Science.gov

Sample records for plant volatile emission

  1. Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions.

    PubMed

    Farré-Armengol, Gerard; Filella, Iolanda; Llusia, Joan; Peñuelas, Josep

    2016-10-01

    Due to their antimicrobial effects and their potential role as carbon sources, plant volatile organic compound (VOC) emissions play significant roles in determining the characteristics of the microbial communities that can establish on plant surfaces. Furthermore, epiphytic microorganisms, including bacteria and fungi, can affect plant VOC emissions in different ways: by producing and emitting their own VOCs, which are added to and mixed with the plant VOC blend; by affecting plant physiology and modifying the production and emission of VOCs; and by metabolizing the VOCs emitted by the plant. The study of the interactions between plant VOC emissions and phyllospheric microbiotas is thus of great interest and deserves more attention.

  2. Exogenous methyl jasmonate induces volatile emissions in cotton plants.

    PubMed

    Rodriguez-Saona, C; Crafts-Brandner, S J; Paré, P W; Henneberry, T J

    2001-04-01

    We investigated the effect of exogenous methyl jasmonate (MeJA) on the emission of herbivore-induced volatiles; these volatile chemicals can signal natural enemies of the herbivore to the damaged plant. Exogenous treatment of cotton cv. Deltapine 5415 plants with MeJA induced the emission of the same volatile compounds as observed for herbivore-damaged plants. Cotton plants treated with MeJA emitted elevated levels of the terpenes (E)-beta-ocimene, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, (E)-beta-farnesene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene compared to untreated controls. Other induced components included (Z)-3-hexenyl acetate, methyl salicylate, and indole. Methyl jasmonate treatment did not cause the release of any of the stored terpenes such as alpha-pinene, beta-pinene, alpha-humulene, and (E)-beta-caryophyllene. In contrast, these compounds were emitted in relatively large amounts from cotton due to physical disruption of glands by the herbivores. The timing of volatile release from plants treated with MeJA or herbivores followed a diurnal pattern, with maximal volatile release during the middle of the photoperiod. Similar to herbivore-treated plants, MeJA treatment led to the systemic induction of (Z)-3-hexenyl acetate, (E)-beta-ocimene, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, (E)-beta-farnesene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. Our results indicate that treatment of cotton with MeJA can directly and systemically induce the emission of volatiles that may serve as odor cues in the host-search behavior of natural enemies.

  3. Volatile organic compound emission profiles of four common arctic plants

    NASA Astrophysics Data System (ADS)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine; Rinnan, Riikka

    2015-11-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions and the MT and SQT emissions standardized to 30 °C were highest in the first measurement in early July, while the other species had the highest emissions in the last measurement in early August. As climate change is expected to increase plant biomass and change vegetation composition in the Arctic, the BVOC emissions from arctic ecosystems will also change. Our results suggest that if the abundance of deciduous shrubs like Betula and Salix spp. increases at the expense of slower growing evergreens like E. hermaphroditum, there is the potential for increased emissions of isoprene, MTs and non-isoprenoid BVOCs in the Arctic.

  4. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  5. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field

    USDA-ARS?s Scientific Manuscript database

    Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of tra...

  6. Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants.

    PubMed

    Rodriguez-Saona, Cesar; Crafts-Brandner, Steven J; Cañas, Luis A

    2003-11-01

    Plants are commonly attacked by more than one species of herbivore, potentially causing the induction of multiple, and possibly competing, plant defense systems. In the present paper, we determined the interaction between feeding by the phloem feeder silverleaf whitefly (SWF), Bemisia tabaci Gennadius (B-biotype = B. argentifolii Bellows and Perring), and the leaf-chewing beet armyworm (BAW), Spodoptera exigua Hübner, with regard to the induction of volatile compounds from cotton plants. Compared to undamaged control plants, infestation with SWF did not induce volatile emissions or affect the number and density of pigment glands that store volatile and nonvolatile terpenoid compounds, whereas infestation by BAW strongly induced plant volatile emission. When challenged by the two insect herbivores simultaneously, volatile emission was significantly less than for plants infested with only BAW. Our results suggest that tritrophic level interactions between cotton, BAW, and natural enemies of BAW, that are known to be mediated by plant volatile emissions, may be perturbed by simultaneous infestation by SWF. Possible mechanisms by which the presence of whiteflies may attenuate volatile emissions from caterpillar-damaged cotton plants are discussed.

  7. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    PubMed Central

    Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction

  8. Population density and feeding duration of cabbage looper larvae on tomato plants alter the levels of plant volatile emissions.

    PubMed

    Miresmailli, Saber; Gries, Regine; Gries, Gerhard; Zamar, Ruben H; Isman, Murray B

    2012-01-01

    As part of their indirect defense, plants under herbivore attack release volatile chemicals that attract natural enemies of the herbivore. This is a very well-documented phenomenon. However, relatively few studies have investigated the response of plants to different population levels of herbivores and their feeding duration. Working with larvae of the cabbage looper, Trichoplusia ni (Hübner), and tomato plants, Lycopersicon esculentum Mill cv. clarence, and using an ultrafast gas chromatograph (the zNose™) for volatile analyses, the authors studied the effect of larval density and feeding duration on levels of plant volatile emissions. Intense herbivory caused higher emission levels of the herbivore-induced plant volatiles (HIPVs) (Z)-3-hexenyl acetate, (E)-β-ocimene and β-caryophyllene than those caused by moderate herbivory. When herbivory had ceased following 12-24 h of larval feeding, plants kept releasing HIPVs at a high level for a longer period of time than they did following only 6 h of larval feeding. The plants' slow adjustment in their volatile emissions following prolonged larval feeding might be strategic, as such feeding is more likely to have ceased just temporarily. This information may help in the development of a pest monitoring system that is based on herbivore-induced plant volatiles. Copyright © 2011 Society of Chemical Industry.

  9. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1

    PubMed Central

    Gouinguené, Sandrine P.; Turlings, Ted C.J.

    2002-01-01

    Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583

  10. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2012-11-01

    As volatile organic compounds (VOCs) significantly affect atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects), emission inventories defining regional and global biogenic VOC emission strengths are important. The aim of this work was to achieve a description of VOC emissions from poorly described tropical vegetation to be compared with the quite well investigated and highly heterogeneous emissions from Mediterranean vegetation. For this task, common plant species of both ecosystems were investigated. Sixteen plant species from the Mediterranean area, which is known for its special diversity in VOC emitting plant species, were chosen. In contrast, little information is currently available regarding emissions of VOCs from tropical tree species at the leaf level. Twelve plant species from different environments of the Amazon basin, i.e. Terra firme, Várzea and Igapó, were screened for emission of VOCs at leaf level with a branch enclosure system. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was quantitatively the most dominant compound emitted followed by monoterpenes, methanol and acetone. Most of the Mediterranean species emitted a variety of monoterpenes, whereas only five tropical species were monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene > limonene > sabinene > β-pinene). Mediterranean plants showed additional emissions of sesquiterpenes, whereas in the case of plants from the Amazon region no sesquiterpenes were detected probably due to a lack of sensitivity in the measuring systems. On the other hand methanol emissions, an indicator of growth, were common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions

  11. Controls on the emission of plant volatiles through stomata: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Reichstein, Markus

    2003-04-01

    According to experimental studies, plant emissions of volatile organic compounds (VOC) are controlled by stomata to a varying extent, but the differing responses could not be explained so far. A dynamic emission model developed in a previous study indicated that stomata may limit the emission rate in a nonsteady state conditions, whereas the rate of increase of liquid-phase volatile concentrations controls the degree to which stomata temporarily curtail the emission. Despite its large predictive capability, potentially large number of volatile physico-chemical and leaf structural variables are needed for parameterization of such dynamic models, limiting the usefulness of the approach. We conducted a sensitivity analysis to determine the effect of varying VOC distribution between gas- and liquid-phases (Henry's law constant, H, Pa m3 mol-1) and varying internal diffusion conductances in the liquid- and gas-phases. The model was parameterized for three contrasting leaf architectures (conifer, sclerophyll, and mesophytic leaves). The sensitivity analysis indicated that the volatile H value is the key variable affecting the stomatal sensitivity of VOC emissions. Differences in leaf architecture, in particular in leaf liquid volume to area ratio, also modified the emission responses to changes in stomatal aperture, but these structural effects were superimposed by compound gas/liquid phase partitioning. The results of this analysis indicate that major effort in parameterization of dynamic VOC emission models should be directed toward obtaining reliable gas/liquid-phase equilibria for various plant volatiles, and that these models may readily be applied for leaves with contrasting architecture.

  12. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.

    PubMed

    Robert, Christelle Aurélie Maud; Erb, Matthias; Hiltpold, Ivan; Hibbard, Bruce Elliott; Gaillard, Mickaël David Philippe; Bilat, Julia; Degenhardt, Jörg; Cambet-Petit-Jean, Xavier; Turlings, Ted Christiaan Joannes; Zwahlen, Claudia

    2013-06-01

    Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above- and below ground. The transformation, which resulted in the constitutive emission of (E)-β-caryophyllene and α-humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)-β-caryophyllene-synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)-β-caryophyllene and α-humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.

  13. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    PubMed Central

    Menzel, Tila R.; Weldegergis, Berhane T.; David, Anja; Boland, Wilhelm; Gols, Rieta; van Loon, Joop J. A.; Dicke, Marcel

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant’s phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation. PMID:25318119

  14. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  15. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous

  16. Emission of volatile organic compounds (VOC) from tropical plant species in India.

    PubMed

    Padhy, P K; Varshney, C K

    2005-06-01

    Foliar emission of volatile organic compounds (VOC) from common Indian plant species was measured. Dynamic flow enclosure technique was used and the gas samples were collected onto Tenax-GC/Carboseive cartridges. The Tenax-GC/Carboseive cartridges were attached to the thermal disorber sample injection system and the gas sample was analysed using gas chromatography (GC) with flame ionisation detection (FID). Fifty-one local plant species were screened, out of which 36 species were found to emit VOC (4 high emitter; 28 moderate emitter; and 4 low-emitter), while in the remaining 15 species no VOC emission was detected or the levels of emission were below detection limit (BDL). VOC emission was found to vary from one species to another. There was a marked seasonal and diurnal variation in VOC emission. The minimum and maximum VOC emission values were < 0.1 and 87 microgg(-1) dry leaf h(-1) in Ficus infectoria and Lantana camara respectively. Out of the 51 plant species studied, 13 species are reported here for the first time. Among the nine tree species (which were selected for detailed study), the highest average hourly emission (9.69+/-8.39 microgg(-1) dry leaf) was observed in Eucalyptus species and the minimum in Syzygium jambolanum (1.89+/-2.48 microgg(-1) dry leaf). An attempt has been made to compare VOC emission from different plant species between present study and the literature (tropical and other regions).

  17. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.

    PubMed

    Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka

    2015-10-01

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.

  18. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  19. Volatile squalene from a nonseed plant Selaginella moellendorffii: Emission and biosynthesis.

    PubMed

    Jiang, Yifan; Chen, Hao; Chen, Xinlu; Köllner, Tobias G; Jia, Qidong; Wymore, Troy W; Wang, Fei; Chen, Feng

    2015-11-01

    The triterpene squalene is a key metabolic intermediate for sterols, hopanoids and various other triterpenoids. The biosynthesis of squalene is catalyzed by squalene synthase (SQS), which converts two molecules of farnesyl diphosphate to squalene. In this study, a lycophyte Selaginella moellendorffii was found to emit squalene as a volatile compound under a number of conditions that mimic biotic stresses. Searching the genome sequence of S. moellendorffii led to the identification of a putative squalene synthase gene. It was designated as SmSQS. SmSQS is homologous to known squalene synthases from other plants and animals at both the amino acid level and structural level. Recombinant SmSQS expressed in Escherichia coli catalyzed the formation of squalene using farnesyl diphosphate as substrate. The expression of SmSQS was significantly induced by the same set of stress factors that induced the emission of volatile squalene from S. moellendorffii plants. Taken together, these results support that SmSQS is responsible for the biosynthesis of volatile squalene and volatile squalene may have a role in the defense of S. moellendorffii plants against biotic stresses.

  20. Duration of emission of volatile organic compounds from mechanically damaged plant leaves.

    PubMed

    Smith, Lincoln; Beck, John J

    2015-09-01

    Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants. Published by Elsevier GmbH.

  1. The community ecology of isoprene emissions from terrestrial plants and implications for other phytogenic volatiles (Invited)

    NASA Astrophysics Data System (ADS)

    Lerdau, M.; Fuentes, J. D.; Shugart, H. H.

    2013-12-01

    In the 1960's Frits Went published some of the first English language descriptions of volatile organic carbon (VOC) emissions from plants. Within 15 years it was well understood that the dominant phytogenic VOC was isoprene (2-methyl-1,3-butadiene). The years that followed saw a host of studies on the physiology, biochemistry, and molecular biology of isoprene emissions, and many of the most important controls at these scales have been elucidated and incorporated into large-scale models of isoprene emissions to the atmosphere. In addition, extensive surveys of isoprene emissions from high latitude, temperate, and tropical ecosystems have consistently found enormous variations in emissions across taxa, and the mechanisms underlying this variability remain the largest unknown in current models of isoprene emissions. We integrate community ecological modeling with isoprene emissions modeling to develop a predictive model of isoprene emissions across decadal to centennial time scales. The model combines an individual-based model of forest succession that includes architectural and biodiversity changes over succession after disturbance with a species-based canopy-scale emissions model. We parameterize this model for the southeastern United States, a region that is well studied both in terms of forests succession and in terms of isoprene emission. Our results highlight the sensitivity of isoprene emissions to successional stage and species composition. From this effort we predict that the largest impacts of global environmental change on isoprene emissions will occur through effects on community composition and structure rather than through direct impacts on primary and secondary metabolism. We also predict that land use and disturbance history will continue to have dramatic impacts on isoprene emissions from terrestrial ecosystems through their effects on canopy structure and community composition, even in the face of climate change and nutrient deposition. We suggest

  2. Heavy metal stress can prime for herbivore-induced plant volatile emission.

    PubMed

    Winter, Thorsten R; Borkowski, Lena; Zeier, Jürgen; Rostás, Michael

    2012-07-01

    Heavy metals are important pollutants that can severely impact ecological foodwebs. In addition to direct toxic effects, these contaminants have been suggested to disrupt chemical communication channels between plants and insects that rely on volatile organic compounds (VOCs). We investigated how different concentrations of copper (Cu) and cadmium (Cd) stress affect the capacity of Zea mays to synthesize VOCs in the presence and absence of herbivorous insects. Hydroponically grown maize exposed to a high and low concentration of either Cu or Cd showed stunted growth and lower photosynthetic capacities. Herbivores feeding on stressed plants also had attenuated growth rates. Heavy metal treatment alone did not induce VOC emission in maize plants; however, the higher Cu dose was found to prime for enhanced volatile production that can be triggered by caterpillar feeding. Cu stress correlated with increased levels of reactive oxygen species in roots and priming of herbivore-induced jasmonic acid in leaves. Plants challenged with Cd and herbivory did not differ in responses compared with herbivore-damaged controls with no heavy metals added to the substrate. For Cu stress, our results support the 'single biochemical mechanism for multiple stressors' model which predicts overlapping signalling and responses to abiotic and biotic stress factors.

  3. Headspace solid-phase microextraction--comprehensive two-dimensional gas chromatography of wound induced plant volatile organic compound emissions.

    PubMed

    Perera, Ranjini M M; Marriott, Philip J; Galbally, Ian E

    2002-12-01

    Plant emissions of volatile organic compounds from mechanically wounded Agrostis stolonifera, Pennisetum clandestinum, Eucalyptus leucoxylon and Trifolium repens have been sampled by headspace-solid phase microextraction (HS-SPME) and analysed by using comprehensive two-dimensional gas chromatography (GCxGC) for measurement of the plant emissions. GCxGC produces a fingerprint of the volatile organic compounds in a 2D separation space that may be approximately interpreted as a boiling point-polarity space, and may then be presented as a two-dimensional contour plot. This allows identification of sample-dependent variations in component distributions in the 2D plot, which will contain information about plant differences and should therefore facilitate recognition of different plant materials and displays the gross differences in volatiles between each plant species.

  4. Plant specific volatile organic compound emission factors from young and mature leaves of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2010-05-01

    Terrestrial vegetation is the most important source of atmospheric volatile organic compounds (VOC) with significant influence on the chemistry and physics of the atmosphere. VOCs influence the oxidative capacity of the atmosphere and contribute to the formation and growth of secondary organic aerosols affecting cloud development and precipitation. The aim of our study was to investigate potential quantitative and qualitative differences in VOC emission patterns of young and mature leaves for nine typical Mediterranean plant species. The Mediterranean area was chosen due to its special diversity in VOC emitting plant species. Foliar isoprenoid emissions as well as emissions of oxygenated VOC like methanol and acetone were measured under standard light and temperature conditions during spring and summer 2008 at the CEFE-CNRS institute in Montpellier, France. A proton transfer reaction mass spectrometer (PTR-MS) was used for online measurement of VOCs. While PTR-MS is an excellent technique for fast chemical measurements it lacks specificity and compounds with the same mass cannot be distinguished. For this reason, cartridge samples were collected and afterwards analyzed with GC-FID. In parallel offline VOC analyses were performed with gas chromatography (GC) coupled to a mass spectrometer and flame ionization detector, enabling assignment of the observed PTR-MS mass to charge ratios (m/z) to specific identification based on the GC-FID retention times. Thus, combining the PTR-MS and GC-FID analyses enabled accurate and online identification of the VOCs emitted. The results emphasise that VOC emission is a developmentally regulated process and quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced not only the standard emission rate but also the VOC composition, with methanol being the major compound that contributes to the total VOC emissions in young leaves and maintaining or decreasing its contribution with maturity.

  5. Emissions of volatile organic compounds during the decomposition of plant litter

    NASA Astrophysics Data System (ADS)

    Gray, Christopher M.; Monson, Russell K.; Fierer, Noah

    2010-09-01

    Volatile organic compounds (VOCs) are emitted during plant litter decomposition, and such VOCs can have wide-ranging impacts on atmospheric chemistry, terrestrial biogeochemistry, and soil ecology. However, we currently have a limited understanding of the relative importance of biotic versus abiotic sources of these VOCs and whether distinct types of litter emit different types and quantities of VOCs during decomposition. We analyzed VOCs emitted by microbes or by abiotic mechanisms during the decomposition of litter from 12 plant species in a laboratory experiment using proton transfer reaction mass spectrometry (PTR-MS). Net emissions from litter with active microbial populations (non-sterile litters) were between 0 and 11 times higher than emissions from sterile controls over a 20-d incubation period, suggesting that abiotic sources of VOCs are generally less important than biotic sources. In all cases, the sterile and non-sterile litter treatments emitted different types of VOCs, with methanol being the dominant VOC emitted from litters during microbial decomposition, accounting for 78 to 99% of the net emissions. We also found that the types of VOCs released during biotic decomposition differed in a predictable manner among litter types with VOC profiles also changing as decomposition progressed over time. These results show the importance of incorporating both the biotic decomposition of litter and the species-dependent differences in terrestrial vegetation into global VOC emission models.

  6. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory.

    PubMed

    Helms, Anjel M; De Moraes, Consuelo M; Tooker, John F; Mescher, Mark C

    2013-01-02

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant-insect interactions involving plant responses to insect-derived olfactory cues.

  7. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory

    PubMed Central

    Helms, Anjel M.; De Moraes, Consuelo M.; Tooker, John F.; Mescher, Mark C.

    2013-01-01

    Recent work indicates that plants respond to environmental odors. For example, some parasitic plants grow toward volatile cues from their host plants, and other plants have been shown to exhibit enhanced defense capability after exposure to volatile emissions from herbivore-damaged neighbors. Despite such intriguing discoveries, we currently know relatively little about the occurrence and significance of plant responses to olfactory cues in natural systems. Here we explore the possibility that some plants may respond to the odors of insect antagonists. We report that tall goldenrod (Solidago altissima) plants exposed to the putative sex attractant of a closely associated herbivore, the gall-inducing fly Eurosta solidaginis, exhibit enhanced defense responses and reduced susceptibility to insect feeding damage. In a field study, egg-laying E. solidaginis females discriminated against plants previously exposed to the sex-specific volatile emissions of males; furthermore, overall rates of herbivory were reduced on exposed plants. Consistent with these findings, laboratory assays documented reduced performance of the specialist herbivore Trirhabda virgata on plants exposed to male fly emissions (or crude extracts), as well as enhanced induction of the key defense hormone jasmonic acid in exposed plants after herbivory. These unexpected findings from a classic ecological study system provide evidence for a previously unexplored class of plant–insect interactions involving plant responses to insect-derived olfactory cues. PMID:23237852

  8. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  9. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE PAGES

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gasmore » chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. Here, the compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  10. Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control.

    PubMed

    Cheng, Wen-Hsi; Hsu, Shu-Kang; Chou, Ming-Shean

    2008-09-01

    This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000 ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1,000 ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1,000 ppm as CH(4) from primary treatment facilities are less than USD 0.1 for per m(3) wastewater treatment capacity.

  11. Tracing CO2 fluxes and plant volatile organic compound emissions by stable isotopes

    NASA Astrophysics Data System (ADS)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2014-05-01

    Plant metabolic processes exert a large influence on global climate and air quality through the emission of the greenhouse gas CO2 and volatile organic compounds (VOCs). Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as respiratory CO2 emission and VOC synthesis, remains unclear. The vegetation exerts a large isotopic imprint on the atmosphere through both, photosynthetic carbon isotope discrimination and fractionation during respiratory CO2 release (δ13Cres). While the former is well understood, many processes driving carbon isotope fractionation during respiration are unknown1. There are striking differences in variations of δ13Cres between plant functional groups, which have been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate2. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate if carbon isotope fractionation in light and dark respired CO2 is associated with VOC emissions in the atmosphere. Specifically, we hypothesize that a high carbon flux through the pyruvate into various VOC synthesis pathways is associated with a pronounced 13C-enrichment of respired CO2 above the putative substrate, as it involves the decarboxylation of the 13C-enriched C-1 from pyruvate. Based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS) we traced carbon flow into these pathways by pyruvate positional labeling. We demonstrated that in a Mediterranean shrub the 13C-enriched C-1 from pyruvate is released in substantial amounts as

  12. Online, real-time detection of volatile emissions from plant tissue

    PubMed Central

    Harren, Frans J. M.; Cristescu, Simona M.

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357

  13. The Tree Drought Emission MONitor (Tree DEMON), an innovative system for assessing biogenic volatile organic compounds emission from plants.

    PubMed

    Lüpke, Marvin; Steinbrecher, Rainer; Leuchner, Michael; Menzel, Annette

    2017-01-01

    Biogenic volatile organic compounds (BVOC) emitted by plants play an important role for ecological and physiological processes, for example as response to stressors. These emitted compounds are involved in chemical processes within the atmosphere and contribute to the formation of aerosols and ozone. Direct measurement of BVOC emissions requires a specialized sample system in order to obtain repeatable and comparable results. These systems need to be constructed carefully since BVOC measurements may be disturbed by several side effects, e.g., due to wrong material selection and lacking system stability. In order to assess BVOC emission rates, a four plant chamber system was constructed, implemented and throughout evaluated by synthetic tests and in two case studies on 3-year-old sweet chestnut seedlings. Synthetic system test showed a stable sampling with good repeatability and low memory effects. The first case study demonstrated the capability of the system to screen multiple trees within a few days and revealed three different emission patterns of sweet chestnut trees. The second case study comprised an application of drought stress on two seedlings compared to two in parallel assessed seedlings of a control. Here, a clear reduction of BVOC emissions during drought stress was observed. The developed system allows assessing BVOC as well as CO2 and water vapor gas exchange of four tree specimens automatically and in parallel with repeatable results. A canopy volume of 30 l can be investigated, which constitutes in case of tree seedlings the whole canopy. Longer lasting experiments of e.g., 1-3 weeks can be performed easily without any significant plant interference.

  14. The effects of bacterial volatile emissions on plant abiotic stress tolerance.

    PubMed

    Liu, Xiao-Min; Zhang, Huiming

    2015-01-01

    Plant growth-promoting rhizobacteria (PGPR) are beneficial plant symbionts that have been successfully used in agriculture to increase seedling emergence, plant weight, crop yield, and disease resistance. Some PGPR strains release volatile organic compounds (VOCs) that can directly and/or indirectly mediate increases in plant biomass, disease resistance, and abiotic stress tolerance. This mini-review focuses on the enhancement of plant abiotic stress tolerance by bacterial VOCs. The review considers how PGPR VOCs induce tolerance to salinity and drought stress and also how they improve sulfur and iron nutrition in plants. The potential complexities in evaluating the effects of PGPR VOCs are also discussed.

  15. The effects of bacterial volatile emissions on plant abiotic stress tolerance

    PubMed Central

    Liu, Xiao-Min; Zhang, Huiming

    2015-01-01

    Plant growth-promoting rhizobacteria (PGPR) are beneficial plant symbionts that have been successfully used in agriculture to increase seedling emergence, plant weight, crop yield, and disease resistance. Some PGPR strains release volatile organic compounds (VOCs) that can directly and/or indirectly mediate increases in plant biomass, disease resistance, and abiotic stress tolerance. This mini-review focuses on the enhancement of plant abiotic stress tolerance by bacterial VOCs. The review considers how PGPR VOCs induce tolerance to salinity and drought stress and also how they improve sulfur and iron nutrition in plants. The potential complexities in evaluating the effects of PGPR VOCs are also discussed. PMID:26442083

  16. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  17. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field.

    PubMed

    Wason, Elizabeth L; Hunter, Mark D

    2014-02-01

    Volatile organic chemical (VOC) emission by plants may serve as an adaptive plant defense by attracting the natural enemies of herbivores. For plant VOC emission to evolve as an adaptive defense, plants must show genetic variability for the trait. To date, such variability has been investigated primarily in agricultural systems, yet relatively little is known about genetic variation in VOCs emitted by natural populations of native plants. Here, we investigate intraspecific variation in constitutive and herbivore-induced plant VOC emission using the native common milkweed plant (Asclepias syriaca) and its monarch caterpillar herbivore (Danaus plexippus) in complementary field and common garden greenhouse experiments. In addition, we used a common garden field experiment to gauge natural enemy attraction to milkweed VOCs induced by monarch damage. We found evidence of genetic variation in the total constitutive and induced concentrations of VOCs and the composition of VOC blends emitted by milkweed plants. However, all milkweed genotypes responded similarly to induction by monarchs in terms of their relative change in VOC concentration and blend. Natural enemies attacked decoy caterpillars more frequently on damaged than on undamaged milkweed, and natural enemy visitation was associated with higher total VOC concentrations and with VOC blend. Thus, we present evidence that induced VOCs emitted by milkweed may function as a defense against herbivores. However, plant genotypes were equally attractive to natural enemies. Although milkweed genotypes diverge phenotypically in their VOC concentrations and blends, they converge into similar phenotypes with regard to magnitude of induction and enemy attraction.

  18. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles.

    PubMed

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used (13)C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of (13)C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  19. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  20. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?

    PubMed

    Choh, Yasuyuki; Shimoda, Takeshi; Ozawa, Rika; Dicke, Marcel; Takabayashi, Junji

    2004-07-01

    There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive (adsorption of volatiles) response of the uninfested downwind plant. This issue is addressed in the present study. Uninfested lima bean leaves that were exposed to volatiles from conspecific leaves infested with the spider mite Tetranychus urticae, emitted very similar blends of volatiles to those emitted from infested leaves themselves. Treating leaves with a protein-synthesis inhibitor prior to infesting them with spider mites completely suppressed the production of herbivore-induced volatiles in the infested leaves. Conversely, inhibitor treatment to uninfested leaves prior to exposure to volatiles from infested leaves did not affect the emission of volatiles from the exposed, uninfested leaves. This evidence supports the hypothesis that response of the exposed downwind plant is passive. T. urticae-infested leaves that had been previously exposed to volatiles from infested leaves emitted more herbivore-induced volatiles than T. urticae-infested leaves previously exposed to volatiles from uninfested leaves. The former leaves were also more attractive to the predatory mite, Phytoseiulus persimilis, than the latter. This shows that previous exposure of plants to volatiles from herbivore-infested neighbors results in a stronger response of plants in terms of predator attraction when herbivores damage the plant. This supports the hypothesis that the downwind uninfested plant is actively involved. Both adsorption and production of volatiles can mediate the attraction of carnivorous mites to plants that have been exposed to volatiles from infested neighbors.

  1. Ecology of plant volatiles: taking a plant community perspective.

    PubMed

    Pierik, Ronald; Ballaré, Carlos L; Dicke, Marcel

    2014-08-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future. © 2014 John Wiley & Sons Ltd.

  2. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract Parasitoids of the diamondback moth to cabbage plants.

    PubMed

    Charleston, Deidre S; Gols, Rieta; Hordijk, Kees A; Kfir, Rami; Vet, Louise E M; Dicke, Marcel

    2006-02-01

    Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5, were investigated for their impact on the flight response of two parasitoids, Cotesia plutellae and Diadromus collaris. Cotesia plutellae was attracted only to Plutella xylostella-infested cabbage plants in a wind tunnel after an oviposition experience. Female C. plutellae did not distinguish between P. xylostella-infested cabbage plants treated with neem and control P. xylostella-infested plants. However, females preferred infested cabbage plants that had been treated with syringa extract to control infested plants. Syringa extract on filter paper did not attract C. plutellae. This suggests that an interaction between the plant and the syringa extract enhances parasitoid attraction. Diadromus collaris was not attracted to cabbage plants in a wind tunnel and did not distinguish between caterpillar-damaged and undamaged cabbage plants. Headspace analysis revealed 49 compounds in both control cabbage plants and cabbage plants that had been treated with the syringa extract. Among these are alcohols, aldehydes, ketones, esters, terpenoids, sulfides, and an isothiocyanate. Cabbage plants that had been treated with the syringa extract emitted larger quantities of volatiles, and these increased quantities were not derived from the syringa extract. Therefore, the syringa extract seemed to induce the emission of cabbage volatiles. To our knowledge, this is the first example of a plant extract inducing the emission of plant volatiles in another plant. This interesting phenomenon likely explains the preference of C. plutellae parasitoids for cabbage plants that have been treated with syringa extracts.

  3. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Reichstein, Markus

    2003-04-01

    Volatile (VOC) flux from leaves may be expressed as GSΔP, where GS is stomatal conductance to specific compound and ΔP partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in GS are balanced by increases in ΔP such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m3 mol-1). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 103 have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10-2-101 are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance ΔP in response to a decrease in GS is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase.

  4. The biogenic volatile organic compounds emission inventory in France: application to plant ecosystems in the Berre-Marseilles area (France).

    PubMed

    Simon, Valérie; Dumergues, Laurent; Ponche, Jean-Luc; Torres, Liberto

    2006-12-15

    An inventory describing the fluxes of volatile organic compounds (VOCs), isoprene and monoterpenes, and other VOCs (OVOCs) from the biosphere to the atmosphere, has been constructed within the framework of the ESCOMPTE project (fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions). The area concerned, located around Berre-Marseilles, is a Mediterranean region frequently subject to high ozone concentrations. The inventory has been developed using a fine scale land use database for the year 1999, forest composition statistics, emission potentials from individual plant species, biomass distribution, temperature and light intensity. The seasonal variations in emission potentials and biomass were also taken into account. Hourly meteorological data for 1999 were calculated from ALADIN data and these were used to predict the hourly isoprene, monoterpene and OVOC fluxes for the area on a 1 kmx1 km spatial grid. Estimates of annual biogenic isoprene, monoterpene and OVOC fluxes for the reference year 1999 were 20.6, 38.9 and 13.3 kt, respectively, Quercus pubescens, Quercus ilex, Pinus halepensis and garrigue vegetation are the dominant emitting species of the area. VOC emissions from vegetation in this region contribute approximately 94% to the NMVOC (non-methane volatile organic compounds) of natural origin and are of the same order of magnitude as NMVOC emissions from anthropogenic sources. These results complete the global ESCOMPTE database needed to make an efficient strategy for tropospheric ozone reduction policy.

  5. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    NASA Astrophysics Data System (ADS)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  6. Plant volatiles and the environment.

    PubMed

    Loreto, Francesco; Dicke, Marcel; Schnitzler, Jörg-Peter; Turlings, Ted C J

    2014-08-01

    Volatile organic compounds emitted by plants represent the largest part of biogenic volatile organic compounds (BVOCs) released into our atmosphere. Plant volatiles are formed through many biochemical pathways, constitutively and after stress induction. In recent years, our understanding of the functions of these molecules has made constant and rapid progress. From being considered in the past as a mere waste of carbon, BVOCs have now emerged as an essential element of an invisible language that is perceived and exploited by the plants' enemies, the enemies of plant enemies, and neighbouring plants. In addition, BVOCs have important functions in protecting plants from abiotic stresses. Recent advances in our understanding of the role of BVOC in direct and indirect defences are driving further attention to these emissions. This special issue gathers some of the latest and most original research that further expands our knowledge of BVOC. BVOC emissions and functions in (1) unexplored terrestrial (including the soil) and marine environments, (2) in changing climate conditions, and (3) under anthropic pressures, or (4) in complex trophic communities are comprehensively reviewed. Stepping up from scientific awareness, the presented information shows that the manipulation and exploitation of BVOC is a realistic and promising strategy for agricultural applications and biotechnological exploitations.

  7. On-Plant Volatile Analysis Utilizing Solid-Phase Microextraction and a New Volatile Collection Technique

    USDA-ARS?s Scientific Manuscript database

    Volatile emission of plants is typically measured by removal of the plant-part, transportation to a laboratory, and subsequent volatile analyses via a number of accepted methodologies. Studies performed by our laboratory have shown the volatile emission of removed plant parts are essentially identic...

  8. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission.

    PubMed

    Salvaudon, Lucie; De Moraes, Consuelo M; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C

    2013-03-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)--a phytohormone involved in plant defense against whiteflies--and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.

  9. Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission

    PubMed Central

    Salvaudon, Lucie; De Moraes, Consuelo M.; Yang, Jun-Yi; Chua, Nam-Hai; Mescher, Mark C.

    2013-01-01

    Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects. PMID:23299332

  10. Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour

    PubMed Central

    Wei, Jianing; van Loon, Joop J. A.; Gols, Rieta; Menzel, Tila R.; Li, Na; Kang, Le; Dicke, Marcel

    2014-01-01

    The jasmonic acid (JA) and salicylic acid (SA) signalling pathways, which mediate induced plant defence responses, can express negative crosstalk. Limited knowledge is available on the effects of this crosstalk on host-plant selection behaviour of herbivores. We report on temporal and dosage effects of such crosstalk on host preference and oviposition-site selection behaviour of the herbivorous spider mite Tetranychus urticae towards Lima bean (Phaseolus lunatus) plants, including underlying mechanisms. Behavioural observations reveal a dynamic temporal response of mites to single or combined applications of JA and SA to the plant, including attraction and repellence, and an antagonistic interaction between SA- and JA-mediated plant responses. Dose-response experiments show that concentrations of 0.001mM and higher of one phytohormone can neutralize the repellent effect of a 1mM application of the other phytohormone on herbivore behaviour. Moreover, antagonism between the two signal-transduction pathways affects phytohormone-induced volatile emission. Our multidisciplinary study reveals the dynamic plant phenotype that is modulated by subtle changes in relative phytohormonal titres and consequences for the dynamic host-plant selection by an herbivore. The longer-term effects on plant–herbivore interactions deserve further investigation. PMID:24759882

  11. Volatile organic compound emissions during the composting of biosolids from a domestic wastewater treatment plant.

    PubMed

    Ramos, C X; Estévez, S L; Giraldo, E

    2002-01-01

    VOCs emitted by two composting static piles of biosolids coming from the "El Salitre" wastewater treatment plant (Bogotá, Colombia) were analysed during the composting process. Each pile in its sampling time was maintained with a different aeration system. The sampling was made using Solid Phase Microextraction (SPME); separation and identifications were made using Gas Chromatography (GC) coupled to Mass Spectrometry (MS). Aliphatic and aromatic hydrocarbons, chlorinated compounds, ketones, mercaptans, alcohols and amines were identified in concentrations greater than the norms stipulated by the EPA for inhalation in humans beings. The emission behavior varied according to the aeration system used.

  12. Remote sensing of plant emissions of volatile isoprenoids with PRI. Prospects for upscaling (Invited)

    NASA Astrophysics Data System (ADS)

    Penuelas, J.

    2013-12-01

    Josep Peñuelas*1,2, Giovanni Marino1,2,3,4, Joan LLusia1,2, Catherine Morfopoulos1,2,5, Gerard Farre-Armengol1,2, Shawn Kefauver, Alex Guenther6 , Francesca Rapparini7 , Roger Seco1,2,6, Marc Estiarte1,2, Mónica Mejia-Chang1,2, Romà Ogaya1,2, Jordi Sardans1,2 , Andrew Turnipseed6, Peter Harley6, Osvaldo Facini7, Rita Baraldi7, Jim Greenberg6 , Iolanda Filella1,2 1 CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallés 08193, Catalonia, Spain 2 CREAF, Cerdanyola del Vallés 08193, Catalonia, Spain 3 Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy 4 Institute for Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy 5 Division of Ecology and Evolution, Imperial College, Silwood Park, Ascot, SL5 7PY, UK 6 Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA 7 Biometeorology Institute, IBIMET-CNR, Via P. Gobetti 101, Bologna, Italy Abstract Terrestrial plants re-emit around 1-2% of the carbon they fix as isoprene and monoterpenes. These emissions play major roles in the ecological relationships among living organisms and in atmospheric chemistry and climate, and yet their actual quantification at the ecosystem level in different regions is far from being resolved. Phenomenological models are used to estimate the emission rates, but the limited understanding of the function and regulation of these emissions leads to large uncertainties in such estimations. Many measurements have been made at the foliar but few at the ecosystem level, and those that do exist are limited in space and time. We here provide evidence that a simple remote sensing index, the photochemical reflectance index (PRI), which is indicative of light use efficiency (LUE), is a good indirect estimator of foliar isoprenoid emissions and therefore can be used to sense them remotely. These results open

  13. Molecular plant volatile communication.

    PubMed

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  14. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    NASA Astrophysics Data System (ADS)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  15. Development and Application of a Fast Chromatography Technique for Analysis of Biogenic Volatile Organic Compounds in Plant Emissions

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Yamazakii, S.; Kajii, Y. J.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetation constitute the largest fraction (>90 %) of total global non-methane VOC supplied to the atmosphere, yet the chemical complexity of these emissions means that achieving comprehensive measurements of BVOCs, and in particular the less volatile terpenes, is not straightforward. As such, there is still significant uncertainty associated with the contribution of BVOCs to the tropospheric oxidation budget, and to atmospheric secondary organic aerosol (SOA) formation. The rate of BVOC emission from vegetation is regulated by environmental conditions such as light intensity and temperature, and thus can be highly variable, necessitating high time-resolution BVOC measurements. In addition, the numerous monoterpene and sesquiterpene isomers, which are indistinguishable by some analytical techniques, have greatly varying lifetimes with respect to atmospheric oxidants, and as such quantification of each individual isomer is fundamental to achieving a comprehensive characterisation of the impact of BVOCs upon the atmospheric oxidation capacity. However, established measurement techniques for these trace gases typically offer a trade-off between sample frequency and the level of speciation; detailed information regarding chemical composition may be obtained, but with reduced time resolution, or vice versa. We have developed a Fast-GC-FID technique for quantification of a range of monoterpene, sesquiterpene and oxygenated C10 BVOC isomers, which retains the separation capability of conventional gas chromatography, yet offers considerably improved sample frequency. Development of this system is ongoing, but currently a 20 m x 0.18 mm i.d resistively heated metal column is employed to achieve chromatographic separation of thirteen C10-C15 BVOCs, within a total cycle time of ~15 minutes. We present the instrument specifications and analytical capability, together with the first application of this Fast-GC technique

  16. Volatile Organic Compound Emissions from USAF Wastewater Treatment Plants in Ozone Nonattainment Areas

    DTIC Science & Technology

    1994-09-01

    Levels," in Toxicity Reduction in Industrial Effluents. Editors P.W. Lankford and W.W. Eckenfelder , Jr. New York NY: Van Nostrand Reinhold, 1990. 50...Argaman, Yerachmiel. "Stripping of Volatile Organics," in Toxicity Reduction in Industrial Effluents. Editors P.W. Lankford and W.W. Eckenfelder , Jr New

  17. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  18. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants.

    PubMed

    Pangesti, Nurmi; Weldegergis, Berhane T; Langendorf, Benjamin; van Loon, Joop J A; Dicke, Marcel; Pineda, Ana

    2015-08-01

    Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.

  19. Biogenic volatile emissions from the soil.

    PubMed

    Peñuelas, J; Asensio, D; Tholl, D; Wenke, K; Rosenkranz, M; Piechulla, B; Schnitzler, J P

    2014-08-01

    Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.

  20. Emerald ash borer responses to induced plant volatiles

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  1. Duration of emission of volatile organic compounds from mechanically damaged plant leaves

    USDA-ARS?s Scientific Manuscript database

    Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice...

  2. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors.

    PubMed

    Schuman, Meredith C; Allmann, Silke; Baldwin, Ian T

    2015-04-15

    Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse.

  3. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    PubMed

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  4. EMISSION OF VOLATILE COMPOUNDS BY SEEDS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small mammals locate buried wet seeds more efficiently than buried dry seeds. This may be attributable to emission of volatile compounds by the seeds. To test this hypothesis I measured emission of volatile compounds from seeds of three plant species (Pinus contorta, Purshia tr...

  5. EMISSION OF VOLATILE COMPOUNDS BY SEEDS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small mammals locate buried wet seeds more efficiently than buried dry seeds. This may be attributable to emission of volatile compounds by the seeds. To test this hypothesis I measured emission of volatile compounds from seeds of three plant species (Pinus contorta, Purshia tr...

  6. Measured and estimated benzene and volatile organic carbon (VOC) emissions at a major U.S. refinery/chemical plant: Comparison and prioritization.

    PubMed

    Hoyt, Daniel; Raun, Loren H

    2015-08-01

    Estimates of emissions for processes and point sources at petroleum refineries and chemical plants provide the foundation for many other environmental evaluations and policy decisions. The most commonly used method, based on emission factors, results in unreliable estimates. More information regarding the actual emissions within a facility is necessary to provide a foundation for improving emission factors and prioritizing which emission factors most need improvement. Identification of which emission factors both perform poorly and introduce the largest error is needed to provide such a prioritization. To address this need, benzene and volatile organic compound (VOC) emissions within a major chemical plant/refinery were measured and compared with emission factor estimates. The results of this study indicate estimated emissions were never higher and commonly lower than the measured emissions. At one source location, VOC emissions were found to be largely representative of those measured (i.e., the catalytic reformer), but more often, emissions were significantly underestimated (e.g., up to 448 times greater than estimated at a floating roof tank). The sources with both the largest relative error between the estimate and the measurement and the largest magnitude of emissions in this study were a wastewater treatment process, an aromatics concentration unit and benzene extraction unit process area, and two sets of tanks (sets 7 and 8). Emission factors for these sources are priorities for further evaluation and improvement in this chemical plant/refinery. This study presents empirical data that demonstrate the need to validate and improve emission factors. Emission factors needing improvement are prioritized by identifying those that are weak models and introduce the largest error in magnitude of emissions. The results can also be used to prioritize evaluations of the emissions sources and controls, and any operational conditions or erroneous assumptions that may be

  7. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors

    PubMed Central

    Schuman, Meredith C; Allmann, Silke; Baldwin, Ian T

    2015-01-01

    Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse. DOI: http://dx.doi.org/10.7554/eLife.04490.001 PMID:25873033

  8. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    USDA-ARS?s Scientific Manuscript database

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  9. Reduced stomatal conductance in plants grown under elevated carbon dioxide leads to lower emission of herbivore induced volatiles.

    USDA-ARS?s Scientific Manuscript database

    Terpene volatiles produced by sweet corn (Zea Mays) upon infestation with pests such as Beet armyworm (Spodoptera exigua) function as part of an indirect plant defense mechanism by attracting parasitoid wasps. To investigate the effect of climate change on this indirect defense, we determined the im...

  10. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  11. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  12. Herbivore-induced Blueberry Volatiles and Intra-plant Signaling

    PubMed Central

    Rodriguez-Saona, Cesar R.

    2011-01-01

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9.. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are

  13. Herbivore-induced blueberry volatiles and intra-plant signaling.

    PubMed

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  14. Volatile Emissions from Compressed Tissue

    PubMed Central

    Dini, Francesca; Capuano, Rosamaria; Strand, Tillan; Ek, Anna-Christina; Lindgren, Margareta; Paolesse, Roberto; Di Natale, Corrado; Lundström, Ingemar

    2013-01-01

    Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers. PMID:23874929

  15. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-08-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis), the model predicts significant increases of 59 Tg C a-2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases

  16. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use

  17. Emission of odorous volatile organic compounds from a municipal manure treatment plant and their removal using a biotrickling filter.

    PubMed

    Li, Jian-Jun; Wu, Yan-Di; Zhang, Yan-Li; Zeng, Pei-Yuan; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2015-01-01

    Odorous volatile organic compounds (VOCs) from municipal manure treatment facilities are considered as a major nuisance issue for operators and nearby residents. In this study, up to 71 odorous VOCs were detected by gas chromatography-mass spectrometry at the manure treatment plant. These compounds can be classified into five different categories, including alkanes, olefins, aromatics, volatile organosulphur compounds and terpenes. Toluene, dimethyl disulphide, dimethyl sulphide, xylene and ethylbenzene were the five most abundant pollutants. A pilot-scale biotrickling filter (BTF) was employed to treat the complex odorous gases. Correlation analysis showed that the removal efficiency (RE) of the BTF was related with the molecular weight and chemical structure of contaminants. Higher than 85% of REs could be reached for aromatic, terpenes and most alkanes compounds after 180 days of operation. Comparatively, most olefins and partial alkanes compounds with a molecular weight lower than 70 were not removed easily. The REs of these compounds ranged from 0% to 94%, and the average removal efficiency (RE) was only about 33.3%.

  18. Chirospecific analysis of plant volatiles

    NASA Astrophysics Data System (ADS)

    Tkachev, A. V.

    2007-10-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  19. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  20. Volatiles released from bean plants in response to agromyzid flies.

    PubMed

    Wei, Jia-Ning; Zhu, Junwei; Kang, Le

    2006-07-01

    Liriomyza sativae Blanchard and Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) are two invasive flies in China that have caused economical damage on vegetables and ornamental plants. In this article, we report the profiles of emitted volatiles from healthy, mechanically damaged, and leafminer-damaged bean, Phaseolus vulgaris L., plants. Among 25 emitted volatiles identified, (E)-2-hexen-1-al, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, (syn)- and (anti)-2-methylpropanal oxime, (syn)-2-methylbutanal oxime, linalool, and (E,E)-alpha-farnesene were consistently released from damaged bean plants. Combined amounts of these nine compounds made up more than 70% of the total volatiles emitted from each treatment. No qualitative differences in volatile emission were found between bean plants damaged by the two fly species; however, amounts of several major compounds induced by L. huidobrensis damage were significantly higher than those from plants damaged by L. sativae. The mechanically damaged plants released a higher proportion of green leaf volatiles than plants in the other treatments, whereas leafminer-damaged plants produced more terpenoids and oximes. Furthermore, the volatile profiles emitted from plants, damaged by adult leafminers, by second instar larvae, and even the plants with empty mines left by leafminer larvae (the pupal stage) were significantly different. The identification of volatile oximes released from damaged plants was confirmed and is discussed in a behavioral and biological control context.

  1. Mapping and profile of emission sources for airborne volatile organic compounds from process regions at a petrochemical plant in Kaohsiung, Taiwan.

    PubMed

    Chen, Ching-Liang; Fang, Hung-Yuan; Shu, Chi-Min

    2006-06-01

    This work surveyed five process regions inside a petrochemical plant in Taiwan to characterize the profiles of airborne volatile organic compounds (VOCs) and locate emission sources. Samples, taken with canisters, were analyzed with gas chromatography-mass spectrometry according to the TO-14 method. Each region was deployed with 24 sampling sites, sampled twice, and 240 samples in total were measured during the survey period. All of the data were consolidated into a database on Excel to facilitate retrieval, statistical analysis, and presentation in the form of a table or graph, and, subsequently, the profile of VOCs was elucidated. Emission sources were located by mapping the concentration distribution of either an individual or a type of species in terms of contour maps on Surfer. Through the cross-analysis of data, the abundant VOCs included alkenes, dienes, alkanes, and aromatics. A total of 19 emission sources were located from these five regions. The sources for alkanes stood inside first, third aromatic, and fourth naphtha cracking regions, whereas the ones for alkenes were inside two naphtha cracking regions. The sources for dienes were found inside the third naphtha cracking region alone; in contrast, the sources for aromatics were universally traced except inside the third naphtha cracking region. The measured intensity for sources mostly ranged from 1000 to 7000 ppb.

  2. Effects of Feeding Spodoptera littoralis on Lima Bean Leaves: IV. Diurnal and Nocturnal Damage Differentially Initiate Plant Volatile Emission1[W][OA

    PubMed Central

    Arimura, Gen-ichiro; Köpke, Sabrina; Kunert, Maritta; Volpe, Veronica; David, Anja; Brand, Peter; Dabrowska, Paulina; Maffei, Massimo E.; Boland, Wilhelm

    2008-01-01

    Continuous mechanical damage initiates the rhythmic emission of volatiles in lima bean (Phaseolus lunatus) leaves; the emission resembles that induced by herbivore damage. The effect of diurnal versus nocturnal damage on the initiation of plant defense responses was investigated using MecWorm, a robotic device designed to reproduce tissue damage caused by herbivore attack. Lima bean leaves that were damaged by MecWorm during the photophase emitted maximal levels of β-ocimene and (Z)-3-hexenyl acetate in the late photophase. Leaves damaged during the dark phase responded with the nocturnal emission of (Z)-3-hexenyl acetate, but with only low amounts of β-ocimene; this emission was followed by an emission burst directly after the onset of light. In the presence of 13CO2, this light-dependent synthesis of β-ocimene resulted in incorporation of 75% to 85% of 13C, demonstrating that biosynthesis of β-ocimene is almost exclusively fueled by the photosynthetic fixation of CO2 along the plastidial 2-C-methyl-d-erythritol 4-P pathway. Jasmonic acid (JA) accumulated locally in direct response to the damage and led to immediate up-regulation of the P. lunatus β-ocimene synthase gene (PlOS) independent of the phase, that is, light or dark. Nocturnal damage caused significantly higher concentrations of JA (approximately 2–3 times) along with enhanced expression levels of PlOS. Transgenic Arabidopsis thaliana transformed with PlOS promoter∷β-glucuronidase fusion constructs confirmed expression of the enzyme at the wounded sites. In summary, damage-dependent JA levels directly control the expression level of PlOS, regardless of light or dark conditions, and photosynthesis is the major source for the early precursors of the 2-C-methyl-d-erythritol 4-P pathway. PMID:18165324

  3. Volatile organic compound emissions from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  4. Biogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants

    PubMed Central

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-01-01

    Background Globally plants are the primary sink of atmospheric CO2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. Methodology We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either 13CO2 to leaves or 13C-glucose to shoots via xylem uptake. The translocation of 13CO2 from the source to other plant parts could be traced by 13C-labeled isoprene and respiratory 13CO2 emission. Principal Finding In intact plants, assimilated 13CO2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h−1. 13C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76–78%) from recently fixed CO2, to a minor extent from xylem-transported sugars (7–11%) and from photosynthetic intermediates with slower turnover rates (8–11%). Conclusion We quantified the plants' C loss as respiratory CO2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux. PMID:21387007

  5. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    PubMed

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  6. Volatile communication in plant-aphid interactions.

    PubMed

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release.

  7. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  8. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-06-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65-89%, VOC/NOx ∼3-9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally

  9. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    EPA Science Inventory

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  10. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    EPA Science Inventory

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  11. Belowground volatiles facilitate interactions between plant roots and soil organisms.

    PubMed

    Wenke, Katrin; Kai, Marco; Piechulla, Birgit

    2010-02-01

    Many interactions between organisms are based on the emission and perception of volatiles. The principle of using volatile metabolites as communication signals for chemo-attractant or repellent for species-specific interactions or mediators for cell-to-cell recognition does not stop at an apparently unsuitable or inappropriate environment. These infochemicals do not only diffuse through the atmosphere to process their actions aboveground, but belowground volatile interactions are similarly complex. This review summarizes various eucaryotes (e.g., plant (roots), invertebrates, fungi) and procaryotes (e.g., rhizobacteria) which are involved in these volatile-mediated interactions. The soil volatiles cannot be neglected anymore, but have to be considered in the future as valuable infochemicals to understand the entire integrity of the ecosystems.

  12. Effects of discrete bioactive microbial volatiles on plants and fungi.

    PubMed

    Piechulla, Birgit; Lemfack, Marie Chantal; Kai, Marco

    2017-10-01

    Plants live in association with microorganisms, which are well known as a rich source of specialized metabolites, including volatile compounds. The increasing numbers of described plant microbiomes allowed manifold phylogenetic tree deductions, but less emphasis is presently put on the metabolic capacities of plant-associated microorganisms. With the focus on small volatile metabolites we summarize (i) the knowledge of prominent bacteria of plant microbiomes; (ii) present the state-of-the-art of individual (discrete) microbial organic and inorganic volatiles affecting plants and fungi; and (iii) emphasize the high potential of microbial volatiles in mediating microbe-plant interactions. So far, 94 discrete organic and five inorganic compounds were investigated, most of them trigger alterations of the growth, physiology and defence responses in plants and fungi but little is known about the specific molecular and cellular targets. Large overlaps in emission profiles of the emitters and receivers render specific volatile organic compound-mediated interactions highly unlikely for most bioactive mVOCs identified so far. © 2017 John Wiley & Sons Ltd.

  13. Genotoxicity Assessment of Volatile Organic Compounds in Landfill Gas Emission Using Comet Assay in Higher Terrestrial Plant.

    PubMed

    Na Roi-Et, Veerapas; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2017-02-01

    Genotoxicity model is developed to assess the individual subacute toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) at very low levels as in a landfill gas. Golden Pothos (Epipremnum aureum), a higher plant, was tested under variation of benzene 54-5656 ng/L, toluene 10-4362 ng/L, ethylbenzene 28-4997 ng/L, xylene 53-4845 ng/L, for 96 h. DNA fragmentation in plant leaves were investigated via comet assay. The results show that DNA migration ratio increased with the BTEX concentrations, but at different rates. The 50% effective concentration (EC50) of DNA fragmentation from the dose-response relationships indicated toluene has the highest EC50 value and followed by benzene, xylene and ethylbenzene. Alternatively, ethylbenzene has the highest toxicity unit and followed by xylene, benzene and toluene as described by toxicity unit (TU). In conclusion, comet assay of Pothos can be used in differentiating DNA fragmentation against very low levels of BTEX in the atmosphere. Pothos is recommended for genotoxicity assessment of a low BTEX contaminated atmosphere.

  14. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The

  15. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-07-01

    The emission of Volatile Organic Compounds (VOCs) from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan

  16. Mercury emissions from geothermal power plants.

    PubMed

    Robertson, D E; Crecelius, E A; Fruchter, J S; Ludwick, J D

    1977-06-03

    Geothermal steam used for power production contains significant quantities of volatile mercury. Much of this mercury escapes to the atmosphere as elemental mercury vapor in cooling tower exhausts. Mercury emissions from geothermal power plants, on a per megawatt (electric) basis, are comparable to releases from coal-fired power plants.

  17. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  18. Volatile organic emissions from the distillation and pyrolysis of vegetation

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Friedli, H.; Guenther, A. B.; Hanson, D.; Harley, P.; Karl, T.

    2005-09-01

    Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were acetic acid, furylaldehyde, methyl acetate, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 mgC/gC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and the pyrolysis of vegetation heated under low turbulence conditions produces concentrations near leaves that reach the lower limits of flammability and the emissions may be important in the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  19. Plant volatiles in extreme terrestrial and marine environments.

    PubMed

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation.

  20. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  1. Volatile organic compound emissions from dry mill fuel ethanol production.

    PubMed

    Brady, Daniel; Pratt, Gregory C

    2007-09-01

    Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor.

  2. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-12-01

    We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered

  3. Volatile organic emissions from the distillation and pyrolysis of vegetation

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Friedli, H.; Guenther, A. B.; Hanson, D.; Harley, P.; Karl, T.

    2006-01-01

    Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively.

    The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  4. Volatile Organic Compound Emissions from Humans Indoors.

    PubMed

    Tang, Xiaochen; Misztal, Pawel K; Nazaroff, William W; Goldstein, Allen H

    2016-12-06

    Research on the sources of indoor airborne chemicals has traditionally focused on outdoor air, building materials, furnishings, and activities such as smoking, cooking, and cleaning. Relatively little research has examined the direct role of occupant emissions, even though this source clearly contributes to indoor volatile organic compounds (VOCs) and influences indoor chemistry. In this work, we quantify occupant-related gaseous VOC emissions in a university classroom using a proton-transfer-reaction time-of-flight mass spectrometer. Time-resolved concentrations of VOCs in room air and supply air were measured continuously during occupied and unoccupied periods. The emission factor for each human-emitted VOC was determined by dividing the occupant-associated source rate by the corresponding occupancy. Among the most abundant species detected were compounds associated with personal care products. Also prominent were human metabolic emissions, such as isoprene, methanol, acetone, and acetic acid. Additional sources included human skin oil oxidation by ozone, producing compounds such as 4-oxopentanal (4-OPA) and 6-methyl-5-hepten-2-one (6-MHO). By mass, human-emitted VOCs were the dominant source (57%) during occupied periods in a well-ventilated classroom, with ventilation supply air the second most important (35%), and indoor nonoccupant emissions the least (8%). The total occupant-associated VOC emission factor was 6.3 mg h(-1) per person.

  5. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  6. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  7. Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host

    PubMed Central

    Poelman, Erik H.; Bruinsma, Maaike; Zhu, Feng; Weldegergis, Berhane T.; Boursault, Aline E.; Jongema, Yde; van Loon, Joop J. A.; Vet, Louise E. M.; Harvey, Jeffrey A.; Dicke, Marcel

    2012-01-01

    Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids. PMID:23209379

  8. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  9. Toluene emissions from plants

    NASA Astrophysics Data System (ADS)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  10. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    PubMed

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.

  11. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  12. Volatile exchange between undamaged plants - a new mechanism affecting insect orientation in intercropping.

    PubMed

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms.

  13. Volatile Emission of Mechanically Damaged Almonds

    USDA-ARS?s Scientific Manuscript database

    Mature almonds from the Monterey variety were evaluated for their volatile composition after mechanical damage and compared to the volatile composition of the corresponding undamaged almonds. Volatiles were collected on Tenax, desorbed with diethyl ether, and identified via GC-MS analyses. Volatile ...

  14. Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize.

    PubMed

    Peñaflor, M Fernanda Gomes Villalba; Erb, Matthias; Robert, Christelle Aurélie Maud; Miranda, Livia Atauri; Werneburg, Andrea Graf; Dossi, Fábio Cleisto Alda; Turlings, Ted C J; Bento, J Maurício Simões

    2011-07-01

    Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.

  15. Diel rhythms in the volatile emission of apple and grape foliage.

    PubMed

    Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio

    2017-03-11

    This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO2, methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops.

  16. Evolution of isoprene emission capacity in plants.

    PubMed

    Dani, K G Srikanta; Jamie, Ian M; Prentice, I Colin; Atwell, Brian J

    2014-07-01

    Light-dependent de novo volatile isoprene emission by terrestrial plants (approximately 2% of carbon fixed during photosynthesis) contributes as much as 0.5 PgC/year to the global carbon cycle. Although most plant taxa exhibit either constitutive or inducible monoterpene emissions, the evolution of isoprene emission capacity in multiple lineages has remained unexplained. Based on the predominant occurrence of isoprene emission capacity in long-lived, fast-growing woody plants; the relationship between 'metabolic scope' of tree genera and their species richness; and the proposed role of high growth rates and long generation times in accelerating molecular evolution, we hypothesise that long-lived plant genera with inherently high speciation rates have repeatedly acquired and lost the capacity to emit isoprene in their evolutionary history.

  17. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    PubMed Central

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  19. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  20. Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong

    NASA Astrophysics Data System (ADS)

    Leung, D. Y. C.; Wong, P.; Cheung, B. K. H.; Guenther, A.

    2010-04-01

    This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 10 9 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (-1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.

  1. Comparison between volatile emissions from transgenic apples and from two representative classically bred apple cultivars.

    PubMed

    Vogler, Ute; Rott, Anja S; Gessler, Cesare; Dorn, Silvia

    2010-02-01

    While most risk assessments contrast a transgenic resistant to its isogenic line, an additional comparison between the transgenic line and a classically bred cultivar with the same resistance gene would be highly desirable. Our approach was to compare headspace volatiles of transgenic scab resistant apple plants with two representative cultivars (the isogenic 'Gala' and the scab resistance gene-containing 'Florina'). As modifications in volatile profiles have been shown to alter plant relationships with non-target insects, we analysed headspace volatiles from apple plants subjected to different infection types by gas chromatography-mass spectrometry. Marked differences were found between healthy and leafminer (Phyllonorycter blancardella) infested genotypes, where emissions between the transgenic scab resistant line and the two cultivars differed quantitatively in four terpenes and an aromatic compound. However, these modified odour emissions were in the range of variability of the emissions recorded for the two standard cultivars that proved to be crucial references.

  2. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    PubMed

    Mutyambai, Daniel M; Bruce, Toby J A; van den Berg, Johnnie; Midega, Charles A O; Pickett, John A; Khan, Zeyaur R

    2016-01-01

    Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs). These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L.) volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)) and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae)) parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS) was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E)-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and C

  3. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants

    PubMed Central

    Mutyambai, Daniel M.; Bruce, Toby J. A.; van den Berg, Johnnie; Midega, Charles A. O.; Pickett, John A.; Khan, Zeyaur R.

    2016-01-01

    Attack of plants by herbivorous arthropods may result in considerable changes to the plant’s chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs). These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore’s parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L.) volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in ‘Nyamula’, a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)) and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae)) parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS) was used for volatile analysis. For the ‘Nyamula’ landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E)-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri

  4. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    PubMed

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  5. [Emission control way of volatile organic compounds in industry].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Wei, Yu-Xia; Zou, Lan; Zhang, Ming-Hui

    2011-12-01

    Due to the volatile nature, the way of controlling way of VOCs was different from other atmospheric pollutants. By analyzing the emission characteristics of VOCs, four kinds of control way were proposed, which were the source control, organized emission control, fugitive emission control and the total amount control, and the control modes of each control way were also analyzed and compared.

  6. Volatile organic compound emissions from dairy facilities in central California

    USDA-ARS?s Scientific Manuscript database

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  7. Predicting the emission of volatile organic compounds from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  8. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  9. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  10. Volatile emissions of navel oranges as predictors of freeze damage.

    PubMed

    Obenland, David M; Aung, Louis H; Bridges, David L; Mackey, Bruce E

    2003-05-21

    Volatile emissions of navel orange (Citrus sinensis L. Osbeck cv. Washington) fruit were evaluated as a means for predicting and gauging freeze damage. The fruits were subjected to -5 or -7 degrees C treatments in a laboratory freezer for various time periods of 2-9.5 h and stored at 23 degrees C for 1, 2, or 7 days, after which time the emission of volatiles from the fruit was measured. Following the final day of volatile measurements the fruits were stored at 5 degrees C for an additional 2-3 weeks and then evaluated for fruit quality characteristics. Peel injury in the form of brown lesions, drying of the juice vesicles, a decline in acidity, and a loss of flavor were observed to occur as a result of freezing. Corresponding to the loss in fruit quality were large increases in the emissions of ethanol, ethyl butanoate, methyl hexanoate, and ethyl octanoate. With the exception of methyl hexanoate, for which volatile emissions decreased during storage for 7 days at 23 degrees C, all of the other volatiles were relatively unchanged in amount by storage. Treatment at -7 degrees C caused greater injury, quality loss, and more volatile emanation than did freezing at -5 degrees C. The measurement of volatile emissions appears to be a useful approach to identify freeze-damaged navel oranges.

  11. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  12. Emission of volatile sulfur compounds from spruce trees

    SciTech Connect

    Rennenberg, H.; Huber, B.; Schroeder, P.; Stahl, K.; Haunold, W.; Georgil, H.W.; Slovik, S.; Pfanz, H. )

    1990-03-01

    Spruce (Picea abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H{sub 2}S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H{sub 2}S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H{sub 2}S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H{sub 2}S was observed. Apparently, H{sub 2}S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO{sub 2} was the only sulfur compound consistently emitted from branches of spruce trees in addition to H{sub 2}S. Emission of SO{sub 2} mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO{sub 2} emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO{sub 2} are discussed.

  13. Influence of green leaf herbivory by Manduca sexta on floral volatile emission by Nicotiana suaveolens.

    PubMed

    Effmert, Uta; Dinse, Claudia; Piechulla, Birgit

    2008-04-01

    Plants have to cope with various abiotic and biotic impacts as a consequence of changing environments, which can impair their ability to sexually reproduce. The main objective of this study was to investigate whether green leaf herbivory, having one of the most hazardous biotic impacts, would have any direct effect on the production and emission of floral volatiles because volatiles are known to play a crucial role in pollination. Nicotiana suaveolens plants were challenged with Manduca sexta feeding on leaves, and alterations in the quality and quantity of the floral blend, shifts in emission patterns, and changes in expression patterns of the floral benzoic/salicylic acid carboxyl-methyltransferase were monitored in noninfested and infested plants. Leaves responded to larval feeding by herbivory-induced diurnal emission of semiochemicals, whereas the emission of floral volatiles remained unchanged in comparison to the noninfested control. Neither the volatile composition nor the quantity of components or the nocturnal emission patterns was altered. The mRNA and protein levels of the benzoic/salicylic acid carboxyl-methyltransferase, as well as its enzyme activity, also did not show any significant differences. These results indicate that metabolism in flowers at and postanthesis is an autonomous process and is independent of metabolic changes in green leaves. By this sustaining mechanism, N. suaveolens plants ensure sexual reproduction even under unfavorable conditions.

  14. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.

    PubMed

    Dorman, H J; Deans, S G

    2000-02-01

    The volatile oils of black pepper [Piper nigrum L. (Piperaceae)], clove [Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae)], geranium [Pelargonium graveolens L'Herit (Geraniaceae)], nutmeg [Myristica fragrans Houtt. (Myristicaceae), oregano [Origanum vulgare ssp. hirtum (Link) Letsw. (Lamiaceae)] and thyme [Thymus vulgaris L. (Lamiaceae)] were assessed for antibacterial activity against 25 different genera of bacteria. These included animal and plant pathogens, food poisoning and spoilage bacteria. The volatile oils exhibited considerable inhibitory effects against all the organisms under test while their major components demonstrated various degrees of growth inhibition.

  15. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    NASA Astrophysics Data System (ADS)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  16. Caterpillar-induced plant volatiles attract conspecific adults in nature

    USDA-ARS?s Scientific Manuscript database

    Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific ad...

  17. Microbial volatile emissions as insect semiochemicals

    USDA-ARS?s Scientific Manuscript database

    We provide a synthesis of the literature describing biochemical interactions between microorganisms and arthropods by way of microbial volatile organic compound (MVOC) production. We explored important metabolic pathways involved in MVOC production and evaluated the functionality, generality, and e...

  18. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    USDA-ARS?s Scientific Manuscript database

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no stu...

  19. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  20. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM DESERT VEGETATION OF THE SOUTHWESTERN U.S.

    EPA Science Inventory

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western United States were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 µgCg−1 ...

  1. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  2. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM DESERT VEGETATION OF THE SOUTHWESTERN U.S.

    EPA Science Inventory

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western United States were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 µgCg−1 ...

  3. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  4. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  5. Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones.

    PubMed

    Terry, L Irene; Roemer, Robert B; Booth, David T; Moore, Chris J; Walter, Gimme H

    2016-07-01

    An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß-myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß-myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß-myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß-myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß-myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis.

  6. Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

    PubMed

    Dudareva, Natalia; Klempien, Antje; Muhlemann, Joëlle K; Kaplan, Ian

    2013-04-01

    Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.

  7. The emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    NASA Astrophysics Data System (ADS)

    Niinemets, Ü.; Monson, R. K.; Arneth, A.; Ciccioli, P.; Kesselmeier, J.; Kuhn, U.; Noe, S. M.; Peñuelas, J.; Staudt, M.

    2010-02-01

    In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission capacity under specified environmental conditions, also defined as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993), instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the in atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are typically considered as constant. In the current review, we argue that ES is largely a modeling concept, importantly depending on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during ES determination. In particular, there is now increasing consensus that variations in atmospheric CO2 concentration, in addition to variations in light and temperature, need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility, and because of these combined biochemical and physico-chemical properties, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature, as are used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-level, species vs. plant functional type level), and various aggregated ES schemes are not compatible for different integration models. The summarized information collectively emphasizes the need to update model algorithms by including missing environmental and

  8. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    NASA Astrophysics Data System (ADS)

    Niinemets, Ü.; Monson, R. K.; Arneth, A.; Ciccioli, P.; Kesselmeier, J.; Kuhn, U.; Noe, S. M.; Peñuelas, J.; Staudt, M.

    2010-06-01

    In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993), instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels) and various aggregated ES schemes are not compatible for different integration models. The summarized information collectively emphasizes the need to update model algorithms by including

  9. Manipulating volatile emission in tobacco leaves by expressing Aspergillus nigerbeta-glucosidase in different subcellular compartments.

    PubMed

    Wei, Shu; Marton, Ira; Dekel, Mara; Shalitin, Dror; Lewinsohn, Efraim; Bravdo, Ben-Ami; Shoseyov, Oded

    2004-07-01

    Expression of the Aspergillus nigerbeta-glucosidase gene, BGL1, in Nicotiana tabacum plants (cv. Xanthi) had a profound effect on the volatile emissions of intact and crushed leaves. BGL1 was expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter and targeted to the cytoplasm, cell wall, lytic vacuole (LV), chloroplast or endoplasmic reticulum (ER). Subcellular localization was confirmed by gold immunolabelling, followed by transmission electron microscopy (TEM). Significant beta-glucosidase activity was observed in transgenic plants expressing BGL1 in the cell wall, LV and ER. Compared with controls, all intact transgenic leaves were found to emit increased levels of 2-ethylhexanol, as determined by gas chromatography-mass spectrometry (GC-MS) analysis of the headspace volatiles. Plants expressing BGL1 in the cell wall (Tcw) emitted more trans-caryophyllene than did non-transgenic controls, whereas plants expressing BGL1 in the ER (Ter) and LV (Tvc) emitted more cembrene than did non-transgenic controls. Volatiles released from crushed transgenic leaves and collected with solid-phase microextraction (SPME) polydimethylsiloxane fibre were distinctly enhanced. Significant increases in linalool, nerol, furanoid cis-linalool oxide, 4-methyl-1-pentanol, 6-methyl-hept-5-en-2-ol and 2-ethylhexanol were detected in transgenic plants when compared with wild-type controls. 3-Hydroxyl-beta-ionone levels were increased in crushed Tcw and Ter leaves, but were undetectable in Tvc leaves. The addition of glucoimidazole, a beta-glucosidase inhibitor, abolished the increased emission of these volatiles. These results indicate that the expression of a fungal beta-glucosidase gene in different subcellular compartments has the potential to affect the emission of plant volatiles, and thereby to modify plant-environment communication and aroma of agricultural products.

  10. New prognostic phenology in the Yale Interactive Terrestrial Biosphere Model: implications for plant volatile emissions and surface air pollution in the temperate zone between 1980s and 2010s

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.

    2014-12-01

    We describe the implementation of an improved prognostic phenology scheme in the Yale Interactive Terrestrial Biosphere Model (YIBs). The spring phenology of deciduous broadleaf forest (DBF) is predicted using the cumulative thermal summation with chilling requirements, and the autumn phenology is jointly regulated by temperature and photoperiod. The phenology of shrubland and grassland is sensitive to temperature, except for sites with climatological soil temperature > 12 °C, where plant phenology is controlled by water availability. The model represents frost hardening in evergreen needleleaf forest. An off-line version of the model is evaluated against carbon flux measurements at 145 FLUXNET sites across a wide range of ecosystem types. The simulated seasonality of the gross primary productivity (GPP) has high correlations R > 0.95 with observations at 15 out 20 deciduous broadleaf sites. The updated vegetation model has been embedded on-line inside the NASA ModelE2 global chemistry-climate model. We apply this framework to quantify the phenology changes between the 1980s and 2010s and compare those changes to satellite observations for this period. We isolate the impacts of the phenology changes on plant volatile emissions (isoprene and monoterpenes) and examine the consequences for surface ozone and PM2.5 pollution in the United States and Europe.

  11. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects.

    PubMed

    Lucas-Barbosa, Dani; van Loon, Joop J A; Dicke, Marcel

    2011-09-01

    Plants are faced with a trade-off between on the one hand growth, development and reproduction and on the other hand defence against environmental stresses. Yet, research on insect-plant interactions has addressed plant-pollinator interactions and plant-attacker interactions separately. Plants have evolved a high diversity of constitutive and induced responses to attack, including the systemic emission of herbivore-induced plant volatiles (HIPVs). The effect of HIPVs on the behaviour of carnivorous insects has received ample attention for leaf-feeding (folivorous) species and their parasitoids and predators. Here, we review whether and to what extent HIPVs affect the interaction of plants in the flowering stage with mutualistic and antagonistic insects. Whereas the role of flower volatiles in the interactions between plants and insect pollinators has received increased attention over the last decade, studies addressing both HIPVs and pollinator behaviour are rare, despite the fact that in a number of plant species herbivory is known to affect flower traits, including size, nectar secretion and composition. In addition, folivory and florivory can also result in significant changes in flower volatile emission and in most systems investigated, pollinator visitation decreased, although exceptions have been found. Negative effects of HIPVs on pollinator visitation rates likely exert negative selection pressure on HIPV emission. The systemic nature of herbivore-induced plant responses and the behavioural responses of antagonistic and mutualistic insects, requires the study of volatile emission of entire plants in the flowering stage. We conclude that approaches to integrate the study of plant defences and pollination are essential to advance plant biology, in particular in the context of the trade-off between defence and growth/reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  13. Selenium detoxification by volatilization and precipitation in aquatic plants

    SciTech Connect

    Fan, T.W.M.; Higashi, R.M.

    1995-12-31

    The narrow margin of requirement and toxicity for selenium makes it a difficult pollution problem to solve. Selenium bioaccumulation has been a major threat to wildlife in California and is becoming a major concern in the San Francisco Bay/Estuaries. Despite the past efforts in Se nutrition, chemistry, and remediation, its toxicity and detoxification mechanism(s) in wildlife, particularly primary producers, is still unclear, due to a lack of understanding in Se biochemistry. This is becoming a critical issue in assessing Se risk and remediation. To address this gap, the authors have been characterizing Se speciation and its linkage to detoxification mechanism(s) of two indigenous aquatic plants, duckweed (Lemna minor) and a microphyte (Chlorella). Using GT-MS analysis, they found that Chlorella monocultures transformed Se oxyanions into volatile dimethylselenide and dimethyidiselenide and into insoluble So at extremely high Se (up to 750 ppm) concentrations. This alga did not accumulate selenomethionine which is among the most toxic forms of Se to wildlife. Dimethylsulfide was also volatilized, consistent with the hypothesis that dimethylsulfide/dimethylselenide emissions share a similar biochemical pathway. Se-treated Chlorella biomass released dimethylsulfide/dimethylselenide upon alkaline hydrolysis, suggesting the presence of dimethylsulfonium and dimethylselenonium propionates. Dimethylsulfoniumpropionate is known as an osmoprotectant in marine phytoplankton and as a major contributor to global biogenic dimethylsulfide emissions. Dimethylselenoniumpropionate has not been identified previously and may be a byproduct of dimethylsulfoniumpropionate synthesis. The unusual Se tolerance of Chlorella may be due to its ability to volatilize and precipitate Se. Such activities may be utilized for in situ Se bioremediation. Similar investigations with duckweed is underway.

  14. Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution.

    PubMed

    Giron-Calva, Patricia Sarai; Li, Tao; Blande, James D

    2017-04-01

    Plants constitutively release volatile organic compounds (VOCs), but qualitatively and quantitatively alter their emission of VOCs in response to biotic and abiotic stresses. The blend of VOCs emitted reflects the physiological status of the plant. Plants may be exposed to the VOC blend emitted by their near neighbors and gain information that allows them to adjust their own defenses. These plant-plant interactions may potentially be exploited to protect crops from pests, but they can be disturbed by abiotic factors making the process sensitive to environmental perturbation. Despite numerous studies describing plant-plant interactions, relatively few have been conducted with agriculturally significant cultivated plant varieties under field conditions. Here we studied plant-plant interactions in a conspecific association of Brassica oleracea var. capitata (cabbage) and show that undamaged plants exposed to neighbors damaged by the herbivore Pieris brassicae are primed for stronger volatile emissions upon subsequent herbivore attack. We conducted a field study in an ozone free-air concentration enrichment (FACE) facility with ambient and elevated ozone levels and found that elevated tropospheric ozone significantly alters the priming of VOCs in receiver plants. We conclude that plant-plant interactions may prime defensive attributes of receiver plants under field conditions, but are impaired by ozone pollution. Therefore, when planning the manipulation of plant-plant interactions for agricultural purposes, the potential effects of atmospheric pollutants should be considered.

  15. Volatile Organic Compound Emissions from Dairy Facilities in Central California

    NASA Astrophysics Data System (ADS)

    Hasson, A. S.; Ogunjemiyo, S. O.; Trabue, S.; Middala, S. R.; Ashkan, S.; Scoggin, K.; Vu, K. K.; Addala, L.; Olea, C.; Nana, L.; Scruggs, A. K.; Steele, J.; Shelton, T. C.; Osborne, B.; McHenry, J. R.

    2011-12-01

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in Central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two Central California dairies during 2010 and 2011. Isolation flux chambers were used to measure direct emissions from specific dairy sources, and upwind/downwind ambient profiles were measured from ground level up to heights of 60 m. Samples were collected using a combination of canisters and sorbent tubes, and were analyzed by GC-MS. Additional in-situ measurements were made using infra-red photoaccoustic detectors and Diode Laser Absorption Spectroscopy. Temperature and ozone profiles up to 250 m above ground level were also measured using a tethersonde. Substantial fluxes of a number of VOCs including alcohols, volatile fatty acids and esters were observed at both sites. Implications of these measurements for regional air quality will be discussed.

  16. Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration.

    PubMed

    Beckett, Megan; Loreto, Francesco; Velikova, Violeta; Brunetti, Cecilia; Di Ferdinando, Martina; Tattini, Massimiliano; Calfapietra, Carlo; Farrant, Jill M

    2012-12-01

    We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non-volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO(2) concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy-dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non-volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non-volatile isoprenoids operate when water deficit is more extreme. © 2012 Blackwell Publishing Ltd.

  17. Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory

    PubMed Central

    Unsicker, Sybille B.; Gershenzon, Jonathan; Köllner, Tobias G.

    2015-01-01

    Herbivore-induced plant volatile emission is often considered to be attacker species-specific, but most experimental evidence comes from short lived herbaceous species. In a recent study we showed that black poplar (Populus nigra) trees emit a complex blend of volatiles from damaged leaves when they are attacked by generalist gypsy moth (Lymantria dispar) caterpillars. Minor nitrogenous volatiles were especially characteristic of this blend. Here we show that attack on P. nigra by a beetle species, Phratora vulgatissima (Coleoptera, Chrysomelidae), led to the emission of the same compounds as already observed after caterpillar herbivory, but with striking quantitative changes in the blend. The consequences for attraction of herbivore enemies are discussed. PMID:25831045

  18. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  19. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  20. Measuring Emissions of Volatile Organic Compounds from Silage

    USDA-ARS?s Scientific Manuscript database

    Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

  1. Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps.

    PubMed

    Davis, Thomas Seth; Boundy-Mills, Kyria; Landolt, Peter J

    2012-11-01

    Microbes are ubiquitous on plant surfaces. However, interactions between epiphytic microbes and arthropods are rarely considered as a factor that affects arthropod behaviors. Here, volatile emissions from an epiphytic fungus were investigated as semiochemical attractants for two eusocial wasps. The fungus Aureobasidium pullulans was isolated from apples, and the volatile compounds emitted by fungal colonies were quantified. The attractiveness of fungal colonies and fungal volatiles to social wasps (Vespula spp.) were experimentally tested in the field. Three important findings emerged: (1) traps baited with A. pullulans caught 2750 % more wasps on average than unbaited control traps; (2) the major headspace volatiles emitted by A. pullulans were 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethyl alcohol; and (3) a synthetic blend of fungal volatiles attracted 4,933 % more wasps on average than unbaited controls. Wasps were most attracted to 2-methyl-1-butanol. The primary wasp species attracted to fungal volatiles were the western yellowjacket (Vespula pensylvanica) and the German yellowjacket (V. germanica), and both species externally vectored A. pullulans. This is the first study to link microbial volatile emissions with eusocial wasp behaviors, and these experiments indicate that volatile compounds emitted by an epiphytic fungus can be responsible for wasp attraction. This work implicates epiphytic microbes as important components in the community ecology of some eusocial hymenopterans, and fungal emissions may signal suitable nutrient sources to foraging wasps. Our experiments are suggestive of a potential symbiosis, but additional studies are needed to determine if eusocial wasp-fungal associations are widespread, and whether these associations are incidental, facultative, or obligate.

  2. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding.

    PubMed

    Helms, Anjel M; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F

    2014-06-19

    The induction of plant defenses in response to herbivory is well documented. In addition, many plants prime their anti-herbivore defenses following exposure to environmental cues associated with increased risk of subsequent attack, including induced volatile emissions from herbivore-damaged plant tissues. Recently, we showed in both field and laboratory settings that tall goldenrod plants (Solidago altissima) exposed to the putative sex attractant of a specialist gall-inducing fly (Eurosta solidaginis) experienced less herbivory than unexposed plants. Furthermore, we observed stronger induction of the defense phytohormone jasmonic acid in exposed plants compared to controls. These findings document a novel class of plant-insect interactions mediated by the direct perception, by plants, of insect-derived olfactory cues. However, our previous study did not exclude the possibility that the fly emission (or its residue) might also deter insect feeding via direct effects on the herbivores. Here we show that the E. solidaginis emission does not (directly) deter herbivore feeding on Cucurbita pepo or Symphyotrichum lateriflorum plants--which have no co-evolutionary relationship with E. solidaginis and thus are not expected to exhibit priming responses to the fly emission. We also document stronger induction of herbivore-induced plant volatiles (HIPV) in S. altissima plants given previous exposure to the fly emission relative to unexposed controls. No similar effect was observed in maize plants (Zea mays), which have no co-evolutionary relationship with E. solidaginis. Together with our previous findings, these results provide compelling evidence that reduced herbivory on S. altissima plants exposed to the emission of male E. solidaginis reflects an evolved plant response to olfactory cues associated with its specialist herbivore and does not involve direct effects of the fly emission on herbivore feeding behavior. We further discuss mechanisms by which the priming of HIPV

  3. Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone.

    PubMed

    von Arx, Martin; Schmidt-Büsser, Daniela; Guerin, Patrick M

    2012-02-01

    Plant volatiles play an important role in the lives of phytophagous insects, by guiding them to oviposition, feeding and mating sites. We tested the effects of different host-plant volatiles on attraction of Lobesia botrana males to the female-produced sex pheromone, in a wind tunnel. Addition of volatile emissions from grapevines or individual plant volatiles to pheromone increased the behavioral responses of L. botrana males over those to pheromone alone. At a low release rate (under-dosed) of pheromone, addition of (E)-β-caryophyllene, (Z)-3-hexenyl acetate, 1-hexanol, or 1-octen-3-ol increased all behavioral responses, from activation to pheromone source contact, while addition of (E)-4,8-dimethyl-1,3,7-nonatriene, (E)-β-farnesene, (Z)-3-hexenol, or methyl salicylate affected only the initial behavioral responses. Dose-response experiments suggested an optimal release ratio of 1:1000 (sex pheromone: host plant volatile). Our results highlight the role of plant volatiles in the sensory ecology of L. botrana.

  4. Differential Performance and Parasitism of Caterpillars on Maize Inbred Lines with Distinctly Different Herbivore-Induced Volatile Emissions

    PubMed Central

    Degen, Thomas; Bakalovic, Nenad; Bergvinson, David; Turlings, Ted C. J.

    2012-01-01

    Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E)-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated. PMID:23112820

  5. Volatile organic compound emissions from arctic vegetation highly responsive to experimental warming

    NASA Astrophysics Data System (ADS)

    Rinnan, Riikka; Kramshøj, Magnus; Lindwall, Frida; Schollert, Michelle; Svendsen, Sarah H.; Valolahti, Hanna

    2017-04-01

    Arctic areas are experiencing amplified climate warming that proceeds twice as fast as the global temperature increase. The increasing temperature is already causing evident alterations, e.g. changes in the vegetation cover as well as thawing of permafrost. Climate warming and the concomitant biotic and abiotic changes are likely to have strong direct and indirect effects on emission of volatile organic compounds (VOCs) from arctic vegetation. We used long-term field manipulation experiments in the Subarctic, Low Arctic and High Arctic to assess effects of climate change on VOC emissions from vegetation communities. In these experiments, we applied passive warming with open-top chambers alone and in combination with other experimental treatments in well-replicated experimental designs. Volatile emissions were sampled in situ by drawing air from plant enclosures and custom-built chambers into adsorbent cartridges, which were analyzed by thermal desorption and gas chromatography-mass spectrometry in laboratory. Emission increases by a factor of 2-5 were observed under experimental warming by only a few degrees, and the strong response seems universal for dry, mesic and wet ecosystems. In some cases, these vegetation community level responses were partly due to warming-induced increases in the VOC-emitting plant biomass, changes in species composition and the following increase in the amount of leaf litter (Valolahti et al. 2015). In other cases, the responses appeared before any vegetation changes took place (Lindwall et al. 2016) or even despite a decrease in plant biomass (Kramshøj et al. 2016). VOC emissions from arctic ecosystems seem more responsive to experimental warming than other ecosystem processes. We can thus expect large increases in future VOC emissions from this area due to the direct effects of temperature increase, and due to increasing plant biomass and a longer growing season. References Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan

  6. Pepper weevil attraction to volatiles from host and nonhost plants.

    PubMed

    Addesso, Karla M; McAuslane, Heather J

    2009-02-01

    The location of wild and cultivated host plants by pepper weevil (Anthonomus eugenii Cano) may be aided by visual cues, the male-produced aggregation pheromone, herbivore-induced, or constitutive host plant volatiles. The attractiveness of constitutive plant volatiles to pioneer weevils is important in understanding, and perhaps controlling, dispersal of this insect between wild and cultivated hosts. Ten-day-old male and 2- and 10-day-old female weevils were tested in short-range Y-tube assays. Ten-day-old male and female weevils were attracted to the volatiles released by whole plants of three known oviposition hosts, 'Jalapeno' pepper, American black nightshade, and eggplant, as well as tomato, a congener, which supports feeding but not oviposition. Two-day-old females were attracted to all plants tested, including lima bean, an unrelated, nonhost plant. Fruit volatiles from all three hosts and flower volatiles from nightshade and eggplant were also attractive. In choice tests, weevils showed different preferences for the oviposition hosts, depending on age and sex. Upwind response of 10-day-old male and female weevils to host plant volatiles was also tested in long-range wind tunnel assays. Weevils responded to pepper, nightshade, and eggplant volatiles by moving upwind. There was no difference in the observed upwind response of the weevils to the three host plants under no-choice conditions. Reproductively mature pepper weevils can detect, orient to, and discriminate between the volatile plumes of host plants in the absence of visual cues, conspecific feeding damage, or the presence of their aggregation pheromone.

  7. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey.

    PubMed

    Amo, Luisa; Jansen, Jeroen J; van Dam, Nicole M; Dicke, Marcel; Visser, Marcel E

    2013-11-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous insects such as lepidopteran larvae. Here, we show that great tits (Parus major) discriminate between caterpillar-infested and uninfested trees. Birds were attracted to infested trees, even when they could not see the larvae or their feeding damage. We furthermore show that infested and uninfested trees differ in volatile emissions and visual characteristics. Finally, we show, for the first time, that birds smell which tree is infested with their prey based on differences in volatile profiles emitted by infested and uninfested trees. Volatiles emitted by plants in response to herbivory by lepidopteran larvae thus not only attract predatory insects but also vertebrate predators. © 2013 John Wiley & Sons Ltd/CNRS.

  8. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding

    PubMed Central

    2014-01-01

    Background The induction of plant defenses in response to herbivory is well documented. In addition, many plants prime their anti-herbivore defenses following exposure to environmental cues associated with increased risk of subsequent attack, including induced volatile emissions from herbivore-damaged plant tissues. Recently, we showed in both field and laboratory settings that tall goldenrod plants (Solidago altissima) exposed to the putative sex attractant of a specialist gall-inducing fly (Eurosta solidaginis) experienced less herbivory than unexposed plants. Furthermore, we observed stronger induction of the defense phytohormone jasmonic acid in exposed plants compared to controls. These findings document a novel class of plant-insect interactions mediated by the direct perception, by plants, of insect-derived olfactory cues. However, our previous study did not exclude the possibility that the fly emission (or its residue) might also deter insect feeding via direct effects on the herbivores. Results Here we show that the E. solidaginis emission does not (directly) deter herbivore feeding on Cucurbita pepo or Symphyotrichum lateriflorum plants—which have no co-evolutionary relationship with E. solidaginis and thus are not expected to exhibit priming responses to the fly emission. We also document stronger induction of herbivore-induced plant volatiles (HIPV) in S. altissima plants given previous exposure to the fly emission relative to unexposed controls. No similar effect was observed in maize plants (Zea mays), which have no co-evolutionary relationship with E. solidaginis. Conclusions Together with our previous findings, these results provide compelling evidence that reduced herbivory on S. altissima plants exposed to the emission of male E. solidaginis reflects an evolved plant response to olfactory cues associated with its specialist herbivore and does not involve direct effects of the fly emission on herbivore feeding behavior. We further discuss

  9. Orientation behavior of predaceous ground beetle species in response to volatile emissions from yellow starthistle damaged by an invasive slug

    USDA-ARS?s Scientific Manuscript database

    The up-regulation or emission of plant volatiles in response to herbivory may signal to the natural predators and parasitoids that a plant is under attack from herbivores. This is known as an indirect defense within a tritrophic system - where herbivore number is reduced through predation that is st...

  10. [Emission of volatile sulfur gases from Chinese paddy soils].

    PubMed

    Qiao, W; Yang, Z; Cao, J; Li, Z

    2001-09-01

    In the paper, emission of volatile sulfur gases from paddy soil was discussed in a growth period of paddy rice by constructing a field sampling system. The result showed that COS, CS2, DMS and DMDS were mainly emitted from paddy soil. The order of emission fluxes was 81.11, 6.33 and 10.71 mg.(m2.a)-1. Sulphur emission fluxes of Chinese paddy soil was 0.013662 Tg/a, and those of world paddy soil was 0.07992 Tg/a.

  11. Atmospheric transformation of plant volatiles disrupts host plant finding

    NASA Astrophysics Data System (ADS)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  12. Atmospheric transformation of plant volatiles disrupts host plant finding

    PubMed Central

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-01-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions. PMID:27651113

  13. On the detection of lunar volatile emissions

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1979-01-01

    This letter shows that the Apollo lunar-surface Suprathermal Ion Detection Experiment (SIDE) instruments lack the sensitivity to detect even large emissions of radiogenic gases from the moon if the venting of these gases occurs primarily at a few-well-defined sites of lunar transient phenomena (LTPs). It is suggested that specific flight instruments for the proposed ESA Polar Orbiting Lunar Observatory (POLO) mission, which could detect active venting, would help determine the energy source for LTPs and would increase knowledge of lunar geophysics. A critical-velocity model for the LTP energy source is briefly discussed.

  14. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.

    PubMed

    Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W

    2015-06-01

    Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.

  15. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  16. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  17. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    PubMed

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  19. Emission of volatile organic compounds (VOCs) from PVC floor coverings.

    PubMed

    Wiglusz, R; Igielska, B; Sitko, E; Nikel, G; Jarnuszkiewicz, I

    1998-01-01

    In this study 29 PVC floor coverings were tested for emission of vinyl chloride (VC) and other volatile organic compounds (VOCs). A study on the effect of higher temperature on emission of VOCs from newly manufactured PVC flooring was also carried out. The study was conducted in climatic chamber, according to Polish Standard PN-89/Z-04021. GC method was used for analyzing of the compounds emitted. VC was not emitted from any of the floorings tested. Other VOCs were emitted in different concentrations. The influence of temperature on emission was conducted at temperatures of 23 degrees C and 35 degrees C from 2 hrs up to 180 days after introduction of materials in the chamber. The increase of temperature caused increase of total volatile organic compounds (TVOC) emission during 24 hrs of experiment. Then the emission was comparable for both temperatures. After 9 days emission of identified and unidentified compounds (TVOC) showed a rapid decay and stayed on very low level during a few months. The study conducted showed that PVC floorings after 10 days of installation in the room should not be source of indoor air contamination.

  20. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana.

    PubMed

    von Arx, Martin; Schmidt-Büsser, Daniela; Guerin, Patrick M

    2011-10-01

    The European grapevine moth Lobesia botrana relies on a female produced sex pheromone for long-distance mate finding. Grapevine moth males compete heavily during limited time windows for females. The aim of this study was to investigate the perception of host plant volatiles by grapevine moth males and whether such compounds elicit upwind oriented flights. We compared five host plant headspace extracts by means of gas chromatography linked electroantennogram (EAG) recording. We identified 12 common host plant volatiles (aliphatic esters, aldehydes, and alcohols, aromatic compounds and terpenes) that elicit EAG responses from grapevine moth males and that occur in at least three of the host plant volatile headspace extracts tested. Subsequently the behavioural response of grapevine moth males to four these compounds presented singly and in mixtures (1-hexanol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (E)-β-caryophyllene) was recorded in a wind tunnel. Grapevine moth males engaged in upwind flights to all of four compounds when released singly at 10,000 pg/min and to all, except 1-octen-3-ol, when released at 100 pg/min. A blend of the four host plant volatiles released at 10,000 pg/min and mixed at a ratio based on the analysis of Vitis vinifera cv. Solaris volatile emissions attracted significantly more males than any single compound. Grapevine moth males perceive and respond to host plant volatiles at biologically relevant levels indicating that host plant volatiles figure as olfactory cues and that L. botrana males can discern places where the likelihood of encountering females is higher.

  1. Where do herbivore-induced plant volatiles go?

    PubMed Central

    Holopainen, Jarmo K.; Blande, James D.

    2013-01-01

    Herbivore induced plant volatiles (HIPVs) are specific volatile organic compounds (VOC) that a plant produces in response to herbivory. Some HIPVs are only produced after damage, while others are also produced by intact plants, but in lower quantities. Among the known functions of HIPVs are within plant volatile signaling to activate systemic plant defenses, the priming and activation of defenses in neighboring plants and the attraction of natural enemies of herbivores. When released into the atmosphere a plant's control over the produced compounds ends. However, many of the HIPVs are highly reactive with atmospheric oxidants and their atmospheric life times could be relatively short, often only a few minutes. We summarise the potential ecological and atmospheric processes that involve the reaction products of HIPVs in their gaseous, liquid and solid secondary organic aerosol (SOA) forms, both in the atmosphere and after deposition on plant surfaces. A potential negative feedback loop, based on the reactions forming SOA from HIPVs and the associated stimulation of sun screening cloud formation is presented. This hypothesis is based on recent field surveys in the geographical areas facing the greatest degree of global warming and insect outbreaks. Furthermore, we discuss how these processes could benefit the individual plant or conspecifics that originally released the HIPVs into the atmosphere. Further ecological studies should aim to elucidate the possible reasons for biosynthesis of short-lived volatile compounds to have evolved as a response to external biotic damage to plants. PMID:23781224

  2. Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants.

    PubMed

    Peng, J; van Loon, J J A; Zheng, S; Dicke, M

    2011-03-01

    When attacked by herbivores, plants release herbivore-induced plant volatiles (HIPV) that may function in direct defence by repelling herbivores or reducing their growth. Emission of HIPV may also contribute to indirect defence by attracting natural enemies of the herbivore. Here, cabbage (Brassica oleracea L.) plants (receiver plants) previously exposed to HIPV and subsequently induced through feeding by five Pieris brassicae L. caterpillars attracted more Cotesia glomerata L. parasitoids than control plants. HIPVs to which receiver plants had been exposed were emitted by B. oleracea infested with 50 P. brassicae caterpillars. Control plants had been exposed to volatiles from undamaged plants. In contrast, there were no differences in the attraction of wasps to receiver plants induced through feeding of one or ten larvae of P. brassicae compared to control plants. In addition, RT-PCR demonstrated higher levels of LIPOXYGENASE (BoLOX) transcripts in HIPV-exposed receiver plants. Exposure to HIPV from emitter plants significantly inhibited the growth rate of both P. brassicae and Mamestra brassicae caterpillars compared to growth rates of caterpillars feeding on control receiver plants. Our results demonstrate plant-plant signalling leading to priming of both indirect and direct defence in HIPV-exposed B. oleracea plants. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths.

    PubMed

    Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M

    2013-04-22

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.

  4. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths

    PubMed Central

    Kariyat, Rupesh R.; Mauck, Kerry E.; Balogh, Christopher M.; Stephenson, Andrew G.; Mescher, Mark C.; De Moraes, Consuelo M.

    2013-01-01

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds—including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores. PMID:23446531

  5. Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci.

    PubMed

    Silva, Diego B; Weldegergis, Berhane T; Van Loon, Joop J A; Bueno, Vanda H P

    2017-01-03

    Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.

  6. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    NASA Astrophysics Data System (ADS)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  7. Host microhabitat location by stem-borer parasitoidCotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles.

    PubMed

    Potting, R P; Vet, L E; Dicke, M

    1995-05-01

    The origin of olfactory stimuli involved in the host microhabitat location inCotesia flavipes, a parasitoid of stem-borer larvae, was investigated in a Y-tube olfactometer. The response of femaleC. flavipes towards different components of the plant-host complex, consisting of a maize plant infested with two or more larvae of the stem borerChilo partellus, was tested in dualchoice tests. The concealed lifestyle of the stem-borer larvae did not limit the emission of volatiles attractive to a parasitoid. A major source of the attractive volatiles from the plant-host complex was the stem-borer-injured stem, including the frass produced by the feeding larvae. Moreover, the production of volatiles attractive to a parasitoid was not restricted to the infested stem part but occurs systemically throughout the plant. The uninfested leaves of a stem-borer-infested plant were found to emit volatiles that attract femaleC. flavipes. We further demonstrate that an exogenous elicitor of this systemic plant response is situated in the regurgitate of a stem-borer larva. When a minor amount of regurgitate is inoculated into the stem of an uninfested plant, the leaves of the treated plant emit volatiles that attract femaleC. flavipes.

  8. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  9. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles.

    PubMed

    Girling, Robbie D; Stewart-Jones, Alex; Dherbecourt, Julie; Staley, Joanna T; Wright, Denis J; Poppy, Guy M

    2011-09-07

    Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography-mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant-herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment.

  10. Effects of climate change on volatile organic compound emissions from soil and litter

    NASA Astrophysics Data System (ADS)

    Gray, C. M.; Fierer, N.

    2012-12-01

    Our knowledge of the variability and magnitude of volatile organic compound (VOC) emissions from soil and litter is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, and precipitation patterns, it is unknown how production and consumption of VOCs from litter and soil will respond. We spent the last four years quantifying VOC emissions from soil and litter, comparing VOC emissions to CO2 emissions, and identifying the biotic and abiotic controls on emission rates with both lab and field experiments using a proton transfer reaction mass spectrometer (PTR-MS). In all studies, methanol was the dominant VOC flux. VOC emissions were not driven by abiotic processes, as microbial sources accounted for 78% to 99% of the total VOC emissions from decomposing litter. Litter chemistry was correlated with the types of VOCs emitted and the net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. Finally, field and lab experiments show that temperature and moisture are both important controls of certain VOC emissions from soils, but that the effects of these factors on VOC emissions are not necessarily equivalent to their effects on CO2 emissions. Together, these series of studies are moving us toward a predictive understanding of VOC emissions from soil and litter with the ultimate goal of incorporating these VOC emissions into global models of terrestrial VOC dynamics.

  11. Influence of Green Leaf Herbivory by Manduca sexta on Floral Volatile Emission by Nicotiana suaveolens1[W

    PubMed Central

    Effmert, Uta; Dinse, Claudia; Piechulla, Birgit

    2008-01-01

    Plants have to cope with various abiotic and biotic impacts as a consequence of changing environments, which can impair their ability to sexually reproduce. The main objective of this study was to investigate whether green leaf herbivory, having one of the most hazardous biotic impacts, would have any direct effect on the production and emission of floral volatiles because volatiles are known to play a crucial role in pollination. Nicotiana suaveolens plants were challenged with Manduca sexta feeding on leaves, and alterations in the quality and quantity of the floral blend, shifts in emission patterns, and changes in expression patterns of the floral benzoic/salicylic acid carboxyl-methyltransferase were monitored in noninfested and infested plants. Leaves responded to larval feeding by herbivory-induced diurnal emission of semiochemicals, whereas the emission of floral volatiles remained unchanged in comparison to the noninfested control. Neither the volatile composition nor the quantity of components or the nocturnal emission patterns was altered. The mRNA and protein levels of the benzoic/salicylic acid carboxyl-methyltransferase, as well as its enzyme activity, also did not show any significant differences. These results indicate that metabolism in flowers at and postanthesis is an autonomous process and is independent of metabolic changes in green leaves. By this sustaining mechanism, N. suaveolens plants ensure sexual reproduction even under unfavorable conditions. PMID:18281418

  12. 27 CFR 19.144 - Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... spirits plant and volatile fruit-flavor concentrate plant premises. 19.144 Section 19.144 Alcohol, Tobacco... § 19.144 Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises... use with the premises of a contiguous volatile fruit-flavor concentrate plant. If a proprietor wishes...

  13. 27 CFR 19.144 - Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... spirits plant and volatile fruit-flavor concentrate plant premises. 19.144 Section 19.144 Alcohol, Tobacco... § 19.144 Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises... use with the premises of a contiguous volatile fruit-flavor concentrate plant. If a proprietor wishes...

  14. 27 CFR 19.144 - Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... spirits plant and volatile fruit-flavor concentrate plant premises. 19.144 Section 19.144 Alcohol, Tobacco... § 19.144 Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises... use with the premises of a contiguous volatile fruit-flavor concentrate plant. If a proprietor wishes...

  15. 27 CFR 19.144 - Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... spirits plant and volatile fruit-flavor concentrate plant premises. 19.144 Section 19.144 Alcohol, Tobacco... § 19.144 Alternation of distilled spirits plant and volatile fruit-flavor concentrate plant premises... use with the premises of a contiguous volatile fruit-flavor concentrate plant. If a proprietor wishes...

  16. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ.

    PubMed

    Vallat, Armelle; Gu, Hainan; Dorn, Silvia

    2005-07-01

    Headspace volatiles from apple-bearing twigs were collected in the field with a Radiello sampler during three different diurnal periods over the complete fruit growing season. Analyses by thermal desorption-GC-MS identified a total of 62 compounds in changing quantities, including the terpenoids alpha-pinene, camphene, beta-pinene, limonene, beta-caryophyllene and (E,E)-alpha-farnesene, the aldehydes (E)-2-hexenal, benzaldehyde and nonanal, and the alcohol (Z)-3-hexen-1-ol. The variations in emission of these plant odours were statistically related to temperature, humidity and rainfall in the field. Remarkably, rainfall had a significant positive influence on changes in volatile release during all three diurnal periods, and further factors of significance were temperature and relative humidity around noon, relative humidity in the late afternoon, and temperature and relative humidity during the night. Rainfall was associated consistently with an increase in the late afternoon in terpene and aldehyde volatiles with a known repellent effect on the codling moth, one of the key pests of apple fruit. During the summer of 2003, a season characterized by below-average rainfall, some postulated effects of drought on trees were tested by establishing correlations with rainfall. Emissions of the wood terpenes alpha-pinene, beta-pinene and limonene were negatively correlated with rainfall. Another monoterpene, camphene, was only detected in this summer but not in the previous years, and its emissions were negatively correlated with rainfall, further supporting the theory that drought can result in higher formation of secondary metabolites. Finally, the two green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol were negatively correlated with rainfall, coinciding well with the expectation that water deficit stress increases activity of lipoxygenase. To our knowledge, this work represents the first empirical study concerning the influence of abiotic factors on volatile

  17. Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses.

    PubMed

    Jansen, Roel M C; Hofstee, Jan W; Wildt, Jürgen; Verstappen, Francel W A; Bouwmeester, Harro J; van Henten, Eldert J

    2009-09-01

    A novel approach to support the inspection of greenhouse crops is based on the measurement of volatile organic compounds emitted by unhealthy plants. This approach has attracted some serious interest over the last decade. In pursuit of this interest, we performed several experiments at the laboratory-scale to pinpoint marker volatiles that can be used to indicate certain health problems. In addition to these laboratory experiments, pilot and model studies were performed in order to verify the validity of these marker volatiles under real-world conditions. This paper provides an overview of results and gives an outlook on the use of plant volatiles for plant health monitoring.

  18. Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses

    PubMed Central

    Hofstee, Jan W; Wildt, Jürgen; Verstappen, Francel WA; Bouwmeester, Harro J; van Henten, Eldert J

    2009-01-01

    A novel approach to support the inspection of greenhouse crops is based on the measurement of volatile organic compounds emitted by unhealthy plants.This approach has attracted some serious interest over the last decade. In pursuit of this interest, we performed several experiments at the laboratory-scale to pinpoint marker volatiles that can be used to indicate certain health problems. In addition to these laboratory experiments, pilot and model studies were performed in order to verify the validity of these marker volatiles under real-world conditions. This paper provides an overview of results and gives an outlook on the use of plant volatiles for plant health monitoring. PMID:19847108

  19. A Challenge for a Male Noctuid Moth? Discerning the Female Sex Pheromone against the Background of Plant Volatiles

    PubMed Central

    Badeke, Elisa; Haverkamp, Alexander; Hansson, Bill S.; Sachse, Silke

    2016-01-01

    Finding a partner is an essential task for members of all species. Like many insects, females of the noctuid moth Heliothis virescens release chemical cues consisting of a species-specific pheromone blend to attract conspecific males. While tracking these blends, male moths are also continuously confronted with a wide range of other odor molecules, many of which are plant volatiles. Therefore, we analyzed how background plant odors influence the degree of male moth attraction to pheromones. In order to mimic a natural situation, we tracked pheromone-guided behavior when males were presented with the headspaces of each of two host plants in addition to the female pheromone blend. Since volatile emissions are also dependent on the physiological state of the plant, we compared pheromone attraction in the background of both damaged and intact plants. Surprisingly, our results show that a natural odor bouquet does not influence flight behavior at all, although previous studies had shown a suppressive effect at the sensory level. We also chose different concentrations of single plant-emitted volatiles, which have previously been shown to be neurophysiologically relevant, and compared their influence on pheromone attraction. We observed that pheromone attraction in male moths was significantly impaired in a concentration-dependent manner when single plant volatiles were added. Finally, we quantified the amounts of volatile emission in our experiments using gas chromatography. Notably, when the natural emissions of host plants were compared with those of the tested single plant compounds, we found that host plants do not release volatiles at concentrations that impact pheromone-guided flight behavior of the moth. Hence, our results lead to the conclusion that pheromone-plant interactions in Heliothis virescens might be an effect of stimulation with supra-natural plant odor concentrations, whereas under more natural conditions the olfactory system of the male moth appears

  20. Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore.

    PubMed

    Ponzio, Camille; Gols, Rieta; Weldegergis, Berhane T; Dicke, Marcel

    2014-08-01

    Plants respond to herbivory with the emission of plant volatiles, which can be used by the herbivores' natural enemies to locate their hosts or prey. In nature, plants are often simultaneously confronted with insect herbivores and phytopathogens, potentially interfering with the attraction of the herbivores' enemies as a result of modifications of the induced volatile blend. Here, we investigated parasitoid (Cotesia glomerata) attraction to volatiles of plants challenged by different attackers, either alone or in combination with Pieris brassicae caterpillars, hosts of C. glomerata. We used a natural system consisting of Brassica nigra plants, eggs and larvae of P. brassicae, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. campestris. In all cases, parasitoids successfully located host-infested plants, and wasp foraging behaviour was unaffected by the simultaneous presence of a non-host attacker or host eggs. Analysis of the volatile emissions show that the volatile blends of caterpillar-infested treatments were different from those without caterpillars. Furthermore, dually attacked plants could not be separated from those with only caterpillars, regardless of non-host identity, supporting the behavioural data. Our results suggest that, in this system, indirect plant defences may be more resistant to interference than is generally assumed, with volatiles induced during dual attack remaining reliable indicators of host presence for parasitoids. © 2014 John Wiley & Sons Ltd.

  1. Evaluation of Volatile Organic Compound Emissions from Megacities and Wildfires

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Apel, E. C.; Hornbrook, R. S.; Riemer, D. D.; Lamarque, J.; Wiedinmyer, C.; Mirage Science Team; Arctas Science Team

    2011-12-01

    Volatile organic compounds (VOCs) play a critical role in determining air quality through their impact on ozone production and other pollutants. Tropospheric chemistry models use a variety of treatments for the lumping of VOCs in their chemical mechanisms, as a compromise between detailed treatment and computational speed. However, emission inventories are frequently provided for only total VOCs with little or no information on how to split the emissions among the model species, introducing additional uncertainty to the model simulations. Global model simulations using the Model for Ozone and Related Chemical Tracers (MOZART-4) and several different emission inventories are evaluated through detailed comparison to aircraft and surface observations. In particular, correlations between measured VOCs and CO are used to test the emission inventory emission ratios of the modeled VOC species. For example, megacity VOC emissions will be evaluated with surface measurements in Mumbai, Shanghai and Tokyo, as well as aircraft measurements from the NSF/MIRAGE experiment downwind of Mexico City. Wildfire emissions in Siberia, Canada and California will be evaluated using airborne observations of the NASA/ARCTAS experiment.

  2. Production and emission of volatile compounds by petal cells.

    PubMed

    Baudino, Sylvie; Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe

    2007-11-01

    We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa x hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission.

  3. Production and Emission of Volatile Compounds by Petal Cells

    PubMed Central

    Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe

    2007-01-01

    We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa × hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission. PMID:19704548

  4. Stochastic volatility of the futures prices of emission allowances: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Kim, Jungmu; Park, Yuen Jung; Ryu, Doojin

    2017-01-01

    Understanding the stochastic nature of the spot volatility of emission allowances is crucial for risk management in emissions markets. In this study, by adopting a stochastic volatility model with or without jumps to represent the dynamics of European Union Allowances (EUA) futures prices, we estimate the daily volatilities and model parameters by using the Markov Chain Monte Carlo method for stochastic volatility (SV), stochastic volatility with return jumps (SVJ) and stochastic volatility with correlated jumps (SVCJ) models. Our empirical results reveal three important features of emissions markets. First, the data presented herein suggest that EUA futures prices exhibit significant stochastic volatility. Second, the leverage effect is noticeable regardless of whether or not jumps are included. Third, the inclusion of jumps has a significant impact on the estimation of the volatility dynamics. Finally, the market becomes very volatile and large jumps occur at the beginning of a new phase. These findings are important for policy makers and regulators.

  5. Caterpillar-induced plant volatiles attract conspecific adults in nature

    PubMed Central

    El-Sayed, Ashraf M.; Knight, Alan L.; Byers, John A.; Judd, Gary J. R.; Suckling, David M.

    2016-01-01

    Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles. PMID:27892474

  6. Emissions of volatile fatty acids from feed at dairy facilities

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Ashkan, Shawn; Krauter, Charles; Campbell, Sean; Hasson, Alam S.

    2010-12-01

    Recent studies suggest that dairy operations may be a major source of non-methane volatile organic compounds in dairy-intensive regions such as Central California, with short chain carboxylic acids (volatile fatty acids or VFAs) as the major components. Emissions of four VFAs (acetic acid, propanoic acid, butanoic acid and hexanoic acid) were measured from two feed sources (silage and total mixed rations (TMR)) at six Central California Dairies over a fifteen-month period. Measurements were made using a combination of flux chambers, solid phase micro-extraction fibers coupled to gas chromatography mass spectrometry (SPME/GC-MS) and infra-red photoaccoustic detection (IR-PAD for acetic acid only). The relationship between acetic acid emissions, source surface temperature and four sample composition factors (acetic acid content, ammonia-nitrogen content, water content and pH) was also investigated. As observed previously, acetic acid dominates the VFA emissions. Fluxes measured by IR-PAD were systematically lower than SPME/GC-MS measurements by a factor of two. High signals in field blanks prevented emissions from animal waste sources (flush lane, bedding, open lot) from being quantified. Acetic acid emissions from feed sources are positively correlated with surface temperature and acetic acid content. The measurements were used to derive a relationship between surface temperature, acetic acid content and the acetic acid flux. The equation derived from SPME/GC-MS measurements predicts estimated annual average acetic acid emissions of (0.7 + 1/-0.4) g m -2 h -1 from silage and (0.2 + 0.3/-0.1) g m -2 h -1 from TMR using annually averaged acetic acid content and meteorological data. However, during the summer months, fluxes may be several times higher than these values.

  7. Fourfold higher tundra volatile emissions due to arctic summer warming

    NASA Astrophysics Data System (ADS)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  8. Oviposition induced volatile emissions from African smallholder farmers' maize varieties.

    PubMed

    Tamiru, Amanuel; Bruce, Toby J A; Midega, Charles A O; Woodcock, Christine M; Birkett, Michael A; Pickett, John A; Khan, Zeyaur R

    2012-03-01

    Maize (corn), Zea mays, is a genetically diverse crop, and we have recently shown that certain open pollinated varieties (OPVs) of Latin American origin possess a trait not present in mainstream commercial varieties: they produce volatiles in response to stemborer oviposition that are attractive to stemborer parasitoids. Here, we tested whether a similar tritrophic effect occurs in the African OPVs 'Nyamula' and 'Jowi'. Herbivore induced plant volatiles (HIPVs) were collected from plants exposed to egg deposition by the stemborer Chilo partellus. In a four-arm olfactometer bioassay, the parasitic wasp Cotesia sesamiae preferred samples containing HIPVs from plants with eggs to samples collected from plants without eggs. EAG-active compounds, including (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were released in higher amounts from the egg induced headspace samples. Our results suggest that this oviposition trait is not limited to S. American Z. mays germplasm, and that it could be used to increase indirect defense against attack by stemborers.

  9. Biogenic Volatile Organic Compound Emission Rates From Urban Vegetation in Southeast China

    NASA Astrophysics Data System (ADS)

    Baker, B.; Graessli, M.; Bai, J.; Huang, A.; Li, N.; Guenther, A.

    2005-12-01

    Currently, the country of China is growing economically at an extraordinary pace. With this growth comes an increase in emissions of anthropogenic pollutants such as hydrocarbons and nitrogen oxides from factories and vehicles. To accurately determine the effects of these pollutants on regional ozone production, and to best determine mitigation strategies, biogenic volatile organic compound (BVOC) emissions must be considered in regional atmospheric chemistry models. To date, few studies have been carried out to determine BVOC emission factors for plant species that occur in China. Considering that approximately 20% of the world's population resides in this region, it is important to develop accurate databases for BVOC emissions for the country of China. This experiment took place during May and June of 2005 and was based in the Fairy Lake Botanical Gardens (FLBG) located to the northeast of the city of Shenzhen. The city of Shenzhen is located in southeast China in Guangdong province. The city was designated a 'special economic zone' in 1980 and has experienced intense population and economic growth ever since. The dense city is surrounded by hilly rural areas of forest on three sides, and Hong Kong to the south. The purpose of the experiment was to evaluate emissions of BVOC from plants that are important to the Shenzhen region as well as to southeastern China. Over 150 species of plants were screened for emissions of isoprene and monoterpenes. These species include most of the dominant trees and shrubs planted in the Shenzhen area. Samples were collected at the FLBG as well as at various locations around the city of Shenzhen. BVOC emission samples were collected and analyzed in one of two ways. First, a Teflon enclosure was placed over a plant's branch with a constant flow of ambient air passing through the enclosure. Samples were then pumped into a Teflon bag for analysis. Samples were analyzed within 30 minutes by gas chromatography (GC) with either a photo

  10. Emissions of volatile organic compounds (primarily oxygenated species) from pasture

    NASA Astrophysics Data System (ADS)

    Kirstine, Wayne; Galbally, Ian; Ye, Yuerong; Hooper, Martin

    1998-05-01

    The volatile organic compound (VOC) emissions from pasture at a site in southeastern Victoria, Australia, were monitored over a 2 year period using a static chamber technique. Fluxes up to 23,000 μg(C) m-2 h-1 were detected, with the higher fluxes originating from clover rather than from grass species. Gas Chromatographic analyses indicated that emissions from both grass and clover were high in oxygenated hydrocarbons including methanol, ethanol, propanone, butanone, and ethanal, and extremely low in isoprene and monoterpenes. In the case of clover, butanone made up 45-50% of the total emissions. When grass and clover were freshly mown, there were significantly enhanced emissions of VOCs. These enhanced emissions included both those oxygenates emitted from uncut pasture and also C6-oxygenates, including (Z)-3-hexenal, (E)-2-hexenal, (Z)-2-hexen-1-ol, (Z)-3-hexen-l-ol, and (Z)-3-hexenyl acetate. Emissions from the undisturbed pasture increased markedly with temperature and the intensity of solar radiation, peaking at midday and ceasing at night. The fluxes, when normalized to a temperature of 30°C and a light intensity of 1000 μE m-2 s-1 were, for grass and clover respectively, about one eighth and two fifths of the equivalent fluxes reported to occur from U.S. woodlands. The annual integrated emission from the pasture was approximately 1.9 g(C) m-2 or 1.3 mg(C) g-1 (dry matter). The large transient fluxes that occurred following physical damaging of the pasture, when integrated over time, could be of the same order as those emissions that were observed from undisturbed pasture. In the case of methanol, and perhaps ethanol, the emissions from grasslands may be significant global sources of these gases.

  11. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles

    PubMed Central

    Girling, Robbie D.; Stewart-Jones, Alex; Dherbecourt, Julie; Staley, Joanna T.; Wright, Denis J.; Poppy, Guy M.

    2011-01-01

    Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment. PMID:21270031

  12. Patterns in Volatile Emission of Different Aerial Parts of Caper (Capparis spinosa L.).

    PubMed

    Ascrizzi, Roberta; Cioni, Pier Luigi; Giusti, Giulia; Pistelli, Luisa; Flamini, Guido

    2016-07-01

    We analyzed the spontaneous volatile emission of different aerial parts of the caper (Capparis spinosa L.) by HS-SPME-GC/MS. We identified 178 different compounds of which, in different proportions based on the sample type, the main ones were (E)-β-ocimene, methyl benzoate, linalool, β-caryophyllene, α-guaiene, germacrene D, bicyclogermacrene, germacrene B, (E)-nerolidol, isopropyl tetradecanoate, and hexahydrofarnesyl acetone. The multivariate statistical analyses seem to point out that the parameter leading the emission patterns is the function of the analyzed sample; the flower samples showed differences in the emission profile between their fertile and sterile portions and between the other parts of the plant. The green parts emission profiles group together in a cluster and are different from those of seeds and fruits. We also hydrodistilled fully bloomed caper flowers, whose volatile oil showed significant differences in the composition from those of other parts of the plant reported. © 2016 Wiley-VHCA AG, Zürich.

  13. 27 CFR 18.39 - Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a volatile fruit-flavor concentrate plant and a distilled spirits plant. 18.39 Section 18.39 Alcohol... PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Qualification Changes After Original Establishment § 18.39 Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant. A proprietor...

  14. 27 CFR 18.39 - Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a volatile fruit-flavor concentrate plant and a distilled spirits plant. 18.39 Section 18.39 Alcohol... PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Qualification Changes After Original Establishment § 18.39 Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant. A proprietor...

  15. 27 CFR 18.39 - Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a volatile fruit-flavor concentrate plant and a distilled spirits plant. 18.39 Section 18.39 Alcohol... PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Qualification Changes After Original Establishment § 18.39 Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant. A proprietor...

  16. 27 CFR 18.39 - Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a volatile fruit-flavor concentrate plant and a distilled spirits plant. 18.39 Section 18.39 Alcohol... PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Qualification Changes After Original Establishment § 18.39 Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant. A proprietor...

  17. 27 CFR 18.39 - Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a volatile fruit-flavor concentrate plant and a distilled spirits plant. 18.39 Section 18.39 Alcohol... PRODUCTION OF VOLATILE FRUIT-FLAVOR CONCENTRATE Qualification Changes After Original Establishment § 18.39 Qualification to alternate a volatile fruit-flavor concentrate plant and a distilled spirits plant. A proprietor...

  18. Spatio-temporal variation of biogenic volatile organic compounds emissions in China.

    PubMed

    Li, L Y; Chen, Y; Xie, S D

    2013-11-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action.

    PubMed

    Sánchez-López, Ángela María; Baslam, Marouane; De Diego, Nuria; Muñoz, Francisco José; Bahaji, Abdellatif; Almagro, Goizeder; Ricarte-Bermejo, Adriana; García-Gómez, Pablo; Li, Jun; Humplík, Jan F; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Baroja-Fernández, Edurne; Pozueta-Romero, Javier

    2016-12-01

    It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.

  20. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    PubMed

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  1. Elevated Ozone Modulates Herbivore-Induced Volatile Emissions of Brassica nigra and Alters a Tritrophic Interaction.

    PubMed

    Khaling, Eliezer; Li, Tao; Holopainen, Jarmo K; Blande, James D

    2016-05-01

    Plants damaged by herbivores emit volatile organic compounds (VOCs) that are used by parasitoids for host location. In nature, however, plants are exposed to multiple abiotic and biotic stresses of varying intensities, which may affect tritrophic interactions. Here, we studied the effects of ozone exposure and feeding by Pieris brassicae larvae on the VOCs emitted by Brassica nigra and the effects on oriented flight of the parasitoid Cotesia glomerata. We also investigated the oriented flight of C. glomerata in a wind-tunnel with elevated ozone levels. Herbivore-feeding induced the emission of several VOCs, while ozone alone had no significant effect. However, exposure to 120 ppb ozone, followed by 24 hr of herbivore-feeding, induced higher emissions of all VOCs as compared to herbivore-feeding alone. In accordance, herbivore-damaged plants elicited more oriented flights than undamaged plants, whereas plants exposed to 120 ppb ozone and 24 hr of herbivore-feeding elicited more oriented flights than plants subjected to herbivore-feeding alone. Ozone enrichment of the wind-tunnel air appeared to negatively affect orientation of parasitoids at 70 ppb, but not at 120 ppb. These results suggest that the combination of ozone and P. brassicae-feeding modulates VOC emissions, which significantly influence foraging efficiency of C. glomerata.

  2. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory.

    PubMed

    Schmelz, Eric A; Alborn, Hans T; Banchio, Erika; Tumlinson, James H

    2003-02-01

    Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced volatile emission; however, current models are based primarily on circumstantial evidence derived from pharmacological studies. Using beet armyworm caterpillars (BAW: Spodoptera exigua) and intact corn seedlings, we examine this hypothesis by measuring both the time-course of insect-induced JA levels and the relationships between endogenous JA levels, ethylene, indole and sesquiterpenes. In separate Morning and Evening time-course trials, BAW feeding stimulated increases in JA levels within the first 4-6 h and resulted in maximal increases in JA, indole, sesquiterpenes and ethylene 8-16 h later. During BAW herbivory, increases in JA either paralleled or preceded the increases in indole, sesquiterpenes and ethylene in the Morning and Evening trials, respectively. By varying the intensity of the BAW herbivory, we demonstrate that strong positive relationships exist between the resulting variation in insect-induced JA levels and volatile emissions such as indole and the sesquiterpenes. To address potential signaling interactions between herbivore-induced JA and ethylene, plants were pretreated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. 1-MCP pretreatment resulted in reduced production of ethylene and volatile emission following BAW herbivory but did not alter the insect-induced accumulation of JA. Our results strongly support a role for JA in the regulation of insect-induced volatile emission but also suggest that ethylene perception regulates the magnitude of volatile emission during herbivory.

  3. Dynamics of belowground diffusion and degradation of plant volatiles

    USDA-ARS?s Scientific Manuscript database

    It is well established that above ground herbivory induced plant volatiles (HIPVs) attract natural enemies of the herbivores. We now know that also roots can release HIPVs and that these compounds attract beneficial organisms such as entomopathogenic nematodes (EPNs). Unlike their aboveground counte...

  4. Bio-inspired surfactants capable of generating plant volatiles.

    PubMed

    Bhadani, Avinash; Rane, Jayant; Veresmortean, Cristina; Banerjee, Sanjoy; John, George

    2015-04-21

    Plants are able to synthesize, store and release lipophilic organic molecules known as plant volatiles (PVs) utilizing specific biological pathways and different enzymes which play vital roles in the plant's defence and in dealing with biotic and abiotic stress situations. The process of generation, storage and release of PVs by plants acquired during the course of evolution is a very complex phenomenon. Bio-inspired molecular design of farnesol-based surfactants facilitates similar production, storage and release of PVs. The designed molecules adsorb at air-water interface and self-aggregate into micelles in aqueous system. The structural design of the molecules allows them to self-activate in water via intramolecular cation-π interactions. The activated molecules undergo molecular rearrangements generating volatile organic molecules both at interface and inside the micelle core. The molecules adsorbed at the interface initially release the formed volatile molecules creating vacant space at interface, thus thermodynamically directing the micelle to release the manufactured volatile products.

  5. Emission characteristics of volatile compounds during sludges drying process.

    PubMed

    Deng, Wen-Yi; Yan, Jian-Hua; Li, Xiao-Dong; Wang, Fei; Zhu, Xiao-Wan; Lu, Sheng-Yong; Cen, Ke-Fa

    2009-02-15

    The emission characteristics of volatile compounds (VCs) during municipal sewage sludge (MSS) and paper mill sludge (PMS) drying process were investigated through experiments conducted on a lab-scale tubular drying furnace and a pilot-scale paddle dryer, respectively. The result indicated that five kinds of VCs, i.e. CO(2), NH(3), C(7)H(16) (n-heptane), volatile fatty acids (VFAs) and CH(4) were emitted during the drying process. It was found that the NH(3) and CO(2) were the primary compound released from the MSS drying process. In the case of the PMS, the VFAs and CO(2) were the main compounds released. The temperature and water content of sludge had great effects on the emission rates of NH(3), C(7)H(16), CO(2) and VFAs. The pH and chemical oxygen demand (COD) of condensate from the paddle dryer were also studied. It showed that pH and COD of condensate from MSS were much higher than that from the PMS, and that the higher COD value of the MSS condensate interrelated to the higher ammonium and sulfur content of it.

  6. Foraging behaviour of an egg parasitoid exploiting plant volatiles induced by pentatomids: the role of adaxial and abaxial leaf surfaces

    PubMed Central

    Cusumano, Antonino; Conti, Eric; Colazza, Stefano; Peri, Ezio; Guarino, Salvatore; Martorana, Letizia; Romani, Roberto; Salerno, Gianandrea

    2017-01-01

    Several phases of herbivorous insect attack including feeding and oviposition are known to induce plant defenses. Plants emit volatiles induced by herbivores to recruit insect parasitoids as an indirect defense strategy. So far, volatiles induced by herbivore walking and their putative role in the foraging behavior of egg parasitoids have not been investigated. In this paper we studied the response of the egg parasitoid Trissolcus basalis toward volatiles emitted by Vicia faba plants as consequence of the walking activity of the host Nezara viridula. Olfactometer bioassays were carried out to evaluate wasp responses to plants in which the abaxial or the adaxial surfaces were subjected to walking or/and oviposition. Results showed that host female walking on the abaxial but not on the adaxial surface caused a repellence effect in T. basalis 24 h after plant treatment. The emission of active volatiles also occurred when the leaf was turned upside-down, indicating a specificity of stress localization. This specificity was supported by the results, which showed that oviposition combined with feeding elicit the induction of plant volatiles, attracting the parasitoid, when the attack occurred on the abaxial surface. Analyses of plant volatile blends showed significant differences between the treatments. PMID:28533974

  7. Effects of airborne volatile organic compounds on plants.

    PubMed

    Cape, J N

    2003-01-01

    Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of

  8. Characterization of volatile organic chemical emissions from carpet cushions

    SciTech Connect

    Schaeffer, V.H.; Bhooshan, B.; Chen, S.B.; Sonenthal, J.S.; Hodgson, A.T.

    1996-09-01

    The U.S. Consumer Product Safety Commission is investigating chemical emissions from carpet systems in order to determine whether the emissions may be responsible for the numerous health complaints associated with carpet installation. As part of this effort, a study was conducted to identify and quantify volatile organic compounds (VOCs) released into the air by five major product types of new carpet cushions. Cushion samples were tested in small-volume dynamic chambers over a six-hour exposure period. Airborne VOCs collected on multisorbent samplers were identified using sensitive gas chromatography/mass spectrometry. A separate chamber method was developed to screen polyurethane cushions for emissions of toluene diisocyanates (TDI). Over 100 VOCs, spanning a broad range of chemical classes, were emitted from 17 carpet cushions. The pattern of emitted VOCs varied between and among product types, which reflects probable differences in manufacturing processes and ingredients. No significant quantities of TDI or formaldehyde were released by any cushions. Emission profiles were characterized for total VOCs and for the predominant individual VOCs. As a group, the synthetic fiber cushion samples emitted the lowest quantities of VOCs. Cushion samples purchased from carpet retailers released lesser amounts of VOCs than samples of the same cushion types obtained directly from the manufacturing mills. 11 refs., 2 figs., 3 tabs.

  9. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    NASA Astrophysics Data System (ADS)

    Niinemets, Ü.; Arneth, A.; Kuhn, U.; Monson, R. K.; Peñuelas, J.; Staudt, M.

    2010-03-01

    Volatile isoprenoid emission rate from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor) and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on biotic and abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven (effects of abiotic and biotic stresses), adaptive (previous temperature and light environment and growth CO2 concentration) and developmental (leaf age) variations in ES values. These biological factors can alter species-specific ES values by more than an order of magnitude. Recent models are including some of these biological sources of variation to some degree, while the majority of models based on early concepts still ignore these important sources of variation. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work for mechanistic consideration of ES variation in models.

  10. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  11. 78 FR 24990 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound...), several volatile organic compound (VOC) rules that were submitted by the Ohio Environmental Protection... emissions from stationary sources, storage of volatile organic liquids, industrial cleaning solvents,...

  12. Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles.

    PubMed

    Yang, Guang; Zhang, You-Nan; Gurr, Geoff M; Vasseur, Liette; You, Min-Sheng

    2016-04-01

    Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous vegetable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans-2-hexenal, benzaldehyde, nonanal and cis-3-hexenol, and 10 μL/mL of trans-2-hexenal and benzaldehyde with the strongest response provoked by trans-2-hexenal at 100 μL/mL. In the Y-tube olfactometer, C. plutellae, was significantly attracted by 1 μL/mL of trans-2-hexenal and benzaldehyde. β-caryophyllene, cis-3-hexenol or trans-2-hexenal significantly attracted C. plutellae at 10 μL/mL, while nonanal, benzyl alcohol, cis-3-hexenol or benzyl cyanide at 100 μL/mL significantly attracted C. plutellae. Trans-2-hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various compounds with mixtures 3 (trans-2-hexenal, benzaldehyde, nonanal, cis-3-hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans-2-hexenal, benzaldehyde, benzyl alcohol, (R)-(+)-limonene, β-ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol of P. xylostella.

  13. Trace gas emissions by plants

    SciTech Connect

    Sharkey, T.D. . Dept. of Botany); Holland, E.A. ); Mooney, H.A. . Dept. of Biological Sciences)

    1991-01-01

    The trace gases released or influenced by plants play a key role in atmospheric processes. In the troposphere, methane and carbon monoxide are key species that react with the hydroxyl radical (OH), an effective atmospheric detergent. Carbon monoxide is formed by the oxidation of the biogenic hydrocarbons discussed previously. In the presence of NO, the oxidation of CO, CH[sub 4] and NMHC can lead to the formation of ozone, a tropospheric pollutant. In the stratosphere, methane is an important source of water vapor. Volatile sulfur compounds released by plants may be an important source of cloud condensation nuclei. Collectively, these compounds may directly regulate the earth's climate because they are radiatively active and influence the radiation balance at the earth's surface or indirectly regulate the earth's climate because they influence the concentration of radiatively active gases. The focus of the workshop was on naturally occurring gas fluxes. It is sometimes claimed that the gas fluxes from plants pollute the atmosphere. Our focus was on the natural chemistry occurring at the biosphere-atmosphere interface. Individual reports are processed separately for the data bases.

  14. Trace gas emissions by plants

    SciTech Connect

    Sharkey, T.D.; Holland, E.A.

    1991-12-31

    The trace gases released or influenced by plants play a key role in atmospheric processes. In the troposphere, methane and carbon monoxide are key species that react with the hydroxyl radical (OH), an effective atmospheric detergent. Carbon monoxide is formed by the oxidation of the biogenic hydrocarbons discussed previously. In the presence of NO, the oxidation of CO, CH{sub 4} and NMHC can lead to the formation of ozone, a tropospheric pollutant. In the stratosphere, methane is an important source of water vapor. Volatile sulfur compounds released by plants may be an important source of cloud condensation nuclei. Collectively, these compounds may directly regulate the earth`s climate because they are radiatively active and influence the radiation balance at the earth`s surface or indirectly regulate the earth`s climate because they influence the concentration of radiatively active gases. The focus of the workshop was on naturally occurring gas fluxes. It is sometimes claimed that the gas fluxes from plants pollute the atmosphere. Our focus was on the natural chemistry occurring at the biosphere-atmosphere interface. Individual reports are processed separately for the data bases.

  15. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  16. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  17. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  18. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-03-01

    A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  19. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-08-01

    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  20. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-12-01

    Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress. In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts.

  1. Characterization of volatile organic compounds from different cooking emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  2. Volatile organic emissions from adhesives with indoor applications

    SciTech Connect

    Girman, J.R.; Hodgson, A.T.; Newton, A.S.; Winkes, A.W.

    1984-02-01

    Studies have shown that volatile organic compounds (VOC) emitted from building materials are a potentially important source of indoor air pollution. In this study, we investigated emissions of VOC from both solvent- and water-based adhesives. Adhesives were applied to an inert substrate and dried for at least a week. VOC were cryogenically trapped and identified by GC-MS or sorbent trapped, solvent extracted, and quantified by GC-FID. Among the compounds emitted by adhesives were toluene, styrene, and a variety of normal, branched, and cyclic alkanes. The measured emission rates ranged from below the limit of detection for some adhesives to a total alkane emission rate of over 700 ..mu..g g/sup -1/h/sup -1/ for a water-based adhesive. A simple, well-mixed tank model was used to assess the potential impacts of the adhesives studied and to demonstrate that adhesives can be significant sources of VOC. 8 references, 1 figure, 2 tables.

  3. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    NASA Astrophysics Data System (ADS)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  4. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  5. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    NASA Astrophysics Data System (ADS)

    Klinger, L. F.; Greenburg, J.; Guenther, A.; Tyndall, G.; Zimmerman, P.; M'bangui, M.; Moutsamboté, J.-M.; Kenfack, D.

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene from tropical rainforests are considerably higher than from savannas. These global models of VOC emissions which rely mainly on species inventories are useful, but significant improvement might be made with more ecologically based models of VOC emissions by plants. Ecosystems along a successional transect from woodland savanna to primary rainforest in central Africa were characterized for species composition and vegetation abundance using ground surveys and remotely sensed data. A total of 336 species (mostly trees) at 13 sites were recorded, and 208 of these were measured for VOC emissions at near-optimal light and temperature conditions using a leaf cuvette and hand-held photoionization detector (PID). A subset of 59 species was also sampled using conventional VOC emission techniques in order to validate the PID technique. Results of ecological and VOC emission surveys indicate both phylogenetic and successional patterns along the savanna-rainforest transect. Genera and families of trees which tend to emit isoprene include Lophira, Irvingia, Albizia, Artocarpus, Ficus, Pterocarpus, Caesalpiniaceae, Arecaceae, and Moraceae. Other taxa tend to contain stored VOCs (Annonaceae and Asteraceae). Successional patterns suggest that isoprene emissions are highest in the relatively early successional Isoberlinia forest communities and progressively decrease in the later successional secondary and primary rainforest communities. Stored VOCs appear to increase along the savanna-rainforest succession, but these data are more tentative. These findings are consistent with

  6. Adaptation of a resistive model to pesticide volatilization from plants at the field scale: Comparison with a dataset

    NASA Astrophysics Data System (ADS)

    Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Barriuso, Enrique

    2014-02-01

    Volatilization from plants is known to greatly contribute to pesticide emission into the atmosphere. Modeling would allow estimating this contribution, but few models are actually available because of our poor understanding of processes occurring at the leaf surface, competing with volatilization, and also because available datasets for validating models are lacking. The SURFATM-Pesticides model was developed to predict pesticide volatilization from plants. It is based on the concept of resistances and takes into account two processes competing with volatilization (leaf penetration and photodegradation). Model is here presented and simulated results are compared with the experimental dataset obtained at the field scale for two fungicides applied on wheat, fenpropidin and chlorothalonil. These fungicides were chosen because they are largely used, as well as because of their differentiated vapor pressures. The model simulates the energy balance and surface temperature which are in good agreement with the experimental data, using the climatic variables as inputs. The model also satisfactorily simulates the volatilization fluxes of chlorothalonil. In fact, by integrating estimated rate coefficients of leaf penetration and photodegradation for chlorothalonil giving in the literature, the volatilization fluxes were estimated to be 24.8 ng m-2 s-1 compared to 23.6 ng m-2 s-1 measured by the aerodynamic profile method during the first hours after application. At six days, the cumulated volatilization fluxes were estimated by the model to be 19 g ha-1 compared to 17.5 g ha-1 measured by the inverse modeling approach. However, due to the lack of data to estimate processes competing with volatilization for fenpropidin, the volatilization of this compound is still not well modeled yet. Thus the model confirms that processes competing with volatilization represent an important factor affecting pesticide volatilization from plants.

  7. Contribution of non methane organic volatiles exchange to the carbon budget of isoprene and monoterpene emitting plant species

    NASA Astrophysics Data System (ADS)

    Dindorf, T.; Kuhn, U.; Ammann, C.; Neftel, A.; Tritsch, C.; Ciccioli, P.; Koppmann, R.; Kesselmeier, J.

    2003-04-01

    Compared to the aerosol fraction, most of the organic carbon present in the atmosphere is found in form of volatile or semivolatile compounds. Vegetation was identified being the major source of these organic volatiles, releasing carbon at the same order of magnitude as the global net biome productivity (NBP). To achieve an estimate of plants carbon exchange, including the emission and deposition of volatile organics, the exchange activity of the two isoprene and monoterpene emitting plant species Quercus robur and Fagus sylvatica was observed under field conditions during the ECHO campaign (Emission and CHemical Transformation of Biogenic Volatile Organic Compounds) in summer 2002 in Jülich, Germany. Primary productivity and VOC exchange was investigated on the branch level by means of a dynamic cuvette system. Organic volatiles were collected on adsorbent tubes and analysed later on by GC-FID and GC-MS for species composition and quantification. Short chain carbonyls were sampled on DNPH coated cartridges and analysed by HPLC-UV. For identification of a broader spectrum of volatile compounds, both methods were complemented by PTR-MS measurements for the isoprene emitting species. Isoprenoid and methanol emissions accounted for the majority of the VOC release, which was partly compensated by the deposition of other oxygenated organic compounds.

  8. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    NASA Astrophysics Data System (ADS)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  9. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).

    PubMed

    Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul

    2012-11-01

    Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.

  10. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    PubMed Central

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Eijk, Marleen Vergeer-Van; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography–mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase–quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant–plant and plant–insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. PMID:23845065

  11. Diurnal and seasonal emissions of volatile organic compounds from cork oak ( Quercus suber) trees

    NASA Astrophysics Data System (ADS)

    Pio, C. A.; Silva, P. A.; Cerqueira, M. A.; Nunes, T. V.

    The emissions of volatile organic compounds from Quercus suber (cork oak) were investigated at two rural sites in Portugal using a branch enclosure method with subsequent analysis by gas chromatography/flame ionization detection. Q. suber leaves released important amounts of monoterpenes, mainly in the form of limonene, α-pinene, β-pinene and sabinene. However, significant temporal and intraspecific variations in the relative abundance of the dominant compounds were found during this survey. Emissions from Q. suber were strongly dependent on light and temperature, showing a similar behaviour to that of plant species known to be isoprene producers. But, this work also revealed that, although at lower rates, emissions of monoterpenes continued in the dark for several hours. Emission rates were quite well predicted by algorithms based on the Guenther and Tingey equations; correlations of measurements with modelled data were, on average, r2=0.80. A pronounced seasonal variation was recorded for the emissions of monoterpenes. During the 1-yr study period, standard emission rates ranged between a minimum of 0.2 μg g dw-1 h -1, in winter, and a maximum of 20-30 μg g dw-1 h -1, in summer.

  12. Modeling Emissions of Volatile Organic Compounds from New Carpets

    SciTech Connect

    Little, J.C.; Hodgson, A.T.; Gadgil, A.J.

    1993-02-01

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the polymer/air partition coefficients generally increase as the vapor pressure of the compounds decrease. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that predictions of VOCs emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  13. Modeling emissions of volatile organic compounds from new carpets

    NASA Astrophysics Data System (ADS)

    Little, John C.; Hodgson, Alfred T.; Gadgil, Ashok J.

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the partition coefficients generally increase as the vapor pressure of the compounds decreases. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that prediction of VOC emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  14. Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Ge, Ying; Han, Wenjuan; Fan, Xing; Ren, Yuan; Du, Yuanyuan; Shi, Mengmeng; Chang, Jie

    2016-10-01

    Ammonia volatilization from wastewaters with a high concentration of ammonium is a serious environmental and health problem. Constructed wetlands (CWs) are widely used for treating wastewater, and plant diversity clearly improves some functions of ecosystem such as nitrogen removal. However, whether plant diversity can affect ammonia volatilization from wastewater is still unknown. In this study, we conducted a microcosm experiment with different plant diversity treatments using four plant species. Results showed that, (1) ammonia volatilization decreased with increasing plant species richness; (2) ammonia volatilization from systems containing Rumex japonicus was lower than other systems; and (3) ammonia volatilization was affected more by species composition than species richness. This paper is the first to report that ammonia volatilization is reduced by plant diversity, and that some plant species combinations are important to reduce ammonia volatilization from CWs when treating wastewater.

  15. Contribution of the gasoline distribution cycle to volatile organic compound emissions in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Magdaleno, M; Díaz, L; Krüger, B; León, J; Palmerín, M E; Casas, R; Melgarejo, A; López-Salinas, E

    2002-05-01

    Gasoline distribution in the metropolitan area of Mexico City (MAMC) represents an area of opportunity for the abatement of volatile organic compound (VOC) emissions. The gasoline distribution in this huge urban center encompasses several operations: (1) storage in bulk and distribution plants, (2) transportation to gasoline service stations, (3) unloading at service stations' underground tanks, and (4) gasoline dispensing. In this study, hydrocarbon (HC) emissions resulting from breathing losses in closed reservoirs, leakage, and spillage from the operations just listed were calculated using both field measurements and reported emission factors. The results show that the contribution of volatile HC emissions due to storage, distribution, and sales of gasoline is 6651 t/year, approximately 13 times higher than previously reported values. Tank truck transportation results in 53.9% of the gasoline emissions, and 31.5% of emissions are generated when loading the tank trucks. The high concentration of emissions in the gasoline transportation and loading operations by tank trucks has been ascribed to (1) highly frequent trips from distribution plant to gasoline stations, and vice versa, to cope with excessive gasoline sales per gasoline station; (2) low leakproofness of tank trucks; and (3) poor training of employees. In addition, the contribution to HC evaporative and exhaust emissions from the vehicles of the MAMC was also evaluated.

  16. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  17. Emission of volatile chemicals from flowering dogwood (cornus Florida L.) flowers.

    PubMed

    Zhuang, Xiaofeng; Klingeman, William E; Hu, Jun; Chen, Feng

    2008-10-22

    Reproduction of flowering dogwood trees occurs via obligate out-crossing, and U.S. native bees have been suggested to be primary pollinators of this ecologically and economically important deciduous tree. Whether floral volatiles play a role in reproduction of the dogwood remains unclear. Objectives of this study were to identify principal volatile chemicals emitted from dogwood flowers and to assess a temporal volatile emission profile and volatile consistency across four cultivars. Inflorescences with intact bracts and 5 cm flower pedicel were removed from dogwood trees and subjected to headspace volatile collection. Six principal volatile compounds were detected from the flowers of the cultivar 'World's Fair' with 3-formylpyridine as the most abundant constituent. Subsequent headspace analyses performed using inflorescences without bracts or floral pedicels alone indicated that 3-formylpyridine, E-beta-ocimene, S-linalool, and ketoisophorone were mainly emitted from inflorescences. Experiments were also conducted to determine whether volatile emissions differed across time and between different cultivars of flowering dogwood. When volatile emission was analyzed for 48 h using 12 h light/dark cycles, the emission of several volatile compounds displayed diurnal patterns. Finally, whereas florets in inflorescences of four different dogwood cultivars emitted similar levels of the six principal floral volatile chemicals, 'Cherokee Brave' flowers alone yielded 4-methoxybenzaldehyde and germacrene-D. The implications of the findings of this study to dogwood breeding programs are discussed.

  18. Environmental guideline for the reduction of volatile organic compound emissions from the plastics processing industry

    SciTech Connect

    1997-12-31

    The purpose of this document is to provide guidance to environmental regulatory agencies, manufacturers, and operators of plastics processing plants regarding the means of reducing emissions containing volatile organic compounds (VOCs) which are released to the environment in the course of production. Sectors covered by the guideline are expanded polystyrene, cellular polyethylene foams, polyvinyl chloride, and reinforced plastics and composites made from thermoset polyester resins. The guideline focuses on the reduction of VOC emissions from processing and clean-up operations, the handling and storage of VOC-containing materials, and the handling and disposal of wastes. The guideline contains material, equipment, process, and operating standards for plastics processing facilities, record keeping and training standards, recommended operating practices, and testing protocols.

  19. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants

    PubMed Central

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M.; Verheggen, François; Massart, Sébastien

    2017-01-01

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants. PMID:28508885

  20. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    PubMed

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  1. Penicillium expansum volatiles reduce pine weevil attraction to host plants.

    PubMed

    Azeem, Muhammad; Rajarao, Gunaratna Kuttuva; Nordenhem, Henrik; Nordlander, Göran; Borg-Karlson, Anna Karin

    2013-01-01

    The pine weevil Hylobius abietis (L.) is a severe pest of conifer seedlings in reforested areas of Europe and Asia. To identify minimally toxic and ecologically sustainable compounds for protecting newly planted seedlings, we evaluated the volatile metabolites produced by microbes isolated from H. abietis feces and frass. Female weevils deposit feces and chew bark at oviposition sites, presumably thus protecting eggs from feeding conspecifics. We hypothesize that microbes present in feces/frass are responsible for producing compounds that deter weevils. Here, we describe the isolation of a fungus from feces and frass of H. abietis and the biological activity of its volatile metabolites. The fungus was identified by morphological and molecular methods as Penicillium expansum Link ex. Thom. It was cultured on sterilized H. abietis frass medium in glass flasks, and volatiles were collected by SPME and analyzed by GC-MS. The major volatiles of the fungus were styrene and 3-methylanisole. The nutrient conditions for maximum production of styrene and 3-methylanisole were examined. Large quantities of styrene were produced when the fungus was cultured on grated pine bark with yeast extract. In a multi-choice arena test, styrene significantly reduced male and female pine weevils' attraction to cut pieces of Scots pine twigs, whereas 3-methylanisole only reduced male weevil attraction to pine twigs. These studies suggest that metabolites produced by microbes may be useful as compounds for controlling insects, and could serve as sustainable alternatives to synthetic insecticides.

  2. Plant volatiles influence electrophysiological and behavioral responses of Lygus hesperus.

    PubMed

    Williams, Livy; Blackmer, Jacquelyn L; Rodriguez-Saona, Cesar; Zhu, Su

    2010-05-01

    Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-beta-ocimene, (E,E)-alpha-farnesene, (+/-)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (beta-myrcene, beta-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(-)-alpha-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (+/-)-linalool, (E,E)-alpha-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-alpha-pinene, (E)-beta-ocimene, and (E,E)-alpha-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(-)-alpha-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.

  3. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  4. Methods in plant foliar volatile organic compounds research.

    PubMed

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  5. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results

  6. Egg parasitoid attraction toward induced plant volatiles is disrupted by a non-host herbivore attacking above or belowground plant organs

    PubMed Central

    Moujahed, Rihem; Frati, Francesca; Cusumano, Antonino; Salerno, Gianandrea; Conti, Eric; Peri, Ezio; Colazza, Stefano

    2014-01-01

    Plants respond to insect oviposition by emission of oviposition-induced plant volatiles (OIPVs) which can recruit egg parasitoids of the attacking herbivore. To date, studies demonstrating egg parasitoid attraction to OIPVs have been carried out in tritrophic systems consisting of one species each of plant, herbivore host, and the associated egg parasitoid. Less attention has been given to plants experiencing multiple attacks by host and non-host herbivores that potentially could interfere with the recruitment of egg parasitoids as a result of modifications to the OIPV blend. Egg parasitoid attraction could also be influenced by the temporal dynamics of multiple infestations, when the same non-host herbivore damages different organs of the same plant species. In this scenario we investigated the responses of egg parasitoids to feeding and oviposition damage using a model system consisting of Vicia faba, the above-ground insect herbivore Nezara viridula, the above- and below-ground insect herbivore Sitona lineatus, and Trissolcus basalis, a natural enemy of N. viridula. We demonstrated that the non-host S. lineatus disrupts wasp attraction toward plant volatiles induced by the host N. viridula. Interestingly, V. faba damage inflicted by either adults (i.e., leaf-feeding) or larvae (i.e., root-feeding) of S. lineatus, had a similar disruptive effect on T. basalis host location, suggesting that a common interference mechanism might be involved. Neither naïve wasps or wasps with previous oviposition experience were attracted to plant volatiles induced by N. viridula when V. faba plants were concurrently infested with S. lineatus adults or larvae. Analysis of the volatile blends among healthy plants and above-ground treatments show significant differences in terms of whole volatile emissions. Our results demonstrate that induced plant responses caused by a non-host herbivore can disrupt the attraction of an egg parasitoid to a plant that is also infested with its hosts

  7. Egg parasitoid attraction toward induced plant volatiles is disrupted by a non-host herbivore attacking above or belowground plant organs.

    PubMed

    Moujahed, Rihem; Frati, Francesca; Cusumano, Antonino; Salerno, Gianandrea; Conti, Eric; Peri, Ezio; Colazza, Stefano

    2014-01-01

    Plants respond to insect oviposition by emission of oviposition-induced plant volatiles (OIPVs) which can recruit egg parasitoids of the attacking herbivore. To date, studies demonstrating egg parasitoid attraction to OIPVs have been carried out in tritrophic systems consisting of one species each of plant, herbivore host, and the associated egg parasitoid. Less attention has been given to plants experiencing multiple attacks by host and non-host herbivores that potentially could interfere with the recruitment of egg parasitoids as a result of modifications to the OIPV blend. Egg parasitoid attraction could also be influenced by the temporal dynamics of multiple infestations, when the same non-host herbivore damages different organs of the same plant species. In this scenario we investigated the responses of egg parasitoids to feeding and oviposition damage using a model system consisting of Vicia faba, the above-ground insect herbivore Nezara viridula, the above- and below-ground insect herbivore Sitona lineatus, and Trissolcus basalis, a natural enemy of N. viridula. We demonstrated that the non-host S. lineatus disrupts wasp attraction toward plant volatiles induced by the host N. viridula. Interestingly, V. faba damage inflicted by either adults (i.e., leaf-feeding) or larvae (i.e., root-feeding) of S. lineatus, had a similar disruptive effect on T. basalis host location, suggesting that a common interference mechanism might be involved. Neither naïve wasps or wasps with previous oviposition experience were attracted to plant volatiles induced by N. viridula when V. faba plants were concurrently infested with S. lineatus adults or larvae. Analysis of the volatile blends among healthy plants and above-ground treatments show significant differences in terms of whole volatile emissions. Our results demonstrate that induced plant responses caused by a non-host herbivore can disrupt the attraction of an egg parasitoid to a plant that is also infested with its hosts.

  8. Volatile chemical cues guide host location and host selection by parasitic plants

    Treesearch

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2006-01-01

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...

  9. Smelling global climate change: mitigation of function for plant volatile organic compounds.

    PubMed

    Yuan, Joshua S; Himanen, Sari J; Holopainen, Jarmo K; Chen, Feng; Stewart, C Neal

    2009-06-01

    Plant volatile organic compounds (VOCs) have important roles in plant adaptation to the environment and serve as infochemicals in multitrophic interactions. Global climate change factors, such as increased atmospheric carbon dioxide, ozone and temperature, could alter how insects perceive such compounds. Here we review recent research on the influence of climate change parameters on the ecological functions of VOCs, with specific focus on terpenoids, the best-characterized VOCs. We summarize how emission patterns and concentrations of VOCs could change in future environments, mainly from the perspectives of plant defense and stress responses. We discuss how higher carbon dioxide concentrations, elevated ozone levels and increased temperatures could affect the biological functions of VOCs, particularly their role in plant defense.

  10. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  11. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  12. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis.

    PubMed

    Zhang, Huiming; Kim, Mi-Seong; Krishnamachari, Venkat; Payton, Paxton; Sun, Yan; Grimson, Mark; Farag, Mohamed A; Ryu, Choong-Min; Allen, Randy; Melo, Itamar S; Paré, Paul W

    2007-09-01

    Certain plant growth-promoting rhizobacteria (PGPR), in the absence of physical contact with a plant stimulate growth via volatile organic compound (VOC) emissions, through largely unknown mechanisms. To probe how PGPR VOCs trigger growth in plants, RNA transcript levels of Arabidopsis seedlings exposed to Bacillus subtilus (strain GB03) were examined using oligonucleotide microarrays. In screening over 26,000 protein-coded transcripts, a group of approximately 600 differentially expressed genes related to cell wall modifications, primary and secondary metabolism, stress responses, hormone regulation and other expressed proteins were identified. Transcriptional and histochemical data indicate that VOCs from the PGPR strain GB03 trigger growth promotion in Arabidopsis by regulating auxin homeostasis. Specifically, gene expression for auxin synthesis was up regulated in aerial regions of GB03-exposed plants; auxin accumulation decreased in leaves and increased in roots with GB03 exposure as revealed in a transgenic DR5::GUS Arabidopsis line, suggesting activation of basipetal auxin transport. Application of the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) restricted auxin accumulation to sites of synthesis thereby preventing GB03-mediated decreases in shoot auxin levels as well as thwarting GB03-mediated growth promotion. In addition, microarray data revealed coordinated regulation of cell wall loosening enzymes that implicated cell expansion with GB03 exposure, which was confirmed by comparative cytological measurements. The discovery that bacterial VOCs, devoid of auxin or other known plant hormones regulate auxin homeostasis and cell expansion provides a new paradigm as to how rhizobacteria promote plant growth.

  13. European Biogenic Volatile Organic Compound emissions estimate using MEGAN v2.10

    NASA Astrophysics Data System (ADS)

    Dawoud, M.; Pozzoli, L.; Unal, A.; Kindap, T.; Poupkou, A.; Katragou, E.; Melas, D.

    2013-12-01

    Biogenic emissions estimations are essential to obtain a comprehensive understanding of both anthropogenic and biogenic contributions of the emissions. In this paper we have calculated the Biogenic Volatile Organic Compound (BVOC) emissions from vegetation over Europe using the newly developed Model of Emissions of Gases and Aerosols from Nature version 2.10 (MEGAN2.10). We performed a simulation of the entire year 2008 for a domain covering all Europe at a resolution of 30 x 30 km. The meteorological fields needed to calculate the BVOC emissions (surface temperature and shortwave radiation) were provided by a WRFv3.3 simulation (driven by NCEP/FNL global reanalysis data at 1° x 1°) and interfaced to MEGAN with MCIPv3.6. We used the global dataset provided with the MEGAN2.10 model containing the Plant Functional Types (PFT, at 0.5° x 0.5°), Leaf Area Indices (LAI, at 30s resolution) and Emission Factors (EF, at 0.01° x 0.01°). The motivation behind this study is to quantify the biogenic emissions as calculated from the new version of MEGAN over Europe for the entire annual cycle, and in second step to quantify the impact of biogenic emissions on air quality, using the Community Multiscale Air Quality model (CMAQ). Isoprene emissions comprise about half of the total global biogenic volatile organic compound (BVOC) estimated using MEGAN2.10, while all Terpenes comprise about 18% of the estimated total global BVOC emissions. Our simulations showed that Isoprene emissions are ranging from 10.7 Gg/month in December to 6572.8 Gg/month over Europe in July, while Terpenes emissions range from 38 Gg/month in January and 1598.23 Gg/month in July. Around 15 Tg/year and 5 Tg/year are estimated as total annual emissions of Isoprene and Terpenes, respectively. In comparison with a previous study using the Natural Emission Model (NEMO), for the same period and the similar domain and resolution, for July we found 70% higher Isoprene emissions and 30% lower Terpenes emissions

  14. Light dependency of VOC emissions from selected Mediterranean plant species

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  15. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  16. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-03-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple, horse chestnut, honey locust, and hawthorn. These species constitute ~65 % of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the vegetative state for crabapple and honey locust. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.26 μg Cg-1 h-1) than after flowering (1.23 μg Cg-1 h-1). The total normalized BVOC emission rate from crabapple (93 μg Cg-1 h-1) during the flowering period is of the same order as isoprene emissions from oak trees, which are among the highest BVOC emissions observed from plants to date. These findings illustrate that during the relatively brief springtime flowering period, floral emissions constitute by far the most significant contribution to the BVOC flux from these tree species, some of which

  17. Volatile organic compounds as non-invasive markers for plant phenotyping.

    PubMed

    Niederbacher, B; Winkler, J B; Schnitzler, J P

    2015-09-01

    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Methods in plant foliar volatile organic compounds research1

    PubMed Central

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  19. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.

    PubMed

    Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D

    2015-02-01

    Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p < 0.01). Aqueous extracts collected in January and February induced genotoxic effects in Tradescantia exposed in the laboratory (p < 0.01). Ames test showed that organic extracts of winter urban air were able to induce genetic mutations in S. typhimurium TA98 strain (± S9), but not in TA100 strain, with a revertants/plate number nine times higher than the negative control. Comet assay showed that winter extracts were more toxic and genotoxic than spring extracts. All the mutagenicity tests performed confirmed that urban air in North Italy in winter contains both volatile and non-volatile genotoxic substances able to induce genetic damage in bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A method for the solvent extraction of low-boiling-point plant volatiles.

    PubMed

    Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne

    2005-01-01

    A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.

  1. Repellency of volatile oils from plants against three mosquito vectors.

    PubMed

    Tawatsin, A; Wratten, S D; Scott, R R; Thavara, U; Techadamrongsin, Y

    2001-06-01

    Volatile oils extracted by steam distillation from four plant species (turmeric (Curcuma longa), kaffir lime (Citrus hystrix), citronella grass (Cymbopogon winterianus) and hairy basil (Ocimum americanum)), were evaluated in mosquito cages and in a large room for their repellency effects against three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oils from turmeric, citronella grass and hairy basil, especially with the addition of 5% vanillin, repelled the three species under cage conditions for up to eight hours. The oil from kaffir lime alone, as well as with 5% vanillin added, was effective for up to three hours. With regard to the standard repellent, deet alone provided protection for at least eight hours against Ae. aegypti and Cx. quinquefasciatus, but for six hours against An. dirus. However, deet with the addition of 5% vanillin gave protection against the three mosquito species for at least eight hours. The results of large room evaluations confirmed the responses for each repellent treatment obtained under cage conditions. This study demonstrates the potential of volatile oils extracted from turmeric, citronella grass and hairy basil as topical repellents against both day- and night-biting mosquitoes. The three volatile oils can be formulated with vanillin as mosquito repellents in various forms to replace deet (N,N-diethyl-3-methylbenzamide), the most common chemical repellent currently available.

  2. Reconciling functions and evolution of isoprene emission in higher plants.

    PubMed

    Loreto, Francesco; Fineschi, Silvia

    2015-04-01

    Compilation and analysis of existing inventories reveal that isoprene is emitted by c. 20% of the perennial vegetation of tropical and temperate regions of the world. Isoprene emitters are found across different plant families without any clear phylogenetic thread. However, by critically appraising information in inventories, several ecological patterns of isoprene emission can be highlighted, including absence of emission from C4 and annual plants, and widespread emission from perennial and deciduous plants of temperate environments. Based on this analysis, and on available information on biochemistry, ecology and functional roles of isoprene, it is suggested that isoprene may not have evolved to help plants face heavy or prolonged stresses, but rather assists C3 plants to run efficient photosynthesis and to overcome transient and mild stresses, especially during periods of active plant growth in warm seasons. When the stress status persists, or when evergreen leaves cope with multiple and repeated stresses, isoprene biosynthesis is replaced by the synthesis of less volatile secondary compounds, in part produced by the same biochemical pathway, thus indicating causal determinism in the evolution of isoprene-emitting plants in response to the environment.

  3. Diel rhythms in the volatile emission of apple and grape foliage

    USDA-ARS?s Scientific Manuscript database

    This study investigated the emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 hours by proton transfer reaction - time of flight - mass s...

  4. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum.

    PubMed

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, >17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant.

  5. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Compound Emission Control Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: On May 29, 2012, the Indiana Department of Environmental Management (IDEM) submitted revisions to its volatile organic compound...

  6. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US

    NASA Astrophysics Data System (ADS)

    Geron, Chris; Guenther, Alex; Greenberg, Jim; Karl, Thomas; Rasmussen, Rei

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western US were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 μg C g -1 h -1or greater. These species accounted for <10% of the estimated vegetative biomass in these arid regions of low biomass density, indicating that these ecosystems are not likely a strong source of isoprene. However, isoprene emissions from these species continued to increase at much higher leaf temperatures than is observed from species in other ecosystems. Five species, including members of the Ambrosia genus, emitted monoterpenes at rates exceeding 2 μg C g -1 h -1. Emissions of oxygenated compounds, such as methanol, ethanol, acetone/propanal, and hexanol, from cut branches of several species exceeded 10 μg C g -1 h -1, warranting further investigation in these ecosystems. Model extrapolation of isoprene emission measurements verifies recently published observations that desert vegetation is a small source of isoprene relative to forests. Annual and daily total model isoprene emission estimates from an eastern US mixed forest landscape were 10-30 times greater than isoprene emissions estimated from the Mojave site. Monoterpene (and possibly oxygenated terpene and sesquiterpene) emissions may be more comparable, as annual forest terpene emission model estimates were 3-8 times greater than those from the Mojave Desert, and were within a factor of 2 for peak summertime fluxes. Primary productivity and leaf biomass of desert ecosystems are very dependent on annual precipitation, and our model results indicate that there can be at least a three-fold difference in total annual BVOC emissions between dry and wet years. We recommend additional studies of desert plant BVOC emissions, especially those that focus on sesquiterpenes, oxygenated compounds, and the effects of soil moisture, temperature, humidity, and

  7. Fusarium infection in maize: Volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus

    USDA-ARS?s Scientific Manuscript database

    Fusarium infection of maize leaves and/or roots through the soil can stimulate the emission of volatile organic compounds (VOCs). It is also well known that VOC emission from maize plants can repel or attract pests. In our experiments, we studied VOC induction responses of Zea mays L. ssp. mays cv. ...

  8. Plant volatiles influence the African weaver ant-cashew tree mutualism

    USDA-ARS?s Scientific Manuscript database

    Plant volatiles influence virtually all forms of ant plant symbioses. However, little is known about their role in the mutualistic relationship between the African weaver ant and the cashew tree. In this study, we tested the hypothesis that cashew tree volatiles from plant parts most vulnerable to h...

  9. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  10. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  11. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges.

    PubMed

    Bailly, Aurélien; Weisskopf, Laure

    2012-01-01

    Bacteria interact with plants in many different ways. In recent years, bacterial production of volatiles has emerged as a novel process by which bacteria modulate plant growth. Exposure to the volatiles produced by certain bacterial strains has been shown to lead to up to 5-fold increased plant biomass or to plant death. Despite these drastic growth alterations, the elucidation of the molecules responsible, of the mechanism of perception by the plant and of the specific metabolic changes induced in planta is still in its infancy. This review summarizes the current knowledge and highlights future lines of research that should increase our knowledge of the volatile-mediated dialogue between bacteria and plants.

  12. Estimation of volatile emissions during the excavation of soil or waste.

    PubMed

    Devaull, G E

    2001-10-01

    A model is presented for estimating transient air emissions of volatile chemicals during excavation into a zone of contaminated soil or waste. Using measured in situ parameters, this model predicts the time-dependent increase in air emissions during the activity and the decay in air emissions once the excavation activity has ceased. The model compares favorably to air emission data taken during a full scale excavation.

  13. Foraging leaf-cutting ants learn to reject Vitis vinifera ssp. vinifera plants that emit herbivore-induced volatiles.

    PubMed

    Thiele, Theresa; Kost, Christian; Roces, Flavio; Wirth, Rainer

    2014-06-01

    Leaf-cutting ants (LCAs) are dominant herbivores of the Neotropics, as well as economically important pests. Their foraging ecology and patterns/mechanisms of food selection have received considerable attention. Recently, it has been documented that LCAs exhibit a delayed rejection of previously accepted food plants following treatment with a fungicide that makes the plants unsuitable as substrate for their symbiotic fungus. Here, we investigated whether LCAs similarly reject plants with induced chemical defenses, by combining analysis of volatile emissions with dual-choice bioassays that used LCA subcolonies (Atta sexdens L.). On seven consecutive days, foraging ants were given the choice between leaf disks from untreated control plants and test plants of Vitis vinifera ssp. vinifera L. treated with the phytohormone jasmonic acid (JA) to mimic herbivore attack. Chemical analysis revealed the emission of a characteristic set of herbivore-induced volatile organic compounds (VOC) from JA-induced plants. Dual-choice experiments indicated that workers did not show any preference initially, but that they avoided JA-treated plants from day five onwards. Our finding that A. sexdens foragers learn to avoid VOC-emitting plants, which are likely detrimental to their symbiotic fungus, represents the first evidence for avoidance learning in attine ants toward plants with induced defenses.

  14. Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles.

    PubMed

    Girling, Robbie D; Madison, Rachael; Hassall, Mark; Poppy, Guy M; Turner, John G

    2008-01-01

    Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles.

  15. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  16. Volatile organic compound emission rates from mechanical surface aerators: Mass-transfer modeling

    SciTech Connect

    Chern, J.M.; Chou, S.R.

    1999-08-01

    In wastewater treatment plants, many operation units such as equalization and aeration involve oxygen transfer between wastewater and air. While oxygen is transferred from air to wastewater, volatile organic compounds (VOCs) are stripped from wastewater to air. Because of increasingly stringent environmental regulations, wastewater treatment operators have to do VOC inventory of their facilities. A new mass-transfer model has been developed to predict the VOC emission rates from batch and continuous aeration tanks with mechanical surface aerators. The model takes into consideration that the VOC mass transfer occurs in two separate mass-transfer zones instead of lumping the overall VOC transfer in the whole aeration tank as is done in the conventional ASCE-based model. The predictive capabilities of the two-zone and the ASCE-based models were examined by calculating the emission rates of 10 priority pollutants from aeration tanks. The effects of the hydraulic retention time, the Henry`s law constant, gas-phase resistance, and the water and air environmental conditions on the VOC emission rates were predicted by the two models.

  17. Volatile emissions from the crater and flank of Oldoinyo Lengai volcano, Tanzania

    USGS Publications Warehouse

    Koepenick, K.W.; Brantley, S.L.; Thompson, J.M.; Rowe, G.L.; Nyblade, A.A.; Moshy, C.

    1996-01-01

    As a comparison to airborne infrared (IR) flux measurements, ground-based sampling of fumarole and soil gases was used to characterize the quiescent degassing of CO2 from Oldoinyo Lengai volcano. Aerial and ground-based measurements are in good agreement: ???75% of the aerially measured CO2 flux at Lengai (0.05-0.06 ?? 1012 mol yr-1 or 6000-7200 tonnes CO2 d-1) can be attributed to seven large crater vents. In contrast to Etna and Vulcano Island, where 15-50% of the total CO2 flux emanates diffusely through the volcanic flanks, diffuse emissions were measured only within 500 m of the crater rim at Lengai, contributing < 2% of the total flux. The lack of extensive flank emissions may reflect the dimensions of the magma chamber and/or the lack of a shallow fluid flow system. Thermodynamic restoration of fumarole analyses shows that gases are the most CO2-rich and H2O-poor reported for any volcano, containing 64-74% CO2, 24-34% H2O, 0.88-1.0% H2, 0.1-0.4% CO and < 0.1% H2S, HCl, HF, and CH4. Volatile emissions of S, Cl, and F at Oldoiyno Lengai are estimated as 4.5, 1.5, and 1.0 ?? 107 mol yr-1, respectively. Accuracy of the airborne technique was also assessed by measuring the C emission rate from a coal-burning power plant. CO2 fluxes were measured within ??10% near the plant; however, poor resolution at increased distances caused an underestimation of the flux by a factor of 2. The relatively large CO2 fluxes measured for alkaline volcanoes such as Oldoinyo Lengai or Etna may indicate that midplate volcanoes represent a large, yet relatively unknown, natural source of CO2.

  18. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Isebrands, J. G.; Guenther, A. B.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C 5H 8) was the primary VOC emitted, although significant quantities of monoterpenes (C 10H 16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m -2 s -1) were from northern red oak ( Quercus rubra, >110 μg(C) g -1 h -1); aspen ( Populus tremuloides, >77); willow ( Salix spp., >54); and black spruce ( Picea mariana, >10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g -1 h -1 at 25°C; those of Picea provenances were generally <10, and emission rates of a hybrid between North American and European spruces were intermediate to parental rates. More than 30 species of plants were surveyed from the sites, including several from previously unstudied

  19. Selenium uptake and volatilization from plants growing in soil. [Astragalus bisulcatus

    SciTech Connect

    Duckhart, E.C.; Waldron, L.J.; Donner, H.E. )

    1992-02-01

    Selenium volatilization rates from plants and soil confined in a closed transparent chamber varied greatly among five plant species over 3- to 6-day collection periods. Astragalus bisulcatus and broccoli showed the highest rates of volatilization, 1.7 and 1.1 {mu}g Se/kg dry soil/day, respectively. Volatilization rates for soil only, tomato, tall fescue, and alfalfa were 0.7, 0.5, 0.3, and 0.2 {mu}g/kg/day, respectively. Although it was not possible to separate plant and soil microbial volatilization, the large differences between plant species suggest a significant role for plants in Se volatilization from soils. Se(VI) added to soil as sodium selenate was rapidly taken up by all five plant types to the extent that plant uptake dominated Se removal from the soil. Volatilization accounted for only 0.5% (alfalfa) to 6.1% (Astragalus bis.) of the selenium lost from the soil. Although Astragalus had the highest tissue selenium concentration and selenium volatilization rates, it ranked fourth behind broccoli, tomato, and alfalfa in order of selenium removal because of its small biomass at 15 weeks. Alfalfa accumulated 22.1 {mu}g Se/g plant tissue from the Se(VI) amended soil, a concentration exceeded only by Astragalus (80.6) and broccoli (22.3). However, alfalfa had the lowest short-term net volatilization rate of the five plant types.

  20. [Establishment and improvement of emission control standard system of volatile organic compounds in industry].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zou, Lan; Wei, Yu-Xia; Zhang, Ming-Hui

    2013-12-01

    Volatile organic compounds (VOCs) has become one of the priority control pollutants, due to the regional compound pollution problem represented by atmospheric haze. Through the analysis of the present situation for current national and local emission standards of VOCs, the pollution characteristics and the emission inventory of VOCs, a basic standard system of VOCs has been proposed and improved.

  1. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  2. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  3. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  4. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  5. [Regulations and policies for control of volatile organic compounds and the emission standards in Taiwan].

    PubMed

    Luan, Zhi-Qiang; Wang, Xi-Qin; Zheng, Ya-Nan; Liu, Ping

    2011-12-01

    Due to the well-developed managing system including policies, laws, regulations and emission standards, now the emission of volatile organic compounds (VOCs) is strictly controlled in Taiwai. The policy frameworks of VOCs control including both command control and economic incentives makes an excellent effect for VOCs treatment.

  6. Emission of volatile organic compounds from silage: compounds, sources, and implications

    USDA-ARS?s Scientific Manuscript database

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  7. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  8. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  9. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  10. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  11. 40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Plant volatiles and pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the... pheromone Z-2-isopropenyl-1-methylcyclobutaneethanol; Z-3,3-dimethyl-Δ1,β-cyclohexaneethanol; Z-3,3-dimethyl...

  12. Isoprene Emission from Plants: Why and How

    PubMed Central

    Sharkey, Thomas D.; Wiberley, Amy E.; Donohue, Autumn R.

    2008-01-01

    Background Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere–atmosphere hydrocarbon exchange. Scope The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. Conclusions The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known. PMID:17921528

  13. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    NASA Astrophysics Data System (ADS)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  14. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.

    PubMed

    Danner, Holger; Brown, Phil; Cator, Eric A; Harren, Frans J M; van Dam, Nicole M; Cristescu, Simona M

    2015-07-01

    Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.

  15. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  16. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis.

    PubMed

    Rowen, Elizabeth; Kaplan, Ian

    2016-04-01

    Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations.

  17. [Study on quantification assessment and odor fingerprint of volatile aromatic hydrocarbons from sewage treatment plant].

    PubMed

    Guo, Wei; Wang, Bo-guang; Tang, Xiao-dong; Liu, Shu-le; He, Jie; Zhang, Chun-lin

    2013-05-01

    The malodorous volatile organic compounds (MVOCs) from a typical municipal sewage treatment plant in Guangzhou were detected and analyzed using thermal-desorption/GC-MS and electronic nose, respectively. The results showed that: (1) Aromatic hydrocarbons were the main malodorous volatile organic compounds of the sewage treatment plant, with concentrations ranging from 96.61 microg x m(-3) to 818.03 microg x m(-3), accounting for more than 50% of the total MVOCs, much higher than other MVOCs species. (2) Volatile aromatic hydrocarbons (VAH) in municipal sewage treatment plant were mainly from domestic wastewater, and the sludge treatment process played an important part in release of these pollutants. The total concentration of aromatic hydrocarbons emitted from each processing unit in a descending order was: the sludge dehydration room > sludge thickener > aeration tank > grille > biochemical pool> grit chamber. (3) rincipal component analysis (PCA) was able to distinguish the characteristic of odor emission from each processing unit, with the recognition index reaching 71% , and the PCA recognition index of simulated gases which simulated the VAH levels of different processes reached 94% , indicating that there was big difference among the srmll of the VAH emitted from different processes. (4) The comparison of the original odor fingerprint and simulated odor fingerprint measured by the sensor T70/2 showed that the original odor fingerprint was greater than the simulated odor fingerprint, and the correlation analysis indicated that the VAH had a great contribution to the odor fingerprint of each unit, and the contribution of VAH odor of the aeration tank tq the original odor fingerprint reached 0. 98.

  18. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.

    PubMed

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-09-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push-pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography-mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  19. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    PubMed Central

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-01-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  20. Modeling emissions of volatile organic compounds from silage

    USDA-ARS?s Scientific Manuscript database

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  1. Modeling emissions of volatile organic compounds from silage

    USDA-ARS?s Scientific Manuscript database

    Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

  2. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour.

    PubMed

    Baldermann, Susanne; Kato, Masaya; Kurosawa, Miwako; Kurobayashi, Yoshiko; Fujita, Akira; Fleischmann, Peter; Watanabe, Naoharu

    2010-06-01

    Carotenoids are the precursors of important fragrance compounds in flowers of Osmanthus fragrans Lour. var. aurantiacus, which exhibit the highest diversity of carotenoid-derived volatiles among the flowering plants investigated. A cDNA encoding a carotenoid cleavage enzyme, OfCCD1, was identified from transcripts isolated from flowers of O. fragrans Lour. It is shown that the recombinant enzymes cleave carotenes to produce alpha-ionone and beta-ionone in in vitro assays. It was also found that carotenoid content, volatile emissions, and OfCCD1 transcript levels are subjected to photorhythmic changes and principally increased during daylight hours. At the times when OfCCD1 transcript levels reached their maxima, the carotenoid content remained low or slightly decreased. The emission of ionones was also higher during the day; however, emissions decreased at a lower rate than the transcript levels. Moreover, carotenoid content increased from the first to the second day, whereas the volatile release decreased, and the OfCCD1 transcript levels displayed steady-state oscillations, suggesting that the substrate availability in the cellular compartments is changing or other regulatory factors are involved in volatile norisoprenoid formation. Furthermore, the sensory evaluation of the aroma of the model mixtures suggests that the proportionally higher contribution of alpha-ionone and beta-ionone to total volatile emissions in the evening is probably the reason for the increased perception by humans of the scent emission of Osmanthus flowers.

  3. Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats

    PubMed Central

    Ali, Jared G.; Alborn, Hans T.; Campos-Herrera, Raquel; Kaplan, Fatma; Duncan, Larry W.; Rodriguez-Saona, Cesar; Koppenhöfer, Albrecht M.; Stelinski, Lukasz L.

    2012-01-01

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9–12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests. PMID:22761668

  4. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Xiu, Chunli; Geng, Huihui; Cai, Xiaoming; Sun, Xiaoling; Zhang, Yongjun; Williams III, Livy; Wyckhuys, Kris A. G.; Wu, Kongming

    2015-01-01

    Apolygus lucorum (Hemiptera: Miridae) is an important insect pest of cotton and fruit trees in China. The adults prefer host plants at the flowering stage, and their populations track flowering plants both spatially and temporally. In this study, we examine whether flower preference of its adults is mediated by plant volatiles, and which volatile compositions play an important role in attracting them. In olfactometer tests with 18 key host species, the adults preferred flowering plants over non-flowering plants of each species. Coupled gas chromatography-electroantennography revealed the presence of seven electrophysiologically active compounds from flowering plants. Although the adults responded to all seven synthetic plant volatiles in electroantennography tests, only four (m-xylene, butyl acrylate, butyl propionate and butyl butyrate) elicited positive behavioral responses in Y-tube olfactometer bioassays. The adults were strongly attracted to these four active volatiles in multi-year laboratory and field trials. Our results suggest that these four fragrant volatiles, which are emitted in greater amounts once plants begin to flower, mediate A. lucorum’s preference to flowering host plants. We proved that the use of commonly occurring plant volatiles to recognize a large range of plant species can facilitate host selection and preference of polyphagous insect herbivore. PMID:26423224

  5. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    NASA Astrophysics Data System (ADS)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.

  6. Volcanic gas emissions: constraining magma degassing and volatile sources (Invited)

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; de Moor, M. J.

    2013-12-01

    Approximately 70 volcanoes erupt per year and about 500 emit gases through vents or hydrothermal systems. The global volcanic sulfur flux is dominated by passively degassing volcanoes and only 1-10% of the total SO2 flux is emitted during eruptions [1, 2] - likely also the case for other volatiles. Magmas lose their volatiles during ascent from the mantle and magma with 7 wt% water will become saturated at 15-17 km depth [3]. Volcanic eruptions commonly release more gas into the atmosphere than could have been dissolved in the erupted magma, first recognized by Rose [4]. Volcanic gases provide information on magmatic volatiles. Sampling of high temperature (> 400°C) volcanic gases emitted from crater fumaroles provide complete information on gas chemistry and isotopic ratios that are generally unaffected by low-temperature processes [5]. Complete gas compositions can be evaluated for equilibrium and corrected for modifications due to atmospheric contamination to obtain near-pristine magmatic gas compositions. In cases where gas and magma have been evaluated for fO2 both generally agree. Oxygen fugacities calculated using gas equilibria (H2/H2O; CO2/CO) show that the highest temperature (>800C) gases from rifts (Erta Ale) are close to QFM, arc volcanoes record oxygen fugacities above QFM (ΔQFM +6 to +8 based on H2O/H2; +0.2 to +3.7 based on CO2/CO) consistent with a more oxidized nature of the subarc-mantle. H-based gas equilibria show significantly higher oxygen fugacities than C-based values. This may be related to surfical water in the system or oxidation of H, which can be tracked by stable isotopes. H2O/CO2 values vary between arcs where Kuriles, Japan and Kamchatka show higher ratios (40 to 800) than Cascades, Central America, S. America, Java, and Aeolian (1 to 70). Erta Ale gases have H2O/CO2 of 3. Order of magnitude changes in H2O/CO2 ratios (2 to 20) due to magma degassing have been unequivocally documented by Gerlach [6] at Kilauea. H2O/CO2 ratios in

  7. Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatiles

    PubMed Central

    Kaplan, Ian

    2012-01-01

    Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants “call for help” to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops. PMID:23209381

  8. Light-dependent Emission of Hydrogen Sulfide from Plants 1

    PubMed Central

    Wilson, Lloyd G.; Bressan, Ray A.; Filner, Philip

    1978-01-01

    With the aid of a sulfur-specific flame photometric detector, an emission of volatile sulfur was detected from leaves of cucumber (Cucumis sativus L.), squash and pumpkin (Cucurbita pepo L.), cantaloupe (Cucumis melo L.), corn (Zea mays L.), soybean (Glycine max [L.] Merr.) and cotton (Gossypium hirsutum L.). The emission was studied in detail in squash and pumpkin. It occurred following treatment of the roots of plants with sulfate and was markedly higher from either detached leaves treated via the cut petiole, or whole plants treated via mechanically injured roots. Bisulfite elicited higher rates of emission than sulfate. The emission was completely light-dependent and increased with light intensity. The rate of emission rose to a maximum and then declined steadily toward zero in the course of a few hours. However, emission resumed after reinjury of roots, an increase in light intensity, an increase in sulfur anion concentration, or a dark period of several hours. The emission was identified as H2S by the following criteria: it had the odor of H2S; it was not trapped by distilled H2O, but was trapped by acidic CdCl2 resulting in the formation of a yellow precipitate, CdS; it was also trapped by base and the contents of the trap formed methylene blue when reacted with N,N-dimethyl-p-phenylenediamine and Fe3+. H2S emission is not the cause of leaf injury by SO2, since bisulfite produced SO2 injury symptoms in dim light when H2S emission was low, while sulfate did not produce injury symptoms in bright light when H2S emission was high. The maximum rates of emission observed, about 8 nmol min−1 g fresh weight−1, are about the activity that would be expected for the sulfur assimilation pathway of a normal leaf. H2S emission may be a means by which the plant can rid itself of excess inorganic sulfur when HS− acceptors are not available in sufficient quantity. PMID:16660257

  9. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen

    USDA-ARS?s Scientific Manuscript database

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites, as well as major plant nutrients. Experiments were ...

  10. Novel Technology Evaluation for Volatile Organic Compounds Emission Control

    DTIC Science & Technology

    1987-03-01

    design bases for Site D and Site G effluent streams, best fit decay curves were developed to project emission rates beyond the available data base...was assumed that the emission rate decay overtime would exhibit behavior similar to that for Site D. As a result, the shape of the curve, and thus, the...exponential decay constant (k), from Site D was used. The value used for the initial VOC emission rate (M.) in the exponential decay equation M = Mo

  11. Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory.

    PubMed

    Najar-Rodriguez, A; Orschel, B; Dorn, S

    2013-03-01

    Insect herbivores that have more than one generation per year and reproduce on different host plants are confronted with substantial seasonal variation in the volatile blends emitted by their hosts. One way to deal with such variation is to respond to a specific set of compounds common to all host plants. The oriental fruit moth Cydia (=Grapholita) molesta is a highly damaging invasive pest. The stone fruit peach (Prunus persica) is its primary host, whereas pome fruits such as pear (Pyrus communis) are considered secondary hosts. In some parts of their geographic range, moth populations switch from stone to pome fruit orchards during the growing season. Here, we tested whether this temporal switch is facilitated by female responses to plant volatiles. We collected volatiles from peach and pear trees in situ and characterized their seasonal dynamics by gas chromatography-mass spectrometry. We also assessed the effects of the natural volatile blends released by the two plant species on female attraction by using Y-tube olfactometry. Finally, we related variations in volatile emissions to female olfactory responses. Our results indicate that the seasonal host switch from peach to pear is facilitated by the changing olfactory effect of the natural volatile blends being emitted. Peach volatiles were only attractive early and mid season, whereas pear volatiles were attractive from mid to late season. Blends from the various attractive stages shared a common set of five aldehydes, which are suggested to play an essential role in female attraction to host plants. Particular attention should be given to these aldehydes when designing candidate attractants for oriental fruit moth females.

  12. 27 CFR 19.207 - Alternate use of distilled spirits plant and volatile fruit-flavor concentrate premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... spirits plant and volatile fruit-flavor concentrate premises. 19.207 Section 19.207 Alcohol, Tobacco... use of distilled spirits plant and volatile fruit-flavor concentrate premises. If a proprietor of distilled spirits plant wishes to use all or a portion of such premises alternately as a volatile fruit...

  13. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  14. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  15. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  16. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  17. 27 CFR 18.40 - Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... volatile fruit-flavor concentrate plant and bonded wine cellar. 18.40 Section 18.40 Alcohol, Tobacco... Qualification to alternate volatile fruit-flavor concentrate plant and bonded wine cellar. A proprietor of a volatile fruit-flavor concentrate plant operating a contiguous bonded wine cellar may alternate the use of...

  18. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    PubMed

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  19. Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature.

    PubMed

    Hartikainen, Kaisa; Nerg, Anne-Marja; Kivimäenpää, Minna; Kontunen-Soppela, Sari; Mäenpää, Maarit; Oksanen, Elina; Rousi, Matti; Holopainen, Toini

    2009-09-01

    Northern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.3x ambient) and temperature (ambient + 1 degrees C), alone and in combination, on VOC emissions and leaf structure of two genotypes (2.2 and 5.2) of European aspen (Populus tremula L.) were studied in an open-field experiment in summer 2007. The impact of O(3) on measured variables was minor, but elevated temperature significantly increased emissions of total monoterpenes and green leaf volatiles. Genotypic differences in the responses to warming treatment were also observed. alpha-Pinene emission, which has been suggested to protect plants from elevated temperature, increased from genotype 5.2 only. Isoprene emission from genotype 2.2 decreased, whereas genotype 5.2 was able to retain high isoprene emission level also under elevated temperature. Elevated temperature also caused formation of thinner leaves, which was related to thinning of epidermis, palisade and spongy layers as well as reduced area of palisade cells. We consider aspen genotype 5.2 to have better potential for adaptation to increasing temperature because of thicker photosynthetic active palisade layer and higher isoprene and alpha-pinene emission levels compared to genotype 2.2. Our results show that even a moderate elevation in temperature is efficient enough to cause notable changes in VOC emissions and leaf structure of these aspen genotypes, possibly indicating the effort of the saplings to adapt to changing climate.

  20. Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities

    PubMed Central

    Joshi, Rakesh K.; Satyal, Prabodh; Setzer, Wiliam N.

    2016-01-01

    Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. PMID:28930116

  1. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.

    PubMed

    Li, Yuying; Ma, Hong; Wan, Youming; Li, Taiqiang; Liu, Xiuxian; Sun, Zhenghai; Li, Zhenghong

    2016-04-22

    Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%-83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.

  2. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  3. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  4. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  5. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    NASA Astrophysics Data System (ADS)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  6. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  7. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    NASA Astrophysics Data System (ADS)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  8. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco.

    PubMed

    Tungadi, Trisna; Groen, Simon C; Murphy, Alex M; Pate, Adrienne E; Iqbal, Javaid; Bruce, Toby J A; Cunniffe, Nik J; Carr, John P

    2017-05-03

    Aphids, including the generalist herbivore Myzus persicae, transmit cucumber mosaic virus (CMV). CMV (strain Fny) infection affects M. persicae feeding behavior and performance on tobacco (Nicotiana tabacum), Arabidopsis thaliana and cucurbits in varying ways. In Arabidopsis and cucurbits, CMV decreases host quality and inhibits prolonged feeding by aphids, which may enhance virus transmission rates. CMV-infected cucurbits also emit deceptive, aphid-attracting volatiles, which may favor virus acquisition. In contrast, aphids on CMV-infected tobacco (cv. Xanthi) exhibit increased survival and reproduction. This may not increase transmission but might increase virus and vector persistence within plant communities. The CMV 2b counter-defense protein diminishes resistance to aphid infestation in CMV-infected tobacco plants. We hypothesised that in tobacco CMV and its 2b protein might also alter the emission of volatile organic compounds that would influence aphid behavior. Analysis of headspace volatiles emitted from tobacco plants showed that CMV infection both increased the total quantity and altered the blend produced. Furthermore, experiments with a CMV 2b gene deletion mutant (CMV∆2b) showed that the 2b counter-defense protein influences volatile emission. Free choice bioassays were conducted where wingless M. persicae could choose to settle on infected or mock-inoculated plants under a normal day/night regime or in continual darkness. Settling was recorded at 15 min, 1 h and 24 h post-release. Statistical analysis indicated that aphids showed no marked preference to settle on mock-inoculated versus infected plants, except for a marginally greater settlement of aphids on mock-inoculated over CMV-infected plants under normal illumination. CMV infection of tobacco plants induced quantitative and qualitative changes in host volatile emission and these changes depended in part on the activity of the 2b counter-defense protein. However, CMV-induced alterations in

  9. Volatiles that encode host-plant quality in the grapevine moth.

    PubMed

    Tasin, Marco; Betta, Emanuela; Carlin, Silvia; Gasperi, Flavia; Mattivi, Fulvio; Pertot, Ilaria

    2011-11-01

    Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera-microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant-insect interactions by considering not only the direct effect of the plant but also the effect of plant-microorganism interactions on insect population dynamics.

  10. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    PubMed

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  11. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.

    PubMed

    Jia, Yan; Huang, Hai; Sun, Guo-Xin; Zhao, Fang-Jie; Zhu, Yong-Guan

    2012-08-07

    Recent studies have shown that higher plants are unable to methylate arsenic (As), but it is not known whether methylated As species taken up by plants can be volatilized. Rice (Oryza sativa L.) plants were grown axenically or in a nonsterile soil using a two-chamber system. Arsenic transformation and volatilization were investigated. In the axenic system, uptake of As species into rice roots was in the order of arsenate (As(V)) > monomethylarsonic acid (MMAs(V)) > dimethylarsinic acid (DMAs(V)) > trimethylarsine oxide (TMAs(V)O), but the order of the root-to-shoot transport index (Ti) was reverse. Also, volatilization of trimethylarsine (TMAs) from rice plants was detected when plants were treated with TMAs(V)O but not with As(V), DMAs(V), or MMAs(V). In the soil culture, As was volatilized mainly from the soil. Small amounts of TMAs were also volatilized from the rice plants, which took up DMAs(V), MMAs(V), and TMAs(V)O from the soil solution. The addition of dried distillers grain (DDG) to the soil enhanced As mobilization into the soil solution, As methylation and volatilization from the soil, as well as uptake of different As species and As volatilization from the rice plants. Results show that rice is able to volatilize TMAs after the uptake of TMAs(V)O but not able to convert inorganic As, MMAs(V) or DMAs(V) into TMAs and that the extent of As volatilization from rice plants was much smaller than that from the flooded soil.

  12. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  13. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants.

    PubMed

    Yao, Youli; Danna, Cristian H; Zemp, Franz J; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M; Kovalchuk, Igor

    2011-10-01

    We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.

  14. Development of a biogenic volatile organic compounds emission inventory for the SCOS97-NARSTO domain

    NASA Astrophysics Data System (ADS)

    Scott, Klaus I.; Benjamin, Michael T.

    The Biogenic Emission Inventory Geographic Information System (BEIGIS) is a spatially and temporally resolved biogenic hydrocarbon emissions inventory model developed by the California Air Resources Board that uses California land use/land cover, leaf mass, and emission rate databases within a GIS. BEIGIS simulates hourly emissions of isoprene, monoterpenes, and 2-methyl-3-buten-2-ol (MBO, methylbutenol) at a 1 km 2 resolution. When applied to the Southern California Ozone Study (SCOS97-NARSTO) domain for the 3-7 August 1997 ozone episode, the BEIGIS model predicts total biogenic volatile organic compound (BVOC) emissions of 866 tons for the warmest day (5 August). Depending on whether wildfire emissions are included in the total volatile organic compound (VOC) emissions estimate, modeled BVOC emissions comprise between 16% and 28% of the total VOC inventory. As anthropogenic VOC emissions decline in future years due to control programs, the relative significance of BVOC emissions in the development of ozone control strategies for southern California may assume greater importance.

  15. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    SciTech Connect

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus).

  17. Evaluating plant volatiles for monitoring natural enemies in apple, pear and walnut orchards

    USDA-ARS?s Scientific Manuscript database

    As part of an effort to enhance biological control in Western orchards, we examine different combinations of herbivore-induced plant volatiles (HIPVs), floral volatiles, and trap combinations that would be useful in monitoring key natural enemies. In all crops, we found lure/trap combinations that e...

  18. Volatiles induction in rice stink bug host grasses and rice plants

    USDA-ARS?s Scientific Manuscript database

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  19. The Composite Effect of Transgenic Plant Volatiles for Acquired Immunity to Herbivory Caused by Inter-Plant Communications

    PubMed Central

    Muroi, Atsushi; Ramadan, Abdelaziz; Nishihara, Masahiro; Yamamoto, Masaki; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro

    2011-01-01

    A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-β-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications. PMID:22022359

  20. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Yuying; Zhang, Fang; Li, Zhanqing

    2017-04-01

    A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely, the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0%-8.5% during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5%-10.5%. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly-hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant non-volatile (NV) mode throughout the day, suggesting a more externally-mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions

  1. Volatile metabolites of higher plant crops as a photosynthesizing life support system component under temperature stress at different light intensities.

    PubMed

    Gitelson, I I; Tikhomirov, A A; Parshina, O V; Ushakova, S A; Kalacheva, G S

    2003-01-01

    The effect of elevated temperatures of 35 and 45 degrees C (at the intensities of photosynthetically active radiation 322, 690 and 1104 micromoles m-2 s-1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat (Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids--alpha-pinene, delta 3 carene, limonene, benzene, alpha- and trans-caryophyllene, alpha- and gamma-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 micromoles m-2 s-1 heat resistance of photosynthesis and respiration increased at 35 degrees C and decreased at 45 degrees C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 micromoles m-2 s-1 and the smallest under 1104 micromoles m-2 s-1 at 35 degrees C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revealed the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.

  2. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.

    PubMed

    Eilers, Elisabeth J; Pauls, Gerhard; Rillig, Matthias C; Hansson, Bill S; Hilker, Monika; Reinecke, Andreas

    2015-03-01

    Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres.

  3. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.

    PubMed

    Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Van den Berg, Frederik; Barriuso, Enrique

    2016-04-15

    Volatilization from plant foliage is known to have a great contribution to pesticide emission to the atmosphere. However, its estimation is still difficult because of our poor understanding of processes occurring at the leaf surface. A compartmental approach for dissipation processes of pesticides applied on the leaf surface was developed on the base of experimental study performed under controlled conditions using laboratory volatilization chamber. This approach was combined with physicochemical properties of pesticides and was implemented in SURFATM-Pesticides model in order to predict pesticide volatilization from plants in a more mechanistic way. The new version of SURFATM-Pesticide model takes into account the effect of formulation on volatilization and leaf penetration. The model was evaluated in terms of 3 pesticides applied on plants at the field scale (chlorothalonil, fenpropidin and parathion) which display a wide range of volatilization rates. The comparison of modeled volatilization fluxes with measured ones shows an overall good agreement for the three tested compounds. Furthermore the model confirms the considerable effect of the formulation on the rate of the decline in volatilization fluxes especially for systemic products. However, due to the lack of published information on the substances in the formulations, factors accounting for the effect of formulation are described empirically. A sensitivity analysis shows that in addition to vapor pressure, the octanol-water partition coefficient represents important physicochemical properties of pesticides affecting pesticide volatilization from plants. Finally the new version of SURFATM-Pesticides is a prospecting tool for key processes involved in the description of pesticide volatilization from plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spider mites adaptively learn recognizing mycorrhiza-induced changes in host plant volatiles.

    PubMed

    Patiño-Ruiz, J David; Schausberger, Peter

    2014-12-01

    Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.

  5. Effect of a fungal infection on the profile of volatile organic compounds emitted by plant roots.

    PubMed

    Fiers, M; Lognay, G; Wathelet, J P; Fauconnier, M L; Jijakli, M H

    2012-01-01

    It is known since few years that the aerial and underground parts of the plants emit volatile organic compounds (VOCs) that can interact with other organisms of the environment. They are involved in the attraction of seed dispersers and pollinators, the repellence of enemies via direct or indirect mechanisms and the induction of defence systems in other parts of the same plant or in other plants in the vicinity (Dudareva et al., 2006). It has been shown previously that the VOCs spectrum emitted by plants hardly depends on their physiological state (Kant et al., 2009). However those phenomenons were poorly studied at the edaphic level. Thus, the Rhizovol project, a multidisciplinary project in Gembloux Agro-Bio Tech was set up to study the emissions of VOCs by plant roots and their interactions with other organisms of the rhizosphere. As a partner of this project, the Plant Pathology Unit of Gembloux Agro-Bio Tech chose to study the effect of a fungal infection on the profile of VOCs emitted by plant roots, based on three model organisms, barley (Hordeum vulgare L.), since it is a major crop in Belgium that can suffer a large range of aggressions, and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum, responsible for root and foot rots and seedling blight on cereals (Wiese, 1977). Later in the development, C. sativus produces elongate brown-black lesions (spot blotch) and F. culmorum induces head blight and produces mycotoxins that make the grain unsuitable for consumption (Nielsen et al., 2011). The objective of this work was to identify the VOCs emitted during the dual interactions between barley roots and a pathogenic fungus. The study was performed in two steps; first, the independent analyses of the VOCs emitted by each of the partners (C. sativus, F. culmorum and healthy barley roots), then the analyses of the VOCs spectrum emitted during dual interactions.

  6. Global methane emissions from terrestrial plants.

    PubMed

    Butenhoff, Christopher L; Khalil, M Aslam Khan

    2007-06-01

    Recent measurements suggest that the terrestrial plant community may be an important source of methane with global contributions between 62 and 236 Tg CH4 y(-1). If true, terrestrial plants could rival wetlands as being the largest global source of methane forcing us to rethink the methane budget. While further measurements are needed to confirm the methane release rates from this source and their dependencies, in this work we use the preliminary measurements to assess the potential impact of the methane release from this source globally. Using novel techniques we extrapolate the initially reported chamber measurements to the global scale and calculate the global methane emissions from the terrestrial plant community to be in the range 20 to 69 Tg CH4 y(-1). The spread in emissions is largely due to the sensitivity of the global flux to the prescribed temperature dependence of the plant emission rate, which is largely unknown. The spread of calculated emissions is in good agreement with the upper limit imposed on the source during the late pre-industrial period, which we estimate to range from 25 to 54 Tg CH4 y(-1) during the years 0 to 1700 A.D. using the published atmospheric delta13CH4 record. In addition, if we assume that plant emissions have been constant at the mean value of 45 Tg CH4 y(-1), we find that the methane release from wildfires and biomass burning during the pre-industrial span 0-1000 A.D. must be near 12 Tg CH4 y(-1), which would be in better agreement with previous estimates of the pyrogenic source during this time than a methane budget missing the plant source. We conclude that methane release from the terrestrial plant community as presently understood does not require major innovations to the global methane budget.

  7. Characterizing and mitigating emissions of volatile organic compounds from animal feeding operations

    USDA-ARS?s Scientific Manuscript database

    Volatile organic compounds (VOC) emitted from animal feeding operations negatively impact local and potentially regional air quality though the release of both odorous and ozone precursor molecules. Characterizing emissions of VOCs from AFOs is strongly influenced by both the method and location of ...

  8. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    SciTech Connect

    Parisien, Lia

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  9. Emission of volatile organic compounds as affected by rate of application of cattle manure

    USDA-ARS?s Scientific Manuscript database

    Beef cattle manure can serve as a valuable nutrient source for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose a potential off-site odor concern. This study was conducted to evaluate the effects of land application method, N- application...

  10. Emission of volatile organic compounds after land application of cattle manure

    USDA-ARS?s Scientific Manuscript database

    Beef cattle manure can serve as a valuable source of nutrients for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose an odor nuisance to downwind populations. This study was conducted to evaluate the effects of application method, diet, so...

  11. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... Emission Control Measures for Lithographic and Letterpress Printing in Cleveland AGENCY: Environmental... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP... organize comments by referencing a Code of Federal Regulations (CFR) part or section number. 3. Explain why...

  12. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    EPA Science Inventory

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  13. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    USDA-ARS?s Scientific Manuscript database

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  14. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  15. A process-based emission model for volatile organic compounds from silage sources on farms

    USDA-ARS?s Scientific Manuscript database

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources suc...

  16. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    EPA Science Inventory

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  17. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  18. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  19. Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin.

    PubMed

    Momoshima, N; Song, L X; Osaki, S; Maeda, Y

    2001-07-15

    We observed biologically mediated emission of Po from culture solution inoculated sea sediment extract and incubated under natural light/dark cycle condition or dark condition the emitted Po compound would be lipophilic because of effective collection in organic solvent. Sterilization of the culture medium with antibiotics or CuSO4 completely suppressed growth of microorganisms and resulted in no emission of Po, indicating biological activity of microorganisms is responsible for formation and emission of volatile Po compound. Po emission also occurred when seawater was used as a culture medium. Our finding indicates a possibility of biotic source for atmospheric Po in the environment, which has been believed to be originated from abiotic sources. We compared emission behavior of Po and S in the culture experiments, the elements belong to XVI group in the Periodical Table, and consider that their emission mechanisms involved would be different though the emission of both elements is supported by biological activity of microorganisms. One of the chemical forms of S emitted was confirmed to be dimethyl sulfide (DMS) but that of Po is not known. Methylation experiments of Po with methylcobalamin demonstrated a formation and emission of volatile Po compound. The methylation of Po with methylcobalamin might be related to the observed Po emission in the culture experiments.

  20. Herbivory-induced plant volatiles from Oryza sativa and their influence on chemotaxis behaviour of Tibraca limbativentris Stal. (Hemiptera: Pentatomidae) and egg parasitoids.

    PubMed

    Melo Machado, R C; Sant'Ana, J; Blassioli-Moraes, M C; Laumann, R A; Borges, M

    2014-06-01

    The rice stem bug, Tibraca limbativentris Stal. (Hemiptera: Pentatomidae) is one of the most important pests of rice crops, especially irrigated crops. Plant defence strategies against these bugs may involve the emission of chemical compounds, which are released following herbivore attacks, directly or indirectly harming pest performance. The aim of this study was to evaluate the influence of constitutive and herbivory-induced volatiles from rice plants (Oryza sativa L.) on the behavioural responses of T. limbativentris adults and egg parasitoids Trissolcus basalis (Wollaston) and Telenomus podisi (Ashmead) (Hymenoptera, Platygastridae). Plant volatiles were collected from undamaged plants of the rice cultivar IRGA 424 and from plants that suffered herbivory by five males or five females of T. limbativentris. Air-entrainment extracts were analysed by GC-flame ionization detector and GC-MS, and insect responses evaluated in a 'Y' olfactometer. T. limbativentris feeding damaged on rice plants induced the release of 16 volatiles compounds in a higher amounts compared to undamaged plants The main compounds induced were (E)-2-hexenal, (E)-2-octen-1-ol, methyl salicylate and α-muurolene. Female bugs were significantly attracted to air-entrainment extracts containing volatiles from undamaged plants compared with air-entrainment extracts containing volatiles emitted from plants damaged by T. limbativentris, whereas males showed no preference. Telenomus podisi females were significantly attracted to volatiles from air-entrainment extracts of plants damaged by females, whereas T. basalis showed no preference. These results suggest that rice plants may be emitting defence compounds, which could be avoided by T. limbativentris females and also acted indirectly by attracting natural enemies.

  1. A Comparative study of Volatile Organic Compounds from two desert plant species growing in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Paasche, K. M.; Meyers, K.; Jardine, K.

    2012-12-01

    Throughout their lives, plants are subjected to a multitude of stressors, ranging from herbivory to changes in weather. In order to survive, plants have created an arsenal of volatile organic compounds (VOCs), including green leaf volatiles (GLVs) and aromatic compounds, to combat these stressors. In this study, two plant species, Baccharis salicifolia (Seep willow) and Dodonaea viscosa (Hopbush) were examined for isoprenoids, GLVs, and aromatic compound emissions. Although, the species are not related, they should share some emitted compounds as they can be seen growing in the same environment, though the majority of the emitted compounds should remain unique to each species type. Both the Seep willow, sampled in Catalina State Park, and the Hopbush, sampled at Biosphere 2, were sampled using a Teflon bag enclosure connected to an apex lite air-sampling device and a thermal desorption (TD) tube, which was used to collect the emitted compounds. TD tube samples were analyzed using a Unity 2 thermal desorption system, which was directly connected to a 5975C series gas chromatograph/electron impact mass spectrometer with a triple-axis detector. The major compounds emitted from the Seep willow were GLVs (Octanal, Decanal, and Nonanal) and aromatics (Benzoic acid, Benzaldehyde, 1,2,3-Trifluorobenzene, and Acetophenone). The major compounds emitted from the Hopbush were isoprene and monoterpenes (1R-α-Pinene, Limonene, and α-Phellandrene.) Our results show the two species emit completely different compounds from each other, which could indicate adaptive differences. The Hopbush may be a hardier species better adapted to the Arizona environment as isoprene and monoterpenes have been indicated in thermo tolerance. GLVs on the other hand indicate the Seep willow is under severe stress.

  2. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C

    2014-06-01

    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  3. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    USDA-ARS?s Scientific Manuscript database

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  4. Laboratory measurements of emission factors of nonmethane volatile organic compounds from burning of Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Tanimoto, Hiroshi; Pan, Xiaole; Taketani, Fumikazu; Komazaki, Yuichi; Miyakawa, Takuma; Kanaya, Yugo; Wang, Zifa

    2015-05-01

    The emission factors (EFs) of nonmethane volatile organic compounds (NMVOCs) emitted during the burning of Chinese crop residue were investigated as a function of modified combustion efficiency in laboratory experiments. NMVOCs, including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons, were monitored by proton-transfer-reaction mass spectrometry. Rape plant was burned in dry conditions and wheat straw was burned in both wet and dry conditions to simulate the possible burning of damp crop residue in regions of high temperature and humidity. We compared the present data to field data reported by Kudo et al. (2014). Good agreement between field and laboratory data was obtained for aromatics under relatively more smoldering combustion of dry samples, but laboratory data were slightly overestimated compared to field data for oxygenated VOC (OVOC). When EFs from the burning of wet samples were investigated, the consistency between the field and laboratory data for OVOCs was stronger than for dry samples. This may be caused by residual moisture in crop residue that has been stockpiled in humid regions. Comparison of the wet laboratory data with field data suggests that Kudo et al. (2014) observed the biomass burning plumes under relatively more smoldering conditions in which approximately a few tens of percentages of burned fuel materials were wet.

  5. Measurement and Modeling of Volatile Particle Emissions from Military Aircraft

    DTIC Science & Technology

    2011-10-01

    distribution of the emissions. The smog chamber experiments demonstrated that photo-oxidation creates substantial secondary particulate matter, greatly...19 Dilution sampler.................................................................................................. 19 Smog chamber...The T63 engine test cell was located inside the building. The smog chamber and other sampling equipment were located outside

  6. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Ammagarahalli, Byrappa; Gemeno, César

    2015-10-01

    In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.

  7. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    PubMed

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.

  8. Volatile organic chemical emissions from carpets. Final report

    SciTech Connect

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1992-04-01

    The primary objective of this research, was to measure the emission rates of selected individual VOC, including low molecular-weight aldehydes, released by samples of four new carpets that are typical of the major types of carpets used in residences, schools and offices. The carpet samples were collected directly from the manufacturers` mills and packaged to preserve their chemical integrity. The measurements of the concentrations and emission rates of these compounds were made under simulated indoor conditions in a 20-M{sup 3} environmental chamber designed specifically for investigations of VOC. The measurements were conducted over a period of one week following the installation of the carpet samples in the chamber. Duplicate experiments were conducted for one carpet. In addition, the concentrations and emission rates of VOC resulting from the installation of a new carpet in a residence were measured over a period of seven weeks. The stabilities of the week-long ventilation rates and temperatures were one percent relative standard deviation. The four carpets emitted a variety of VOC, 40 of which were positively identified. Eight of these were considered to be dominant. They were (in order of chromatographic retention time) formaldehyde, vinyl acetate, 2,2,4-trimethylpentane (isooctane), 1,2-propanediol (propylene glycol), styrene, 2-ethyl-l-hexanol, 4-phenylcyclohexene (4-PCH), and 2,6 di-tert-butyl-4-methylphenol (BHT). With the exception of formaldehyde, only limited data are available on the toxicity and irritancy of these compounds at low concentrations. Therefore, it is difficult to determine at this time the potential magnitude of the health and comfort effects that may occur among the population from exposures to emissions from new carpets. The concentrations and emission rates of most compounds decreased rapidly over the first 12 h of the experiments.

  9. The role of volatile metabolites in microbial communities of the lSS higher plant link

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Gitelson, I. I.

    The possibility of controlling the microbial community composition through metabolites produced by microbes has been considered. Basing on the comparative analysis of the experimental data we have revealed the greater contribution of volatile metabolites to microbial interaction than non-volatile. Investigations proved that the interaction between microorganisms through extracted volatile materials is a widespread phenomenon peculiar to many microorganisms. Most cultures inhibited each other's growth, in a number of cases displayed bactericidal action. Stimulatory action occurred 6 - 8 times rarely. The individuality of affect on studied test-cultures growth and the spectrum of microbial resistance to volatile metabolites have been revealed. Based on the comparative cluster analysis of these spectra from 100 studied cultures we have revealed that studied organisms produce a complex of volatile metabolites including 82 inhibiting and 52 stimulating. It was found that excretion of volatile metabolites of studied microorganisms depended upon the culture age, concentration of nutrient medium separate components and volatile by-products excreted by other microorganisms. The production can be increased or decreased by volatile by-products of other microbes. This is related to strain features and the culture age. The prospects of using these regulating metabolites can be defined by the "range", specificity and safety for other members of the microbial community in insufficient concentrations. Volatile metabolites of either plants and microorganisms or other system links - humans and technological equipment installed inside the closed ecosystem - can influence the formation of microbial communities, gas composition of the system atmosphere and state of the plants through the atmosphere. Special experiments showed that volatile microorganism metabolites could accumulate in the environment, dissolve in atmospheric water and maintain their biological activity for many days

  10. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  11. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Yuying; Zhang, Fang; Li, Zhanqing; Tan, Haobo; Xu, Hanbing; Ren, Jingye; Zhao, Jian; Du, Wei; Sun, Yele

    2017-04-01

    A series of strict emission control measures was implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate the anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0-8.5 % during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5-10.5 %. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant nonvolatile (NV) mode throughout the day, suggesting a more externally mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) as particle sizes increased during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation

  12. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  13. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance.

    PubMed

    Copolovici, Lucian; Niinemets, Ulo

    2010-09-01

    To gain insight into variations in waterlogging responsiveness, net assimilation rate, stomatal conductance, emissions of isoprene and marker compounds of anoxic metabolism ethanol and acetaldehyde, and stress marker compounds nitric oxide (NO), volatile products of lipoxygenase (LOX) pathway and methanol were studied in seedlings of temperate deciduous tree species Alnus glutinosa, Populus tremula and Quercus rubra (from highest to lowest waterlogging tolerance) throughout sustained root zone waterlogging of up to three weeks. In all species, waterlogging initially resulted in reductions in net assimilation and stomatal conductance and enhanced emissions of ethanol, acetaldehyde, NO, LOX products and methanol, followed by full or partial recovery depending on process and species. Strong negative correlations between g(s) and internal NO concentration and NO flux, valid within and across species, were observed throughout the experiment. Isoprene emission capacity was not related to waterlogging tolerance. Less waterlogging tolerant species had greater reduction and smaller acclimation capacity in foliage physiological potentials, and larger emission bursts of volatile stress marker compounds. These data collectively provide encouraging evidence that emissions of volatile organics and NO can be used as quantitative measures of stress tolerance and acclimation kinetics in temperate trees.

  14. Membrane bioreactor for control of volatile organic compound emissions

    SciTech Connect

    Ergas, S.J.; McGrath, M.S.

    1997-06-01

    A membrane bioreactor system that overcomes many of the limitations of conventional compost biofilters is described. The system utilizes microporous hydrophobic hollow fiber membranes for mass transfer of volatile organic compounds (VOCs) from the gas phase to a microbially active liquid phase. The reactor design provides a high biomass concentration, a method for wasting biomass, and a method for addition of pH buffers, nutrients, cometabolites, and/or other amendments. A theoretical model is developed, describing mass transfer and biodegradation in the membrane bioreactor. Reactor performance was determined in a laboratory scale membrane bioreactor over a range of gas loading rates using toluene as a model VOC. Toluene removal efficiency was greater than 98% at an inlet concentration of 100 ppm, and a gas residence time of less than 2 s. Factors controlling bioreactor performance were determined through both experiments and theoretical modeling to include: compound Henry`s law constant, membrane specific surface area, gas and VOC loading rates, liquid phase turbulence, and biomass substrate utilization rate.

  15. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay.

    PubMed

    Houdkova, Marketa; Rondevaldova, Johana; Doskocil, Ivo; Kokoska, Ladislav

    2017-04-01

    With aim to develop effective proof-of-concept approach which can be used in a development of new preparations for the inhalation therapy, we designed a new screening method for simple and rapid simultaneous determination of antibacterial potential of plant volatiles in the liquid and the vapour phase at different concentrations. In addition, EVA (ethylene vinyl acetate) capmat™ as vapour barrier cover was used as reliable modification of thiazolyl blue tetrazolium bromide (MTT) assay for cytotoxicity testing of volatiles on microtiter plates. Antibacterial activity of carvacrol, cinnamaldehyde, eugenol, 8-hydroxyquinoline, thymol and thymoquinone was determined against Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae using new broth microdilution volatilization method. The cytotoxicity of these compounds was evaluated using MTT test in lung fibroblast cells MRC-5. The most effective antibacterial agents were 8-hydroxyquinoline and thymoquinone with the lowest minimum inhibitory concentrations (MICs) ranging from 2 to 128μg/mL, but they also possessed the highest toxicity in lung cell lines with half maximal inhibitory concentration (IC50) values 0.86-2.95μg/mL. The lowest cytotoxicity effect was identified for eugenol with IC50 295.71μg/mL, however this compound produced only weak antibacterial potency with MICs 512-1024μg/mL. The results demonstrate validity of our novel broth microdilution volatilization method, which allows cost and labour effective high-throughput antimicrobial screening of volatile agents without need of special apparatus. In our opinion, this assay can also potentially be used for development of various medicinal, agricultural, and food applications that are based on volatile antimicrobials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Emission spectrographic determination of volatile trace elements in geologic materials by a carrier distillation technique

    USGS Publications Warehouse

    Barton, H.N.

    1986-01-01

    Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.

  17. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  18. "Juice Monsters": Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions.

    PubMed

    Talih, Soha; Salman, Rola; Karaoghlanian, Nareg; El-Hellani, Ahmad; Saliba, Najat; Eissenberg, Thomas; Shihadeh, Alan

    2017-09-29

    An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.

  19. Compound specific carbon and hydrogen stable isotope analyses of volatile organic compounds in various emissions of combustion processes.

    PubMed

    Vitzthum von Eckstaedt, Christiane D; Grice, Kliti; Ioppolo-Armanios, Marisa; Kelly, David; Gibberd, Mark

    2012-11-01

    This study presents carbon (δ(13)C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ(13)C of benzene ranged between (i) -21.7 ± 0.2 ‰, (ii) -27.6 ± 1.6 ‰ and (iii) -16.3 ± 2.2 ‰, respectively and δD of benzene ranged between (i) -73 ± 13 ‰, (ii) -111 ± 10 ‰ and (iii) -70 ± 24 ‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ(13)C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  1. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    SciTech Connect

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  2. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  3. The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature.

    PubMed

    Kost, Christian; Heil, Martin

    2008-01-01

    Lima bean (Phaseolus lunatus) features two indirect anti-herbivore defenses--emission of volatile organic compounds (VOCs) and secretion of extrafloral nectar (EFN)--which are both inducible upon herbivore damage. In a previous field study, Lima bean benefited from the simultaneous induction of the two defenses, yet it remained unclear whether both had contributed to plant protection. Our experimental approach aimed at studying the defensive role of both indirect defenses simultaneously. Tendrils were sprayed with jasmonic acid (JA) to induce both defenses, and performance was compared to that of others that were treated with a synthetic blend of either EFN or VOCs. Confirming earlier results, JA treatment and application of the VOC mixture induced EFN secretion in treated tendrils in quantitatively similar amounts. The composition of the applied synthetic blend of EFN was adjusted to match the concentration of EFN secreted from JA- and VOC-treated tendrils. Repeated application of either enhanced the performance of several fitness-relevant plant parameters such as growth rate and flower production. Tendrils treated with JA showed a similar trend, yet some fitness-related parameters responded less to this treatment. This suggests a minor importance of any putative JA-dependent direct defense traits or higher costs of JA-elicited responses as compared to VOCS and EFN, as otherwise JA-treated tendrils should have outperformed VOC- and EFN-treated tendrils. Moreover, the beneficial effect of applying synthetic EFN alone equaled or exceeded that of VOCs and JA. Ants were by far the dominant group among the arthropods that was attracted to JA-, VOC-, or EFN-treated tendrils. The results suggest that EFN plays a more important role as an indirect defense of lima bean than VOCs or any other JA-responsive trait.

  4. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    PubMed

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  5. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    PubMed

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  6. Biochar application reduce ammonia volatilization in a soil-plant system: A closed chamber experiment

    NASA Astrophysics Data System (ADS)

    Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo

    2017-04-01

    Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased

  7. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen.

    PubMed

    Maja, Mengistu M; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  8. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    PubMed

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-02-14

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology.

  9. [Identification of volatiles from field cotton plant under different induction treatments].

    PubMed

    Yu, Hui-Lin; Zhang, Yong-Jun; Pan, Wen-Liang; Guo, Yu-Yuan; Gao, Xi-Wu

    2007-04-01

    The volatiles of field cotton plant at its squaring stage were analyzed qualitatively and quantitatively under treatments of mechanical injury (treatment A), cotton bollworm (CBW) injury (treatment B), CBW plus CBW larva injury (treatment C), and salicylic acid (SA) inducement (treatment D). The volatiles were gathered in an automatic circle system, absorbed by Tenax-TA column, and analyzed with GC-MS system. About 30 kinds of volatiles were qualitatively identified, including terpenoids, aliphatic compounds, aromatic compounds, 3-hexanone, 2-hexanone, 3-hexanol, a-pinene, beta-pinene, beta-myrcene, propenoic acid, butyl ester, acetic acid, pentyl ester, acetic acid, butyl ester, butanoic acid, 3-methyl-, ethyl ester, benzaldehyde, acetophenone and 1, 3, 6-octatriene,3 ,7-dimethyl, etc., and a total of 10 primary volatiles were detected quantitatively. The results showed that both the kinds and the contents of the volatiles were notably higher in treatments B and C than in the control. It was noteworthy that 1, 3, 6-octatriene 3, 7-dimethyl was only found in treatments B and C, i. e., it only occurred in the cotton plants injured by CBW. There were no significant differences in the kinds and contents of the volatiles between treatment A and the control. Similar to CBW injury, SA inducement also enhanced the release of cotton plant volatiles.

  10. Plant-specific correlations to predict the total VOC emissions from wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Oskouie, Ali K.; Lordi, David T.; Granato, Thomas C.; Kollias, Louis

    Simple linear correlations between the lumped parameter of raw wastewater flow rate, mixed liquor suspended solids (MLSS), and concentration of three volatile organic compounds (VOCs), chloroform, dichloromethane and toluene in the liquid and gas phases, Q×MLSS(C/ER), and T, wastewater temperature, were found for three large wastewater treatment plants operated by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) using their monthly data for year 2000. These linear relationships were verified for these three dominant VOCs using the data from years 1987 to 1992, 1998, and 1999 for the three MWRDGC plants. The results of this theoretical study showed that linear functions could reasonably fit to the actual data, and the specific VOC compounds' emission rate could be predicted upon having information on ambient temperature, MLSS, and VOC concentration in the liquid phase at the influent to the specific plant without having to use the Bay Area Sewage Toxics Emission (BASTE) fate model as a future emission estimator once the baseline correlation was determined.

  11. An air transfer experiment confirms the role of volatile cues in communication between plants.

    PubMed

    Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi

    2010-09-01

    Previous studies reported that sagebrush plants near experimentally clipped neighbors experienced less herbivory than did plants near unclipped neighbors. Blocking air flow with plastic bags made this effect undetectable. However, some scientists remained skeptical about the possibility of volatile communication between plants since the existence and identity of a cue that operates in nature have never been demonstrated. We conducted an air transfer experiment that collected air from the headspace of an experimentally clipped donor plant and delivered it to the headspace of an unclipped assay plant. We found that assay plants treated with air from clipped donors were less likely to be damaged by naturally occurring herbivores in a field experiment. This simple air transfer experiment fulfills the most critical of Koch's postulates and provides more definitive evidence for volatile communication between plants. It also provides an inexpensive experimental protocol that can be used to screen plants for interplant communication in the field.

  12. Response of the entomopathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles.

    PubMed

    Baverstock, J; Elliot, S L; Alderson, P G; Pell, J K

    2005-06-01

    We used a model plant-aphid system to investigate whether the aphid-specific entomopathogenic fungus Pandora neoaphidis responds to aphid-induced defence by the broad-bean plant, Vicia faba. Laboratory experiments indicated that neither in vivo sporulation, conidia size nor the in vitro growth of P. neoaphidis was affected by Acyrthosiphon pisum-induced V. faba volatiles. The proportion of conidia germinating on A. pisum feeding on previously damaged plants was significantly greater than on aphids feeding on undamaged plants, suggesting a direct functional effect of the plant volatiles on the fungus. However, there were no significant differences in the infectivity of P. neoaphidis towards A. pisum feeding on either undamaged V. faba plants or plants previously infested with A. pisum. Therefore, these results provide no evidence to suggest that P. neoaphidis contributes to plant indirect defence strategies.

  13. Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces.

    PubMed

    Ren, Yuan; Ge, Ying; Gu, Baojing; Min, Yong; Tani, Akira; Chang, Jie

    2014-06-03

    Biogenic volatile organic compound (BVOC) emissions from urban greenspace have recently become a global concern. To identify key factors affecting the dynamics of urban BVOC emissions, we built an estimation model and utilized the city of Hangzhou in southeastern China as an example. A series of single-factor scenarios were first developed, and then nine multifactor scenarios using a combination of different single-factor scenarios were built to quantify the effects of environmental changes and urban management strategies on urban BVOC emissions. Results of our model simulations showed that (1) annual total BVOC emissions from the metropolitan area of Hangzhou were 4.7×10(8) g of C in 2010 and were predicted to be 1.2-3.2 Gg of C (1 Gg=10(9) g) in our various scenarios in 2050, (2) urban management played a more important role in determining future urban BVOC emissions than environmental changes, and (3) a high ecosystem service value (e.g., lowest BVOC/leaf mass ratio) could be achieved through positive coping in confronting environmental changes and adopting proactive urban management strategies on a local scale, that is, to moderately increase tree density while restricting excessive greenspace expansion and optimizing the species composition of existing and newly planted trees.

  14. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  15. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    PubMed

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  16. Volatile organic compound concentrations and emission rates in new manufactured and site-built houses.

    PubMed

    Hodgson, A T; Rudd, A F; Beal, D; Chandra, S

    2000-09-01

    Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2-9.5 months following installation and in seven new site-built houses 1-2 months after completion. The houses were in four projects located in hot-humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged from 0.14-0.78 h-1. Several of the site-built houses had ventilation rates below the ASHRAE recommended value. In both manufactured and site-built houses, the predominant airborne compounds were alpha-pinene, formaldehyde, hexanal, and acetic acid. Formaldehyde concentrations were below or near 50 ppb with a geometric mean value for all houses of 40 ppb. Similarities in the types of VOCs and in VOC concentrations indicated that indoor air quality in the houses was impacted by the same or similar sources. Major identified sources included plywood flooring, latex paint and sheet vinyl flooring. One site-built house was operated at ventilation rates of 0.14 and 0.32 h-1. VOC emission rates calculated at the two conditions agreed within +/- 10% for the most volatile compounds. Generally, the ratios of emission rates at the low and high ventilation rates decreased with decreasing compound volatility. Changes in VOC emission rates in the manufactured houses over 2-9.5 months after installation varied by compound. Only several compounds showed a consistent decrease in emission rate over this period.

  17. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346

  18. Methyl Chloride Emission from Tropical Plants

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ikeda, M.; Ikeda, M.; Inuzuka, Y.; Yukawa, T.

    2001-12-01

    We studied CH3Cl emissions from tropical plants in Tropical Rainforest Glasshouse (25 m x 20 m x 10-24 m high) in Tsukuba Botanical Gardens, where more than 200 representative species from lowland tropical forests of Southeast Asia grow. CH3Cl concentrations were always higher in the glasshouse than outside and increased significantly when the windows were closed. The fluxes of CH3Cl from the tropical rainforest system in the glasshouse were calculated from the averages of their accumulation rates when the windows were closed (average; 142 pptv”h-1) with the dimension of the glasshouse. Emission rates per unit area for CH3Cl was 5.4 mg m-2 h-1. In order to determine which of the plants or whether the soil is responsible for the increase of CH3Cl, flux measurements were done by using an enclosure method. The soil was found to take up CH3Cl at a small rate. On the other hand, some plants from the Marattiaceae, Cyatheaceae (tree fern), Dicksoniaceae, and Dipterocarpaceae families were found to significantly emit CH3Cl. The first three families are ferns commonly growing in tropical forests, and Dipterocarpaceae species are dominant in the tropical rainforests of Southeast Asia. The average CH3Cl emission rate from the 9 plants in these families was around 0.5 mg (g dry leaf)-1”h-1. As for Cyatheaceae, we conducted a flux measurement from Cyathea lepifera E.Copel. in a subtropical forest in Okinawa and detected high emissions of CH3Cl amounting to 1.1 mg (g dry leaf)-1”h-1. Strong emissions of CH3Cl from tropical forests raises questions about the trends of chlorine compounds in the future and in the past.

  19. Enzymatic production and emission of floral scent volatiles in Jasminum sambac.

    PubMed

    Bera, Paramita; Mukherjee, Chiranjit; Mitra, Adinpunya

    2017-03-01

    Floral scent composed of low molecular weight volatile organic compounds. The sweet fragrance of any evening blooming flower is dominated by benzenoid and terpenoid volatile compounds. Floral scent of Jasminum sambac (Oleaceae) includes three major benzenoid esters - benzylacetate, methylbenzoate, and methylsalicylate and three major terpene compounds viz. (E)-β-ocimene, linalool and α-farnesene. We analyzed concentrations and emission rates of benzenoids and terpenoids during the developmental stages of J. sambac flower. In addition to spatial emission from different floral parts, we studied the time-course mRNA accumulations of phenylalanine ammonia-lyase (PAL) and the two representative genes of terpenoid pathway, namely 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and terpene synthase (TPS). Further, in vitro activities of several enzymes of phenylpropanoid/benzenoid pathway viz., PAL and acetyl-coenzyme A: benzylalcohol acetyltransferase (BEAT), S-adenosyl-l-methionine: benzoic acid carboxyl methyl transferase (BAMT) and S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase (SAMT) were studied. All the above enzyme activities along with the in vitro activities of DXR and TPS were found to follow a certain rhythm as observed in the emission of different benzenoid and terpenoid compounds. Linalool emission peaked after petal opening and coincided with maximal expression of JsTPS gene as evidenced from RT-PCR analyses (semi-quantitative). The maximum transcript accumulation of this gene was observed in flower petals, indicating that the petals of J. sambac flower play an important role as a major contributor of volatile precursors. The transcripts accumulation of JsDXR and JsTPS in different developmental stages and in different floral part showed that emissions of terpenoid volatiles in J. sambac flower are partially regulated at transcription levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Measurements of volatile organic compounds emitted from plants in the metropolitan area of São Paulo City , Brazil.

    NASA Astrophysics Data System (ADS)

    Carvalho, L.; Pisani, S.; Pool, C.; Vasconcellos, P.

    2003-04-01

    The presence of the biogenic hydrocarbons in an NO_x-containing atmosphere can enhance ozone generation and the impact of volatile organic compounds (VOCs) emitted from vegetation on atmospheric chemistry has been investigated. No study of VOC emission rates from plant species has been carried out in São Paulo City, Brazil, prior to this work. This study is part of a three-years project on biogenic volatile organic compounds emissions from species of plants found in the vegetation of the São Paulo metropolitan area. Typical plants (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Casearia sylvestris, Machaerium villosum, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insípida) were selected and identical species were studied in urban, sub-urban and forest regions. Biogenic hydrocarbons were determined placing branches of plants in enclosures and measuring the accumulation of emitted compounds in an all-Teflon chamber, the cuvette system. Measuring ambient VOC concentration adsorptive preconcentration, followed by GC-MS after thermal desorption of the sample, was employed to determine components heavier than C_5. Collection of carbonyl compounds on 2, 4-dinitrophenylhydrazine coated particles followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emissions rates of isoprene, a-pinene, camphene and limonene ranged from 0.01 to 2.16 μg C/h.g and emissions rates of aldehydes (C_1 - C_6), acrolein, methacrolein, 2-butanone and acetone ranged from 0.04 to 4.20 μg C/h.g. Ambient and chamber temperatures, relative humidity, light intensity, O_3 and NO_x were monitored during experiments.

  1. Emissions of biogenic volatile organic compounds from litter are coupled with changes in the microbial community composition

    NASA Astrophysics Data System (ADS)

    Hagel Svendsen, Sarah; Schostag, Morten; Voriskova, Jana; Kramshøj, Magnus; Priemé, Anders; Suhr Jacobsen, Carsten; Rinnan, Riikka

    2017-04-01

    Emissions of biogenic volatile organic compounds (BVOCs) from natural ecosystems have significant impact on atmospheric chemistry and belowground chemical processes. Most attention has been given to emissions from plants. However, several studies have found that soil, and especially the decomposing leaf and needle litter, emits substantial amounts of BVOCs. The contribution of litter to ecosystem BVOC emissions may be increasingly significant in the Arctic, where the living plant biomass is low, and the amount of litter increasing due to the expansion of deciduous vegetation in response to climate change. It is known that the types and amounts of BVOCs emitted from the soil are highly dependent on the microbial community composition and the type of substrate. In this study we measured emissions of BVOCs from the leaf litter of common arctic plant species at different temperatures. The BVOC measurements were coupled with an analysis of the relative abundance of dominating bacterial species (determined as operational taxonomic units, OTUs). Leaf litter from evergreen Cassiope tetragona and two species of deciduous Salix were collected from two arctic locations; one in the High Arctic and one in the Low Arctic. The litter was incubated in dark at 5 ?C. Over an eight week period the temperature was increased 7 ?C every two weeks, giving temperature incubations at 5 ?C, 12 ?C, 19 ?C and 26 ?C. Emissions of BVOCs from the litter were sampled in adsorbent cartridges weekly and analyzed using gas chromatography-mass spectrometry. The relative abundance of bacteria was determined at the end of the incubation at each temperature using DNA sequencing. Results showed that emissions of BVOCs belonging to different chemical functional groups responded differently to increasing temperatures and were highly dependent on the type of substrate. For instance, terpenoid emissions from the Cassiope litter increased with increasing temperature, whereas the emissions from the Salix

  2. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties.

  3. Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes.

    PubMed

    Wu, Ting; Wang, Xinming

    2015-07-01

    Oxygenated volatile organic compounds (OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs (TOVOCs) from orange wastes reached 1714 mg/dry kg (330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8% and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days, suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.

  4. Emission rates of selected volatile organic compounds from skin of healthy volunteers.

    PubMed

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2014-05-15

    Gas chromatography with mass spectrometric detection (GC-MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4,790 fmol cm(-2)min(-1). Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm(-2)min(-1). Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR).

  5. Particle emissions, volatility, and toxicity from an ethanol fumigated compression ignition engine.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Roberts, Boyd A; Modini, Robin L; Situ, Rong; Brown, Richard J; Bottle, Steven E; Ristovski, Zoran D

    2010-01-01

    Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.

  6. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect

    Zhen Yang; Li Kong

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  7. Bacterial-Plant-Interactions: Approaches to Unravel the Biological Function of Bacterial Volatiles in the Rhizosphere

    PubMed Central

    Kai, Marco; Effmert, Uta; Piechulla, Birgit

    2016-01-01

    Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g., ranging from a significant plant growth promotion to a dramatic suppression of plant development. In addition to these discrepancies, these test systems neglected properties and complexity of the rhizosphere. Therefore, to pursue further investigations of the role of bacterial volatiles in this underground habitat, the applied methods have to simulate its natural characteristics as much as possible. In this review, we will describe and discuss pros and cons of currently used bioassays, give insights into rhizosphere characteristics, and suggest improvements for test systems that would consider in natura conditions and would allow gaining further knowledge of the potential function and significance of rhizobacterial volatiles in plant life. PMID:26903987

  8. Emissions of Volatile Organic Compounds (VOCs) Associated with Natural Gas Production in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.

    2012-12-01

    Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The

  9. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.

  10. Effect of fuel volatility and methanol blend usage on evaporative emissions

    SciTech Connect

    Gabele, P.A. )

    1987-01-01

    This study examines evaporative emissions and canister performance as a function of methanol usage and fuel volatility. A total of six different fuels are examined: three methanol blends and three gasoline fuels. Each methanol blend has been specially prepared so that its Reid vapor pressure (RVF) is matched with one of the gasoline fuels. The result is three methanol blend-gasoline fuel pairs having volatilities of 9 psi., 11.2 psi., and 14.4 psi RVP. Evaporative emissions from an automobile tested with these fuels are measured and characterized. In addition to these data, data detailing the composition of fuel tank head-space and canister weight gain and loss fluctuations are also presented.

  11. Eavesdropping on plant volatiles by a specialist moth: significance of ratio and concentration

    USDA-ARS?s Scientific Manuscript database

    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a...

  12. 40 CFR 180.1127 - Biochemical pesticide plant floral volatile attractant compounds: cinnamaldehyde, cinnamyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant...

  13. 40 CFR 180.1127 - Biochemical pesticide plant floral volatile attractant compounds: cinnamaldehyde, cinnamyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant...

  14. 40 CFR 180.1127 - Biochemical pesticide plant floral volatile attractant compounds: cinnamaldehyde, cinnamyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant...

  15. 40 CFR 180.1127 - Biochemical pesticide plant floral volatile attractant compounds: cinnamaldehyde, cinnamyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant...

  16. 40 CFR 180.1127 - Biochemical pesticide plant floral volatile attractant compounds: cinnamaldehyde, cinnamyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant...

  17. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  18. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  19. Characteristics of microbial volatile organic compound flux rates from soil and plant litter

    NASA Astrophysics Data System (ADS)

    Gray, C. M.; Fierer, N.

    2013-12-01

    Our knowledge of microbial production and consumption of volatile organic compounds (VOCs) from soil and litter, as well as which microorganisms are involved, is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, precipitation patterns, and atmospheric VOC concentrations, it is unknown how microbial production and consumption of VOCs from litter and soil will respond. We have spent the last 5 years quantifying VOC flux rates in decaying plant litter, mineral soils and from a subalpine field site using a proton transfer reaction mass spectrometer (PTR-MS). Microbial production, relative to abiotic sources, accounted for 78% to 99% of the total VOC emissions from decomposing litter, highlighting the importance of microbial metabolisms in these systems. Litter chemistry correlated with the types of VOCs emitted, of which, methanol was emitted at the highest rates from all studies. The net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. In the field, the root system contributed to 53% of the carbon that was emitted as VOCs from the soil with increasing air temperatures correlating to an increase in VOC flux rates from the soil system. Finally, we are currently utilizing next generation sequencing techniques (Illumina MiSeq) along with varying concentrations of isoprene, the third most abundant VOC in the atmosphere behind methane and methanol, above soils in a laboratory incubation to determine consumption rates and the microorganisms (bacteria, archaea and fungi) associated with the

  20. Toxic volatile organic compounds in environmental tobacco smoke: Emission factors for modeling exposures of California populations

    SciTech Connect

    Daisey, J.M.; Mahanama, K.R.R.; Hodgson, A.T.

    1994-10-01

    The primary objective of this study was to measure emission factors for selected toxic air contaminants in environmental tobacco smoke (ETS) using a room-sized environmental chamber. The emissions of 23 volatile organic compounds (VOCs), including, 1,3-butadiene, three aldehydes and two vapor-phase N-nitrosamines were determined for six commercial brands of cigarettes and reference cigarette 1R4F. The commercial brands were selected to represent 62.5% of the cigarettes smoked in California. For each brand, three cigarettes were machine smoked in the chamber. The experiments were conducted over four hours to investigate the effects of aging. Emission factors of the target compounds were also determined for sidestream smoke (SS). For almost all target compounds, the ETS emission factors were significantly higher than the corresponding SS values probably due to less favorable combustion conditions and wall losses in the SS apparatus. Where valid comparisons could be made, the ETS emission factors were generally in good agreement with the literature. Therefore, the ETS emission factors, rather than the SS values, are recommended for use in models to estimate population exposures from this source. The variabilities in the emission factors ({mu}g/cigarette) of the selected toxic air contaminants among brands, expressed as coefficients of variation, were 16 to 29%. Therefore, emissions among brands were Generally similar. Differences among brands were related to the smoked lengths of the cigarettes and the masses of consumed tobacco. Mentholation and whether a cigarette was classified as light or regular did not significantly affect emissions. Aging was determined not to be a significant factor for the target compounds. There were, however, deposition losses of the less volatile compounds to chamber surfaces.

  1. Global inventory of volatile organic compound emissions from anthropogenic sources. Final report, March 1988-September 1990

    SciTech Connect

    Watson, J.J.; Probert, J.A.; Piccot, S.D.

    1991-01-01

    The report describes a global inventory of anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. The inventory, one input to atmospheric chemistry models required to estimate the global atmospheric concentration of ozone, is part of an assessment of the potential environmental impacts associated with global climate change. Study results show total global anthropogenic emissions of about 121 million short tons of VOCs per year. The U.S. is the largest emitter with 21% of the total. Globally, fuelwood combustion and savanna burning are the largest sources, together accounting for over 35% of global VOC emissions. The approach used to develop the inventory involved: (1) identifying the major anthropogenic sources of VOC emissions in the U.S. and grouping them into categories; (2) developing emission factors by dividing the U.S. emissions by the amount of production or consumption of the related commodity in the U.S.; (3) multiplying the U.S. emission factors by production/consumption statistics for other countries to yield global VOC emission estimates; and (4) geographically distributing the emissions.

  2. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    SciTech Connect

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  3. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 >