not see transpiration (T) responses following storms less than 5 mm at both sites. Secondly, we hypothesize that at both sites we will see a lagged response of T to large precipitation events, with evaporation being the dominate component in the partitioning of evapotranspiration (ET) for the first two days. Thirdly, we hypothesize that the ratio of plant transpiration to total evapotranspiration (T/ET) will be less at SRER due to the larger amount of bare soil exposed at this site. In this study, we show data from one summer at both sites and show how these relate to different precipitation events and soil moisture reservoirs.

  18. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  19. Transpiration characteristics of a rubber plantation in central Cambodia.

    PubMed

    Kobayashi, Nakako; Kumagai, Tomo'omi; Miyazawa, Yoshiyuki; Matsumoto, Kazuho; Tateishi, Makiko; Lim, Tiva K; Mudd, Ryan G; Ziegler, Alan D; Giambelluca, Thomas W; Yin, Song

    2014-03-01

    The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the

  20. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.

    PubMed

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek; Tognetti, Roberto

    2017-03-23

    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites.

  1. An improved temporal formulation of pupal transpiration in Glossina.

    PubMed

    Childs, S J

    2015-04-01

    The temporal aspect of a model of pupal dehydration is improved upon. The observed dependence of pupal transpiration on time is attributed to an alternation between two, essential modes, for which the deposition of a thin, pupal skin inside the puparium and its subsequent demise are thought to be responsible. For each mode of transpiration, the results of the Bursell investigation into pupal dehydration are used as a rudimentary data set. These data are generalised to all temperatures and humidities by invoking the property of multiplicative separability. The problem, then, is that as the temperature varies with time, so does the metabolism and the developmental stages to which the model data pertain, must necessarily warp. The puparial-duration formula of Phelps and Burrows and Hargrove is exploited to facilitate a mapping between the constant-temperature time domain of the data and that of some, more general case at hand. The resulting, Glossina morsitans model is extrapolated to other species using their relative surface areas, their relative protected and unprotected transpiration rates and their different fourth instar excretions (drawing, to a lesser extent, from the data of Buxton and Lewis). In this way the problem of pupal dehydration is formulated as a series of integrals and the consequent survival can be predicted. The discovery of a distinct definition for hygrophilic species, within the formulation, prompts the investigation of the hypothetical effect of a two-day heat wave on pupae. This leads to the conclusion that the classification of species as hygrophilic, mesophilic and xerophilic is largely true only in so much as their third and fourth instars are and, possibly, the hours shortly before eclosion.

  2. Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L; Marshall, John D

    2007-01-01

    The response of whole-plant water-use efficiency, termed transpiration efficiency (TE), to variation in soil fertility was assessed in a tropical pioneer tree, Ficus insipida Willd. Measurements of stable isotope ratios (delta(13)C, delta(18)O, delta(15)N), elemental concentrations (C, N, P), plant growth, instantaneous leaf gas exchange, and whole-plant water use were used to analyse the mechanisms controlling TE. Plants were grown individually in 19 l pots with non-limiting soil moisture. Soil fertility was altered by mixing soil with varying proportions of rice husks, and applying a slow release fertilizer. A large variation was observed in leaf photosynthetic rate, mean relative growth rate (RGR), and TE in response to experimental treatments; these traits were well correlated with variation in leaf N concentration. Variation in TE showed a strong dependence on the ratio of intercellular to ambient CO(2) mole fractions (c(i)/c(a)); both for instantaneous measurements of c(i)/c(a) (R(2)=0.69, P <0.0001, n=30), and integrated estimates based on C isotope discrimination (R(2)=0.88, P <0.0001, n=30). On the other hand, variations in the leaf-to-air humidity gradient, unproductive water loss, and respiratory C use probably played only minor roles in modulating TE in the face of variable soil fertility. The pronounced variation in TE resulted from a combination of the strong response of c(i)/c(a) to leaf N, and inherently high values of c(i)/c(a) for this tropical tree species; these two factors conspired to cause a 4-fold variation among treatments in (1-c(i)/c(a)), the term that actually modifies TE. Results suggest that variation in plant N status could have important implications for the coupling between C and water exchange in tropical forest trees.

  3. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have

  4. DNS of turbulent Couette flow with transpiration - spectra and symmetry induced scaling laws

    NASA Astrophysics Data System (ADS)

    Hoyas, Sergio; Kraheberger, Stefanie; Oberlack, Martin

    2016-11-01

    We present DNS results of turbulent plane Couette flow with constant wall-normal transpiration for Reynolds numbers of Reτ = 250 , 500 , 1000 and several transpiration Reynolds numbers Retr =V0 /Uw . To obtain the DNS data, a pseudo-spectral code, which originally was developed at UP Madrid, see (Hoyas and Jiménez 2006), is used for the simulations. Due to the lack of experimental and DNS data, the convergence of every simulation has been validated using the total shear stress equation and the relation between the friction velocities at the lower and upper wall. Examining the spectra we found that the large and wide structures, which appear in pure Couette flow, see (Avsarkisov et al. 2014), are destroyed as soon as transpiration velocity is different from zero. This and the presence of anomalous spectra near the blowing wall indicates the strong influence of suction on the whole flow, which was observed in (Antonia et al. 1988) as well. As classical scaling laws are not valid due to transpiration, new scaling laws of the mean velocity are derived using Lie symmetry methods. Additionally, suction creates a comparably larger uτ which, in turn, causes a flat and long region in the indicator function for the largest transpiration rate. SH was partially funded by ENE2015-71333-R. SK was funded by DFG under Grant No. OB96/39-1. Computer resources have been provided by LRZ Munich under Grant pr92la.

  5. Diurnal and nocturnal variance between condensation, evaporation and transpiration under high altitude conditions

    NASA Astrophysics Data System (ADS)

    de Jong, C.; Mundelius, M.

    2003-04-01

    Several important parameters of the water cycle, such as condensation, evaporation and transpiration have been largely neglected in mountain areas, even though they are important for ecology, hydrology and meteorology. Estimations and extrapolations do not adequately cover the spatial and temporal heterogeneity of these parameters in steep, higher altitude terrain, nor is the occurrence of special components such as condensation considered. Diurnal and nocturnal variance between the processes of condensation, evaporation and transpiration are important as a basis for modelling and understanding the regional dynamics of water fluxes. Intensive field experiments using automatically-recording lysimeters and evaporation pans during the snow-free period above the tree-line form the basis of this study. Investigation areas include the humid Dischma valley in E. Switzerland and the heavily fog-influenced Reifträger catchment in the Giant mountains in Poland. Directly measured water flux data from sites within alpine shrubs, grass and pasture are coupled with climatic information for each site. Differences in condensation between vegetated and non-vegetated surfaces are highest in reaction to early morning and late evening plant dynamics coupled with extreme temperature changes. Variance between evaporation and transpiration is lower, depending on plant type, valley shape and climatic influences. Diurnal and nocturnal water losses from non-vegetated surfaces are slightly delayed with respect to vegetated surfaces. The results are modelled using an extended Priestley-Taylor approach for evaporation and transpiration and a conceptual model for condensation.

  6. Modelling orange tree root water uptake active area by minimally invasive ERT data and transpiration measurements

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2015-04-01

    The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture

  7. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho.

    PubMed

    Kavanagh, Kathleen L; Pangle, Robert; Schotzko, Alisa D

    2007-04-01

    Soil water potential (Psi(s)) is often estimated by measuring leaf water potential before dawn (Psi(pd)), based on the assumption that the plant water status has come into equilibrium with that of the soil. However, it has been documented for a number of plant species that stomata do not close completely at night, allowing for nocturnal transpiration and thus preventing nocturnal soil-plant water potential equilibration. The potential for nighttime transpiration necessitates testing the assumption of nocturnal equilibration before accepting Psi(pd) as a valid estimate of Psi(s). We determined the magnitude of disequilibrium between Psi(pd) and Psi(s) in four temperate conifer species across three height classes through a replicated study in northern Idaho. Based on both stomatal conductance and sap flux measurements, we confirmed that the combination of open stomata and high nocturnal atmospheric vapor pressure deficit (D) resulted in nocturnal transpiration in all four species. Nocturnal stomatal conductance (g(s-noc)) averaged about 33% of mid-morning conductance values. We used species-specific estimates of g(s-noc) and leaf specific conductance to correct Psi(pd) values for nocturnal transpiration at the time the samples were collected. Compared with the unadjusted values, corrected values reflected a significantly higher Psi(pd) (when D > 0.12 kPa). These results demonstrate that comparisons of Psi(pd) among species, canopy height classes and sites, and across growing seasons can be influenced by differential amounts of nocturnal transpiration, leading to flawed results. Consequently, it is important to account for the presence of nocturnal transpiration, either through a properly parameterized model or by making Psi(pd) measurements when D is sufficiently low that it cannot drive nocturnal transpiration. Violating these conditions will likely result in underestimation of Psi(s).

  8. Studies of shock/shock interaction on smooth and transpiration-cooled hemispherical nosetips in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, M. S.; Rodriguez, K. M.; Nowak, R. J.

    1991-01-01

    Experimental studies are conducted to examine the utilization of transpiration cooling to reduce the peak-heating loads in areas of shock/shock interaction. Smooth and transpiration-cooled nosetip models, 12 inches in diameter, were employed in these studies, which focused on defining the pressure distributions and heat transfer in type III and IV interaction areas. Transpiration cooling was determined to significantly increase the size of the shock layer and to move the peak-heating point around the body. A transpiration-cooling rate of more than 30 percent of the freestream maximum flux did not lower the peak-heating level more than 10 percent, but the integrated heating loads were reduced.

  9. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants.

    PubMed

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K; Lovisolo, Claudio; Zwieniecki, Maciej A

    2012-12-24

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.

  10. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon

    PubMed Central

    McNellis, Brandon; Howard, Ava R

    2015-01-01

    Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use. PMID:26380686

  11. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon.

    PubMed

    McNellis, Brandon; Howard, Ava R

    2015-09-01

    Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use.

  12. Toward an improved understanding of the role of transpiration in critical zone dynamics

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Papuga, S. A.

    2012-12-01

    Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir

  13. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  14. Thermal transpiration: A molecular dynamics study

    SciTech Connect

    T, Joe Francis; Sathian, Sarith P.

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  15. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  16. Lattice Boltzmann approach to thermal transpiration

    SciTech Connect

    Sofonea, Victor

    2006-11-15

    Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

  17. Responses of shelterbelt stand transpiration to drought and groundwater variations in an arid inland river basin of Northwest China

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Gao, Guangyao; Fu, Bojie; Lü, Yihe

    2015-12-01

    Plant water use characteristics and transpiration responses under dry conditions are considered essential for effective and sustainable ecosystem management in arid areas. This study was conducted to evaluate the response of shelterbelt stand transpiration to precipitation, soil drought and groundwater variations in an oasis-desert ecotone in the middle of the Heihe River Basin, China. Sap flow was measured in eight Gansu Poplar trees (Populus Gansuensis) with different diameter at breast height over three consecutive growing seasons (2012-2014). The groundwater evapotranspiration via plant use was estimated by the White method with diurnal water table fluctuations. The results showed that precipitation increased the stand transpiration but not statistically significant (paired t-test, p > 0.05). The recharge of soil water by irrigation caused stand transpiration acceleration significantly (t-test, p < 0.05). Stand transpiration and canopy conductance increased by 27% and 31%, respectively, when soil water conditions changed from dry to wet. Canopy conductance decreased logarithmically with vapor pressure deficit, while there was no apparent relationship between canopy conductance and solar radiation. The sensitivity of canopy conductance to vapor pressure deficit decreased under dry soil conditions. Groundwater evapotranspiration (0.6-7.1 mm day-1) was linearly correlated with stand transpiration (1.1-6.5 mm day-1) (R2 = 0.71), and these two variables had similar variability. During the drought period, approximately 80% of total stand transpiration came from groundwater evapotranspiration. This study highlighted the critical role of irrigation and groundwater for shelterbelt, and might provide the basis for the development of water requirement schemes for shelterbelt growth in arid inland river basins.

  18. Long term trends of stand transpiration in a remnant forest during wet and dry years

    NASA Astrophysics Data System (ADS)

    Zeppel, Melanie J. B.; Macinnis-Ng, Catriona M. O.; Yunusa, Isa A. M.; Whitley, Rhys J.; Eamus, Derek

    2008-01-01

    SummaryDaily and annual rates of stand transpiration in a drought year and a non-drought year are compared in order to understand the adaptive responses of a remnant woodland to drought and predict the effect of land use change. Two methods were used to estimate stand transpiration. In the first, the ratio of sap velocity of a few trees measured for several hundred days to the mean sap velocity of many trees measured during brief sampling periods (generally 6-7 trees for 5 or 6 days), called the Esv method is used to scale temporally from the few intensive study periods. The second method used was the Penman-Monteith (P-M) equation (called the EPM method). Weather variables and soil moisture were used to predict canopy conductance, which in turn was used to predict daily and annual stand transpiration. Comparisons of daily transpiration estimated with the two methods showed larger values for the EPM method during a drought year and smaller values for the EPM when the rainfall was above average. Generally, though, annual estimates of stand transpiration were similar using the two methods. The Esv method produced an estimate of 318 mm (61% of rainfall) in the drought year and 443 mm (42%) in the year having above average rainfall. The EPM method estimated stand transpiration as 379 mm (73%) and 398 mm (37%), respectively, for the two years. Both estimates of annual stand transpiration demonstrated that the remnant forest showed resilience to an extreme and long-term drought. More importantly, the annual estimates showed that in dry years a larger proportion of rainfall was used as transpiration, and groundwater recharge was absent but in years with above average rainfall recharge was significantly increased. Changes in leaf area index were minimal between years and changes in stomatal conductance were the dominant mechanism for adapting to the drought. The remnant forest rapidly responded to increased water availability after the drought through a new flush of leaves

  19. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect

    Pesaran, A.A. ); Wipke, K. )

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  20. Desiccant cooling using unglazed transpired solar collectors

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  1. The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants

    PubMed Central

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.

    2013-01-01

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667

  2. Combustion chamber struts can be effectively transpiration cooled

    NASA Technical Reports Server (NTRS)

    Palmer, G. H.

    1966-01-01

    Vapor-deposited sintering technique increases the feasible temperature range of transpiration-cooled structural members in combustion chambers. This technique produces a porous mass of refractory metal wires around a combustion chamber structural member. This mass acts as a transpiration-cooled surface for a thick-walled tube.

  3. Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Medlyn, Belinda; Zeppel, Melanie; Macinnis-Ng, Catriona; Eamus, Derek

    2009-06-01

    SUMMARYThe responses of canopy conductance to variation in solar radiation, vapour pressure deficit and soil moisture have been extensively modelled using a Jarvis-Stewart (JS) model. Modelled canopy conductance has then often been used to predict transpiration using the Penman-Monteith (PM) model. We previously suggested an alternative approach in which the JS model is modified to directly estimate transpiration rather than canopy conductance. In the present study we used this alternative approach to model tree water fluxes from an Australian native forest over an annual cycle. For comparative purposes we also modelled canopy conductance and estimated transpiration via the PM model. Finally we applied an artificial neural network as a statistical benchmark to compare the performance of both models. Both the PM and modified JS models were parameterised using solar radiation, vapour pressure deficit and soil moisture as inputs with results that compare well with previous studies. Both models performed comparably well during the summer period. However, during winter the PM model was found to fail during periods of high rates of transpiration. In contrast, the modified JS model was able to replicate observed sapflow measurements throughout the year although it too tended to underestimate rates of transpiration in winter under conditions of high rates of transpiration. Both approaches to modelling transpiration gave good agreement with hourly, daily and total sums of sapflow measurements with the modified JS and PM models explaining 87% and 86% of the variance, respectively. We conclude that these three approaches have merit at different time-scales.

  4. On the representativeness of plot size and location for scaling transpiration from trees to a stand

    NASA Astrophysics Data System (ADS)

    Mackay, D. Scott; Ewers, Brent E.; Loranty, Michael M.; Kruger, Eric L.

    2010-06-01

    Scaling transpiration from trees to larger areas is a fundamental problem in ecohydrology. For scaling stand transpiration from sap flux sensors we asked if plot representativeness depended on plot size and location, the magnitude of environmental drivers, parameter needs for ecosystem models, and whether the goal was to estimate transpiration per unit ground area (EC), per unit leaf area (EL), or canopy stomatal conductance (GS). Sap flux data were collected in 108 trees with heat dissipation probes, and biometric properties were measured for 752 trees within a 1.44 ha Populus tremuloides stand along an upland-to-wetland gradient. EC was estimated for the stand using eight different plot sizes spanning a radius of 2.0-12.0 m. Each estimate of EC was derived from 200 plots placed randomly throughout the stand. We also derived leaf area index (L), canopy closure (PCC), and the canopy average reference stomatal conductance (GSref), which are key parameters used in modeling transpiration and evapotranspiration. With increasing plot size, EC declined monotonically but EL and GSref were largely invariant. Interplot variance of EC also declined with increasing plot size, at a rate that was independent of vapor pressure deficit. Plot representativeness was dependent on location within the stand. Scaling to the stand required three plots spanning the upland to wetland, with one to at most 10 trees instrumented for sap flux. Plots that were chosen to accurately reflect the spatial covariation of L, PCC, and GSref were most representative of the stand.

  5. Seasonal and interannual variability of canopy transpiration of a hedgerow in southern England.

    PubMed

    Herbst, Mathias; Roberts, John M; Rosier, Paul T W; Gowing, David J

    2007-03-01

    Transpiration from a hawthorn (Crataegus monogyna L.) dominated hedgerow in southern England was measured continuously over two growing seasons by the sap flow technique. Accompanying measurements of structural parameters, microclimate and leaf stomatal and boundary layer conductances were used to establish the driving factors of hedgerow transpiration. Observed transpiration rates, reaching peak values of around 8 mm day(-1) and a seasonal mean of about 3.5 mm day(-1), were higher than those reported for most other temperate deciduous woodlands, except short-rotation coppice and wet woodlands. The high rates were caused by the structural and physiological characteristics of hawthorn leaves, which exhibited much higher stomatal and boundary-layer conductances than those of the second-most abundant woody species in the hedgerow, field maple (Acer campestre L.). Only in the hot summer of 2003 did stomatal conductance, and thus transpiration, decrease substantially. The hedgerow canopy was always closely coupled to the atmosphere. Hedgerow transpiration equaled potential evaporation (calculated by the Priestley-Taylor formula) in 2003 and exceeded it in 2004, which meant that a substantial fraction of the energy (21% in 2003 and more than 37% in 2004) came from advection. Hedgerow canopy conductance (g(c)), as inferred from the sap flow data by inverting the Penman-Monteith equation, responded to solar radiation (R(G)) and vapor pressure deficit (D). Although the response to R(G) showed no systematic temporal variation, the response to D, described as g(c)(D) = g(cref) - mln(D), changed seasonally. The reference g(c) depended on leaf area index and the ratio of -m/g(cref) on long-term mean daytime D. A model is proposed based on these observations that predicts canopy conductance for the hawthorn hedge from standard weather data.

  6. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo

    NASA Astrophysics Data System (ADS)

    Cienciala, E.; Kučera, J.; Malmer, A.

    2000-09-01

    Water use of Acacia mangium trees grown in plantations was measured by a heat balance method in two stands that largely differed in tree density. Tree sap flow was closely coupled to climatic drivers and responded with minimal time delay. Using no time shift, sap flow rate could be tightly fitted to a simple equation that combined a parabolic response to radiation and an inverse linear response to air humidity. On the contrary, the analysis of canopy conductance showed no meaningful response to either individual or combined microclimatic variables. No indication of water deficit was observed, though the measurement period was during the dry period of the year. The measurements indicate a minimal diurnal use of water stored in plant tissues. The difference in tree water use from the two studied stands was effectively scaled by tree sapwood area. Canopy transpiration of the densest stand reached in average 3.9 mm d -1 compared with 2.7 mm d -1 for the stand representing the average conditions in the catchment.

  7. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply < transport rate). We found that the hydraulic and sediment flux responses during sediment equilibrium represented a balance between abiotic and biotic factors and was sensitive to increasing flow rates and plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  8. Design of Transpiration Cooled Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Callens, E. Eugene, Jr.; Vinet, Robert F.

    1999-01-01

    This study explored three approaches for the utilization of transpiration cooling in thermal protection systems. One model uses an impermeable wall with boiling water heat transfer at the backface (Model I). A second model uses a permeable wall with a boiling water backface and additional heat transfer to the water vapor as it flows in channels toward the exposed surface (Model II). The third model also uses a permeable wall, but maintains a boiling condition at the exposed surface of the material (Model III). The governing equations for the models were developed in non-dimensional form and a comprehensive parametric investigation of the effects of the independent variables on the important dependent variables was performed. In addition, detailed analyses were performed for selected materials to evaluate the practical limitations of the results of the parametric study.

  9. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  10. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  11. Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes.

    PubMed

    Seversike, Thomas M; Sermons, Shannon M; Sinclair, Thomas R; Carter, Thomas E; Rufty, Thomas W

    2013-05-01

    A key strategy in soybean drought research is increased stomatal sensitivity to high vapor pressure deficit (VPD), which contributes to the 'slow wilting' trait observed in the field. These experiments examined whether temperature of the growth environment affected the ability of plants to respond to VPD, and thus control transpiration rate (TR). Two soybean [Glycine max (L.) Merr.] and four wild soybean [Glycine soja (Sieb. and Zucc.)] genotypes were studied. The TR was measured over a range of VPD when plants were growing at 25 or 30°C, and again after an abrupt increase of 5°C. In G. max, a restriction of TR became evident as VPD increased above 2.0 kPa when temperature was near its growth optimum of 30°C. 'Slow wilting' genotype plant introduction (PI) 416937 exhibited greater TR control at high VPD compared with Hutcheson, and only PI 416937 restrained TR after the shift to 35°C. Three of the four G. soja genotypes exhibited control over TR with increasing VPD when grown at 25°C, which is near their estimated growth optimum. The TR control became engaged at lower VPD than in G. max and was retained to differing degrees after a shift to 30°C. The TR control systems in G. max and G. soja clearly were temperature-sensitive and kinetically definable, and more restrictive in the 'slow wilting' soybean genotype. For the favorable TR control traits observed in G. soja to be useful for soybean breeding in warmer climates, the regulatory linkage with lower temperatures must be uncoupled.

  12. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  13. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  14. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer

    PubMed Central

    Seo, Minjeong; Park, Dong-Hoon; Lee, Chan Woo; Jaworski, Justyn; Kim, Jong-Man

    2016-01-01

    Much of atmospheric water originates from transpiration, the process by which plants release H2O from pores, known as stomata, that simultaneously intake CO2 for photosynthesis. Controlling stomatal aperture can regulate the extent of water transport in response to dynamic environmental factors including osmotic stress, temperature, light, and wind. While larger leaf regions are often examined, the extent of water vapor release from individual stomata remains unexplored. Using a “brush-on” sensing material, we can now assess transpiration using a water-responsive, polydiacetylene-based coating on the leaves surfaces. By eliciting a fluorometric signal to passing water vapor, we obtained information regarding the activity of individual stomata. In this demonstration, our results prove that this coating can identify the proportion of active stomata and the extent of transpirational diffusion of water in response to different conditions. PMID:27578430

  15. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer

    NASA Astrophysics Data System (ADS)

    Seo, Minjeong; Park, Dong-Hoon; Lee, Chan Woo; Jaworski, Justyn; Kim, Jong-Man

    2016-08-01

    Much of atmospheric water originates from transpiration, the process by which plants release H2O from pores, known as stomata, that simultaneously intake CO2 for photosynthesis. Controlling stomatal aperture can regulate the extent of water transport in response to dynamic environmental factors including osmotic stress, temperature, light, and wind. While larger leaf regions are often examined, the extent of water vapor release from individual stomata remains unexplored. Using a “brush-on” sensing material, we can now assess transpiration using a water-responsive, polydiacetylene-based coating on the leaves surfaces. By eliciting a fluorometric signal to passing water vapor, we obtained information regarding the activity of individual stomata. In this demonstration, our results prove that this coating can identify the proportion of active stomata and the extent of transpirational diffusion of water in response to different conditions.

  16. Transpiration affects soil CO2 production in a dry grassland

    NASA Astrophysics Data System (ADS)

    Balogh, János; Fóti, Szilvia; Pintér, Krisztina; Burri, Susanne; Eugster, Werner; Papp, Marianna; Nagy, Zoltán

    2014-05-01

    Although soil CO2 efflux can be highly variable on the diel time scale, it is often measured during daytime only. However, to get a full understanding of soil CO2 efflux and its impact on carbon cycle processes, looking at diurnal processes is crucial. Therefore, our aim was to investigate how diel variation in soil CO2 efflux from a dry, sandy grassland in Hungary depends on variations in potential drivers, such as gross primary production (GPP) and evapotranspiration (ET). In order to reach this goal, we combined measurements of CO2 and H2O fluxes by eddy covariance, soil chambers and soil CO2 gradient system. Surface CO2 fluxes were partitioned into the three CO2 production components originating from the three soil layers to clarify the timing and the source of the CO2 within the top 50 cm of the soil. CO2 production rates during the growing season were higher during nighttime than during daytime. This diel course was not only driven by soil temperature and soil moisture, but also by ET. This was shown by changes of ET causing a hysteresis loop in the diel response of CO2 production to soil temperature. CO2 production was coupled to soil temperature at night and during midday (12-14 h), when ET remained relatively constant. However, when ET was changing over time, CO2 production was decoupled from soil temperature. In order to disentangle these effects, we carried out time-lag analyses between CO2 production and efflux residuals after having subtracted the main effects of soil temperature and soil water content from measured CO2 fluxes. The results showed a strong negative correlation between ET rates and residuals of soil CO2 production, and a less strong, but still significantly time-lagged positive correlation between GPP and residuals of soil CO2 production. Thus, we could show that there is a rapid negative response of soil CO2 production rates to transpiration (suggesting CO2 transport in the xylem stream) and a delayed positive response to GPP

  17. Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.

    2001-12-01

    We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >http://webdata.soc.hawaii.edu/climate/Frags/Frags.html

  18. Linking Soil Moisture, Micro-climate, and Transpiration in a Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Brooks, J.; Kayler, Z.; Sulzman, E. W.; Phillips, C. L.; McDonnell, J. J.; Bond, B. J.

    2007-12-01

    Evapotranspiration is a major determinant of streamflow in forested basins. However, the role topography plays in forest water relations is poorly understood. To date, many hydrological models use only a single value for transpiration across a catchment. Quantifying the variation in forest water use with regards to slope position is central to understanding controls on water quantity and quality in hydro-ecological models and is critical to predicting the hydrologic impacts of various forestry operations. We measured transpiration, soil moisture, and foliar pre-dawn water potential in 4 plots across a ridge to ridge transect throughout the summers of 2005 and 2006 in a headwater catchment in western Oregon. Additionally, we measured deuterium and 18O of xylem water and soil water to track changes in the depth of transpiration source water throughout the summers. From May through October 2006, daily average transpiration in upslope plots was approximately 40% greater than that of valley bottom plots (1.0 mm day-1 vs. 0.6 mm day-1, respectively). Minimum pre-dawn water potential values ranged from -0.8 to -1.3 MPA in late August with north-facing plots having the lowest values. Stable isotope data indicates that transpiration rates remained higher longer in the growing season in plots where trees were able to access water deeper in the soil profile. Preliminary data suggest that topographic gradients influencing soil depth, soil moisture retention, and micro-climate result in large variation in forest water use over very small distances.

  19. EFFECTS OF ELEVATED ATMOSPHERIC CO{sub 2} ON CANOPY TRANSPIRATION IN SENESCENT SPRING WHEAT

    SciTech Connect

    GROSSMAN,S.; KIMBALL,B.A.; HUNSAKER,D.J.; LONG,S.P.; GARCIA,R.L.; KARTSCHALL,TH.; WALL,G.W.; PINTER,P.J,JR.; WECHSUNG,F.; LAMORTE,R.L.

    1998-12-31

    The seasonal course of canopy transpiration and the diurnal courses of latent heat flux of a spring wheat crop were simulated for atmospheric CO{sub 2} concentrations of 370 {micro}mol mol{sup {minus}1} and 550 {micro}mol mol{sup {minus}1}. The hourly weather data, soil parameters and the irrigation and fertilizer treatments of the Free-Air Carbon Dioxide Enrichment wheat experiment in Arizona (1992/93) were used to drive the model. The simulation results were tested against field measurements with special emphasis on the period between anthesis and maturity. A model integrating leaf photosynthesis and stomatal conductance was scaled to a canopy level in order to be used in the wheat growth model. The simulated intercellular CO{sub 2} concentration, C{sub i} was determined from the ratio of C{sub i} to the CO{sub 2} concentration at the leaf surface, C{sub s} the leaf to air specific humidity deficit and a possibly unfulfilled transpiration demand. After anthesis, the measured assimilation rates of the flag leaves decreased more rapidly than their stomatal conductances, leading to a rise in the C{sub i}/C{sub s} ratio. In order to describe this observation, an empirical model approach was developed which took into account the leaf nitrogen content for the calculation of the C{sub i}/C{sub s} ratio. Simulation results obtained with the new model version were in good agreement with the measurements. If changes in the C{sub i}/C{sub s} ratio accorded to the decrease in leaf nitrogen content during leaf senescence were not considered in the model, simulations revealed an underestimation of the daily canopy transpiration of up to 20% and a decrease in simulated seasonal canopy transpiration by 10%. The measured reduction in the seasonal sum of canopy transpiration and soil evaporation owing to CO{sub 2} enrichment, in comparison, was only about 5%.

  20. Dioecy is associated with higher diversification rates in flowering plants.

    PubMed

    Käfer, J; de Boer, H J; Mousset, S; Kool, A; Dufay, M; Marais, G A B

    2014-07-01

    In angiosperms, dioecious clades tend to have fewer species than their nondioecious sister clades. This departure from the expected equal species richness in the standard sister clade test has been interpreted as implying that dioecious clades diversify less and has initiated a series of studies suggesting that dioecy might be an 'evolutionary dead end'. However, two of us recently showed that the 'equal species richness' null hypothesis is not valid in the case of derived char acters, such as dioecy, and proposed a new test for sister clade comparisons; preliminary results, using a data set available in the litterature, indicated that dioecious clades migth diversify more than expected. However, it is crucial for this new test to distinguish between ancestral and derived cases of dioecy, a criterion that was not taken into account in the available data set. Here, we present a new data set that was obtained by searching the phylogenetic literature on more than 600 completely dioecious angiosperm genera and identifying 115 sister clade pairs for which dioecy is likely to be derived (including > 50% of the dioecious species). Applying the new sister clade test to this new dataset, we confirm the preliminary result that dioecy is associated with an increased diversification rate, a result that does not support the idea that dioecy is an evolutionary dead end in angiosperms. The traits usually associated with dioecy, that is, an arborescent growth form, abiotic pollination, fleshy fruits or a tropical distribution, do not influence the diversification rate. Rather than a low diversification rate, the observed species richness patterns of dioecious clades seem to be better explained by a low transition rate to dioecy and frequent losses.

  1. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina

    NASA Astrophysics Data System (ADS)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.

    2010-12-01

    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  2. Transpiration and root development of urban trees in structural soil stormwater reservoirs.

    PubMed

    Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E

    2009-10-01

    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  3. Transpiration and Root Development of Urban Trees in Structural Soil Stormwater Reservoirs

    NASA Astrophysics Data System (ADS)

    Bartens, Julia; Day, Susan D.; Harris, J. Roger; Wynn, Theresa M.; Dove, Joseph E.

    2009-10-01

    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash ( Fraxinus pennsylvanica Marsh.) and swamp white oak ( Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  4. Plant Diversity: Effects of Grazing System and Stocking Rate in Northern Mixed-Grass Prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of grazing system, stocking rate, and grazing system X stocking rate interactions, on plant diversity are poorly understood in rangelands. A grazing system (season-long and short-duration rotational grazing) X stocking rate (light: 16 steers•80 ha-1, moderate: 4 steers•12 ha-1 and heavy: 4 s...

  5. A new look at water transport regulation in plants.

    PubMed

    Martínez-Vilalta, Jordi; Poyatos, Rafael; Aguadé, David; Retana, Javier; Mencuccini, Maurizio

    2014-10-01

    Plant function requires effective mechanisms to regulate water transport at a variety of scales. Here, we develop a new theoretical framework describing plant responses to drying soil, based on the relationship between midday and predawn leaf water potentials. The intercept of the relationship (Λ) characterizes the maximum transpiration rate per unit of hydraulic transport capacity, whereas the slope (σ) measures the relative sensitivity of the transpiration rate and plant hydraulic conductance to declining water availability. This framework was applied to a newly compiled global database of leaf water potentials to estimate the values of Λ and σ for 102 plant species. Our results show that our characterization of drought responses is largely consistent within species, and that the parameters Λ and σ show meaningful associations with climate across species. Parameter σ was ≤1 in most species, indicating a tight coordination between the gas and liquid phases of water transport, in which canopy transpiration tended to decline faster than hydraulic conductance during drought, thus reducing the pressure drop through the plant. The quantitative framework presented here offers a new way of characterizing water transport regulation in plants that can be used to assess their vulnerability to drought under current and future climatic conditions.

  6. Digital control of working fluid flow rate for an OTEC plant

    SciTech Connect

    Nakamura, M.; Egashira, N.; Uehara, H.

    1986-05-01

    The role of control in operating an OTEC plant efficiently is of great importance. This paper describes digital control of working fluid rate based on an adaptive control theory for the ''Imari2'' OTEC plant at Saga University. Provisions have been made for linkage between the software of the adaptive control theory and the hardware of the OTEC plant. The authors can obtain satisfactory control performance using this digital control system.

  7. PVUSA procurement, acceptance, and rating practices for photovoltaic power plants

    SciTech Connect

    Dows, R.N.; Gough, E.J.

    1995-09-01

    This report is one in a series of PVUSA reports on PVUSA experiences and lessons learned at the demonstration sites in Davis and Kerman, California, and from participating utility host sites. During the course of approximately 7 years (1988--1994), 10 PV systems have been installed ranging from 20 kW to 500 kW. Six 20-kW emerging module technology arrays, five on universal project-provided structures and one turnkey concentrator, and four turnkey utility-scale systems (200 to 500 kW) were installed. PVUSA took a very proactive approach in the procurement of these systems. In the absence of established procurement documents, the project team developed a comprehensive set of technical and commercial documents. These have been updated with each successive procurement. Working closely with vendors after the award in a two-way exchange provided designs better suited for utility applications. This report discusses the PVUSA procurement process through testing and acceptance, and rating of PV turnkey systems. Special emphasis is placed on the acceptance testing and rating methodology which completes the procurement process by verifying that PV systems meet contract requirements. Lessons learned and recommendations are provided based on PVUSA experience.

  8. Understanding Tree Water Use Across the Snow-Rain Transition in Idaho's Mountain Watersheds: Feedbacks Between Stream Networks, Transpiration, and Basin Geomorphology

    NASA Astrophysics Data System (ADS)

    Whiting, J. A.; Godsey, S.; Reinhardt, K.; Thackray, G. D.

    2014-12-01

    Warming trends are expected to reduce mountain snow pack, increase evapotranspiration, and thus diminish the sometimes limited water supplies of many intermountain streams and rivers. While it is believed that water that is transpired is no longer available for streamflow, it remains uncertain how the timing and quantity of transpiration differ between snow-dominated and rain-dominated elevations, and how alterations in transpiration in these regions affect surface water flow in mountain stream networks. To understand the spatiotemporal relationships of transpiration, we measured Douglas fir water use across the snow-rain transition line/elevation in the Pioneer Creek watershed of Idaho's Frank Church River of No Return Wilderness in 2014. We also recorded stream discharge and monitored surface flow areal extent in four subwatersheds with contrasting geomorphologic controls on the channel network, including moraine and fault controls. We sought to test the hypotheses that (1) Douglas fir trees at snow-dominated elevations would transpire less water each year, and do so later in the melt-season compared to Douglas fir trees at rain-dominated elevations, and (2), that patterns of stream network expansion and contraction will reflect patterns of timing in transpiration rates. Preliminary analyses suggest that transpiration timing is similar across all elevations, and that stream network extent varies minimally across a 20 to 60% variation in streamflow. Summer transpiration varied more strongly with tree size and age than with elevation. We present comparisons of drainage density across the sites at different flow rates, and relate them to geomorphic controls present within each basin. Understanding the present relationships of streamflow with transpiration across snowline contributes to more robust predictions of changes in water resources as a result of climate change.

  9. Contemporary evolution of plant growth rate following experimental removal of herbivores.

    PubMed

    Turley, Nash E; Odell, Walter C; Schaefer, Hanno; Everwand, Georg; Crawley, Michael J; Johnson, Marc T J

    2013-05-01

    Herbivores are credited with driving the evolutionary diversification of plant defensive strategies over macroevolutionary time. For this to be true, herbivores must also cause short-term evolution within plant populations, but few studies have experimentally tested this prediction. We addressed this gap using a long-term manipulative field experiment where exclosures protected 22 plant populations from natural rabbit herbivory for <1 to 26 years. We collected seeds of Rumex acetosa L. (Polygonaceae) from our plots and grew them in a common greenhouse environment to quantify evolved differences among populations in individual plant growth rate, tolerance to herbivory, competitive ability, and the concentration of secondary metabolites (tannins and oxalate) implicated in defense against herbivores. In 26 years without rabbit herbivory, plant growth rate decreased linearly by 30%. We argue that plant growth rate has evolved as a defense against intense rabbit herbivory. In contrast, we found no change in tolerance to herbivory or concentrations of secondary metabolites. We also found no change in competitive ability, suggesting that contemporary evolution may not feed back to alter ecological interactions within this plant community. Our results combined with those of other studies show that the evolution of gross morphological traits such as growth rate in response to herbivory may be common, which calls into question assumptions about some of the most popular theories of plant defense.

  10. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  11. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    PubMed

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  12. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  13. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.

    PubMed

    Reis, A R; Tabei, K; Sakakibara, Y

    2014-01-30

    The purpose of this study was to evaluate experimentally and theoretically the oxidation mechanisms and overall removal rates of phenolic endocrine disrupting chemicals (EDCs) by aquatic plants. EDCs used in this study were bisphenol-A (BPA), 2,4-dichlorophenol (2,4-DCP), 4-tert-octylphenol (4-t-OP), and pentachlorophenol (PCP). Referring to reported detection levels in aquatic environments and contaminated sites, the feed concentration of each EDC was set from 1 to 100μg/L. Experimental results showed that, except for PCP, phenolic EDCs were stably and concurrently removed by different types of aquatic plants over 70 days in long-term continuous treatments. Primal enzymes responsible for oxidation of BPA, 2,4-DCP, and 4-t-OP were peroxidases (POs). Moreover, enzymatic removal rates of BPA, 2,4-DCP, and 4-t-OP by POs were more than 2 orders of magnitude larger than those by aquatic plants. Assuming that overall removal rates of EDCs are controlled by mass transfer rates onto liquid films on the surface of aquatic plants, an electrochemical method based on the limiting current theory was developed to measure the mass transfer rates of EDCs. Because of extremely large removal rates of EDCs by POs, observed removal rates by aquatic plants were in reasonably good agreement with calculated results by a mathematical model developed based on an assumption that mass transfer limitation is a rate-limiting step.

  14. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu–Davies model

    PubMed Central

    Tardieu, François; Simonneau, Thierry; Parent, Boris

    2015-01-01

    Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA] xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA] xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples. PMID:25770586

  15. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu-Davies model.

    PubMed

    Tardieu, François; Simonneau, Thierry; Parent, Boris

    2015-04-01

    Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA]xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA]xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples.

  16. Canopy Transpiration in a Chronosequence of Central Siberian Pine Forests

    NASA Technical Reports Server (NTRS)

    Reiner, Z.; Ernst-Detler, S.; Christian, W.; Ernst-Eckart, S.; Waldemar, Z.

    1998-01-01

    Tree transpiration was measured in 28, 67, 204 and 383 - year old uniform stands and in a multi-cohort stand (140 t0 430) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August of 1995.

  17. Leaf transpiration efficiency of some drought-resistant maize lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  18. Transpiring wall supercritical water oxidation test reactor design report

    SciTech Connect

    Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G.; Rousar, D.C.

    1996-02-01

    Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

  19. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  20. Transpiration during life cycle in controlled wheat growth

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1990-01-01

    A previously developed model of wheat growth, designed for convenient incorporation into system level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor that varies during the life cycle are discussed.

  1. Effects of pruning intensity on jujube transpiration and soil moisture of plantation in the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Nie, Zhenyi; Wang, Xing; Wang, Youke; Ma, Jianpeng; Wei, Xinguang; Chen, Dianyu

    2017-01-01

    In order to ease soil desiccation and prevent ecological deterioration in the Loess Plateau, where jujube (Zizyphus jujube MIll) is widely cultivated as a drought tolerant plant, four pruning intensities (PI), from PI-1 (light) to PI-4 (heavy) were set up based on total length of secondary branches to study the effects of pruning on transpiration and soil moisture in jujube plantations. Furthermore, growth indexes were regularly monitored to estimate jujubes biomass. Sap flow, meteorological and soil moisture conditions were monitored using thermal dissipation probes (TDP), weather station (RR-9100) and the combination of time domain transmission (TDT) technology and neutron moisture gauges (CNC503B), respectively. The results showed that daily actual transpiration of jujube was positively correlated with leaf biomass. Compared with PI-1, jujube transpiration during growth period under PI-2, PI-3, and PI-4 dropped by 11.1%, 29.2%, and 47.9%, respectively. On the contrary, annual water storage under PI-2, PI-3, and PI-4 increased by 6.29 mm, 25.78 mm and 34.74 mm while water use efficiency increased by 5.1%, 15.7% and 24.2%, respectively. Overall, increase in pruning intensity could significantly reduce water consumption of jujube and improve soil moisture in jujube plantations.

  2. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.

    2012-08-01

    Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  3. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

    PubMed

    Marchin, Renée M; Broadhead, Alice A; Bostic, Laura E; Dunn, Robert R; Hoffmann, William A

    2016-10-01

    Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.

  4. Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation.

    PubMed

    Litvak, Elizaveta; McCarthy, Heather R; Pataki, Diane E

    2012-04-01

    Establishing quantitative links between plant hydraulic properties and the response of transpiration to environmental factors such as atmospheric vapor pressure deficit (D) is essential for improving our ability to understand plant water relations across a wide range of species and environmental conditions. We studied stomatal responses to D in irrigated trees in the urban landscape of Los Angeles, California. We found a strong linear relationship between the sensitivity of tree-level transpiration estimated from sap flux (m(T); slope of the relationship between tree transpiration and ln D) and transpiration at D=1 kPa (E(Tref)) that was similar to previous surveys of stomatal behavior in natural environments. In addition, m(T) was significantly related to vulnerability to cavitation of branches (P(50)). While m(T) did not appear to differ between ring- and diffuse-porous species, the relationship between m(T) and P(50) was distinct by wood anatomy. Therefore, our study confirms systematic differences in water relations in ring- versus diffuse-porous species, but these differences appear to be more strongly related to the relationship between stomatal sensitivity to D and vulnerability to cavitation rather than to stomatal sensitivity per se.

  5. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    PubMed

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m)). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  6. Biological and environmental controls on tree transpiration in a suburban landscape

    NASA Astrophysics Data System (ADS)

    Peters, Emily B.; McFadden, Joseph P.; Montgomery, Rebecca A.

    2010-12-01

    Tree transpiration provides a variety of ecosystem services in urban areas, including amelioration of urban heat island effects and storm water management. Tree species vary in the magnitude and seasonality of transpiration owing to differences in physiology, response to climate, and biophysical characteristics, thereby complicating efforts to manage evapotranspiration at city scales. We report sap flux measurements during the 2007 and 2008 growing seasons for dominant tree species in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. Evergreen needleleaf trees had significantly higher growing season means and annual transpiration per unit canopy area (1.90 kg H2O m-2 d-1 and 307 kg H2O m-2 yr-1, respectively) than deciduous broadleaf trees (1.11 kg H2O m-2 d-1 and 153 kg H2O m-2 yr-1, respectively) because of a smaller projected canopy area (31.1 and 73.6 m2, respectively), a higher leaf area index (8.8 and 5.5 m2 m-2, respectively), and a longer growth season (8 and 4 months, respectively). Measurements also showed patterns consistent with the species' differences in xylem anatomy (conifer, ring porous, and diffuse porous). As the growing season progressed, conifer and diffuse porous genera had increased stomatal regulation to high vapor pressure deficit, while ring porous genera maintained greater and more constant stomatal regulation. These results suggest that evaporative responses to climate change in urban ecosystems will depend in part on species composition. Overall, plant functional type differences in canopy structure and growing season length were most important in explaining species' differences in midsummer and annual transpiration, offering an approach to predicting the evapotranspiration component of urban water budgets.

  7. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    PubMed

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  8. Cytokinin Import Rate as a Signal for Photosynthetic Acclimation to Canopy Light Gradients1[W][OA

    PubMed Central

    Boonman, Alex; Prinsen, Els; Gilmer, Frank; Schurr, Ulrich; Peeters, Anton J.M.; Voesenek, Laurentius A.C.J.; Pons, Thijs L.

    2007-01-01

    Plants growing in dense canopies are exposed to vertical light gradients and show photosynthetic acclimation at the whole-plant level, resulting in efficient photosynthetic carbon gain. We studied the role of cytokinins transported through the transpiration stream as one of probably multiple signals for photosynthetic acclimation to light gradients using both tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). We show that substantial variation in leaf transpiration parallels the light gradient in tobacco canopies and experimental reduction of the transpiration rate of a leaf, independent of light, is sufficient to reduce photosynthetic capacity in both species, as well as transcript levels of the small subunit of Rubisco (rbcS) gene in Arabidopsis. Mass spectrometric analysis of xylem sap collected from intact, transpiring tobacco plants revealed that shaded leaves import less cytokinin than leaves exposed to high light. In Arabidopsis, reduced transpiration rate of a leaf in the light is associated with lower cytokinin concentrations, including the bioactive trans-zeatin and trans-zeatin riboside, as well as reduced expression of the cytokinin-responsive genes ARR7 and ARR16. External application of cytokinin to shaded leaves rescued multiple shade effects, including rbcS transcript levels in both species, as did locally induced cytokinin overproduction in transgenic tobacco plants. From these data, we conclude that light gradients over the foliage of a plant result in reduced cytokinin activity in shaded leaves as a consequence of reduced import through the xylem and that cytokinin is involved in the regulation of whole-plant photosynthetic acclimation to light gradients in canopies. PMID:17277095

  9. Implications of Advanced Crew Escape Suit Transpiration for the Orion Program

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Lawrence

    2009-01-01

    Human testing was conducted to more fully characterize the integrated performance of the Advanced Crew Escape Suit (ACES) with liquid cooling provide by an Individual Cooling Unit (ICU) across a broad range of environmental conditions and metabolic rates. Together with a correlation for the ACES Liquid Cooling Garment as a function of inlet temperature, metabolic rate, and crew size, a reasonably conservative correlation for core temperature was achieved for the human thermal model applied to the ACES with ICU cooling. A key observation for this correlation was accounting for transpiration of evaporated sweat through the Gortex(Registered TradeMark) liner of the ACES indicated by as much as 0.6 lbm of sweat evaporated over the course of the 1 hour test profile, most of which could not be attributed to respiration or head sweat evaporation of the crew. Historically it has been assumed that transpiration was not an important design feature of the ACES suit. The correlated human thermal model will show transpiration to be highly useful in hot survival situations for the Orion Program when adequate liquid cooling is not available.

  10. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  11. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae

    PubMed Central

    2013-01-01

    Background Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship. PMID:23497266

  12. Overproduction of Abscisic Acid in Tomato Increases Transpiration Efficiency and Root Hydraulic Conductivity and Influences Leaf Expansion1[OA

    PubMed Central

    Thompson, Andrew J.; Andrews, John; Mulholland, Barry J.; McKee, John M.T.; Hilton, Howard W.; Horridge, Jon S.; Farquhar, Graham D.; Smeeton, Rachel C.; Smillie, Ian R.A.; Black, Colin R.; Taylor, Ian B.

    2007-01-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in δ13C and δ18O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty. PMID:17277097

  13. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Li, Xiankun; Zhang, Zhongfeng; He, Chengxin; Zhao, Ping; You, Yeming; Mo, Ling

    2011-05-01

    SummaryThe presence of forest on south China karst is presumed to increase perennial epikarst spring flow, partly because there is adequate storage in bedrock fractures underlying the shallow soil in the forest. If true, transpiration of the ecosystem would not be strongly reduced by temperate drought if trees develop deep roots to reach the perched epikarst water. Therefore, in karst ecosystem the epikarst-soil-plant-atmosphere continuum (ESPAC) would be different from the SPAC in non-karst system. We measured transpiration and canopy conductance from a Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hill slope in South China during 2006-2007 by using the Granier's sap-flow method. Annual stand transpiration (836 mm y -1) accounted for 48.7% of the rainfall during the experimental year. Per month, daily stand transpiration ( E c) maximums varied between 2.1 mm d -1 in January (cool season) to 5.1 mm d -1 in July (hot season). In the driest months, September and October, E c of C. glauca was still high with maximum E c 3.82 mm d -1 and 2.96 mm d -1 respectively. Solar radiation ( PAR), vapor pressure deficiency ( VPD), and air temperature were simple influences on transpiration of C. glauca, which contributed to a quadratic power model, while soil water content ( SWC) moisture influence on transpiration was complicated, which SWC influenced E c greatly under higher VPD, but did not influence E c under low VPD. High stomatal openness occurred in C. glauca in the early morning and declined throughout the day. The relation coefficient between canopy stomatal conductance ( G c) and E c was high when VPD was more than 1.0 kPa, moderate when 0.5 kPa < VPD < 1.0 kPa, and low with VPD of less than 0.5 kPa. Under high VPD, stomatal control of transpiration is high. The pattern of seasonal change of transpiration and canopy stomatal conductance of the plant in karst regions is different from that in non-karst regions, with the stand transpiration and canopy

  14. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  15. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China

    NASA Astrophysics Data System (ADS)

    Zongxing, Li; Qi, Feng; Wang, Q. J.; Yanlong, Kong; Aifang, Cheng; Song, Yong; Yongge, Li; Jianguo, Li; Xiaoyan, Guo

    2016-11-01

    Moisture recycling by terrestrial evaporation and transpiration has recently been confirmed as an important source of precipitation, but little is known of this contribution in inland river basins of China. This study determines the fractions contributed by terrestrial evaporation and transpiration to precipitation in the Shiyang river basin, located in Gansu province of northwestern China. The basin has an area of 4.16 × 104 km2 and mean annual precipitation of 300 mm/yr. Hundreds of samples of precipitation, surface water, plant stem water and soil water were collected and analyzed for their isotopic compositions. The Craig-Gordon model and a three-end-member mixing model were used to partition precipitation into water sourced from evaporation, transpiration and advection. On average, evaporation, transpiration and advection were responsible for 9%, 14% and 77%, respectively, of precipitation, and the contribution from terrestrial evaporation and transpiration also increased with elavation; they also varied with season, being highest in August. The significant contribution from transpiration highlights the importance of vegetation conservation in this ecologically fragile basin.

  16. The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2016-04-01

    Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.

  17. Photosynthesis, transpiration, and primary productivity: Scaling up from leaves to canopies and regions using process models and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.; Coughenour, M. B.

    2004-12-01

    Biophysical and physiological processes in plants and ecosystems occur over a wide range of spatial and temporal scales. Our knowledge (or models) of these processes is largely at small scales. It is, however, difficult to directly apply mechanistic process-oriented models over large scales due to heterogeneities in the distributions of processes, and nonlinearities in the functional responses of processes to environmental variables. On the other hand, simple parametric/empirical models in which system complexity is lumped into a small number of parameters have been widely employed to describe processes at larger scales. The variation of these parameters in these simple parametric/empirical models depends on the underlying biophysical processes. In this work, we showed that detailed process models and simple parametric models for primary production and transpiration could be effectively combined to scale leaf photosynthesis and transpiration up to large spatial scales. The integrated process model, General Energy Mass Transfer Model (GEMTM), was used to identify major factors contributing to the variability of the parameters in the parametric models for regional transpiration and primary production and quantify their responses to these factors. Simulations with the GEMTM showed that net carbon assimilation was proportional to intercepted photosynthetically active radiation (IPAR), but the radiation use efficiency (RUE) changed with leaf N concentration, temperature, and atmospheric CO2 concentration; transpiration was linearly correlated with the product of net primary production (NPP) and atmospheric water vapor pressure deficit (VPD), and the slope varied with leaf N concentration. RUE increased with leaf N content asymptotically, and responded to temperature in an asymmetric bell shape pattern with a 22°C and 26°C optimal temperature under current ambient and doubled CO2 concentration, respectively. A simple parametric NPP model and a regional transpiration

  18. Thermal transpiration through single walled carbon nanotubes and graphene channels

    SciTech Connect

    Thekkethala, Joe Francis; Sathian, Sarith P.

    2013-11-07

    Thermal transpiration through carbon nanotubes (CNTs) and graphene channels is studied using molecular dynamics (MD) simulations. The system consists of two reservoirs connected by a CNT. It is observed that a flow is developed inside the CNT from the low temperature reservoir to the high temperature reservoir when the two reservoirs are maintained at different temperatures. The influence of channel size and temperature gradient on the mean velocity is analysed by varying the CNT diameter and the temperature of one of the reservoirs. Larger flow rate is observed in the smaller diameter CNTs showing an increase in the mean velocity with increase in the temperature gradient. For the flow developed inside the CNTs, slip boundaries occur and the slip length is calculated using the velocity profile. We examine the effect of fluid-wall interaction strength (ε{sub fw}), diffusivity (D), and viscosity of the fluid (μ) on the temperature induced fluid transport through the CNTs. Similar investigations are also carried out by replacing the CNT with a graphene channel. Results show that the mean velocity of the fluid atoms in the graphene channel is lower than that through the CNTs. This can be attributed to the higher degree of confinement observed in the CNTs.

  19. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    PubMed

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate.

  20. CO2 gas exchange and transpiration of Welwitschia mirabilis Hook. fil. in the central Namib desert.

    PubMed

    von Willert, D J; Eller, B M; Brinckmann, E; Baasch, R

    1982-10-01

    The diurnal course of CO2 gas exchange, (14)CO2 incorporation, malate and citrate content, and traspiration of Welwitschia mirabilis were measured in one of its natural habitats, the Welwitschia-Vlakte in the central Namib desert (Namibia), in order to decide which CO2 fixation pathway is used by this gymnosperm.The CO2 gas exchange of Welwitschia is that of a C3 plant under arid conditions. Younger leaf parts show a two-peaked pattern of photosynthetic CO2 uptake whereas in older parts the morning peak is followed by net CO2 release during the rest of the day. The maximum rates of net photosynthesis decrease from 3.4 μmol m(-2) s(-1) in 1-year-old parts to 1 μmol m(-2) s(-1) in 7-year-old parts. No net CO2 uptake was detected during the night. The diurnal CO2 balance indicates that the old leaf parts live at the expense of the younger ones. Irrigation of Welwitschia plants resulted in an increased CO2 uptake throughout the light period with maximum rate of 4.1 μmol m(-2) s(-1). (14)CO2 was only incorporated during the day.The water loss of Welwitschia by transpiration is considerable, reaching a peak value of 1.9 mmol m(-2) s(-1) around noon. Leaf conductance corresponds with the twopeaked pattern of CO2 uptake.Although there is no sign of a crassulacean acid metabolism in Welwitschia the leaf contains rather high amounts of malate (up to 200 μmol g(-1) dry matter) and citrate (up to 250 μmol g(-1) dry matter), which depend on leaf age but do not show any significant day-night oscillation.In spite of all this the δ(13)C values are in the range of-17.77 to-19.64‰. Possible reasons for such a high (13)C content in a C3 plant are discussed.

  1. Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil.

    PubMed

    Kirkpatrick, W D; White, P M; Wolf, D C; Thoma, G J; Reynolds, C M

    2006-01-01

    Phytoremediation can be effective for remediating contaminated soils in situ and generally requires the addition of nitrogen (N) to increase plant growth. Our research objectives were to evaluate seedling emergence and survival of plant species and to determine the effects of N additions on plant growth in crude-oil-contaminated soil. From a preliminary survival study, three warm-season grasses--pearlmillet (Pennisetum glaucum [L.] R. Br.), sudangrass (Sorghum sudanense [Piper] Stapf [Piper]), and browntop millet (Brachiaria ramosa L.)--and one warm-season legume--jointvetch (Aeschynomene americana L.)--were chosen to determine the influence of the N application rate on plant growth in soil contaminated with weathered crude oil. Nitrogen was added based on total petroleum hydrocarbon-C:added N ratios (TPH-C:TN) ranging from 44:1 to 11:1. Plant species were grown for 7 wk. Root and shoot biomass were determined and root length and surface area were analyzed. Pearlmillet and sudangrass had higher shoot and root biomass when grown at a TPH-C:TN (inorganic) ratio of 11:1 and pearlmillet had higher root length and surface area when grown at 11:1 compared with the other species. By selecting appropriate plant species and determining optimum N application rates, increased plant root growth and an extended rhizosphere influence should lead to enhanced phytoremediation of crude-oil-contaminated soil.

  2. Non-destructive testing for combined stresses using high-resolution thermal infrared remote sensing and ''three-temperature model'': A case study on mangrove plant Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Shen, X.; LI, R.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Mangrove forests are currently facing serious heavy metal pollution and eutrophication problems. Remote sensing of vegetation is a non-invasive methodology to monitor physiological characteristics of plants. The potential of high-resolution thermal infrared remote sensing and the three-temperature model (3T model) for monitoring the effects of combined stresses on mangrove plant Kandelia obovata was assessed. The experiment consists of four levels of CdCl2 stress (0, 1, 5 and 10 mg·L-1) in each of four NH4Cl stress levels: 0, 10, 50 and 100 mg·L-1, respectively. The non-destructive testing indices, including plant transpiration transfer coefficient (hat) and estimated instant transpiration rate, were calculated from thermal images and the 3T model. The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were also tested to validate the results of non-destructive testing. The results showed that: (1) The plant transpiration transfer coefficients (hat) were changed from 0.246 to 0.928 and the estimated instant transpiration rates ranged from 0.590 to 6.119 mmol H2O m-2s-1 among different combined stresses. With increasing stress, there were significant decreases for estimated instant transpiration rate and increases for hat (P < 0.05). (2) The photosynthetic characteristics, including Pn, Gs and Tr, were significantly decreased with the increasing combined stresses (P < 0.05). (3) The effects of Cd, N, and their interaction on non-destructive indices and photosynthetic parameters were significant (P < 0.05). (4) The hat was significantly negatively correlated with photosynthetic parameters and the T-3T was significantly positively correlated with photosynthetic parameters (P < 0.05). Therefore, the transpiration transfer coefficient (hat) andestimated instant transpiration rate detecting by infrared thermography device could be indicators to reflect the stress conditions. Based on high-resolution thermal infrared remote sensing, we

  3. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  4. Time-dependent experimental analysis of a thermal transpiration rarefied gas flow

    NASA Astrophysics Data System (ADS)

    Rojas-Cárdenas, Marcos; Graur, Irina; Perrier, Pierre; Méolans, J. Gilbert

    2013-07-01

    Thermal transpiration is the macroscopic movement induced in a rarefied gas by a temperature gradient. The gas moves from the lower to the higher temperature zone. An original method is proposed here to measure the stationary mass flow rate of gas created by thermal transpiration in a micro-tube heated at its outlet. In addition, by means of a time-dependent study, parameters such as the pressure variation, the pressure variation speed, and the characteristic time of the system are analyzed. The experimental system is composed of a glass tube of circular cross section and two reservoirs positioned one at the inlet and one at the outlet of the capillary. The reservoirs are connected to two fast response time capacitance diaphragm gauges. By monitoring the pressure variation with time inside both reservoirs, it is possible to measure the macroscopic movement of the gas along the tube. Three gases, nitrogen, argon, and helium, are studied and three temperature differences ΔT = 37, 53.5, and 71 K are applied to the tube. The analyzed gas rarefaction conditions vary from near free molecular to slip regime. Finally, Poiseuille counter flows consistent with the experimental zero flow conditions of the thermal transpiration process are proved to be possible.

  5. The dynamic role of root-water uptake in coupling potential to actual transpiration

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Katul, Gabriel

    The relationship between actual ( Eact) and potential ( Ep) transpiration above a grass-covered forest clearing was investigated numerically and experimentally from simultaneous measurements of soil moisture content profiles, mean meteorological conditions, turbulent heat and water vapor fluxes in the atmospheric surface layer, and soil hydraulic properties for two drying periods. The relationship between Eact/ Ep was found to be approximately constant and insensitive to variability in near-surface soil moisture content. To explore this near-constant Eact/ Ep, a model that relates potential and actual transpiration and accounts for root-uptake efficiency, potential transpiration rate, and root-density distribution was proposed and field-tested. The total amount of water consumed by the root system was integrated and compared with eddy-correlation latent heat flux measurements (field scale) and total water storage changes (local scale). Model calculations suggested that the deeper and more efficient roots are primarily responsible for the total water loss within the root zone when the near-surface soil layer approaches their wilting point.

  6. Physiological studies in young Eucalyptus stands in southern India and their use in estimating forest transpiration

    SciTech Connect

    Roberts, J.M.; Rosier, P.T.W.; Murthy, K.V.

    1992-12-31

    Stomatal conductance, leaf water potential and leaf area index were measured in adjacent plantations of Eucalyptus camaldulensis and Eucalyptus tereticornis at Puradal, near Shimoga, Karnataka, southern India. The data were collected in a range of climatic conditions during a two year period immediately following plantation establishment. Physiological differences between the two species were small and confined largely to leaf area index. Stomatal conductance was highest in the post-monsoon period and declined to minimum values immediately prior to the onset of the monsoon, with the lowest conductances observed after the plantations had been established for more than one year. Stomatal conductance, leaf area index and above-canopy meteorological data were combined in a multi-layer transpiration model and used to calculate hourly values of transpiration from the two species. Rates of transpiration up to 6 mm d{sup {minus}1} were estimated for the post-monsoon period but fell to below 1 mm d{sup {minus}1} prior to the monsoon.

  7. Response of transpiration to rain pulses for two tree species in a semiarid plantation.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration (Ec) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall Ec development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance (Gc) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-dG c/dlnVPD to Gcref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low Ec. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand Ec. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the Ec recovery. Further, the stand Ec was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. Ec enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall Ec recovery. Ec recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall Ec increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of Ec in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  8. Gas Exchange, Transpiration and Yield of Sweetpotato Grown in a Controlled Environment

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith E.; Mortley, Desmond G.; Henninger, Donald L.

    2000-01-01

    Sweetpotato was grown to harvest maturity within NASA Johnson Space Center's Variable Pressure Growth Chamber (VPGC) to characterize crop performance for potential use in advanced life support systems as a contributor to food production, air revitalization and resource recovery. Stem cuttings of breeding clone "TU-82-155" were grown hydroponically at a density of 17 plants m(sup -2) using a modified pressure-plate growing system (Patent No. 4860-490, Tuskegee University). Lighting was provided by HPS lamps at a photoperiod of 12h light: 12h dark. The photosynthetic photon flux was maintained at 500, 750 and 1000 micro mol m(sup -2) s(sub -1) during days 1-15, 16-28, 29-119, respectively. Canopy temperatures were maintained at 28 C: light: 22 C:dark. During the light period, relative humidity and carbon dioxide were maintained at 70% and 1200 micro liters l(sup -1), respectively. Nutrient solution was manually adjusted 2 to 4 times per week by addition of 10X concentrated modified half-strength Hoagland nutrient salts and NaOH to return the electrical conductivity and pH to 1.2 mS cm(sup -1) and 6.0, respectively. At 17 weeks (119 days) from transplanting, a total of 56.5 kilograms fresh mass of storage roots (84.1% moisture) were harvested from the 11.2 m(sup 2) chamber, resulting in a yield 5.0 kilograms m(sup -2). Harvest index, based on fresh mass, was 38.6%. Rates of net photosynthesis, dark respiration, transpiration, and ethylene production will be reported.

  9. Transpiration and Evaporation measurements in a Mountain Ecosystem using Real-Time Field-Based Water Vapor Isotopes (Invited)

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Gochis, D. J.; Harley, P. C.; Turnipseed, A.; Hu, J.

    2010-12-01

    The partitioning of evapotranspiration between evaporation from bare soil and transpiration by vegetation is not adequately represented in land surface models coupled to atmospheric models. In this work we present measurements of stable water vapor isotopes (δD and δ18O) in Manitou Experimental Forest. At an elevation of approximately 2,400m in the Rocky Mountain foothills-pediment region the site is characterized by Ponderosa pine and a grass understory. We use a portable real time isotopic water vapor analyzer that allows us to partition evapotranspiration from the vegetated region into transpiration from plants and direct evaporation from the soil and canopy. The isotopic measurements are complementary to data from a network of eddy covariance towers and soil moisture measurements. We give particular emphasis to the temporal variability of the isotopic signature of transpiration presenting simultaneous measurements of water vapor isotopes, net photosynthesis, evapotranspiration and stomatal conductance measured using a dynamic flow-through gas exchange system. These observations are the first step towards improving our understanding and numerical modeling of the partitioning between evaporation and transpiration.

  10. Modeled hydraulic redistribution by Helianthus annuus L. matches observed data only after model modification to include nighttime transpiration

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.

    2013-12-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.

  11. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    PubMed

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR.

  12. Interactive Effects of Soil Drainage and Time Since Burn on Transpiration of Boreal Black Spruce Forests

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2006-12-01

    averages of Psi for Picea mariana resulted in significantly different values of -0.29, -0.44, -0.42, -0.34 for pre-dawn and -1.09, -1.37, -1.20, -1.25 MPa for mid- day at the17-, 42-, 76-, and 156-year-old burns respectively. Our results show that stand age has more of an influence on black spruce water potentials and, likely, stand transpiration per unit leaf area than soil drainage. Thus, regional scale process models of boreal forest transpiration can be simplified with respect to soil drainage while retaining mechanistic rigor with respect to plant hydraulics.

  13. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  14. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  15. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  16. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts

    NASA Astrophysics Data System (ADS)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo

    2016-11-01

    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  17. Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data

    PubMed Central

    Bobiwash, K; Schultz, S T; Schoen, D J

    2013-01-01

    We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990

  18. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

    PubMed

    Forrester, David I

    2015-03-01

    Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect.

  19. Relationship between lead uptake by lettuce and water-soluble low-molecular-weight organic acids in rhizosphere as influenced by transpiration.

    PubMed

    Liao, Yuan Chung; Chang Chien, Shui-Wen; Wang, Min-Chao; Shen, Yuan; Seshaiah, Kalluru

    2007-10-17

    The relationship between Pb uptake by leaf lettuce ( Lactuca sativa L.) and water-soluble low-molecular-weight organic acids (LMWOAs) in rhizosphere, as influenced by transpiration (high and low), has been studied. Studies were carried out by culturing lettuce plants grown for 2 weeks in pots filled with quartz sand mixed with anion-exchange resin and then for 30 days in a greenhouse. The potted lettuce plants were subjected to stress by the addition of Pb(NO 3) 2 solutions (100, 200, and 300 mg of Pb L (-1)) and by high and low transpiration treatments for another 10-day period. Blank experiments (without addition of Pb(NO 3) 2 solutions to the pots) were also run. There were no significant differences in the growth of the plants with the addition of Pb(NO 3) 2 solutions in either of the transpirations studies. Uptake of Pb by the shoots and roots of the plants was found to be proportional to the concentration of Pb solutions added, and more accumulation was observed in the roots than in the shoots at the end of days 3 and 10. High transpiration caused more Pb uptake than did low transpiration. One volatile acid (propionic acid) and nine nonvolatile acids (lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, d-tartaric, trans-aconitic, and citric acids) in rhizosphere quartz sand or anion-exchange resin were identified and quantified by gas chromatography analysis with a flame ionization detector. The amount of LMWOAs in rhizosphere quartz sand or anion-exchange resin increased with higher amounts of Pb in quartz sand solution and also with longer duration of the study. The total quantities of the LMWOAs in the rhizosphere quartz sand or anion-exchange resin were significantly higher under high and low transpiration with a 300 mg of Pb L (-1) solution addition at the end of day 10. Compared with our previous related studies (published work), the present study shows that the presence of LMWOAs in rhizosphere does not significantly affect Pb uptake by lettuce

  20. Characterization of urania vaporization with transpiration coupled thermogravimetry

    SciTech Connect

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573 and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.

  1. Characterization of urania vaporization with transpiration coupled thermogravimetry

    DOE PAGES

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573more » and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.« less

  2. Transpiration's inhibition of air pollution fluxes to substomatal cavities. [PRECP

    SciTech Connect

    Slinn, W.G.N.

    1987-05-01

    This report presents an estimate for the resistance to transport through stomatal openings, accounting for the counterflowing flux of water vapor associated with transpiration. The specific goal of this report is to estimate the influence of transpiration on the stomatal resistance, r/sub sto/; others have estimated the substomatal and mesophyll resistances r/sub ssc/ and r/sub mes/. It might be expected that any influence of the water-vapor flux on pollutant transport would be a maximum at the stomatal opening since, at the constricted area of the stoma, the water flux is a maximum. Transpiration through stomata appears to insigifnicantly inhibit the passage of relatively small molecules (e.g., SO/sub 2/, O/sub 3/, HNO/sub 3/, PAN, etc.) through the stomata, and therefore, by entering the substomatal cavity, such pollutants have greater potential for threatening plan survival, if their concentrations are excessive. 7 refs., 5 figs.

  3. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model

    PubMed Central

    Bridge, L. J.; Franklin, K. A.; Homer, M. E.

    2013-01-01

    Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538

  4. Transgenic tobacco plants overexpressing the Nicta; CycD3; 4 gene demonstrate accelerated growth rates.

    PubMed

    Guo, Jia; Wang, Myeong Hyeon

    2008-07-31

    D-type cyclins control the onset of cell division and the response to extracellular signals during the G1 phase. In this study, we transformed a D-type cyclin gene, Nicta;CycD3;4, from Nicotiana tabacum using an Agrobacterium-mediated method. A predicted 1.1 kb cyclin gene was present in all of the transgenic plants, but not in wild-type. Northern analyses showed that the expression level of the Nicta;CycD3;4 gene in all of the transgenic plants was strong when compared to the wild-type plants, suggesting that Nicta;CycD3;4 gene driven by the CaMV 35S promoter was being overexpressed. Our results revealed that transgenic plants overexpressing Nicta;CycD3;4 had an accelerated growth rate when compared to wild-type plants, and that the transgenic plants exhibited a smaller cell size and a decreased cell population in young leaves when compared to wild-type plants.

  5. Root controls on water redistribution and carbon uptake in the soil-plant system under current and future climate

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Marani, M.; Albertson, J. D.; Katul, G.

    2013-10-01

    Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil-plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis-transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.

  6. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.

    PubMed

    Tassi, Eliana; Pouget, Joël; Petruzzelli, Gianniantonio; Barbafieri, Meri

    2008-03-01

    The term "assisted phytoextraction" usually refers to the process of applying a chemical additive to contaminated soil in order to increase the metal uptake by crop plants. In this study three commercially available plant growth regulators (PGRs) based on cytokinins (CKs) were used to boost the assisted phytoextraction of Pb and Zn in contaminated soil collected from a former manufactured gas-plant site. The effects of EDTA treatment in soil and PGR treatment in leaves of Helianthus annuus were investigated in terms of dry weight biomass, Pb and Zn accumulation in the upper parts of the plants, Pb and Zn phytoextraction efficiency and transpiration rate. Metal solubility in soil and its subsequent accumulation in shoots were markedly enhanced by EDTA. The combined effects of EDTA and cytokine resulted in an increase in the Pb and Zn phytoextraction efficiency (up to 890% and 330%, respectively, compared to untreated plants) and up to a 50% increase in foliar transpiration. Our results indicate that exogenous PGRs based on CKs can positively assist the phytoextraction increasing the biomass production, the metal accumulation in shoots and the plant transpiration. The observed increase in biomass could be related to its action in stimulation of cell division and shoot initiation. On the other hand, the increase in metal accumulation in upper parts of plant could be related to both the role of PGRs in the enhancement of plant resistance to stress (as toxic metals) and the increase in transpiration rate, i.e. flux of water-soluble soil components and contaminants by the regulation of stomatal opening.

  7. On developing and enhancing plant-level disease rating systems in real fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot (CLS) is one of the most serious diseases in sugar beet plants causing an enormous decrease in the sugar production throughout the world. Agricultural researchers are continuously seeking CLS-resistant sugar beet cultivars. Normally human experts manually observe and rate the re...

  8. Effect of Seeding Rate and Planting Arrangement on Rye Cover Crop and Weed Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed growth in winter cover crops in warm climates may contribute to weed management costs in subsequent crops. A two year experiment was conducted on an organic vegetable farm in Salinas, California, to determine the impact of seeding rate and planting arrangement on rye (Secale cereale L. cv. Merc...

  9. Chilling rate effects on pork loin tenderness in commercial processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to provide a large-scale objective comparison of pork LM tenderness and other meat quality traits between packing plants that differ in stunning method and carcass chilling rate. For each of two replicates, hogs were sourced from a single barn of a commercial fi...

  10. RATE OF TCE DEGRADATION IN PASSIVE REACTIVE BARRIERS CONSTRUCTED WITH PLANT MULCH (BIOWALLS)

    EPA Science Inventory

    This presentation reviews a case study at Altus AFB on the extent of treatment of TCE in a passive reactive barrier constructed with plant mulch. It presents data from a tracer test to estimate the rate of ground water flow at the site, and the residence time of water and TCE in...

  11. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  12. Soybean Photosynthetic Rate and Carbon Fixation at Early and Late Planting Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early planting (late April to early May) is recommended for increasing soybean yield but a full understanding of the physiological response is lacking. This study was conducted to determine whether carbon dioxide exchange rate (CER) could explain this yield difference. A study with five (2007) and s...

  13. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  14. Association between Residential Proximity to Fuel-Fired Power Plants and Hospitalization Rate for Respiratory Diseases

    PubMed Central

    Liu, Xiaopeng; Lessner, Lawrence

    2012-01-01

    Background: Air pollution is known to cause respiratory disease. Unlike motor vehicle sources, fuel-fired power plants are stationary. Objective: Using hospitalization data, we examined whether living near a fuel-fired power plant increases the likelihood of hospitalization for respiratory disease. Methods: Rates of hospitalization for asthma, acute respiratory infection (ARI), and chronic obstructive pulmonary disease (COPD) were estimated using hospitalization data for 1993–2008 from New York State in relation to data for residences near fuel-fired power plants. We also explored data for residential proximity to hazardous waste sites. Results: After adjusting for age, sex, race, median household income, and rural/urban residence, there were significant 11%, 15%, and 17% increases in estimated rates of hospitalization for asthma, ARI, and COPD, respectively, among individuals > 10 years of age living in a ZIP code containing a fuel-fired power plant compared with one that had no power plant. Living in a ZIP code with a fuel-fired power plant was not significantly associated with hospitalization for asthma or ARI among children < 10 years of age. Living in a ZIP code with a hazardous waste site was associated with hospitalization for all outcomes in both age groups, and joint effect estimates were approximately additive for living in a ZIP code that contained a fuel-fired power plant and a hazardous waste site. Conclusions: Our results are consistent with the hypothesis that exposure to air pollution from fuel-fired power plants and volatile compounds coming from hazardous waste sites increases the risk of hospitalization for respiratory diseases. PMID:22370087

  15. From Plants to Birds: Higher Avian Predation Rates in Trees Responding to Insect Herbivory

    PubMed Central

    Mäntylä, Elina; Alessio, Giorgio A.; Blande, James D.; Heijari, Juha; Holopainen, Jarmo K.; Laaksonen, Toni; Piirtola, Panu; Klemola, Tero

    2008-01-01

    Background An understanding of the evolution of potential signals from plants to the predators of their herbivores may provide exciting examples of co-evolution among multiple trophic levels. Understanding the mechanism behind the attraction of predators to plants is crucial to conclusions about co-evolution. For example, insectivorous birds are attracted to herbivore-damaged trees without seeing the herbivores or the defoliated parts, but it is not known whether birds use cues from herbivore-damaged plants with a specific adaptation of plants for this purpose. Methodology We examined whether signals from damaged trees attract avian predators in the wild and whether birds could use volatile organic compound (VOC) emissions or net photosynthesis of leaves as cues to detect herbivore-rich trees. We conducted a field experiment with mountain birches (Betula pubescens ssp. czerepanovii), their main herbivore (Epirrita autumnata) and insectivorous birds. Half of the trees had herbivore larvae defoliating trees hidden inside branch bags and half had empty bags as controls. We measured predation rate of birds towards artificial larvae on tree branches, and VOC emissions and net photosynthesis of leaves. Principal Findings and Significance The predation rate was higher in the herbivore trees than in the control trees. This confirms that birds use cues from trees to locate insect-rich trees in the wild. The herbivore trees had decreased photosynthesis and elevated emissions of many VOCs, which suggests that birds could use either one, or both, as cues. There was, however, large variation in how the VOC emission correlated with predation rate. Emissions of (E)-DMNT [(E)-4,8-dimethyl-1,3,7-nonatriene], β-ocimene and linalool were positively correlated with predation rate, while those of highly inducible green leaf volatiles were not. These three VOCs are also involved in the attraction of insect parasitoids and predatory mites to herbivore-damaged plants, which suggests that

  16. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    PubMed

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic

  17. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters

    PubMed Central

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and

  18. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    PubMed

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation.

  19. Effects of elevated atmospheric CO{sub 2} on canopy transpiration in senescent spring wheat

    SciTech Connect

    Grossman, S.; Kimball, B.A.; Hunsaker, D.J.; Long, S.P. et al

    1998-12-31

    The seasonal course of canopy transpiration and the diurnal courses of latent heat flux of a spring wheat crop were simulated for atmospheric CO{sub 2} concentrations of 370 {micro}mol mol{sup {minus}1} and 550 {micro}mol mol{sup {minus}1}. The hourly weather data, soil parameters and the irrigation and fertilizer treatments of the Free-Air Carbon Dioxide Enrichment wheat experiment in Arizona (1992/93) were used to drive the model. The simulation results were tested against field measurements with special emphasis on the period between anthesis and maturity. A model integrating leaf photosynthesis and stomatal conductance was scaled to a canopy level in order to be used in the wheat growth model. The simulated intercellular CO{sub 2} concentration, C{sub i} was determined from the ratio of C{sub i} to the CO{sub 2} concentration at the leaf surface, C{sub s}, the leaf to air specific humidity deficit and a possibly unfulfilled transpiration demand. After anthesis, the measured assimilation rates of the flag leaves decreased more rapidly than their stomatal conductances, leading to a rise in the C{sub i}/C{sub s} ratio. In order to describe this observation, an empirical model approach was developed which took into account the leaf nitrogen content for the calculation of the C{sub i}/C{sub s} ratio. Simulation results obtained with the new model version were in good agreement with the measurements. If changes in the C{sub i}/C{sub s} ratio accorded to the decrease in leaf nitrogen content during leaf senescence were not considered in the model, simulations revealed an underestimation of the daily canopy transpiration of up to twenty percent and a decrease in simulated seasonal canopy transpiration by ten percent. The measured reduction in the seasonal sum of canopy transpiration and soil evaporation owing to CO{sub 2} enrichment, in comparison, was only about five percent.

  20. Indel-associated mutation rate varies with mating system in flowering plants.

    PubMed

    Hollister, Jesse D; Ross-Ibarra, Jeffrey; Gaut, Brandon S

    2010-02-01

    A recently proposed mutational mechanism, indel-associated mutation (IDAM), posits that heterozygous insertions/deletions (indels) increase the point mutation rate at nearby nucleotides due to errors during meiosis. This mechanism could have especially dynamic consequences for the evolution of plant genomes, because the high degree of variation in the rate of self-fertilization among plant species causes differences in the heterozygosity of alleles, including indel alleles, segregating in plant species. In this study, we investigated the consequences of IDAM for species differing in mating system using both forward population genetic simulations and genomewide DNA resequencing data from Arabidopsis thaliana, Oryza sativa, and Oryza rufipogon. Simulations of different levels of selfing suggest that the effect of IDAM on surrounding nucleotide diversity should decrease with increasing selfing rate. Further simulations incorporating selfing rates and the time of onset of selfing suggest that the time since the switch to selfing also affects patterns of nucleotide diversity due to IDAM. Population genetic analyses of A. thaliana and Oryza DNA sequence data sets empirically confirmed our simulation results, revealing the strongest effect of IDAM in the outcrossing O. rufipogon, a weaker effect in the recently evolved selfer O. sativa, and the weakest effect in the relatively ancient selfer A. thaliana. These results support the novel idea that differences in life history, such as the level of selfing, can affect the per-individual mutation rate among species.

  1. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  2. Restoration and management for plant diversity enhances the rate of belowground ecosystem recovery.

    PubMed

    Klopf, Ryan P; Baer, Sara G; Bach, Elizabeth M; Six, Johan

    2017-03-01

    The positive relationship between plant diversity and ecosystem functioning has been criticized for its applicability at large scales and in less controlled environments that are relevant to land management. To inform this gap between ecological theory and application, we compared recovery rates of belowground properties using two chronosequences consisting of continuously cultivated and independently restored fields with contrasting diversity management strategies: grasslands restored with high plant richness and managed for diversity with frequent burning (n = 20) and grasslands restored with fewer species that were infrequently burned (n = 15). Restoration and management for plant diversity resulted in 250% higher plant richness. Greater recovery of roots and more predictable recovery of the active microbial biomass across the high diversity management strategy chronosequence corresponded with faster recovery of soil structure. The high diversity grasslands also had greater nutrient conservation indicated by lower available inorganic nitrogen. Thus, mesic grasslands restored with more species and managed for high plant diversity with frequent burning enhances the rate of belowground ecosystem recovery from long-term disturbance at a scale relevant to conservation practices on the landscape.

  3. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration

    NASA Astrophysics Data System (ADS)

    McInerney, Francesca A.; Helliker, Brent R.; Freeman, Katherine H.

    2011-01-01

    We analyzed hydrogen isotope ratios of high-molecular weight n-alkanes ( δD l) and oxygen isotope ratios of α-cellulose ( δ18O C) for C 3 and C 4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δD l signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18O C values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δD l values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18O C and δD l. These seemingly contrasting results could be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field. Based on these results, evaporation from soils and/or stems appears to affect δD l, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18O C values. In contrast, the calculated leaf water hydrogen isotope ratios are more enriched than what is required to predict observed δD l values. These calculations lend support to the conclusion that while δ18O C reflects both soil

  4. Measurement of Effective Canopy Temperature: The Missing Link to Modeling Transpiration in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Monje, O. A.; McCormack, Ann; Bugbee, Bruce; Jones, Harry W., Jr. (Technical Monitor)

    1994-01-01

    The objectives were to apply energy balance principles to plant canopies, and to determine which parameters are essential for predicting plant canopy transpiration (E) in controlled environments. Transpiration was accurately measured in a gas-exchange system. Absorbed radiation (R(sub abs)) by the canopy was measured with a net radiometer and calculated from short and long-wave radiation components. Average canopy foliar temperature T(sub L) can be measured with an infrared radiometer, but since T(sub L) is seldom uniform, a weighed average measurement of T(sub L) must be made. The effective canopy temperature T(sub C) is that temperature that balances the energy flux between absorbed radiation and latent heat L(sub E) and sensible heat (H) fluxes. TC should exactly equal air temperature T(sub A) when L(sub E) equals R(sub abs). When unnecessary thermal radiation from the lighting system is removed by a water filter, the magnitude of L(sub E) from transpiration approaches Rabs and T(sub C) is close to T(sub A). Unlike field models, we included the energy used in photosynthesis and found that up to 10% of Rabs was used in photosynthesis. We calculated aerodynamic conductance for H from measurements of wind speed and canopy height using the wind profile equation. Canopy aerodynamic conductance ranged from.03 to.04 m/s for wind speeds from.6 to 1 m/s; thus a 0.1 C canopy to air temperature difference results in a sensible heat flux of about 4 W/sq m, which is only 1% of R(sub abs). We examined the ability of wide angle infrared transducers to accurately integrate T(sub L) from the top to the bottom of the canopy. We measured evaporation from the hydroponic media to be approximately 1 micro mol/sq m s or 10% of R(sub abs). This result indicates that separating evaporation from transpiration is more important than exact measurement of canopy temperature.

  5. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    SciTech Connect

    Schroeder, John A.; Bower, Gordon R.

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  6. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Bolstad, Paul V.; Ewers, Brent E.; Desai, Ankur R.; Davis, Kenneth J.; Carey, Eileen V.

    2006-06-01

    Combining sap flux and eddy covariance measurements provides a means to study plant stomatal conductance and the relationship between transpiration and photosynthesis. We measured sap flux using Granier-type sensors in a northern hardwood-dominated old growth forest in Michigan, upscaled to canopy transpiration, and calculated canopy conductance. We also measured carbon and water fluxes with the eddy covariance method and derived daytime gross primary production (GPP). The diurnal patterns of sap flux and canopy transpiration were mainly controlled by vapor pressure deficit (D) and photosynthetically active radiation (PAR). Daily sums of sap flux and canopy transpiration had exponential relationships to D that saturated at higher D and had linear relationships to PAR. Sugar maple (Acer saccharum) and yellow birch (Betula alleghaniesis) had higher sap flux per unit of sapwood area than eastern hemlock (Tsuga canadensis), while sugar maple and hemlock had higher canopy transpiration per unit of leaf area than yellow birch. Sugar maple dominated canopy transpiration per ground area. Canopy transpiration averaged 1.57 mm d-1, accounting for 65% of total evapotranspiration in the growing season. Canopy conductance was controlled by both D and PAR, but the day-to-day variation in canopy conductance mainly followed a negatively logarithmic relationship with D. By removing the influences of PAR, half-hourly canopy conductance was also negatively logarithmically correlated with D. Water use efficiency (WUE) had a strong exponential relationship with D on a daily basis and approached a minimum of 4.4 mg g-1. WUE provides an alternative to estimate GPP from measurements of sap flux.

  7. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  8. Genome-wide investigation reveals high evolutionary rates in annual model plants

    PubMed Central

    2010-01-01

    Background Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. Results According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. Conclusions The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome

  9. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    NASA Astrophysics Data System (ADS)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  10. Wind drives nocturnal, but not diurnal, transpiration in Leucospermum conocarpodendron trees: implications for stilling on the Cape Peninsula.

    PubMed

    Karpul, Rebecca H; West, Adam G

    2016-08-01

    Surface winds have declined in many regions of the world over the past few decades. These trends are referred to as global stilling and have recently been observed in the Western Cape Province of South Africa. The potential consequences of such changes on ecosystem function and productivity are a particular concern for the highly diverse and endemic local flora, largely associated with the fynbos biome. Yet, few studies have directly examined the impact of wind in the region. In this study, we explored the importance of wind and other drivers of plant transpiration (E) in a stand of Leucospermum conocarpodendron (L.) Buek trees on the Cape Peninsula. Wind speeds can be high in the Cape and could play an important role in influencing the rate of E Overall, the influence of wind appeared to be significantly greater at night than during the day. While daytime E responded most strongly to changes in solar radiation (R(2) = 0.79) and vapour pressure deficit (R(2) = 0.57-0.67), night-time E (En) was primarily driven by wind speed (R(2) = 0.30-0.59). These findings have important implications for stilling and other aspects of climate change. Since En was found to be a regular and significant (P < 0.00) component of total daily E (10-27%), plants may conserve water should stilling continue. Still, the extent of this could be offset by strong daytime drivers. As such, plant water consumption will most likely increase in response to a warmer and drier climate. Changes in other biophysical variables are, however, clearly important to consider in the current debate on the impact of climate change.

  11. Low-Reynolds number modelling of flows with transpiration

    NASA Astrophysics Data System (ADS)

    Hwang, C. B.; Lin, C. A.

    2000-03-01

    An improved low-Reynolds number model was adopted to predict the dynamic and thermal fields in flows with transpiration. The performance of the adopted model was first contrasted with the direct numerical simulation (DNS) data of channel flow with uniform wall injection and suction. The validity of the present model applied to flows with a high level of transpiration was further examined. To explore the model's performance in complex environments, the model was applied to simulate a transpired developing channel flow. By contrasting the predictions with DNS data and measurements, the results indicated that the present model reproduced correctly the deceleration and acceleration of the flow caused by the injection and suction from the permeable part of the wall. The turbulence structure of transpired flows was also well captured and the superior performance of the adopted model was reflected by the predicted correct level of with the maximum being located at both the injection and the suction walls. The predicted thermal field by the present model also compared favourably with the DNS data and measurements. Copyright

  12. Transpiration-Cooled Spacecraft-Insulation-Repair Fasteners

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Pettit, Donald R.; Glass, David; Scotti, Stephen J.; Vaughn, Wallace Lee; Rawal, Suraj

    2012-01-01

    Transpiration-cooled fasteners are proposed that operate like an open-loop heat pipe (self-tapping screws, bolts, and spikes) for use in on-orbit repair of thermal- insulation of a space shuttle or other spacecraft. By limiting the temperature rise of such a fastener and of the adjacent repair material and thermal protection system, the transpiration cooling would contribute to the ability of the repair to retain its strength and integrity in the high-heat-flux, oxidizing environment of reentry into the atmosphere of the Earth. A typical fastener according to the proposal would include a hollow refractory-metal, refractory-composite, or ceramic screw or bolt, the central cavity of which would be occupied by a porous refractory- metal or ceramic plug that would act as both a reservoir and a wick for a transpirant liquid. The plug dimensions, the plug material, and the sizes of the pores would be chosen in conjunction with the transpirant liquid so that (1) capillary pumping could be relied upon to transport the liquid to the heated surface, where the liquid would be vaporized, and (2) the amount of liquid would suffice for protecting against the anticipated heat flux and integrated heat load.

  13. Transpiration Cooled Ultraviolet Sol-Gel Silica Optics

    DTIC Science & Technology

    1991-04-01

    462-2358 - FAX: (904) 462-2993 by rapid outflow of gas, and also due to the expansion of the escaping gas (Joule- Thomson effect ).I The net effect...this boundary layer displacement. Transpiration velocities as low as 1.0 cm/s lead to a significant cooling effect. The Joule- Thomson effect is a

  14. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  15. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?

    PubMed

    Lang, Marion; Prestele, Julia; Fischer, Christina; Kollmann, Johannes; Albrecht, Harald

    2016-08-01

    During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment

  16. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  17. Gas crossflow effects on airflow through a wire-form transpiration cooling material

    NASA Technical Reports Server (NTRS)

    Kaufman, A. S.; Russell, L. M.; Poferl, D. J.

    1972-01-01

    An experimental analysis was conducted to determine the effects of gas stream flow parallel to the discharging surface on the flow characteristics of a wire-form porous material. Flow data were obtained over a range of transpiration airflow rates from 0.129 to 0.695/grams per second-centimeter squared and external gas stream Mach numbers from 0 to 0.46. The conclusion was drawn that the flow characteristics of the wire cloth were not significantly affected by the external gas flows.

  18. Clouds homogenize shoot temperatures, transpiration, and photosynthesis within crowns of Abies fraseri (Pursh.) Poiret.

    PubMed

    Hernandez-Moreno, J Melissa; Bayeur, Nicole M; Coley, Harold D; Hughes, Nicole M

    2017-03-01

    Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5-10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.

  19. The effect of temperature on the rate of cyanide metabolism of two woody plants.

    PubMed

    Yu, Xiaozhang; Trapp, Stefan; Zhou, Puhua; Hu, Hao

    2005-05-01

    The response of cyanide metabolism rates of two woody plants to changes in temperature is investigated. Detached leaves (1.0 g fresh weight) from weeping willow (Salix babylonica L.) and Chinese elder (Sambucus chinensis Lindl.) were kept in glass vessels with 100ml of aqueous solution spiked with potassium cyanide for a maximum of 28 h. Ten different temperatures were used ranging from 11 degrees C to 32 degrees C. The disappearance of aqueous cyanide was analyzed spectrophotometrically. The cyanide removal rate of Chinese elder was higher than that of weeping willow at all temperatures. The highest cyanide removal rate for Chinese elder was found at 30 degrees C with a value of 12.6 mg CN kg(-1) h(-1), whereas the highest value of the weeping willow was 9.72 mg CN kg(-1) h(-1) at 32 degrees C. The temperature coefficient values, Q10, which are the ratio of removal rates at a 10 degree difference, were determined for Chinese elder and weeping willow to 1.84 and 2.09, respectively, indicating that the cyanide removal rate of weeping willow was much more susceptible to changes in temperature than that of the Chinese elder. In conclusion, changes in temperature have a substantial influence on the removal rate of cyanide by plants.

  20. Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Provenzano, G.; Manzano-Juárez, J.

    2012-04-01

    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agro-hydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due

  1. Effect, uptake and disposition of nitrobenzene in several terrestrial plants

    SciTech Connect

    McFarlane, C.; Pfleeger, T.; Fletcher, J.

    1990-01-01

    Eight species of plants were exposed to nitrobenzene in a hydroponic solution. Four species experienced no depression of either transpiration or photosynthetic rates, while one was rapidly killed and the other three were temporarily affected but recovered from the treatment. Uptake of nitrobenzene was passive and was shown to be proportional to the rate of water flux in each species. The transpiration stream concentration factor (TSCF) was 0.72. The root concentration factor (RCF) was variable between the species and was higher than expected, presumably due to deposits of insoluble metabolic products. All of the species examined displayed a capacity to chemically alter nonpolar nitrobenzene into both polar and insoluble products. Volatilization of nitrobenzene from the leaves was a major route of chemical loss.

  2. Atmospheric CO2 Enrichment of Water Hyacinths: Effects on Transpiration and Water Use Efficiency

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.; Kimball, Bruce A.; Anderson, Michael G.

    1985-11-01

    Open-top clear plastic wall chambers enclosing pairs of sunken metal stock tanks, one of each pair of which contained a full cover of water hyacinths, were maintained out-of-doors at Phoenix, Arizona for several weeks during the summer of 1984. One of these chambers represented ambient conditions, while the other three were continuously enriched with carbon dioxide to approximate target concentrations of 500, 650, and 900 ppm. During a 4-week period when plant growth was at its maximum, water hyacinth biomass production increased by 36% for a 300-600 ppm doubling of the atmospheric CO2 content, while water use efficiency, or the biomass produced per unit of water transpired, actually doubled. These results are similar to what has been observed in several terrestrial plants and they indicate the general trend which may be expected to occur as atmospheric CO2 continues to rise in the years ahead.

  3. Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates

    SciTech Connect

    Mahapatra, P.; Zitney, S.

    2012-01-01

    As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  4. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  5. [Morphophysiological and biochemical characteristics of potato plants with various expression rates of the Δ12 acyl-lipid desaturase gene].

    PubMed

    Zagoskina, N V; Priadekhina, E V; Lapshin, P V; Iur'eva, N O; Goldenkova-Pavlova, I V

    2014-01-01

    This paper reports on morphophysiological and biochemical characteristics of control and potato plants (Solarium tuberosum L., Skoroplodnyi cultivar) transformed with the Δ12 acyl-lipid desaturase gene (desA) grown long-term in vitro. The transformed plants showed faster growth and faster ontogenesis as compared to controls, which was accompanied with changes in the accumulation of photosynthetic pigments (chlorophylls a and b, carotenoids) and phenolic compounds, including flavonoids in the leaves. These characteristics were pronounced to a high degree in Line II plants with high expression rates of the desA gene, whereas Line I plants (moderate expression rate) were similar to control plants in many parameters.

  6. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    USGS Publications Warehouse

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  7. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines.

    PubMed

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-02-10

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate.

  8. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines

    PubMed Central

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-01-01

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate. PMID:28186201

  9. Trade-Offs between the Metabolic Rate and Population Density of Plants

    PubMed Central

    Deng, Jian-Ming; Li, Tao; Wang, Gen-Xuan; Liu, Jing; Yu, Ze-Long; Zhao, Chang-Ming; Ji, Ming-Fei; Zhang, Qiang; Liu, Jian-quan

    2008-01-01

    The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and −3/4 or −2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (Mp) or leaf mass (ML) vs. body mass (β); population density vs. body mass (δ); and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate) and population density varied with the environmental conditions. However, the ratio between the two exponents was −1 (i.e. β/δ = −1) and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents. PMID:18350139

  10. Estimation of the in vivo recombination rate for a plant RNA virus.

    PubMed

    Tromas, Nicolas; Zwart, Mark P; Poulain, Maïté; Elena, Santiago F

    2014-03-01

    Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (rg) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of rg = 7.762 × 10(-8) recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of rg = 3.427 × 10(-5) recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.

  11. Extinction rate estimates for plant populations in revisitation studies: Importance of detectability

    USGS Publications Warehouse

    Kery, M.

    2004-01-01

    Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.

  12. Effects of elevated pressure on rate of photosynthesis during plant growth.

    PubMed

    Takeishi, Hiroyuki; Hayashi, Jun; Okazawa, Atsushi; Harada, Kazuo; Hirata, Kazumasa; Kobayashi, Akio; Akamatsu, Fumiteru

    2013-10-20

    The aim of this study is to investigate the effects of an artificially controlled environment, particularly elevated total pressure, on net photosynthesis and respiration during plant growth. Pressure directly affects not only cells and organelles in leaves but also the diffusion coefficients and degrees of solubility of CO2 and O2. In this study, the effects of elevated total pressure on the rates of net photosynthesis and respiration of a model plant, Arabidopsis thaliana, were investigated in a chamber that newly developed in this study to control the total pressure. The results clearly showed that the rate of respiration decreased linearly with increasing total pressure at a high humidity. The rate of respiration decreased linearly with increasing total pressure up to 0.2 MPa, and increased with increasing total pressure from 0.3 to 0.5 MPa at a low humidity. The rate of net photosynthesis decreased linearly with increasing total pressure under a constant partial pressure of CO2 at 40 Pa. On the other hand, the rate of net photosynthesis was clearly increased by up to 1.6-fold with increasing total pressure and partial pressure of CO2.

  13. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  14. Comparison of root water uptake modules using either the surface energy balance or potential transpiration

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Varado, Noémie; Olioso, Albert

    2005-01-01

    Numerical models simulating changes in soil water content with time rely on accurate estimation of root water uptake. This paper considers two root water uptake modules that have a compensation mechanism allowing for increased root uptake under conditions of water stress. These modules, proposed by Lai and Katul and Li et al. [Adv. Water Resour. 23 (2000) 427 and J. Hydrol. 252 (2001) 189] use potential transpiration weighted, for each soil layer, by a water stress and a compensation function in order to estimate actual transpiration. The first objective of the paper was to assess the accuracy of the proposed root extraction modules against two existing data sets, acquired under dry conditions for a winter wheat and a soybean crop. In order to perform a fair comparison, both modules were included as possible root water extraction modules within the Simple Soil Plant Atmosphere Transfer (SiSPAT) model. In this first set of simulations, actual transpiration was calculated using the solution of the surface energy budget as implemented in the SiSPAT model. Under such conditions, both root extraction modules were able to reproduce accurately the time evolution of soil moisture at various depths, soil water storage and daily evaporation. Results were generally improved when we activated the compensation mechanisms. However, we showed that Lai and Katul [Adv. Water Resour. 23 (2000) 427] module was sensitive to soil hydraulic properties through its water stress function, whereas the Li et al. [J. Hydrol. 252 (2001) 189] module was not very sensitive to the specification of its parameter. The latter module is therefore recommended for inclusion into a larger scale hydrological model, due to its robustness. When water balance models are run at larger scales or on areas with scarce data, actual transpiration is often calculated using models based on potential transpiration without solving the surface energy balance. The second objective of the paper was to assess the loss of

  15. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes

    PubMed Central

    Hughes, Colin; Eastwood, Ruth

    2006-01-01

    Species radiations provide unique insights into evolutionary processes underlying species diversification and patterns of biodiversity. To compare plant diversification over a similar time period to the recent cichlid fish radiations, which are an order of magnitude faster than documented bird, arthropod, and plant radiations, we focus on the high-altitude flora of the Andes, which is the most species-rich of any tropical mountains. Because of the recent uplift of the northern Andes, the upland environments where much of this rich endemic flora is found have been available for colonization only since the late Pliocene or Pleistocene, 2–4 million years (Myr) ago. Using DNA sequence data we identify a monophyletic group within the genus Lupinus representing 81 species endemic to the Andes. The age of this clade is estimated to be 1.18–1.76 Myr, implying a diversification rate of 2.49–3.72 species per Myr. This exceeds previous estimates for plants, providing the most spectacular example of explosive plant species diversification documented to date. Furthermore, it suggests that the high cichlid diversification rates are not unique. Lack of key innovations associated with the Andean Lupinus clade suggests that diversification was driven by ecological opportunities afforded by the emergence of island-like habitats after Andean uplift. Data from other genera indicate that lupines are one of a set of similarly rapid Andean plant radiations, continental in scale and island-like in stimulus, suggesting that the high-elevation Andean flora provides a system that rivals other groups, including cichlids, for understanding rapid species diversification. PMID:16801546

  16. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration

    PubMed Central

    Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg

    2007-01-01

    Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993

  17. Fire and grazing influences on rates of riparian woody plant expansion along grassland streams.

    PubMed

    Veach, Allison M; Dodds, Walter K; Skibbe, Adam

    2014-01-01

    Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources) were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1-2 years) did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1-2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency.

  18. Fire and Grazing Influences on Rates of Riparian Woody Plant Expansion along Grassland Streams

    PubMed Central

    Veach, Allison M.; Dodds, Walter K.; Skibbe, Adam

    2014-01-01

    Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources) were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1–2 years) did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1–2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency. PMID:25192194

  19. Studies of shock/shock interaction on smooth and transpiration-cooled hemispherical nosetips in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen M.

    1992-01-01

    A program of experimental research and analysis was conducted to examine the heat transfer and pressure distributions in regions of shock/shock interaction over smooth and transpiration-cooled hemispherical noseshapes. The objective of this investigation was to determine whether the large heat transfer generated in regions of shock/shock interaction can be reduced by transpiration cooling. The experimental program was conducted at Mach numbers of 12 to 16 in the Calspan 48-Inch Shock Tunnel. Type 3 and type 4 interaction regions were generated for a range of freestream unit Reynolds numbers to provide shear layer Reynolds numbers from 10 exp 4 to 10 exp 6 to enable laminar and turbulent interaction regions to be studied. Shock/shock interactions were investigated on a smooth hemispherical nosetip and a similar transpiration-cooled nosetip, with the latter configuration being examined for a range of surface blowing rates up to one-third of the freestream mass flux. While the heat transfer measurements on the smooth hemisphere without shock/shock interaction were in good agreement with Fay-Riddell predictions, those on the transpiration-cooled nosetip indicated that its intrinsic roughness caused heating-enhancement factors of over 1.5. In the shock/shock interaction studies on the smooth nosetip, detailed heat transfer and pressure measurements were obtained to map the variation of the distributions with shock-impingement position for a range of type 3 and type 4 interactions. Such sets of measurements were obtained for a range of unit Reynolds numbers and Mach numbers to obtain both laminar and turbulent interactions. The measurements indicated that shear layer transition has a significant influence on the heating rates for the type 4 interaction as well as the anticipated large effects on type 3 interaction heating. In the absence of blowing, the peak heating in the type 3 and type 4 interaction regions, over the transpiration-cooled model, did not appear to be

  20. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  1. Life history influences rates of climatic niche evolution in flowering plants.

    PubMed

    Smith, Stephen A; Beaulieu, Jeremy M

    2009-12-22

    Across angiosperms, variable rates of molecular substitution are linked with life-history attributes associated with woody and herbaceous growth forms. As the number of generations per unit time is correlated with molecular substitution rates, it is expected that rates of phenotypic evolution would also be influenced by differences in generation times. Here, we make the first broad-scale comparison of growth-form-dependent rates of niche evolution. We examined the climatic niches of species on large time-calibrated phylogenies of five angiosperm clades and found that woody lineages have accumulated fewer changes per million years in climatic niche space than related herbaceous lineages. Also, climate space explored by woody lineages is consistently smaller than sister lineages composed mainly of herbaceous taxa. This pattern is probably linked to differences in the rate of climatic niche evolution. These results have implications for niche conservatism; in particular, the role of niche conservatism in the distribution of plant biodiversity. The consistent differences in the rate of climatic niche evolution also emphasize the need to incorporate models of phenotypic evolution that allow for rate heterogeneity when examining large datasets.

  2. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton.

    PubMed

    Song, Xin; Loucos, Karen E; Simonin, Kevin A; Farquhar, Graham D; Barbour, Margaret M

    2015-04-01

    The two-pool and Péclet effect models represent two theories describing mechanistic controls underlying leaf water oxygen isotope composition at the whole-leaf level (δ(18) OL ). To test these models, we used a laser spectrometer coupled to a gas-exchange cuvette to make online measurements of δ(18) O of transpiration (δ(18) Otrans ) and transpiration rate (E) in 61 cotton (Gossypium hirsutum) leaves. δ(18) Otrans measurements permitted direct calculation of δ(18) O at the sites of evaporation (δ(18) Oe ) which, combined with values of δ(18) OL from the same leaves, allowed unbiased estimation of the proportional deviation of enrichment of δ(18) OL from that of δ(18) Oe (f) under both steady-state (SS) and non-steady-state (NSS) conditions. Among all leaves measured, f expressed relative to both δ(18) O of transpired water (ftrans ) and source water (fsw ) remained relatively constant with a mean ± SD of 0.11 ± 0.05 and 0.13 ± 0.05, respectively, regardless of variation in E spanning 0.8-9.1 mmol m(-2)  s(-1) . Neither ftrans nor fsw exhibited a significant difference between the SS and NSS leaves at the P < 0.05 level. Our results suggest that the simpler two-pool model is adequate for predicting cotton leaf water enrichment at the whole-leaf level. We discuss the implications of adopting a two-pool concept for isotopic applications in ecological studies.

  3. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates

    SciTech Connect

    De Graaff, Marie-Anne; Classen, Aimee T; Castro Gonzalez, Hector F; Schadt, Christopher Warren

    2010-01-01

    Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g{sup -1} soil) to soils amended with and without {sup 13}C-labeled plant residue. We measured CO{sub 2} respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g{sup -1}) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g{sup -1}) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g{sup -1}) reduced decomposition (-50%). Concurrently, high exudate concentrations (> 3.6 mg C g{sup -1}) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g{sup -1}) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.

  4. The effects of plant dispersion and prey density on parasitism rates in a naturally patchy habitat.

    PubMed

    Doak, P

    2000-03-01

    Despite extensive research on parasitoid-prey interactions and especially the effects of heterogeneity in parasitism on stability, sources of heterogeneity other than prey density have been little investigated. This research examines parasitism rates by three parasitoid species in relationship to prey density and habitat spatial pattern. The herbivore Itame andersoni (Geometridae) inhabits a subdivided habitat created by patches of its host plant, Dryas drummondii, in the Wrangell Mountains of Alaska. Dryas colonizes glacial moraines and spreads clonally to form distinct patches. Habitat subdivision occurs both on the patch scale and on the larger spatial scale of sites due to patchy successional patterns. Itame is attacked by three parasitoids: an ichneumonid wasp (Campoletis sp.), a braconid wasp (Aleiodes n. sp.), and the tachinid fly (Phyrxe pecosensis). I performed a large survey study at five distinct sites and censused Itame density and parasitism rates in 206 plant patches for 1-3 years. Parasitism rates varied with both plant patch size and isolation and also between sites, and the highest rates of overall parasitism were in the smallest patches. However, the effects of both small- and large-scale heterogeneity on parasitism differed for the three parasitoid species. There was weak evidence that Itame density was positively correlated with parasitism for the braconid and tachinid at the patch scale, but density effects differed for different patch sizes, patch isolations, and sites. At the site scale, there was no evidence of positive, but some indication of negative density-dependent parasitism. These patterns do not appear to be driven by negative interactions between the three parasitoid species, but reflect, rather, individual differences in habitat use and response to prey density. Finally, there was no evidence that parasitism strongly impacted the population dynamics of Itame. These results demonstrate the importance of considering habitat pattern

  5. Transpiration cooled electrodes and insulators for MHD generators

    DOEpatents

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  6. Water-use efficiency and transpiration across European forests during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Frank, D. C.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N. E.; Schleser, G. H.; Ahlström, A.; Ciais, P.; Friedlingstein, P.; Levis, S.; Lomas, M.; Sitch, S.; Viovy, N.; Andreu-Hayles, L.; Bednarz, Z.; Berninger, F.; Boettger, T.; D`Alessandro, C. M.; Daux, V.; Filot, M.; Grabner, M.; Gutierrez, E.; Haupt, M.; Hilasvuori, E.; Jungner, H.; Kalela-Brundin, M.; Krapiec, M.; Leuenberger, M.; Loader, N. J.; Marah, H.; Masson-Delmotte, V.; Pazdur, A.; Pawelczyk, S.; Pierre, M.; Planells, O.; Pukiene, R.; Reynolds-Henne, C. E.; Rinne, K. T.; Saracino, A.; Sonninen, E.; Stievenard, M.; Switsur, V. R.; Szczepanek, M.; Szychowska-Krapiec, E.; Todaro, L.; Waterhouse, J. S.; Weigl, M.

    2015-06-01

    The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata. However, uncertainties in the magnitude and consequences of the physiological responses of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 +/- 10 and 22 +/- 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

  7. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  8. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  9. DSMC Simulation of thermal transpiration and accomodation pumps

    SciTech Connect

    Hudson, M.L.; Bartel, T.J.

    1998-11-01

    The Direct Simulation Monte Carlo (DSMC) technique is employed to evaluate several configurations of thermal transpiration and accommodation pumps. There is renewed interest in these rarefied flow pumping concepts for Micro-Electro-Mechanical Systems (MEMS) due to advances in micro-fabrication. The simulation results are compared with existing data to understand gas-surface interaction uncertainties in the experiments. Parametric studies are performed to determine the effects of Knudsen number and surface temperature and roughness on the maximum pump pressure ratio.

  10. How Landscape Characteristics Influence Spatial Patterns of Transpiration

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Weiler, M.; Zehe, E.; Blume, T.

    2015-12-01

    Quantifying transpiration in landscapes remains a challenging task. Especially bridging the gap between tree- or plot-scale measurements and information on the landscape scale which could be gathered from remote sensing, digital elevation models or forest inventories still poses considerable problems. These problems reach from errors associated with the measurements to the reliability of representing transpiration amounts by large-scale data. In this study we analyse spatial patterns of sap velocity to identify the importance of tree- or site-specific characteristics for transpiration at the landscape scale. We set up multiple linear regression models for a dataset of daily sap velocities for 61 trees at 24 locations in mixed beech and oak forests in a catchment in Luxemburg, recorded during the growing season of 2014. As predictors we use the tree-specific characteristics species, diameter and height and the site-specific characteristics basal area and number of stems for the respective stands as well as landscape attributes such as aspect, slope position and geology. Analysing the importance of these predictors could be useful for upscaling tree-based measurements to the landscape-scale based on data from digital elevation models, forest inventories or remote sensing. We also assess the temporal dynamics of the importance of tree- vs. site-specific predictors and link them to typical controls for sap flow such as atmospheric demand and soil moisture. First results indicate that site-specific predictors contribute considerably to the explained variance of the linear models. However, remotely sensed information explained very little of the variation in daily sap velocity patterns. Further analyses will quantify to which extent we can use the landscape-scale information from digital elevation models, geology and forest inventories to upscale tree-based transpiration estimates.

  11. Does transpiration matter to the hydrogen isotope ratios of leaf wax n-alkanes? (Invited)

    NASA Astrophysics Data System (ADS)

    McInerney, F. A.; Helliker, B. R.; Freeman, K. H.

    2010-12-01

    Transpiration and evaporation from soils both affect he hydrogen isotope composition of leaf water, but the extent to which they effect the hydrogen isotope ratio of leaf wax lipids is still under debate. To address this question, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes (δDl) and oxygen isotope ratios of α-cellulose (δ18OC) for C3 and C4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δDl signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18OC values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δDl values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18OC and δDl. These seemingly contrasting results can be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field. Based on these results, evaporation from soils and/or stems appears to affect δDl, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18OC values. In contrast, the

  12. Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade

    NASA Astrophysics Data System (ADS)

    Arai, M.; Suidzu, T.

    2013-06-01

    A transpiration cooling system for gas turbine applications has significant benefit for reducing the amount of cooling air and increasing cooling efficiency. In this paper, the porous ceramic coating, which can infiltrate cooling gas, is developed with plasma spraying process, and the properties of the porous coating material such as permeability of cooling gas, thermal conductivity, and adhesion strength are examined. The mixture of 8 wt.% yttria-stabilized zirconia and polyester powders was employed as the coating material, in order to deposit the porous ceramic coating onto Ni-based super alloy substrate. It was shown that the porous ceramic coating has superior permeability for cooling gas. The adhesion strength of the porous coating was low only 20% compared with the thermal barrier coating utilized in current gas turbine blades. Simulation test of hot gas flow around the gas turbine blade verified remarkable reduction of the coating surface temperature by the transpiration cooling mechanism. It was concluded that the transpiration cooling system for the gas turbine could be achieved using the porous ceramic coating developed in this study.

  13. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry.

    PubMed

    Bengtsson, Jan; Janion, Charlene; Chown, Steven L; Leinaas, Hans Petter

    2011-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

  14. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-07-08

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  15. [Rate of microsuccessions: Structure and floristic richness recovery after sod transplantation in alpine plant communities].

    PubMed

    Kipkeev, A M; Cherednichenko, O V; Tekeev, D K; Onipchenko, V G

    2015-01-01

    Reciprocal transplantations of sod pieces have been conducted in alpine plant communities of the northwestern Caucasus. During 25 years, the changes in floristic richness and successional rates have been registered. Study objects were chosen to be. plant communities located along the toposequence from ridges to hollows with gradient of snow. cover thickness increase and vegetation period decrease, namely alpine lichen heath (ALH), Festuca varia grasslands (FVG), Geranium-Hedysarum meadows (GHM), and snow bed communities (SBC). The results of the study confirm the hypothesis about floristic richness of transplanted pieces to come closer to that of a background acceptor community. It is shown that during succession the variability reduces if sod pieces from different communities are transplanted into a common one. In particular, this is evident in case of SBC, where floristic richness of sod pieces transplanted from ALH and GHM has reduced noticeably. Also, it is evident from the results that the more different are donor and acceptor communities the higher is the rate of their changing. However, the assumption of higher succession rate in more productive communities has not been affirmed. On the opposite, communities with initially low productivity turned out to change faster than those with high productivity. It is found out that sod pieces transplanted to upper areas of the toposequence have had higher rate of alteration in comparison with those transplanted to lower areas. The reason behind this, as it may be suggested, is a longer growth season, which means a more prolonged period of high functional activity, and, accordingly, more time for the effects of competition, bringing seeds over, etc. In whole, the rate of succession decreases as the time from the moment of transplantation.increases, especially in communities with low productivity.

  16. Highly individualistic rates of plant phenological advance associated with arctic sea ice dynamics.

    PubMed

    Post, Eric; Kerby, Jeffrey; Pedersen, Christian; Steltzer, Heidi

    2016-12-01

    We analysed 12 years of species-specific emergence dates of plants at a Low-Arctic site near Kangerlussuaq, Greenland to investigate associations with sea ice dynamics, a potential contributor to local temperature variation in near-coastal tundra. Species displayed highly variable rates of phenological advance, from a maximum of -2.55 ± 0.17 and -2.93 ± 0.51 d yr(-1) among a graminoid and forb, respectively, to a minimum of -0.55 ± 0.19 d yr(-1) or no advance at all in the two deciduous shrub species. Monthly Arctic-wide sea ice extent was a significant predictor of emergence timing in 10 of 14 species. Despite variation in rates of advance among species, these rates were generally greatest in the earliest emerging species, for which monthly sea ice extent was also the primary predictor of emergence. Variation among species in rates of phenological advance reshuffled the phenological community, with deciduous shrubs leafing out progressively later relative to forbs and graminoids. Because early species advanced more rapidly than late species, and because rates of advance were greatest in species for which emergence phenology was associated with sea ice dynamics, accelerating sea ice decline may contribute to further divergence between early- and late-emerging species in this community.

  17. How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

    2013-04-01

    Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores

  18. Characteristics of microbial volatile organic compound flux rates from soil and plant litter

    NASA Astrophysics Data System (ADS)

    Gray, C. M.; Fierer, N.

    2013-12-01

    Our knowledge of microbial production and consumption of volatile organic compounds (VOCs) from soil and litter, as well as which microorganisms are involved, is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, precipitation patterns, and atmospheric VOC concentrations, it is unknown how microbial production and consumption of VOCs from litter and soil will respond. We have spent the last 5 years quantifying VOC flux rates in decaying plant litter, mineral soils and from a subalpine field site using a proton transfer reaction mass spectrometer (PTR-MS). Microbial production, relative to abiotic sources, accounted for 78% to 99% of the total VOC emissions from decomposing litter, highlighting the importance of microbial metabolisms in these systems. Litter chemistry correlated with the types of VOCs emitted, of which, methanol was emitted at the highest rates from all studies. The net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. In the field, the root system contributed to 53% of the carbon that was emitted as VOCs from the soil with increasing air temperatures correlating to an increase in VOC flux rates from the soil system. Finally, we are currently utilizing next generation sequencing techniques (Illumina MiSeq) along with varying concentrations of isoprene, the third most abundant VOC in the atmosphere behind methane and methanol, above soils in a laboratory incubation to determine consumption rates and the microorganisms (bacteria, archaea and fungi) associated with the

  19. Evapo-transpiration, role of aerosol radiative forcing: a study over a dense canopy

    NASA Astrophysics Data System (ADS)

    Bhanage, VInayak; Latha, R.; Murthy, B. S.

    2016-05-01

    Current study uses Satellite and Reanalysis data to quantify the effect of aerosol on ET at various space and time scales. All the data are obtained for the period June 2008 to May 2009 over Dibrugarh district, Assam, Indi a where NDVI has limited change of through the year. Monthly Evapo-Transpiration (ET, cumulative), Normalized Difference Vegetation Index (NDVI) and Aerosol Optical Depth (AOD) are retrieved from satellite images of Terra-MODIS. The AOD data are evaluated against in-situ observations. Maximum values of AOD are observed in the pre-monsoon season while minimum AOD values are perceived in October and November. Aerosol Radiative Forcing (ARF) is calculated by using the MERRA data sets of `clean-clear radiation' and `clear-radiation' at surface over the study area. Maximum aerosol radiative forcing is observed during the pre-monsoon season; this is in tune with ground observations. Strong positive correlation (r=0.75) between ET and NDVI is observed and it is found that the dense vegetative surfaces exhibit higher rate of evapo-transpiration. A strong positive correlation (r= -0.85) between ARF at surface and AOD is observed with radiative forcing efficiency of 35 W/m2. A statistical regression equation of ET a s a function of NDVI and AOD i.e. ET = 0.25 + (-84.27) * AOD + (131.51) * NDVI, is obtained that shows a correlation of 0.824.

  20. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2007-02-01

    The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems.

  1. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model.

    PubMed

    Perämäki, M; Nikinmaa, E; Sevanto, S; Ilvesniemi, H; Siivola, E; Hari, P; Vesala, T

    2001-08-01

    A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookeâ s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyytiälä, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.

  2. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    PubMed

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.