Sample records for plant wax lipids

  1. Waxes: A Forgotten Topic in Lipid Teaching.

    ERIC Educational Resources Information Center

    Dominguez, Eva; Heredia, Antonio

    1998-01-01

    Reviews the biological importance of the lipids categorized as waxes and describes some of the organic chemistry of these compounds. Presents a short laboratory exercise on the extraction of plant waxes and their analysis by thin layer chromatography. (Author/CCM)

  2. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    PubMed

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry ( Myrica pensylvanica ) fruits

    DOE PAGES

    Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.

    2016-02-09

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that producesmore » and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves,which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism.« less

  4. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry

    PubMed Central

    2013-01-01

    Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester. PMID:23829499

  5. Composition changes in the cuticular surface lipids of the helophytes Phragmites australis and Juncus effusus as result of pollutant exposure.

    PubMed

    Macherius, André; Kuschk, Peter; Haertig, Claus; Moeder, Monika; Shtemenko, Natalia I; Bayona, Antonio Heredia; Guerrero, José A Heredia; Gey, Manfred

    2011-06-01

    Helophytes like rush and reed are increasingly used for phytoremediation of contaminated water. This study characterises the response of rush and reed plants to chemical stressors such as chlorobenzene, benzene and methyl-tert-butyl ether. The extractable wax layer of the cuticle was chosen for detailed investigations due to its multiple, particularly, protective functions for plants and its easy availability for analysis. The chemical composition of the cuticle wax layer of reed and rush was studied in dependence on chemical stress caused by contaminated water under wetland cultivation conditions. The lipid layer of leaves was extracted, derivatised and investigated by GC-MS using retention time locking and a plant-specific data base. In case of rush, a remarkable increase of the total lipid layer and a prolongation of the mean chain length resulted as response on a chlorobenzene exposure. The significant difference in the substance profiles of exposed plants and controls could be confirmed by multivariate data analysis. The lipid layer of reed was not changed significantly when the plants were exposed to water polluted with benzene and methyl-tert-butyl ether. However, scanning electron microscopic images of the exposed reed leaves indicated alterations in the crystal structure of their wax surface. The composition and morphology of cuticular waxes indicated the plants' response to chemical stress very sensitively thus, changes in the wax layer could be used as an indication for growing in a contaminated area.

  6. Investigation of the effect of AtWIN1/SHN1 overexpression on poplar trees

    Treesearch

    Shaneka S.  Lawson

    2016-01-01

    Background: Interactions between plants and the environment occur primarily at the leaf level. The plant cuticle consists of a menagerie of lipids, waxes and polymers merging to form an insoluble membrane to protect plant leaves from contamination. In Arabidopsis, wax Inducer1/shine1 (WIN1/SHN1) and its family members have demonstrated roles in wax...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that producesmore » and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves,which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism.« less

  8. Compound Specific δD Values Across a Tropical Precipitation Gradient: Implications for Low-latitude Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Brenner, M.; Curtis, J. H.; Hodell, D. A.

    2009-12-01

    Hydrogen isotopes (δD) of terrestrial and aquatic plant lipids have been used to reconstruct past continental hydrological change in low-latitude settings. Generally, lipid δD values correlate strongly with the isotopic composition of precipitation, although evapotranspiration and biosynthetic fractionation are important influences on the δD of leaf waxes. Few studies have focused on constraining the controls on δD values of lipids in the tropics, where high evaporation rates impact both leaf and lake water isotopic composition. We measured δD values in surface waters and lipids extracted from leaves, lake sediments and soils along a latitudinal transect across Mexico, Guatemala and Honduras, a region with distinct dry and wet seasons. The δD values of leaf waxes extracted from lake sediments are positively correlated with surface water δD values (r = 0.73). The apparent fractionation between stream waters (inferred to represent plant source water) and leaf waxes (ɛlw) is negatively correlated with mean annual precipitation (r = -0.89), likely due to greater evapotranspiration and D-enriched leaf water in drier climates. δD values of leaf waxes extracted directly from leaves collected during the rainy season (August 2008) are similarly correlated with surface water δD values (r = 0.85). Leaf ɛlw values, however, are not significantly correlated with mean annual precipitation. It is possible that the correlation between ɛlw and mean annual precipitation in lake sediment leaf waxes is related to seasonal variability in evapotranspiration. Specifically, lake sediment leaf waxes could predominantly represent production during the dry season when evapotranspiration effects are strongest and when many tropical tree species shed their leaves. Possible seasonal variability in fractionation between source water and leaf wax lipids should be taken into account when interpreting leaf wax δD records from tropical locations, both in terms of controlling for long-term variability in seasonality and when comparing records from different sites. Overall, the results of this research indicate that both the isotopic composition of precipitation and the intensity of evapotranspiration control the δD of terrestrial plant leaf waxes in the tropics.

  9. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    NASA Astrophysics Data System (ADS)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  10. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    PubMed Central

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms. PMID:16461689

  11. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    PubMed

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  12. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    PubMed

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  13. A Novel Pathway for Triacylglycerol Biosynthesis Is Responsible for the Accumulation of Massive Quantities of Glycerolipids in the Surface Wax of Bayberry (Myrica pensylvanica) Fruit[OPEN

    PubMed Central

    Ohlrogge, John B.

    2016-01-01

    Bayberry (Myrica pensylvanica) fruits synthesize an extremely thick and unusual layer of crystalline surface wax that accumulates to 32% of fruit dry weight, the highest reported surface lipid accumulation in plants. The composition is also striking, consisting of completely saturated triacylglycerol, diacylglycerol, and monoacylglycerol with palmitate and myristate acyl chains. To gain insight into the unique properties of Bayberry wax synthesis, we examined the chemical and morphological development of the wax layer, monitored wax biosynthesis through [14C]-radiolabeling, and sequenced the transcriptome. Radiolabeling identified sn-2 monoacylglycerol as an initial glycerolipid intermediate. The kinetics of [14C]-DAG and [14C]-TAG accumulation and the regiospecificity of their [14C]-acyl chains indicated distinct pools of acyl donors and that final TAG assembly occurs outside of cells. The most highly expressed lipid-related genes were associated with production of cutin, whereas transcripts for conventional TAG synthesis were >50-fold less abundant. The biochemical and expression data together indicate that Bayberry surface glycerolipids are synthesized by a pathway for TAG synthesis that is related to cutin biosynthesis. The combination of a unique surface wax and massive accumulation may aid understanding of how plants produce and secrete non-membrane glycerolipids and also how to engineer alternative pathways for lipid production in non-seeds. PMID:26744217

  14. Occurrence and Biosynthesis of Alkyl Hydroxycinnamates in Plant Lipid Barriers

    PubMed Central

    Domergue, Frédéric; Kosma, Dylan K.

    2017-01-01

    The plant lipid barriers cuticle and suberin represent one of the largest biological interfaces on the planet. They are comprised of an insoluble polymeric domain with associated organic solvent-soluble waxes. Suberin-associated and plant cuticular waxes contain mixtures of aliphatic components that may include alkyl hydroxycinnamates (AHCs). The canonical alkyl hydroxycinnamates are comprised of phenylpropanoids, typically coumaric, ferulic, or caffeic acids, esterified with long chain to very long chain fatty alcohols. However, many related structures are also present in the plant kingdom. Although their functions remain elusive, much progress has been made on understanding the distribution, biosynthesis, and deposition of AHCs. Herein a summary of the current state of knowledge on plant AHCs is provided. PMID:28665304

  15. Interspecific utilisation of wax in comb building by honeybees

    NASA Astrophysics Data System (ADS)

    Hepburn, H. Randall; Radloff, Sarah E.; Duangphakdee, Orawan; Phaincharoen, Mananya

    2009-06-01

    Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.

  16. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax δD signal, thereby improving paleohydrology information extracted from leaf wax δD.

  17. Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments

    NASA Astrophysics Data System (ADS)

    Hemingway, Jordon D.; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V.

    2016-07-01

    The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted δ13C values (individual homologues average ⩽-31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ⩽ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

  18. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice.

    PubMed

    Zhang, Zhe; Cheng, Zhi-Jun; Gan, Lu; Zhang, Huan; Wu, Fu-Qing; Lin, Qi-Bing; Wang, Jiu-Lin; Wang, Jie; Guo, Xiu-Ping; Zhang, Xin; Zhao, Zhi-Chao; Lei, Cai-Lin; Zhu, Shan-Shan; Wang, Chun-Ming; Wan, Jian-Min

    2016-08-01

    Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Spruce budworm feeding and oviposition are stimulated by monoterpenes in white spruce epicuticular waxes.

    PubMed

    Ennis, Darragh; Despland, Emma; Chen, Fei; Forgione, Pat; Bauce, Eric

    2017-02-01

    Monoterpenes, source of the distinctive odor of conifers, are generally considered plant defensive compounds. However, they are also known to act as long-range insect attractants, as they are volatile and permeate forest airspaces. Moreover, they are lipid soluble and can be absorbed into plant epicuticular waxes. We test their role in short-range host plant choice by both adult females and larvae of a folivorous forest pest (Choristoneura fumiferana). We conducted laboratory assays testing the responses of Eastern spruce budworm to an artificial monoterpene mix (α-pinene, β-pinene, limonene, myrcene) and to white spruce (Picea glauca) epicuticular waxes in closed arenas. Ovipositing females preferred filter paper discs treated with P. glauca waxes to controls, and preferred the waxes + monoterpenes treatment to waxes alone. However, females showed no preference between the monoterpene-treated disc and the control when presented without waxes. Feeding larvae prefered wax discs to control discs. They also consumed discs treated with realistic monoterpene concentrations and wax preferentially over wax-only discs, but showed no preference between extremely high monoterpene concentrations and wax-only controls. In an insect-free assay, P. glauca epicuticular wax decreased monoterpene volatilization. These results suggest that P. glauca waxes and realistic concentrations of monoterpenes are stimulatory to both egg-laying females and feeding larvae, and that their effects are synergistic. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  20. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. BraLTP1, a Lipid Transfer Protein Gene Involved in Epicuticular Wax Deposition, Cell Proliferation and Flower Development in Brassica napus

    PubMed Central

    Liu, Fang; Xiong, Xiaojuan; Wu, Lei; Fu, Donghui; Hayward, Alice; Zeng, Xinhua; Cao, Yinglong; Wu, Yuhua; Li, Yunjing; Wu, Gang

    2014-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17–80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development. PMID:25314222

  2. Transient silencing of the KASII genes is feasible in Nicotiana benthamiana for metabolic engineering of wax ester composition

    PubMed Central

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sitbon, Folke; Sun, Chuanxin

    2015-01-01

    The beta-ketoacyl-ACP synthase II (KASII) is an enzyme in fatty acid biosynthesis, catalyzing the elongation of 16:0-acyl carrier protein (ACP) to 18:0-ACP in plastids. Mutations in KASII genes in higher plants can lead to lethality, which makes it difficult to utilize the gene for lipid metabolic engineering. We demonstrated previously that transient expression of plastid-directed fatty acyl reductases and wax ester synthases could result in different compositions of wax esters. We hypothesized that changing the ratio between C16 (palmitoyl-compounds) and C18 (stearoyl-compounds) in the plastidic acyl-ACP pool by inhibition of KASII expression would change the yield and composition of wax esters via substrate preference of the introduced enzymes. Here, we report that transient inhibition of KASII expression by three different RNAi constructs in leaves of N. benthamiana results in almost complete inhibition of KASII expression. The transient RNAi approach led to a shift of carbon flux from a pool of C18 fatty acids to C16, which significantly increased wax ester production in AtFAR6-containing combinations. The results demonstrate that transient inhibition of KASII in vegetative tissues of higher plants enables metabolic studies towards industrial production of lipids such as wax esters with specific quality and composition. PMID:26063537

  3. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C metabolism in plants.

  4. FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export

    PubMed Central

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-01-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism. PMID:25646734

  5. Jojoba in dermatology: a succinct review.

    PubMed

    Pazyar, N; Yaghoobi, R; Ghassemi, M R; Kazerouni, A; Rafeie, E; Jamshydian, N

    2013-12-01

    Phytomedicine has been successfully used in dermatology horizon for thousands of years. Jojoba (Simmondsia chinensis) is a long-lived, drought resistant, perennial plant with interesting economic value as it is processed for liquid wax production. The jojoba plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. The liquid wax is an important substrate for a variety of industrial applications and is used in skin treatment preparations. The oil from the jojoba plant is the main biological source of wax esters and has a multitude of potential applications. The review of literatures suggest that jojoba has anti-inflammatory effect and it can be used on a variety of skin conditions including skin infections, skin aging, as well as wound healing. Moreover, jojoba has been shown to play a role in cosmetics formulas such as sunscreens and moisturizers and also enhances the absorption of topical drugs. The intention of the review is to summarize the data regarding the uses of jojoba in dermatology for readers and researchers.

  6. Identification of the Wax Ester Synthase/Acyl-Coenzyme A:Diacylglycerol Acyltransferase WSD1 Required for Stem Wax Ester Biosynthesis in Arabidopsis12[W][OA

    PubMed Central

    Li, Fengling; Wu, Xuemin; Lam, Patricia; Bird, David; Zheng, Huanquan; Samuels, Lacey; Jetter, Reinhard; Kunst, Ljerka

    2008-01-01

    Wax esters are neutral lipids composed of aliphatic alcohols and acids, with both moieties usually long-chain (C16 and C18) or very-long-chain (C20 and longer) carbon structures. They have diverse biological functions in bacteria, insects, mammals, and terrestrial plants and are also important substrates for a variety of industrial applications. In plants, wax esters are mostly found in the cuticles coating the primary shoot surfaces, but they also accumulate to high concentrations in the seed oils of a few plant species, including jojoba (Simmondsia chinensis), a desert shrub that is the major commercial source of these compounds. Here, we report the identification and characterization of WSD1, a member of the bifunctional wax ester synthase/diacylglycerol acyltransferase gene family, which plays a key role in wax ester synthesis in Arabidopsis (Arabidopsis thaliana) stems, as first evidenced by severely reduced wax ester levels of in the stem wax of wsd1 mutants. In vitro assays using protein extracts from Escherichia coli expressing WSD1 showed that this enzyme has a high level of wax synthase activity and approximately 10-fold lower level of diacylglycerol acyltransferase activity. Expression of the WSD1 gene in Saccharomyces cerevisiae resulted in the accumulation of wax esters, but not triacylglycerol, indicating that WSD1 predominantly functions as a wax synthase. Analyses of WSD1 expression revealed that this gene is transcribed in flowers, top parts of stems, and leaves. Fully functional yellow fluorescent protein-tagged WSD1 protein was localized to the endoplasmic reticulum, demonstrating that biosynthesis of wax esters, the final products of the alcohol-forming pathway, occurs in this subcellular compartment. PMID:18621978

  7. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water, subjected to the same effects of evapotranspiration, but which differ in the amount and composition of leaf wax compounds, can exhibit large variation in their n-alkane 2H/1H. Our current work on determining the 2H/1H composition of other n-alkyl lipids from these plants will provide further details regarding the role of biosynthesis in controlling 2H/1H fractionation within leaf waxes.

  8. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked to explain the reason for this decoupling. Our current work that also includes leaf water isotopic measurements will provide further details regarding the role of transpiration in controlling the deltaD values of leaf lipids.

  9. Golgi- and Trans-Golgi Network-Mediated Vesicle Trafficking Is Required for Wax Secretion from Epidermal Cells1[W][OPEN

    PubMed Central

    McFarlane, Heather E.; Watanabe, Yoichiro; Yang, Weili; Huang, Yan; Ohlrogge, John; Samuels, A. Lacey

    2014-01-01

    Lipid secretion from epidermal cells to the plant surface is essential to create the protective plant cuticle. Cuticular waxes are unusual secretory products, consisting of a variety of highly hydrophobic compounds including saturated very-long-chain alkanes, ketones, and alcohols. These compounds are synthesized in the endoplasmic reticulum (ER) but must be trafficked to the plasma membrane for export by ATP-binding cassette transporters. To test the hypothesis that wax components are trafficked via the endomembrane system and packaged in Golgi-derived secretory vesicles, Arabidopsis (Arabidopsis thaliana) stem wax secretion was assayed in a series of vesicle-trafficking mutants, including gnom like1-1 (gnl1-1), transport particle protein subunit120-4, and echidna (ech). Wax secretion was dependent upon GNL1 and ECH. Independent of secretion phenotypes, mutants with altered ER morphology also had decreased wax biosynthesis phenotypes, implying that the biosynthetic capacity of the ER is closely related to its structure. These results provide genetic evidence that wax export requires GNL1- and ECH-dependent endomembrane vesicle trafficking to deliver cargo to plasma membrane-localized ATP-binding cassette transporters. PMID:24468625

  10. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A statistical and experimental approach for assessing the preservation of plant lipids in soil

    NASA Astrophysics Data System (ADS)

    Mueller, K. E.; Eissenstat, D. M.; Oleksyn, J.; Freeman, K. H.

    2011-12-01

    Plant-derived lipids contribute to stable soil organic matter, but further interpretations of their abundance in soils are limited because the factors that control lipid preservation are poorly understood. Using data from a long-term field experiment and simple statistical models, we provide novel constraints on several predictors of the concentration of hydrolyzable lipids in forest mineral soils. Focal lipids included common monomers of cutin, suberin, and plant waxes present in tree leaves and roots. Soil lipid concentrations were most strongly influenced by the concentrations of lipids in leaves and roots of the overlying trees, but were also affected by the type of lipid (e.g. alcohols vs. acids), lipid chain length, and whether lipids originated in leaves or roots. Collectively, these factors explained ~80% of the variation in soil lipid concentrations beneath 11 different tree species. In order to use soil lipid analyses to test and improve conceptual models of soil organic matter stabilization, additional studies that provide experimental and quantitative (i.e. statistical) constraints on plant lipid preservation are needed.

  12. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis.

    PubMed

    Suh, Mi Chung; Samuels, A Lacey; Jetter, Reinhard; Kunst, Ljerka; Pollard, Mike; Ohlrogge, John; Beisson, Fred

    2005-12-01

    All vascular plants are protected from the environment by a cuticle, a lipophilic layer synthesized by epidermal cells and composed of a cutin polymer matrix and waxes. The mechanism by which epidermal cells accumulate and assemble cuticle components in rapidly expanding organs is largely unknown. We have begun to address this question by analyzing the lipid compositional variance, the surface micromorphology, and the transcriptome of epidermal cells in elongating Arabidopsis (Arabidopsis thaliana) stems. The rate of cell elongation is maximal near the apical meristem and decreases steeply toward the middle of the stem, where it is 10 times slower. During and after this elongation, the cuticular wax load and composition remain remarkably constant (32 microg/cm2), indicating that the biosynthetic flux into waxes is closely matched to surface area expansion. By contrast, the load of polyester monomers per unit surface area decreases more than 2-fold from the upper (8 microg/cm2) to the lower (3 microg/cm2) portion of the stem, although the compositional variance is minor. To aid identification of proteins involved in the biosynthesis of waxes and cutin, we have isolated epidermal peels from Arabidopsis stems and determined transcript profiles in both rapidly expanding and nonexpanding cells. This transcriptome analysis was validated by the correct classification of known epidermis-specific genes. The 15% transcripts preferentially expressed in the epidermis were enriched in genes encoding proteins predicted to be membrane associated and involved in lipid metabolism. An analysis of the lipid-related subset is presented.

  13. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    PubMed

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  14. Controls on compound specific 2H/1H of leaf waxes along a North American monsoonal transect

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Hambach, B.; Ehleringer, J. R.

    2013-12-01

    The use of hydrogen isotope ratios of sedimentary n-alkanes from leaf waxes has become an important method for the reconstruction of paleohydrologic conditions. Ideally, the relationship between lipid 2H/1H values and source water is one-to-one. But the extent to which the 2H/1H values are altered between initial source water and lipid 2H/1H values varies by plant type and environment. Additionally, these variables may be confounded by use of varied source waters by plants in the same ecosystem. Here, we use a transect study across the arid southwestern landscape of the United States, which is heavily influenced by the North American Monsoon, to study the variability in 2H/1H values of leaf waxes in co-occurring plants from Tucson, Arizona to Salt Lake City, Utah. Perennials, including rabbit brush (Chrysothamnus nauseosus), sagebrush (Artemisia tridentata), and gambel oak (Quercus gambelii) and an annual plant, sunflower (Helianthus annuus), were chosen for their wide geographic distribution along the entire transect. Our results indicate that n-alkane distribution for each plant was similar and generally showed no relationship to environmental variables (elevation, mean annual precipitation, latitude, and temperature). However, we find evidence of n-alkane 2H/1H value relating to transect latitude, a relationship that is weaker for all samples combined than the strong individual correlation for each plant species. Further, these 2H/1H values suggest that not all plants in the monsoon region utilize monsoon-delivered precipitation. These results imply an adaptation to discontinuous spatial coverage and amount of monsoonal precipitation and suggest care must be taken when assuming consistent source water for different plants, particularly in regions with highly seasonal precipitation delivery.

  15. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana.

    PubMed

    Kim, Hyojin; Lee, Saet Buyl; Kim, Hae Jin; Min, Myung Ki; Hwang, Inhwan; Suh, Mi Chung

    2012-08-01

    Cuticular waxes are synthesized by the extensive export of intracellular lipids from epidermal cells. However, it is still not known how hydrophobic cuticular lipids are exported to the plant surface through the hydrophilic cell wall. The LTPG2 gene was isolated based on Arabidopsis microarray analysis; this gene is predominantly expressed in stem epidermal peels as compared with in stems. The expression of LTPG2 transcripts was observed in various organs, including stem epidermis and silique walls. The composition of the cuticular wax was significantly altered in the stems and siliques of the ltpg2 mutant and ltpg1 ltpg2 double mutant. In particular, the reduced level of the C29 alkane, which is the major component of cuticular waxes in ltpg1 ltpg2 stems and siliques, was similar to the sum of reduced values of either parent. The total cuticular wax load was reduced by approximately 13% and 20% in both ltpg2 and ltpg1 ltpg2 siliques, respectively, and by approximately 14% in ltpg1 ltpg2 stems when compared with the wild-type. Similarly, severe alterations in the cuticular layer structure of epidermal cells of ltpg2 and ltpg1 ltpg2 stems and silique walls were observed. In tobacco epidermal cells, intracellular trafficking of the fluorescent LTPG/LTPG1 and LTPG2 to the plasma membrane was prevented by a dominant-negative mutant form of ADP-ribosylation factor 1, ARF1(T31N). Taken together, these results indicate that LTPG2 is functionally overlapped with LTPG/LTPG1 during cuticular wax export or accumulation and LTPG/LTPG1 and LTPG2 are targeted to the plasma membrane via the vesicular trafficking system.

  16. Wetland plant waxes from Olduvai Gorge, Tanzania

    NASA Astrophysics Data System (ADS)

    Tamalavage, A.; Magill, C. R.; Barboni, D.; Ashley, G. M.; Freeman, K. H.

    2013-12-01

    Olduvai Gorge, northern Tanzania, exposes a Plio-Pleistocene sedimentary record that includes lake and lake-margin sediments and fossil remains of ancient plants and early humans. There are rich paleontological and cultural records at Olduvai Gorge that include thousands of vertebrate fossils and stone tools. Previous studies of plant biomarkers in lake sediments from Olduvai Gorge reveal repeated, abrupt changes in landscape dominance by woodland or grassland vegetation during the early Pleistocene, about 1.8 million years ago. However, the reconstruction of wetland vegetation in the past is limited by a dearth of published lipid signatures for modern wetland species. Here, we present lipid and isotopic data for leaf tissues from eight modern plants (i.e., sedge and Typha species) living in wetlands near Olduvai Gorge. Trends in values for molecular and leaf δ13C and average chain length (ACL) of n-alkanes in plant tissues are similar to values for underlying soils. Compound-specific δ13C values for n-alkanes C25 to C33 range between -36.4 to -23.1‰ for C3 plants and -22.3 to -19.5‰ for C4 plants. Fractionation factors between leaf and lipids, ɛ29 and ɛ33, fall within the range reported in the literature, but they differ more widely within a single plant. For C3 plants, the average difference between ɛ29 and ɛ33 is 6.5 ‰, and the difference between ɛ29 and ɛ33 for C4 plants is less than 2‰. Both plant types show a parabolic relationship between chain length and δ13C values, in which C29 typically has the most depleted value, and typically shift by 3-5‰ between alkane homologs. This pattern has not been previously reported, and could be unique for sedge lipids. If so, these data help constrain the application of plant wax biomarkers from sedges for paleo-vegetation reconstruction in paleoclimate studies and at archaeological sites.

  17. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  18. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    PubMed

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C 16 :0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments. © 2016 Scandinavian Plant Physiology Society.

  19. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  20. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  1. An organic record of terrestrial ecosystem collapse and recovery at the Triassic-Jurassic boundary in East Greenland

    NASA Astrophysics Data System (ADS)

    Williford, Kenneth H.; Grice, Kliti; Holman, Alexander; McElwain, Jennifer C.

    2014-02-01

    Terrestrial ecosystem collapse at the end of the Triassic Period coincided with a major mass extinction in the marine realm and has been linked to increasing atmospheric carbon dioxide, global warming, and fire activity. Extractable hydrocarbons in samples from the fluvial Triassic-Jurassic boundary section at Astartekløft, East Greenland were analyzed to investigate the molecular and isotopic organic record of biotic and environmental change during this event. Carbon isotopic compositions of individual plant wax lipids show a >4‰ negative excursion coinciding with peak extinction and a further decrease of 2‰ coinciding with peak pCO2 as estimated from the stomatal indices of fossil Gingkoales. An increase of ˜30‰ in the hydrogen isotopic compositions of the same plant wax lipids coincides with ecosystem collapse, suggesting that the biotic crisis was accompanied by strong hydrologic change. Concentrations of polycyclic aromatic hydrocarbons related to combustion also increase together with abrupt plant diversity loss and peak with fossil charcoal abundance and maximum plant turnover, supporting the role of fire in terrestrial extinctions. Anomalously high concentrations of a monoaromatic diterpenoid related to gymnosperm resin derivatives (and similar to dehydroabietane) occur uniquely in samples from the boundary bed, indicating that environmental stress factors leading to peak plant extinction stimulated increased resin production, and that plant resin derivatives may be effective biomarkers of terrestrial ecosystem stress.

  2. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent-Meclizine HCl.

    PubMed

    Qazi, Faaiza; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Nasiri, Muhammad Iqbal; Ahmed, Kamran; Ahmad, Mansoor

    2017-04-12

    Antiemetic agent Meclizine HCl, widely prescribed in vertigo, is available only in immediate release dosage forms. The approved therapeutic dose and shorter elimination half-life make Meclizine HCl a potential candidate to be formulated in extended release dosage form. This study was aimed to develop extended release Meclizine HCl pellets by extrusion spheronization using natural and synthetic lipids. Influence of lipid type, drug/lipid ratio and combinations of different lipids on drug release and sphericity of pellets were evaluated. Thirty two formulations were prepared with four different lipids, Glyceryl monostearate (Geleol ® ), Glyceryl palmitostearate (Precirol ® ), Glyceryl behenate (Compritol ® ) and Carnauba wax, utilized either alone or in combinations of drug/lipid ratio of 1:0.5-1:3. Dissolution studies were performed at variable pH and release kinetics were analyzed. Fourier transform infrared spectroscopy was conducted and no drug lipid interaction was found. Sphericity indicated by shape factor (e R ) varied with type and concentration of lipids: Geleol ® (e R  = 0.891-0.997), Precirol ® (e R  = 0.611-0.743), Compritol ® (e R  = 0.665-0.729) and Carnauba wax (e R  = 0.499-0.551). Highly spherical pellets were obtained with Geleol ® (Aspect ratio = 1.005-1.052) whereas irregularly shaped pellets were formed using Carnauba wax (Aspect ratio = 1.153-1.309). Drug release was effectively controlled by three different combinations of lipids: (i) Geleol ® and Compritol ® , (ii) Geleol ® and Carnauba wax and (iii) Geleol ® , Compritol ® and Carnauba wax. Scanning electron microscopy of Compritol ® pellets showed smooth surface with pores, whereas, irregular rough surface with hollow depressions was observed in Carnauba wax pellets. Energy dispersive spectroscopy indicated elemental composition of lipid matrix pellets. Kinetics of (i) Geleol ® and Compritol ® pellets, explained by Korsmeyer-Peppas (R 2  = 0.978-0.993) indicated non-Fickian diffusion (n = 0.519-0.597). Combinations of (ii) Geleol ® and Carnauba wax and (iii) Geleol ® , Compritol ® and Carnauba wax pellets followed Zero-order (R 2  = 0.991-0.995). Similarity test was performed using combination of Geleol ® and Compritol ® (i) as a reference. Matrices for the extended release of Meclizine HCl from extruded-spheronized pellets were successfully formed by using three lipids (Geleol ® , Compritol ® and Carnauba wax) in different combinations. The encapsulated pellets of Meclizine HCl can be effectively used for treatment of motion sickness, nausea and vertigo for extended period of time.

  3. Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Year-round observations at Gosan, Jeju Island

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Kawamura, Kimitaka; Kariya, Tadashi; Bikkina, Srinivas; Fu, Pingqing; Lee, Meehye

    2017-04-01

    Atmospheric transport of soil microorganisms and higher plant waxes in East Asia significantly influences the aerosol composition over the North Pacific. This study investigates the year-round atmospheric abundances of hydroxy fatty acids (FAs), tracers of soil microorganisms (β-isomers), and plant waxes (α- and ω-isomers), in total suspended particles collected at Gosan, Jeju Island, during April 2001 to March 2002. These hydroxy FAs showed a pronounced seasonality, higher concentrations in winter/spring and lower concentrations in summer/autumn, which are consistent with other tracers of soil microbes (trehalose), resuspended dust (nss-Ca2+), and stable carbon isotopic composition (δ13C) of total carbon. The molecular distributions of β-hydroxy FAs (predominance of C12 and C16 in winter/spring and summer/autumn, respectively) are consistent with those from a remote island (Chichijima) in the North Pacific and Asian dust standards (CJ-1 and CJ-2). This observation together with back trajectories over Gosan reveal that desert sources in China during winter and arid regions of Mongolia and Russian Far East during spring are the major contributors of soil microbes over the North Pacific. Predominance of ω-isomers (83%) over β-hydroxy FAs (16%) revealed a major contribution of terrestrial lipids from higher plant waxes over soil microbes in the East Asian outflow.

  4. Lipids and fatty acids in Calanus sinicus during oversummering in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Li, Chaolun; Liu, Mengtan; Jin, Xin

    2017-07-01

    Over-summering is a crucial period for Calanus sinicus in the southern Yellow Sea, where it is a key member of the zooplankton community. Lipids play an important role in copepod diapause, which is part of their over-summering strategy. We investigated how different fatty acids and lipid classes, including wax esters, changed during over-summering of C. sinicus during three cruises in June and August 2011 and November 2010, corresponding to the pre-, during and post-diapause periods, respectively. Large amounts of lipids were accumulated, mainly wax esters as previously found in C. finmarchicus during its diapause, and most of the storage lipids were used during over-summering. Wax ester polyunsaturated fatty acids (PUFAs) showed the most variation of the fatty acids (FAs), while the percentage composition of FAs in polar lipids was relatively stable. Selective use of wax ester PUFAs has already been shown to play important roles in the winter diapause of Calanus species in other regions, and our FA results show that this is the case for the Yellow Sea Cold Bottom Water (YSCBW) population that diapauses in summer.

  5. Production of n-alkyl lipids in living plants and implications for the geologic past

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented compared with deciduous ones. We apply our modern lipid abundance patterns and ɛlipid results to constrain the magnitude of the carbon isotope excursion (CIE) at the onset of the Paleocene-Eocene Thermal Maximum (55.8 Ma). When Bighorn Basin (WY) sediment n-alkanes are interpreted in context of floral changes and modern n-alkane production estimates for angiosperms and gymnosperms, the CIE is greater in magnitude (-5.6‰) by ˜1‰ compared to previous estimates that do not take into account n-alkane production.

  6. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  7. Is average chain length of plant lipids a potential proxy for vegetation, environment and climate changes?

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhang, W.; Hou, J.

    2015-04-01

    Average chain length (ACL) of leaf wax components preserved in lacustrine sediments and soil profiles has been widely adopted as a proxy indicator for past changes in vegetation, environment and climate during the late Quaternary. The fundamental assumption is that woody plants produce leaf waxes with shorter ACL values than non-woody plants. However, there is a lack of systematic survey of modern plants to justify the assumption. Here, we investigated various types of plants at two lakes, Blood Pond in the northeastern USA and Lake Ranwu on the southeastern Tibetan Plateau, and found that the ACL values were not significantly different between woody and non-woody plants. We also compiled the ACL values of modern plants in the literatures and performed a meta-analysis to determine whether a significant difference exists between woody and non-woody plants at single sites. The results showed that the ACL values of plants at 19 out of 26 sites did not show a significant difference between the two major types of plants. This suggests that extreme caution should be taken in using ACL as proxy for past changes in vegetation, environment and climate.

  8. Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2[C][W

    PubMed Central

    Sanjaya; Miller, Rachel; Durrett, Timothy P.; Kosma, Dylan K.; Lydic, Todd A.; Muthan, Bagyalakshmi; Koo, Abraham J.K.; Bukhman, Yury V.; Reid, Gavin E.; Howe, Gregg A.; Ohlrogge, John; Benning, Christoph

    2013-01-01

    Enhancement of acyl-CoA–dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves. PMID:23417035

  9. Purification of a Jojoba Embryo Fatty Acyl-Coenzyme A Reductase and Expression of Its cDNA in High Erucic Acid Rapeseed

    PubMed Central

    Metz, James G.; Pollard, Michael R.; Anderson, Lana; Hayes, Thomas R.; Lassner, Michael W.

    2000-01-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes. PMID:10712526

  10. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    PubMed

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  11. Molecular composition and surface properties of storage lipid particles in wax bean (Phaseolus vulgaris).

    PubMed

    Froese, Carol D; Nowack, Linda; Cholewa, Ewa; Thompson, John E

    2003-03-01

    Lipid particles have been isolated from seeds of wax bean (Phaseolus vulgaris), a species in which starch and protein rather than lipid are the major seed storage reserves. These lipid particles resemble oil bodies present in oil-rich seeds in that > 90% of their lipid is triacylglycerol. Moreover, this triacylglycerol is rapidly metabolized during seed germination indicating that it is a storage reserve. The phospholipid surfaces of oil bodies are known to be completely coated with oleosin which prevents their coalescence, particularly during desiccation of the developing seed. This would appear to be necessary since lipid is the major storage reserve in oil seeds, and there are very few alternate types of storage particles in the cytoplasm of oil seed endosperm to provide a buffer against coalescence of oil bodies by isolating them from one another. The present study indicates that the surfaces of lipid particles from wax bean are not completely coated with oleosin and feature regions of naked phospholipid. This finding has been interpreted as reflecting the fact that lipid particles in wax been seeds are less prone to coalescence than oil bodies of oil-rich seeds. This arises because the individual lipid particles are interspersed in situ among highly abundant protein bodies and starch grains and hence less likely to come in contact with one another, even during desiccation of the developing seed.

  12. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic - Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-03-01

    Hydrolysable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in the arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with changing climate. Here, we examine the molecular composition and source of hydrolysable compounds isolated from surface sediments derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α, ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolysable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in the arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in the arctic river sediments.

  13. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-08-01

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.

  14. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols or wax esters, and also potentially dictating major fatty acid and alcohol accumulation patterns within the more highly modified wax ester fraction. Comparisons of fatty acid profiles between triacylglycerol and wax ester components in copepods with that in available prey suggested that copepod triacylglycerols were more reflective of dietary fatty acids, while wax esters contained a higher proportion of modified or de novo synthesized forms. Sterols and phospholipid fatty acids were similar between species, confirming high levels of regulation within these components. Similarities between triacylglycerol fatty acid profiles of E. inermis collected in surface waters and at >200 m depth indicate little to no feeding during their ontogenetic migration to deeper, low-oxygen waters.

  15. Chemical and physical analyses of wax ester properties

    PubMed Central

    Patel, Sejal; Nelson, Dennis R.; Gibbs, Allen G.

    2001-01-01

    Wax esters are major constituents of the surface lipids in many terrestrial arthropods, but their study is complicated by their diversity. We developed a procedure for quantifying isomers in mixtures of straight-chain saturated and unsaturated wax esters having the same molecular weights, using single-ion monitoring of the total ion current data from gas chromatography-mass spectrometry. We examined the biological consequences of structural differences by measuring the melting temperatures, Tm, of >60 synthetic wax esters, containing 26–48 carbon atoms. Compounds containing saturated alcohol and acid moieties melted at 38–73°C. The main factor affecting Tm was the total chain length of the wax ester, but the placement of the ester bond also affected Tm. Insertion of a double bond into either the alcohol or acid moiety decreased Tm by ∼30°C. Simple mixtures of wax esters with n-alkanes melted several °C lower than predicted from the melting points of the component lipids. Our results indicate that the wax esters of primary alcohols that are most typically found on the cuticle of terrestrial arthropods occur in a solid state under physiological conditions, thereby conferring greater waterproofing. Wax esters of secondary alcohols, which occur on melanopline grasshoppers, melted >60°C below primary esters of the same molecular weight and reduced Tm of the total surface lipids to environmental values. PMID:15455064

  16. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.

    PubMed

    Liu, Qianchun; Wen, Changlong; Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin

    2014-01-01

    The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.

  17. RNA-Seq Reveals Leaf Cuticular Wax-Related Genes in Welsh Onion

    PubMed Central

    Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin

    2014-01-01

    The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion. PMID:25415343

  18. Altitude effect on leaf wax carbon isotopic composition in humid tropical forests

    NASA Astrophysics Data System (ADS)

    Wu, Mong Sin; Feakins, Sarah J.; Martin, Roberta E.; Shenkin, Alexander; Bentley, Lisa Patrick; Blonder, Benjamin; Salinas, Norma; Asner, Gregory P.; Malhi, Yadvinder

    2017-06-01

    The carbon isotopic composition of plant leaf wax biomarkers is commonly used to reconstruct paleoenvironmental conditions. Adding to the limited calibration information available for modern tropical forests, we analyzed plant leaf and leaf wax carbon isotopic compositions in forest canopy trees across a highly biodiverse, 3.3 km elevation gradient on the eastern flank of the Andes Mountains. We sampled the dominant tree species and assessed their relative abundance in each tree community. In total, 405 sunlit canopy leaves were sampled across 129 species and nine forest plots along the elevation profile for bulk leaf and leaf wax n-alkane (C27-C33) concentration and carbon isotopic analyses (δ13C); a subset (76 individuals, 29 species, five forest plots) were additionally analyzed for n-alkanoic acid (C22-C32) concentrations and δ13C. δ13C values display trends of +0.87 ± 0.16‰ km-1 (95% CI, r2 = 0.96, p < 0.01) for bulk leaves and +1.45 ± 0.33‰ km-1 (95% CI, r2 = 0.94, p < 0.01) for C29n-alkane, the dominant chain length. These carbon isotopic gradients are defined in multi-species sample sets and corroborated in a widespread genus and several families, suggesting the biochemical response to environment is robust to taxonomic turnover. We calculate fractionations and compare to adiabatic gradients, environmental variables, leaf wax n-alkane concentrations, and sun/shade position to assess factors influencing foliar chemical response. For the 4 km forested elevation range of the Andes, 4-6‰ higher δ13C values are expected for upland versus lowland C3 plant bulk leaves and their n-alkyl lipids, and we expect this pattern to be a systematic feature of very wet tropical montane environments. This elevation dependency of δ13C values should inform interpretations of sedimentary archives, as 13C-enriched values may derive from C4 grasses, petrogenic inputs or upland C3 plants. Finally, we outline the potential for leaf wax carbon isotopes to trace biomarker sourcing within catchments and for paleoaltimetry.

  19. Gene Expression and Metabolism in Tomato Fruit Surface Tissues1[C][W

    PubMed Central

    Mintz-Oron, Shira; Mandel, Tali; Rogachev, Ilana; Feldberg, Liron; Lotan, Ofra; Yativ, Merav; Wang, Zhonghua; Jetter, Reinhard; Venger, Ilya; Adato, Avital; Aharoni, Asaph

    2008-01-01

    The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology. PMID:18441227

  20. Levoglucosan and Lipid Class Compounds in the Asian Dusts and Marine Aerosols Collected During the ACE-Asia Campaign

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Simoneit, B. R.; Kawamura, K.; Mochida, M.; Lee, M.; Lee, G.; Huebert, B. J.

    2002-12-01

    In order to characterize organic aerosols in the Asian Pacific region, we collected filter samples at Gosan (formerly Kosan) and Sapporo sites as well as on mobile platforms (R.V. R.H. Brown and NCAR C-130) in the western North Pacific. The aerosol extracts were analyzed by capillary GC-MS employing a TMS derivatization technique. We identified over 100 organic compounds in the samples. They are categorized into seven different classes in terms of functional groups and sources. First, sugar-type compounds were detected in the aerosols, including levoglucosan, galactosan and mannosan, which are tracers for biomass burning. Second, a homologous series of fatty acids (C12-C30) and fatty alcohols (C12-C30) mainly from plant waxes and marine lipids were present. The third group includes dicarboxylic acids (>C3) and other atmospheric oxidation products. Although oxalic (C2) and malonic (C3) acids were not detected by this method, they are very abundant in the aerosols. The fourth group includes n-alkanes (C18-C35) which usually showed a strong odd/even predominance, suggesting an important contribution from higher plant waxes. The fifth includes polynuclear aromatic hydrocarbons (PAH) ranging from phenanthrene to coronene, all combustion products of petroleum and mainly coal. Saccharides were the sixth group and consisted mainly of a- and b- glucose, sucrose and its alditol, and minor amounts of xylitol, sorbitol and arabitol. These saccharides are tracers for soil dust. Phthalates were detected as the seventh class, with a dominance of dioctyl phthalate. The results suggest that organic aerosols originate primarily from (1) natural emissions of terrestrial plant wax and marine lipids, (2) smoke from biomass burning (mainly non-conifer fuels), (3) soil resuspension due to spring agricultural activity, (4) urban/industrial emissions from fossil fuel use (coal), and (5) secondary reaction products. These compounds are transported by the strong westerly winds and therefore secondary oxidation is also significant in Southeast Asia and the western North Pacific.

  1. Skin penetration and photoprotection of topical formulations containing benzophenone-3 solid lipid microparticles prepared by the solvent-free spray-congealing technique.

    PubMed

    Martins, Rodrigo Molina; Siqueira, Silvia; Fonseca, Maria José Vieira; Freitas, Luis Alexandre Pedro

    2014-01-01

    Solid-lipid microparticles loaded with high amounts of the sunscreen UV filter benzophenone-3 were prepared by spray congealing with the objective of decreasing its skin penetration and evaluate whether the sunscreen's photoprotection were impaired by the microencapsulation process. The microparticles were produced using the natural lipids carnauba wax or bees wax and three different concentrations of benzophenone-3 (30, 50 and 70%) using spray congealing technique. The microparticles presented properties suitable for topical application, such as spherical morphology, high encapsulation efficiency (95.53-102.2%), average particle sizes between 28.5 and 60.0 µm with polydispersivities from 1.2 to 2.5. In studies of in vitro skin penetration and preliminary stability, formulations of gel cream containing carnauba wax solid lipid microparticles and 70% benzophenone-3 when compared to the formulation added of bees wax solid-lipid microparticles containing 70% benzophenone-3, was stable considering the several parameters evaluated and were able to decrease the penetration of the UV filter into pig skin. Moreover, the formulations containing solid lipid microparticles with 70% benzophenone-3 increased the photoprotective capacity of benzophenone-3 under UV irradiation. The results show that spray-congealed microparticles are interesting solid forms to decrease the penetration solar filters in the skin without compromising their photoprotection.

  2. Effect of lipid types on physicochemical characteristics, stability and antioxidant activity of gamma-oryzanol-loaded lipid nanoparticles.

    PubMed

    Ruktanonchai, Uracha; Sakulkhu, Usawadee; Bejrapha, Piyawan; Opanasopit, Praneet; Bunyapraphatsara, Nuntavan; Junyaprasert, Varaporn; Puttipipatkhachorn, Satit

    2009-11-01

    In the present study gamma-oryzanol, an antioxidant, was incorporated into three different types of solid lipid: wax, triglycerides, a mixture of glycerides as solid lipid nanoparticles (SLN) and liquid lipid (Miglyol 812) as nanoemulsion (NE). Instability was found only from NE due to its significant increase in particle size and decreased entrapment efficiency (%EE) at a storage temperature of 45 degrees C. Solid lipid type in SLN plays an important role only on %EE, but not chemical stability. A decrease in crystallinity of SLN was observed with the incorporation of gamma-oryzanol and low recrystallization index were found with two glycerides-based SLN. The in vitro release studies demonstrated that a biphasic release pattern fitted well with the Higuchi model of SLN formulations. In comparison, nearly constant release was observed in NE comprised of similar composition. Wax-based SLN demonstrated the lowest cytotoxicity. NE, wax-based SLN and a mixture of glycerides-based SLN were considered to enhance the antioxidant activity of gamma-oryzanol.

  3. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with drier climates inhibiting C4 agriculture. Comparison with studies of modern vegetation and lake sediments indicate that these co-occurring isotopic shifts are not primarily due to differences in plant-wax δD between plant groups. We have developed a preliminary drought impact index based on differences between standardized residuals of plant-wax δD and δ13C records. This index suggests strong climate impacts on agriculture directly before and during the Terminal Classic period in both the southern and northern Maya lowlands. We also find evidence for smaller scale drought impacts on agriculture at the end of the Preclassic Period (ca. 1800 years BP) and at 2500 years BP. Differences in the timing of plant-wax δD and δ13C between the northern and southern Maya Lowlands suggest spatial differences in drought impacts on agriculture that could relate to different societal outcomes of the Terminal Classic between these two regions. Combined analyses of plant-wax δD and δ13C records can provide a potentially valuable indicator of drought impacts on ancient agriculture in regions with longstanding C4-plant agricultural traditions.

  4. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    PubMed

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  5. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    PubMed

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  6. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin

    PubMed Central

    Verdaguer, Roger; Soler, Marçal; Serra, Olga; Garrote, Aïda; Fernández, Sandra; Company-Arumí, Dolors; Anticó, Enriqueta; Molinas, Marisa; Figueras, Mercè

    2016-01-01

    Suberin and wax deposited in the cork (phellem) layer of the periderm form the lipophilic barrier that protects mature plant organs. Periderm lipids have been widely studied for their protective function with regards to dehydration and for how they respond to environmental stresses and wounding. However, despite advances in the biosynthetic pathways of suberin and associated wax, little is known about the regulation of their deposition. Here, we report on a potato NAC transcription factor gene, StNAC103, induced in the tuber phellem (skin). The StNAC103 promoter is active in cells undergoing suberization such as in the basal layer of the phellem, but also in the root apical meristem. Gene silencing in potato periderm correlates with an increase in the suberin and wax load, and specifically in alkanes, ω-hydroxyacids, diacids, ferulic acid, and primary alcohols. Concomitantly, silenced lines also showed up-regulation of key genes related to the biosynthesis and transport of suberin and wax in the tuber periderm. Taken together, our results suggest that StNAC103 has a role in the tight regulation of the formation of apoplastic barriers and is, to the best of our knowledge, the first candidate gene to be identified as being involved in the repression of suberin and wax deposition. PMID:27520790

  7. Undergraduate Collaborative Research: Distribution of Plant Wax Biomarkers in Miocene-age Sediments from the Bengal Fan (IODP Exp 354)

    NASA Astrophysics Data System (ADS)

    Cho, P. G.; Vidal, E.; Paek, J. H.; Borsook, A.; Lee, W.; Wu, M. S.; Ponton, C.; Galy, V.; Feakins, S. J.

    2017-12-01

    Our research aims to understand past climatic variability in the monsoon-influenced Ganges-Brahmaputra catchment as recorded by plant wax molecules exported and sequestered in the sediments of the Bengal Fan. Samples from the late Miocene were selected from cores retrieved by the IODP (International Ocean Discovery Program) Expedition 354 that recently drilled the central Bengal Fan along a transect at 8°N. Fan sedimentation includes sand, silt, and clay mostly derived from the Himalayan range via turbiditic transport within the Bengal fan. Sedimentation is highly episodic in the fan, but a transect of drilled sites provides a record of terrigenous sediment exported and buried over the last 20 million years. A team of researchers at the University of Southern California worked to collectively process 468 samples for compound specific biomarker identification and quantification. The samples derive from Site U1451 and U1455 ranging from 0 to 1097m depth (CSF-A). Total organic carbon ranges from 0.04-0.84%. To date, 300 samples have been solvent-extracted and prepared for plant wax analyses. Long chain n-alkanoic acids and n-alkanes were identified and quantified using GC-MS and GC-FID, respectively. In the samples quantified so far, we find ΣC24-34 n-alkanoic acid concentrations from 0.07-14.16 μg/g of dry sediment and ΣC25-35 n-alkanes from 0.04-4.61 μg/g. Concentrations of C30 n-alkanoic acid range from 0.01-1.92 μg/g of dry sediment and of C33 n-alkane from <0.01-0.65 μg/g. The molecular abundance distributions of both compound-classes were found to be diagnostic of a terrestrial higher plant source. Additionally, the molecular composition of the total lipid extract was analyzed at the Woods Hole Oceanographic Institution using a GC-TOF-MS. Overall, these extracts are dominated by plant-wax compounds and other diagnostic terrestrial molecules (e.g. plant terpenoids and sterols). The results from this effort contribute to a larger mission to reconstruct vegetation and climate change, over the past 20 million years in the core of the monsoon-influenced region, through compound-specific isotope analyses of the plant waxes extracted from these samples.

  8. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces.

    PubMed

    Razeq, Fakhria M; Kosma, Dylan K; Rowland, Owen; Molina, Isabel

    2014-10-01

    Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Waterproofing in Arabidopsis: Following phenolics and lipids in situ by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Hauser, Marie-Theres; Heredia, Antonio; Gierlinger, Notburga

    2016-02-01

    Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299 cm-1, 1600 cm-1 and 3400 cm-1 band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobising changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired. Keywords: Arabidopsis thaliana, lignin, cutin, wax, Raman, cuticle, waterproofing, secondary cell wall, trichomes

  10. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance.

    PubMed

    Xue, Dawei; Zhang, Xiaoqin; Lu, Xueli; Chen, Guang; Chen, Zhong-Hua

    2017-01-01

    Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  11. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Pagani, Mark; Eglinton, Timothy I.; Brenner, Mark; Hodell, David A.; Curtis, Jason H.; Ma, Keith F.; Breckenridge, Andy

    2014-09-01

    Sedimentary records of plant-wax hydrogen (δDwax) and carbon (δ13Cwax) stable isotopes are increasingly applied to infer past climate change. Compound-specific radiocarbon analyses, however, indicate that long time lags can occur between the synthesis of plant waxes and their subsequent deposition in marginal marine sediments. The influence of these time lags on interpretations of plant-wax stable isotope records is presently unconstrained, and it is unclear whether such time lags also affect lacustrine sediments. We present compound-specific radiocarbon (14Cwax) data for n-alkanoic acid plant waxes (n-C26 to n-C32) from: (1) a sediment core from Lake Chichancanab, Yucatan Peninsula, Mexico, (2) soils in the Lake Chichancanab catchment, and (3) surface sediments from three other lakes in southeastern Mexico and northern Guatemala. 14Cwax ages in the surface sediments are consistently older than modern, and may be negatively correlated with mean annual precipitation and positively correlated with lake catchment area. 14Cwax ages in soils surrounding Lake Chichancanab increase with soil depth, consistent with deep, subsoil horizons being the primary source of lacustrine aged plant waxes, which are likely delivered to lake sediments through subsurface transport. Plant waxes in the Lake Chichancanab core are 350-1200 years older than corresponding ages of bulk sediment deposition, determined by 14C dates on terrestrial plant macrofossils in the core. A δDwax time series is in closer agreement with other regional proxy hydroclimate records when a plant-wax 14C age model is applied, as opposed to the macrofossil-based core chronology. Inverse modeling of plant-wax age distribution parameters suggests that plant waxes in the Lake Chichancanab sediment core derive predominantly from millennial-age soil carbon pools that exhibit relatively little age variance (<200 years). Our findings demonstrate that high-temporal-resolution climate records inferred from stable isotope measures on plant waxes in lacustrine sediments may suffer from possible chronologic distortions as a consequence of long residence times of plant waxes in soils. They also underscore the importance of direct radiocarbon dating of these organic molecules.

  12. [Analysis of constituents of ester-type gum bases used as natural food additives].

    PubMed

    Tada, Atsuko; Masuda, Aino; Sugimoto, Naoki; Yamagata, Kazuo; Yamazaki, Takeshi; Tanamoto, Kenichi

    2007-12-01

    The differences in the constituents of ten ester-type gum bases used as natural food additives in Japan (urushi wax, carnauba wax, candelilla wax, rice bran wax, shellac wax, jojoba wax, bees wax, Japan wax, montan wax, and lanolin) were investigated. Several kinds of gum bases showed characteristic TLC patterns of lipids. In addition, compositions of fatty acid and alcohol moieties of esters in the gum bases were analyzed by GC/MS after methanolysis and hydrolysis, respectively. The results indicated that the varieties of fatty acids and alcohols and their compositions were characteristic for each gum base. These results will be useful for identification and discrimination of the ester-type gum bases.

  13. Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters.

    PubMed

    Nikolić, S; Keck, C M; Anselmi, C; Müller, R H

    2011-07-29

    A photoprotective formulation was developed with an increased sunprotection factor (SPF), compared to a conventional nanoemulsion, but having the same concentration of three molecular sunscreens, namely ethylhexyl triazone, bis-ethylhexyloxyphenol methoxyphenyl triazine, and ethylhexyl methoxycinnamate. The sunscreen mixture was incorporated into nanostructured lipid carriers (NLCs). The ability of nine different solid lipids to yield stable aqueous NLC suspensions was assessed. After the production by hot high pressure homogenization, the NLC were analyzed in terms of particle size, physical state, particle shape, ultraviolet absorbance and stability. The particle size for all NLC was around 200 nm after production. The NLC suspension with carnauba wax had superior UV absorbance, NLC from bees wax showed similar efficiency as the reference emulsion. The NLC formulations were incorporated into hydrogel formulations and the in vitro SPF was measured. This study demonstrated that approximately 45% higher SPF values could be obtained when the organic UV filters were incorporated into carnauba wax NLC, in comparison to the reference nanoemulsion and bees wax NLC. The data showed that the synergistic effect of NLC and incorporated sunscreens depends not only on the solid state of the lipid but also on its type. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants

    NASA Astrophysics Data System (ADS)

    Gorb, Elena V.; Hofmann, Philipp; Filippov, Alexander E.; Gorb, Stanislav N.

    2017-04-01

    Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.

  15. Self-association of plant wax components: a thermodynamic analysis.

    PubMed

    Casado, C G; Heredia, A

    2001-01-01

    Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.

  16. Statistical analysis of the photodegradation of imazethapyr on the surface of extracted soybean (Glycine max) and corn (Zea mays) epicuticular waxes.

    PubMed

    Anderson, Scott C; Christiansen, Amy; Peterson, Alexa; Beukelman, Logan; Nienow, Amanda M

    2016-10-12

    The photodegradation rate of the herbicide imazethapyr on epicuticular waxes of soybean and corn plants was investigated. Plant age, relative humidity, temperature, and number of light banks were varied during plant growth, analyzed statistically, and examined to determine if these factors had an effect on the photodegradation of imazethapyr. Through ultraviolet/visible (UV-Vis) and fluorescence spectroscopy, epicuticular wax characteristics of soybean and corn plants were explored, were used to confirm observations determined statistically, and explain correlations between the rate constants and the composition of the epicuticular waxes. Plant age, the interaction between plant age and light, and the quadratic dependence on temperature were all determined to have a significant impact on the photodegradation rate of imazethapyr on the epicuticular waxes of soybean plants. As for the photodegradation rate on the epicuticular waxes of corn plants, the number of light banks used during growing and temperature were significant factors.

  17. Aliphatic Chains of Esterified Lipids in Isolated Eyespots of Euglena gracilis var. bacillaris1

    PubMed Central

    Hilenski, Lula L.; Walne, Patricia L.; Snyder, Fred

    1976-01-01

    Isolated eyespot granules of Euglena gracilis Klebs var. bacillaris Pringsheim contained approximately 6% lipids (based on protein). Separation of the lipid extracts by thin layer chromatography revealed four major fractions: wax esters, triacylglycerols, free fatty acids, and phospholipids. Methanolysis of each fraction yielded between 27 and 29 different fatty acids ranging from 12:0 to 22:6. Acetates of the fatty alcohols of the wax fraction consisted of 11:0 to 18:0 carbon chains, with 14:0 being the major component; unsaturated alcohols were not detected. PMID:16659543

  18. Major Evolutionary Trends in Hydrogen Isotope Fractionation of Vascular Plant Leaf Waxes

    PubMed Central

    Gao, Li; Edwards, Erika J.; Zeng, Yongbo; Huang, Yongsong

    2014-01-01

    Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences. PMID:25402476

  19. Infrared and Raman spectroscopic features of plant cuticles: a review

    PubMed Central

    Heredia-Guerrero, José A.; Benítez, José J.; Domínguez, Eva; Bayer, Ilker S.; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio

    2014-01-01

    The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants. PMID:25009549

  20. Solid lipid dispersions: potential delivery system for functional ingredients in foods.

    PubMed

    Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S

    2013-07-01

    Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®

  1. Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition.

    PubMed

    Sadler, Christina; Schroll, Bettina; Zeisler, Viktoria; Waßmann, Friedrich; Franke, Rochus; Schreiber, Lukas

    2016-09-01

    Using (14)C-labeled epoxiconazole as a tracer, cuticular permeability of Arabidopsis thaliana leaves was quantitatively measured in order to compare different wax and cutin mutants (wax2, cut1, cer5, att1, bdg, shn3 and shn1) to the corresponding wild types (Col-0 and Ws). Mutants were characterized by decreases or increases in wax and/or cutin amounts. Permeances [ms(-1)] of Arabidopsis cuticles either increased in the mutants compared to wild type or were not affected. Thus, genetic changes in wax and cutin biosynthesis in some of the investigated Arabidopsis mutants obviously impaired the coordinated cutin and wax deposition at the outer leaf epidermal cell wall. As a consequence, barrier properties of cuticles were significantly decreased. However, increasing cutin and wax amounts by genetic modifications, did not automatically lead to improved cuticular barrier properties. As an alternative approach to the radioactive transport assay, changes in chlorophyll fluorescence were monitored after foliar application of metribuzine, an herbicide inhibiting electron transport in chloroplasts. Since both, half-times of photosynthesis inhibition as well as times of complete inhibition, in fact correlated with (14)C-epoxiconazole permeances, different rates of decline of photosynthetic yield between mutants and wild type must be a function of foliar uptake of the herbicide across the cuticle. Thus, monitoring changes in chlorophyll fluorescence, instead of conducting radioactive transport assays, represents an easy-to-handle and fast alternative evaluating cuticular barrier properties of different genotypes. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  3. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    PubMed

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy gametophyte or calyptra. Overall, wax composition and coverage on F. hygrometrica were similar to those reported for some vascular plant species, suggesting that the underlying biosynthetic processes in plants of both lineages were inherited from a common ancestor. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria.

    PubMed

    Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla; Evershed, Richard P

    2008-03-07

    A combination of gas chromatographic (GC) and mass spectrometric (MS) techniques, including direct exposure-MS (DE-MS), high-temperature GC-MS (HTGC-MS) and GC-MS of neutral and acid fractions, was employed to study the composition and recognise origin of the organic materials used to manufacture balm residues surviving in a series of glass unguentaria recovered from excavations of a Roman villa (Villa B) in the ancient town of Oplontis (Naples, Italy). DE-MS provided comprehensive 'fingerprint' information on the solvent soluble components of the contents of the unguentaria, while GC-MS analyses provided detailed molecular compositions, highlighting the presence of a wide range of compound classes including mid- and long-chain fatty acids, long-chain hydroxy-acids, n-alkanols, alkandiols, n-alkanes, long-chain monoesters, phytosterols and diterpenoid acids. Characteristic biomarkers and their distributions indicate the presence of beeswax, Pinaceae resin and another wax, as the main organic constituents of all of the preparations examined. In particular, the occurrence of phytosterols and long-chain monoesters, in which the acyl moiety was not exclusively palmitic acid, suggested the presence of a second waxy-lipid constituent of plant origin. The results are consistent with beeswax being used in the preparation of the cosmetics preserved in the unguentaria, while the other lipids are most likely the residue of some as yet unidentified plant extract(s), possibly deriving from the cuticular waxes of flowers and/or leaves. The composition of the extracts are consistent with the ancient practices of maceration and/or "enfleurage", in which lipid-based materials, such as beeswax, animal fat or vegetables oils, were used to extract aromatic and fragrant substances from resin, flowers, spices and scented wood, in order to produce unguents and balms.

  5. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    USDA-ARS?s Scientific Manuscript database

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  6. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3.

    PubMed

    Lacerda, S P; Cerize, N N P; Ré, M I

    2011-08-01

    Nanostructured lipid carriers (NLCs) are potential active delivery systems based on mixtures of solid lipids and liquid oil. In this paper, aqueous dispersions of NLCs were prepared by a hot high-pressure homogenization technique using carnauba wax as the solid lipid and isodecyl oleate as the liquid oil. The preparation and stability parameters of benzophenone-3-loaded NLCs have been investigated concerning particle size, zeta potential and loading capacity to encapsulate benzophenone-3, a molecular sunscreen. The current investigation illustrates the effect of the composition of the lipid mixture on the entrapment efficiency, in vitro release and stability of benzophenone-3-loaded in these NLCs. A loading capacity of approximately 5% of benzophenone-3 (m(BZ-3) /m(lipids) ) was characteristic of these systems. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  8. Absorption and distribution of orally administered jojoba wax in mice.

    PubMed

    Yaron, A; Samoiloff, V; Benzioni, A

    1982-03-01

    The liquid wax obtained from the seeds of the arid-land shrub jojoba (Simmondsia chinensis) is finding increasing use in skin treatment preparations. The fate of this wax upon reaching the digestive tract was studied. 14C-Labeled wax was administered intragastrically to mice, and the distribution of the label in the body was determined as a function of time. Most of the wax was excreted, but a small amount was absorbed, as was indicated by the distribution of label in the internal organs and the epididymal fat. The label was incorporated into the body lipids and was found to diminish with time.

  9. Variability of Plant Wax Concentrations and Carbon Isotope Values in Surface Lake Sediments Provide Clues into Their Transport and Deposition

    NASA Astrophysics Data System (ADS)

    Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.

    2017-12-01

    Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.

  10. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability.

    PubMed

    Xu, Xiaojing; Feng, Jinchao; Lü, Shiyou; Lohrey, Greg T; An, Huiling; Zhou, Yijun; Jenks, Matthew A

    2014-08-01

    The impact of water-deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, wax amounts on non-stressed Yukon leaves were 4.6-fold higher than on Shandong, due mainly to Yukon's eightfold higher wax fatty acids, especially the C22 and C24 acid homologues. Water deficit caused a 26.9% increase in total waxes on Shandong leaves, due mainly to increased C22 and C24 acids; and caused 10.2% more wax on Yukon, due mainly to an increase in wax alkanes. Total cutin monomers on non-stressed leaves of Yukon were 58.3% higher than on Shandong. Water deficit caused a 28.2% increase in total cutin monomers on Shandong, whereas total cutin monomers were not induced on Yukon. With or without stress, more abundant cuticle lipids were generally associated with lower water loss rates, lower chlorophyll efflux rates and an extended time before water deficit-induced wilting. In response to water deficit, Shandong showed elevated transcription of genes encoding elongase subunits, consistent with the higher stress induction of acids by Shandong. Yukon's higher induction of CER1 and CER3 transcripts may explain why alkanes increased most on Yukon after water deficit. Eutrema, with its diverse cuticle lipids and responsiveness, provides a valuable genetic resource for identifying new genes and alleles effecting cuticle metabolism, and lays groundwork for studies of the cuticle's role in extreme stress tolerance. Published 2013. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  11. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).

    PubMed

    Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A

    2013-10-01

    Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper. © 2013 Scandinavian Plant Physiology Society.

  12. Evolutionary conserved function of barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in providing wax signals for germination of powdery mildew fungi.

    PubMed

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-11-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. © 2014 American Society of Plant Biologists. All Rights Reserved.

  13. Release and diffusional modeling of metronidazole lipid matrices.

    PubMed

    Ozyazici, Mine; Gökçe, Evren H; Ertan, Gökhan

    2006-07-01

    In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.

  14. Structural features of reconstituted wheat wax films

    PubMed Central

    Pambou, Elias; Li, Zongyi; Campana, Mario; Hughes, Arwel; Clifton, Luke; Gutfreund, Philipp; Foundling, Jill

    2016-01-01

    Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid–liquid and solid–air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops. PMID:27466439

  15. Variations of Leaf Cuticular Waxes Among C3 and C4 Gramineae Herbs.

    PubMed

    He, Yuji; Gao, Jianhua; Guo, Na; Guo, Yanjun

    2016-11-01

    Modern C4 plants are commonly distributed in hot and dry environments whereas C3 plants predominate in cool and shade areas. At the outmost of plant surface, the deposition and chemical composition of cuticular waxes vary under different environmental conditions. However, whether such variation of cuticular wax is related to the distribution of C3 and C4 under different environmental conditions is still not clear. In this study, leaves of six C3 Gramineae herbs distributed in spring, Roegneria kamoji, Polypogon fugax, Poa annua, Avena fatua, Alopecurus aequalis, and Oplismenus undulatifolius, and four C4 and one C3 Gramineae herbs distributed in summer, Digitaria sanguinalis, Eleusine indica, Setaria viridis, S. plicata, and O. undulatifolius, were sampled and analyzed for cuticular wax. Plates were the main epicuticular wax morphology in both C3 and C4 plants except S. plicata. The plates melted in C4 plants but not in C3 plants. The total cuticular wax amounts in C4 plants were significantly lower than those in C3 plants, except for O. undulatifolius. Primary alcohols were the most abundant compounds in C3 plants, whereas n-alkanes were relatively the most abundant compounds in C4 plants. C 29 was the most abundant n-alkane in C3 plants except for O. undulatifolius, whereas the most abundant n-alkane was C 31 or C 33 in C4 plants. The average chain length (ACL) of n-alkanes was higher in C4 than in C3 plants, whereas the ACL of n-alkanoic acids was higher in C3 than C4 plants. The cluster analysis based on the distribution of n-alkanes clearly distinguished C3 and C4 plants into two groups, except for O. undulatifolius which was grouped with C4 plants. These results suggest that the variations of cuticular waxes among C3 and C4 Gramineae herbs are related to the distribution of C3 and C4 plants under different environmental conditions. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  16. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.

    PubMed

    Kumar, Venishetty Vinay; Chandrasekar, Durairaj; Ramakrishna, Sistla; Kishan, Veerabrahma; Rao, Yamsani Madhusudan; Diwan, Prakash Vamanrao

    2007-04-20

    Nitrendipine is an antihypertensive drug with poor oral bioavailability ranging from 10 to 20% due to the first pass metabolism. For improving the oral bioavailability of nitrendipine, nitrendipine loaded solid lipid nanoparticles have been developed using triglyceride (tripalmitin), monoglyceride (glyceryl monostearate) and wax (cetyl palmitate). Poloxamer 188 was used as surfactant. Hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperature above the melting point of lipid was used to prepare SLN dispersions. SLN were characterized for particle size, zeta potential, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in phosphate buffer of pH 6.8 using Franz diffusion cell. Pharmacokinetics of nitrendipine loaded solid lipid nanoparticles after intraduodenal administration to conscious male Wistar rats was studied. Bioavailability of nitrendipine was increased three- to four-fold after intraduodenal administration compared to that of nitrendipine suspension. The obtained results are indicative of solid lipid nanoparticles as carriers for improving the bioavailability of lipophilic drugs such as nitrendipine by minimizing first pass metabolism.

  17. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  18. 21 CFR 184.1976 - Candelilla wax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... obtained from the candelilla plant. It is a hard, yellowish-brown, opaque-to-translucent wax. Candelilla wax is prepared by immersing the plants in boiling water containing sulfuric acid and skimming off the... practice: in chewing gum as defined in § 170.3(n)(6) of this chapter and in hard candy as defined in § 170...

  19. 21 CFR 184.1976 - Candelilla wax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... obtained from the candelilla plant. It is a hard, yellowish-brown, opaque-to-translucent wax. Candelilla wax is prepared by immersing the plants in boiling water containing sulfuric acid and skimming off the... practice: in chewing gum as defined in § 170.3(n)(6) of this chapter and in hard candy as defined in § 170...

  20. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    PubMed

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  1. Cuticular wax coverage and composition differ among organs of Taraxacum officinale.

    PubMed

    Guo, Yanjun; Busta, Lucas; Jetter, Reinhard

    2017-06-01

    Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C 25 6,8- and 8,10-ketols as well as C 27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm 2 on peduncles to 37 μg/cm 2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C 26 for fatty acids, alcohols, and aldehydes, and C 29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C 30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  3. 21 CFR 184.1976 - Candelilla wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Candelilla wax. 184.1976 Section 184.1976 Food and... Substances Affirmed as GRAS § 184.1976 Candelilla wax. (a) Candelilla wax (CAS Reg. No. 8006-44-8) is obtained from the candelilla plant. It is a hard, yellowish-brown, opaque-to-translucent wax. Candelilla...

  4. 21 CFR 184.1976 - Candelilla wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Candelilla wax. 184.1976 Section 184.1976 Food and... Substances Affirmed as GRAS § 184.1976 Candelilla wax. (a) Candelilla wax (CAS Reg. No. 8006-44-8) is obtained from the candelilla plant. It is a hard, yellowish-brown, opaque-to-translucent wax. Candelilla...

  5. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development1[OPEN

    PubMed Central

    Shi, Jianxin; Rautengarten, Carsten; Yang, Li; Uzair, Muhammad; Zhu, Lu; Luo, Qian; An, Gynheung; Waßmann, Fritz

    2017-01-01

    Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall. PMID:27246096

  6. Defective Pollen Wall 2 ( DPW2 ) Encodes an Acyl Transferase Required for Rice Pollen Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dawei; Shi, Jianxin; Rautengarten, Carsten

    Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2more » anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using v-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:v-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.« less

  7. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    PubMed Central

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  8. Plant species evaluated for new crop potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acermore » ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.« less

  9. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848.

    PubMed

    Xia, Kuaifei; Ou, Xiaojin; Gao, Chunzhi; Tang, Huadan; Jia, Yongxia; Deng, Rufang; Xu, Xinlan; Zhang, Mingyong

    2015-12-01

    Cuticular wax forms a hydrophobic layer covering aerial plant organs and acting as a protective barrier against biotic and abiotic stresses. Compared with well-known wax biosynthetic pathway, molecular regulation of wax biosynthesis is less known. Here, we show that rice OsWS1, a member of the membrane-bound O-acyl transferase gene family, involved in wax biosynthesis and was regulated by an osa-miR1848. OsWS1-tagged green fluorescent protein localized to the endoplasmic reticulum (ER). Compared with wild-type rice, OsWS1 overexpression plants displayed a 3% increase in total wax, especially a 35% increase in very long-chain fatty acids, denser wax papillae around the stoma, more cuticular wax crystals formed on leaf and stem surfaces, pollen coats were thicker and more seedlings survived after water-deficit treatment. In contrast, OsWS1-RNAi and osa-miR1848 overexpression plants exhibited opposing changes. Gene expression analysis showed that overexpression of osa-miR1848 down-regulated OsWS1 transcripts; furthermore, expression profiles of OsWS1 and osa-miR1848 were inversely correlated in the leaf, panicle and stem, and upon water-deficit treatment. These results suggest that OsWS1 is regulated by osa-miR1848 and participates in cuticular wax formation. © 2015 John Wiley & Sons Ltd.

  10. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    NASA Astrophysics Data System (ADS)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  11. Precision phenotyping of epicuticular waxes associated with insect resistance

    USDA-ARS?s Scientific Manuscript database

    Accurate phenotyping is imperative for linkage mapping and association genetics. Amounts and types of epicuticular waxes on the leaf surface are important for plant-insect interactions. In onion, specific wax profiles are associated with resistance to the insect pest Thrips tabaci. Epicuticular wax ...

  12. Constraining Lipid Biomarker Paleoclimate Proxies in a Small Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Dion-Kirschner, H.; McFarlin, J. M.; Axford, Y.; Osburn, M. R.

    2017-12-01

    Arctic amplification of climate change renders high-latitude environments unusually sensitive to changes in climatic conditions (Serreze and Barry, 2011). Lipid biomarkers, and their hydrogen and carbon isotopic compositions, can yield valuable paleoclimatic and paleoecological information. However, many variables affect the production and preservation of lipids and their constituent isotopes, including precipitation, plant growth conditions, biosynthesis mechanisms, and sediment depositional processes (Sachse et al., 2012). These variables are particularly poorly constrained for high-latitude environments, where trees are sparse or not present, and plants grow under continuous summer light and cool temperatures during a short growing season. Here we present a source-to-sink study of a single watershed from the Kangerlussuaq region of southwest Greenland. Our analytes from in and around `Little Sugarloaf Lake' (LSL) include terrestrial and aquatic plants, plankton, modern lake water, surface sediments, and a sediment core. This diverse sample set allows us to fulfill three goals: 1) We evaluate the production of lipids and isotopic signatures in the modern watershed in comparison to modern climate. Our data exhibit genus-level trends in leaf wax production and isotopic composition, and help clarify the difference between terrestrial and aquatic signals. 2) We evaluate the surface sediment of LSL to determine how lipid biomarkers from the watershed are incorporated into sediments. We constrain the relative contributions of terrestrial plants, aquatic plants, and other aquatic organisms to the sediment in this watershed. 3) We apply this modern source-to-sink calibration to the analysis of a 65 cm sediment core record. Our core is organic-rich, and relatively high deposition rates allow us to reconstruct paleoenvironmental changes with high resolution. Our work will help determine the veracity of these common paleoclimate proxies, specifically for research in southwest Greenland, and will enable an accurate, high-resolution watershed-level reconstruction of Holocene conditions. Serreze, M. and Barry, R. (2011). Global and Planetary Change, 77, 85-96. Sachse, D., et al. (2012). Annual Review of Earth and Planetary Sciences, 40, 221-249.

  13. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  14. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  15. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  16. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands

    PubMed Central

    Douglas, Peter M. J.; Pagani, Mark; Canuto, Marcello A.; Brenner, Mark; Hodell, David A.; Eglinton, Timothy I.; Curtis, Jason H.

    2015-01-01

    Paleoclimate records indicate a series of severe droughts was associated with societal collapse of the Classic Maya during the Terminal Classic period (∼800–950 C.E.). Evidence for drought largely derives from the drier, less populated northern Maya Lowlands but does not explain more pronounced and earlier societal disruption in the relatively humid southern Maya Lowlands. Here we apply hydrogen and carbon isotope compositions of plant wax lipids in two lake sediment cores to assess changes in water availability and land use in both the northern and southern Maya lowlands. We show that relatively more intense drying occurred in the southern lowlands than in the northern lowlands during the Terminal Classic period, consistent with earlier and more persistent societal decline in the south. Our results also indicate a period of substantial drying in the southern Maya Lowlands from ∼200 C.E. to 500 C.E., during the Terminal Preclassic and Early Classic periods. Plant wax carbon isotope records indicate a decline in C4 plants in both lake catchments during the Early Classic period, interpreted to reflect a shift from extensive agriculture to intensive, water-conservative maize cultivation that was motivated by a drying climate. Our results imply that agricultural adaptations developed in response to earlier droughts were initially successful, but failed under the more severe droughts of the Terminal Classic period. PMID:25902508

  17. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

    PubMed Central

    Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097

  18. Morphology and networks of sunflower wax crystals in organogel

    USDA-ARS?s Scientific Manuscript database

    Plant waxes are considered as promising alternatives to unhealthy solid fats such as trans fats and saturated fats in structured food products including margarines and spreads. Sunflower wax is of a great interest due to its strong gelling ability. Morphology of sunflower wax crystals formed in soyb...

  19. Comparable hydrogen isotopic fractionation of plant leaf wax n-alkanoic acids in arid and humid subtropical ecosystems

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zheng, Mei; Fraser, Matthew; Huang, Yongsong

    2014-02-01

    Leaf wax hydrogen isotope proxies have been widely used to reconstruct past hydrological changes. However, published reconstructions have given little consideration for the potentially variable hydrogen isotopic fractionation relative to precipitation (ɛwax-p) under different climate and environmental settings. Chief among various potential factors controlling fractionation is relative humidity, which is known to strongly affect oxygen isotopic ratios of plant cellulose, but its effect on hydrogen isotopic fractionation of leaf waxes is still ambiguous. Analyses of lake surface sediments and individual modern plants have provided valuable information on the variability of ɛwax-p, but both approaches have significant limitations. Here, we present an alternative method to obtain the integrated, time-resolved ecosystem-level ɛwax-p values, by analyzing modern aerosol samples collected weekly from arid (Arizona lowlands) and humid subtropical (Atlanta, Georgia) environments during the main growth season. Because aerosol samples mainly reflect regional leaf wax resources, the extreme contrast in the hydroclimate and associated vegetation assemblages between our study sites allows us to rigorously assess the impact of relative humidity and associated vegetation assemblages on leaf wax hydrogen isotopic fractionation. We show there is only minor difference (mostly <10‰) in the mean ɛwax-p values in the two end-member environments. One possible explanation is that the positive isotopic effects of low relative humidity are offset by progressive replacement of trees with grasses that have a more negative apparent fractionation. Our results represent an important step toward quantitative interpretation of leaf wax hydrogen isotopic records.

  20. Plant phenological water cycle and implications for using δ2H-alkanes as paleo proxy in a semi-arid tropical climate

    NASA Astrophysics Data System (ADS)

    De Wispelaere, Lien; Bodé, Samuel; Hervé-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2017-04-01

    Lake Challa is a steep-sided crater lake situated in equatorial East Africa, a tropical semi-arid area with bimodal rainfall pattern. The δ2H and δ18O of precipitation, lake water, groundwater, plant xylem water and plant leaf water were measured across different plant species, seasons and plant habitats in the vicinity of Lake Challa, as well as the hydrogen-isotopic composition of leaf wax n-alkanes (δ2Hwax). Long chain n-alkanes of terrestrial plant leaf waxes provide information on plant-water relations and have been widely used as proxy in paleoclimate and paleovegetation reconstructions. In our study, we found that plants rely mostly on water from the 'short rains' falling from October till December (northeast monsoon), as these recharge the soil pores after the long dry season. This plant-available, static, water pool is only slightly replenished by the 'long rains' falling from February to May (southeast monsoon), in agreement with the 'two water world' hypothesis according to which plants rely on a static water pool separated from a more mobile water pool that recharges the groundwater. Spatial variability in water resource use exists in the study region with plants at the lakeshore relying on water of different isotopic composition, i.e isotopically evaporated lake water at the lakeshore vs. non- or slightly evaporated precipitation in the savannah and on the crater rim. This spatial resource partitioning is recorded by elevated δ2H values in the leaf wax lipids of plants at the lakeshore. The distribution of n-alkanes in the fresh leaves shows a unimodal distribution pattern reaching a maximum at n-C29 and n-C31 for both shrubs and trees, while C4 grasses are dominated by n-C31. However, the relative abundance of n-C31 was higher at the lakeshore compared to the savannah and crater rim (when grasses were not included). According to our results, plant species and their associated leaf phenology are the primary factors influencing the enrichment in deuterium from xylem water to leaf water, with deciduous species giving the highest enrichment; while growth form and season have negligible effects. Growth form exerted a strong influence on δ2Hwax, with more depleted values for C4 grasses compared to shrubs and trees. However, the variability on δ2Hwax within the group of woody species remains large (range of 100 ‰). The variability in δ2Hwax with season was plant-specific and ranged from no effect of seasonality to total dependency of seasonality. Our observations have important implications for the interpretation of δ2H of plant leaf wax n-alkanes from paleohydrological records in tropical East Africa, given that i) the water used by plants reflects only a small portion of the annual temporal variability in isotopic composition of precipitation and that ii) large variability on apparent isotopic fractionation is observed, though yet not fully understood.

  1. Cycloate, an inhibitor of fatty acid elongase, modulates the metabolism of very-long-side-chain alkylresorcinols in rye seedlings.

    PubMed

    Magnucka, Elzbieta G; Suzuki, Yoshikatsu; Pietr, Stanislaw J; Kozubek, Arkadiusz; Zarnowski, Robert

    2009-10-01

    Cycloate inhibits the biosynthesis of very-long-chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 degrees C; very-long-side-chain compounds were less abundant, whereas both short-chain saturated and unsaturated homologues were generally accumulated. No cycloate-related effects caused by homologue pattern modifications were observed at elevated temperature. This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very-long-side-chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate-driven accumulation of 5-n-alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright 2009 Society of Chemical Industry.

  2. Chemical Basis of Host Plant Selection by Eastern Spruce Budworm, Choristoneura fumiferana Clem. (Lepidoptera:Tortricidae)

    Treesearch

    P.J. Albert; S. Parisella

    1983-01-01

    The epicuticular waxes from four host plants of the eastern spruce budworm are examined with respect to their influence on the feeding behavior of the sixth-instar larva. Both current and one-year old needles contain stimulating chemicals in their epicuticular wax layer. Some pure fatty acids known to occur in balsam fir wax are stimulatory, and may serve to enhance...

  3. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  4. 21 CFR 184.1976 - Candelilla wax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... It is a hard, yellowish-brown, opaque-to-translucent wax. Candelilla wax is prepared by immersing the plants in boiling water containing sulfuric acid and skimming off the wax that rises to the surface. It... this chapter and in hard candy as defined in § 170.3(n)(25) of this chapter. (d) Prior sanctions for...

  5. Two bifunctional enzymes from the marine protist Thraustochytrium roseum: biochemical characterization of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity catalyzing wax ester and triacylglycerol synthesis.

    PubMed

    Zhang, Nannan; Mao, Zejing; Luo, Ling; Wan, Xia; Huang, Fenghong; Gong, Yangmin

    2017-01-01

    Triacylglycerols (TAGs) and wax esters (WEs) are important neutral lipids which serve as energy reservoir in some plants and microorganisms. In recent years, these biologically produced neutral lipids have been regarded as potential alternative energy sources for biofuel production because of the increased interest on developing renewable and environmentally benign alternatives for fossil fuels. In bacteria, the final step in TAG and WE biosynthetic pathway is catalyzed by wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT). This bifunctional WS/DGAT enzyme is also a key enzyme in biotechnological production of liquid WE via engineering of plants and microorganisms. To date, knowledge about this class of biologically and biotechnologically important enzymes is mainly from biochemical characterization of WS/DGATs from Arabidopsis, jojoba and some bacteria that can synthesize both TAGs and WEs intracellularly, whereas little is known about WS/DGATs from eukaryotic microorganisms. Here, we report the identification and characterization of two bifunctional WS/DGAT enzymes (designated TrWSD4 and TrWSD5) from the marine protist Thraustochytrium roseum . Both TrWSD4 and TrWSD5 comprise a WS-like acyl-CoA acyltransferase domain and the recombinant proteins purified from Escherichia coli Rosetta (DE3) have substantial WS and lower DGAT activity. They exhibit WS activity towards various-chain-length saturated and polyunsaturated acyl-CoAs and fatty alcohols ranging from C 10 to C 18 . TrWSD4 displays WS activity with the lowest K m value of 0.14 μM and the highest k cat / K m value of 1.46 × 10 5  M -1  s -1 for lauroyl-CoA (C 12:0 ) in the presence of 100 μM hexadecanol, while TrWSD5 exhibits WS activity with the lowest K m value of 0.96 μM and the highest k cat / K m value of 9.83 × 10 4  M -1  s -1 for decanoyl-CoA (C 10:0 ) under the same reaction condition. Both WS/DGAT enzymes have the highest WS activity at 37 and 47 °C, and WS activity was greatly decreased when temperature exceeds 47 °C. TrWSD4 and TrWSD5 are insensitive to ionic strength and reduced WS activity was observed when salt concentration exceeded 800 mM. The potential of T. roseum WS/DGATs to establish novel process for biotechnological production of WEs was demonstrated by heterologous expression in recombinant yeast. Expression of either TrWSD4 or TrWSD5 in Saccharomyces cerevisiae quadruple mutant H1246, which is devoid of storage lipids, resulted in the accumulation of WEs, but not any detectable TAGs, indicating a predominant WS activity in yeast. This study demonstrates both in vitro WS and DGAT activity of two T. roseum WS/DGATs, which were characterized as unspecific acyltransferases accepting a broad range of acyl-CoAs and fatty alcohols as substrates for WS activity but displaying substrate preference for medium-chain acyl-CoAs. In vivo characterization shows that these two WS/DGATs predominantly function as wax synthase and presents the feasibility for production of WEs by heterologous hosts.

  6. Phototransformation of the herbicide sulcotrione on maize cuticular wax.

    PubMed

    Ter Halle, Alexandra; Drncova, Daniela; Richard, Claire

    2006-05-01

    Vegetation plays a key role in environmental cycling and the fate of many organic pollutants. This is especially the case for pesticides because plant leaves are their first reaction environment after application. It is commonly accepted that photochemical reactions of pollutants on plants predominantly take place in the cuticular wax coating of the leaves. Thus, we used films made of either cuticular wax extracted from maize or carnauba gray wax as a model support. Under simulated sunlight irradiation, sulcotrione (a new class of triketone herbicides) sorbed on cuticular wax films was photolyzed and mainly underwent an intramolecular cyclization. The photoproduct is a chromone derivative which was isolated and fully characterized. It is reported for the first time as a sulcotrione degradation product. The photoreactivity of formulated sulcotrione at the surface of cuticular waxes was investigated too. It photodegraded more rapidly than nonformulated sulcotrione. This study also shows that the rate of sulcotrione photolysis was much faster than the rate of penetration into the wax; photolysis should be, thus, a relevant process in real conditions.

  7. Some conifer clades contribute substantial amounts of leaf waxes to sedimentary archives

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Wing, S. L.; Leslie, A. B.; Freeman, K. H.

    2014-12-01

    Leaf waxes (i.e. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle or plant ecophysiology. Previous studies indicated that conifer n-alkane concentrations are lower than in angiosperms and that 13C fractionation during n-alkane synthesis (ɛlipid) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 44 conifer species from the University of California Botanical Garden at Berkeley, capturing all extant conifer families and most extant genera. By collecting all specimens at a common site we attempted to minimize the confounding effects of climate, allowing phylogenetic patterns in the δ13C of leaf waxes to be expressed more strongly. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially the Araucariaceae (Norfolk Island pines), Podocarpaceae (common in the Southern Hemisphere), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL reinforces that it is strongly influenced by factors other than climate. An analysis of ɛlipid indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). We are currently exploring potential mechanisms to explain the ɛlipid patterns. These results have important implications for interpreting n-alkane δ13C values in sedimentary archives, especially outside of North America.

  8. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    PubMed

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of swelling and erosion within this matrix at lower fat-wax level which is also supported by release exponent values and Fickian fraction release against time profile of this agent. The results generated in this study showed that proper selection of these hydrophobic materials based on their physico-chemical properties is important in designing wax matrix tablets with desired dissolution profile.

  9. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    PubMed

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  10. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    PubMed Central

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233

  11. Cloning and Characterization of GLOSSY1, a Maize Gene Involved in Cuticle Membrane and Wax Production1[w

    PubMed Central

    Sturaro, Monica; Hartings, Hans; Schmelzer, Elmon; Velasco, Riccardo; Salamini, Francesco; Motto, Mario

    2005-01-01

    The cuticle covering the aerial organs of land plants plays a protective role against several biotic and abiotic stresses and, in addition, participates in a variety of plant-insect interactions. Here, we describe the molecular cloning and characterization of the maize (Zea mays) GLOSSY1 (GL1) gene, a component of the pathway leading to cuticular wax biosynthesis in seedling leaves. The genomic and cDNA sequences we isolated differ significantly in length and in most of the coding region from those previously identified. The predicted GL1 protein includes three histidine-rich domains, the landmark of a family of membrane-bound desaturases/hydroxylases, including fatty acid-modifying enzymes. GL1 expression is not restricted to the juvenile developmental stage of the maize plant, pointing to a broader function of the gene product than anticipated on the basis of the mutant phenotype. Indeed, in addition to affecting cuticular wax biosynthesis, gl1 mutations have a pleiotropic effect on epidermis development, altering trichome size and impairing cutin structure. Of the many wax biosynthetic genes identified so far, only a few from Arabidopsis (Arabidopsis thaliana) were found to be essential for normal cutin formation. Among these is WAX2, which shares 62% identity with GL1 at the protein level. In wax2-defective plants, cutin alterations induce postgenital organ fusion. This trait is not displayed by gl1 mutants, suggesting a different role of the maize and Arabidopsis cuticle in plant development. PMID:15849306

  12. Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) Increases Leaf Surface Wax Content and Reduces Post-harvest Water Loss

    PubMed Central

    Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.

    2017-01-01

    Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085

  13. Effects of cuticular wax on the postharvest quality of blueberry fruit.

    PubMed

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Zheng, Yonghua

    2018-01-15

    The blueberry fruit has a light-blue appearance because its blue-black skin is covered with a waxy bloom. This layer is easily damaged or removed during fruit harvesting and postharvest handling. We investigated the effects of wax removal on the postharvest quality of blueberry fruit and their possible mechanisms. The removal of natural wax on the fruit was found to accelerate the postharvest water loss and decay, reduce the sensory and nutritional qualities, and shorten the shelf-life. Wax removal decreased the activities of antioxidant enzymes and contents of antioxidants, and accelerated accumulation of ROS and lipid peroxidation, especially at the later period of storage. Moreover, the organellar membrane structure was disrupted in fruit with wax removed. These results indicate that cuticular wax plays an important role in maintaining the postharvest quality and delaying fruit senescence. The results should improve our understanding for better preservation of postharvest quality of blueberry fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of Limited Proteolysis and Mutagenesis To Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase Activity

    PubMed Central

    Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando

    2014-01-01

    Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496

  15. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  16. Wax layers on Cosmos bipinnatus petals contribute unequally to total petal water resistance.

    PubMed

    Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard

    2015-01-01

    Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C(22) and C(24) fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 10(4) and 1.5 × 10(4) s m(-1) for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Preparation of Flax Shive and Processing Waste for Use in Biocomposites

    USDA-ARS?s Scientific Manuscript database

    Composite materials were prepared by combining waste fractions generated during flax fiber cleaning operations with a biobased polymer matrix. The waste fractions contained fragments of cuticle and the associated surface lipids. These lipids included long chain waxes and fatty alcohols that are cons...

  18. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis.

    PubMed

    Lam, Patricia; Zhao, Lifang; McFarlane, Heather E; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S; Kunst, Ljerka

    2012-08-01

    The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).

  19. Stomatal Density Influences Leaf Water and Leaf Wax D/H Values in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Lee, H.; Feakins, S. J.; Sternberg, L. O.

    2014-12-01

    The hydrogen isotopic composition (δD) of plant leaf wax is a powerful tool to study the hydrology of past and present environments. The δD value of leaf waxes is known to primarily reflect the δD value of source water, modified by biological fractionations commonly summarized as the 'net or apparent' fractionation. It remains a challenge, however, to quantitatively relate the isotopic composition of the end product (wax) back to that of the precursor (water) because multiple isotope effects contributing to the net fractionation are not yet well understood. Transgenic variants have heretofore unexplored potential to isolate individual isotope effects. Here we report the first hydrogen isotopic measurements from transgenic Arabidopsis thaliana plants with calculations of leaf water enrichment, net and biosynthetic fractionation values from measured δD of plant waters and leaf wax n-alkanes. We employed transgenic Arabidopsis leaves, engineered to have different stomatal density, by differential expression of the stomatal growth hormone stomagen. Comparison of variants and wild types allow us to isolate the effects of stomatal density on leaf water and the net fractionation expressed by leaf wax biomarkers. Results show that transgenic leaves with denser pores have more enriched leaf water and leaf wax δD values than wild type and even more so than transgenic leaves with sparse stomata (difference of 10 ‰). Our findings that stomatal density controls leaf water and leaf wax δD values adds insights into the cause of variations in net fractionations between species, as well as suggesting that geological variations in stomatal density may modulate the sedimentary leaf wax δD record. In nature, stomatal density varies between species and environments, and all other factors being equal, this will contribute to variations in fractionations observed. Over geological history, lower stomatal densities occur at times of elevated pCO2; our findings predict reduced leaf water isotopic enrichment and larger net fractionations during these greenhouse conditions. Future work involving transgenic plants holds considerable potential to isolate additional factors which may influence the net fractionation between source water and leaf waxes adding to our fundamental understanding of this proxy.

  20. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from growing leaves in Tokyo, which confirms the usefulness of the δD of long chain n-alkanes as a tracer for the source region of terrestrial plant waxes in atmospheric aerosols.

  1. Opportunities and challenges for the use of molecular proxies in environmental reconstructions

    NASA Astrophysics Data System (ADS)

    Jansen, Boris

    2017-04-01

    The last decades have seen a dramatic increase in the use of organic matter from soils and sediments as molecular proxy for reconstructing past dynamics of vegetation and climate. Applications range from the use of changes in preserved leaf wax lipid patterns or d13C signatures of organic matter to reconstruct shifts in vegetation composition, to the use of changes in d2H patterns as a past humidity / precipitation proxy. Particularly exciting in this respect are recent developments with respect to combining various molecular proxies. For instance by compound specific d13C and d2H analysis of selected lipids that themselves are used as vegetation proxy. However, as with all scientific development, all that glitters is not gold. Together with great promise, successful application of molecular proxies to reconstruct past environmental change also comes with several important challenges. For instance, to what extent are plant lipid patterns used for vegetation reconstruction affected by genotypic plasticity of the producing plant species? How might the heterogeneity of environmental and biochemical processes on/in different plant species interfere with the successful use of d2H and d13C patterns? What is the influence of differences in input routes into a soil or sedimentary archive, e.g. aboveground vs. belowground, on the desired reconstruction? In this presentation I will discuss both the opportunities and the challenges of the use of organic matter as molecular proxy in environmental reconstructions, using several recent examples of research from our group.

  2. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  3. Plant surfaces with cuticular folds are slippery for beetles

    PubMed Central

    Prüm, Bettina; Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Plant surfaces covered with three-dimensional (3D) waxes are known to strongly reduce insect adhesion, leading to slippery surfaces. Besides 3D epicuticular waxes, cuticular folds are a common microstructure found on plant surfaces, which have not been quantitatively investigated with regard to their influence on insect adhesion. We performed traction experiments with Colorado potato beetles on five plant surfaces with cuticular folds of different magnitude. For comparison, we also tested (i) smooth plant surfaces and (ii) plant surfaces possessing 3D epicuticular waxes. Traction forces on surfaces with medium cuticular folds, of about 0.5 µm in both height and thickness and a spacing of 0.5–1.5 µm, were reduced by an average of 88 per cent in comparison to smooth plant surfaces. Traction forces were reduced by the same order of magnitude as on plant surfaces covered with 3D epicuticular waxes. For surface characterization, we performed static contact angle measurements, which proved a strong effect of cuticular folds also on surface wettability. Surfaces possessing cuticular folds of greater magnitude showed higher contact angles up to superhydrophobicity. We hypothesize that cuticular folds reduce insect adhesion mainly due to a critical roughness, reducing the real contact area between the surface and the insect's adhesive devices. PMID:21642366

  4. Organogel as a replacement of saturated fat in food products

    USDA-ARS?s Scientific Manuscript database

    Organogels of edible oil have drawn a great interest as promising alternatives to saturated fats and trans fats. Plant waxes are recognized as promising organogelators, which can provide organogels from healthful vegetable oils at low concentrations. Plant waxes are obtained as by-products during th...

  5. Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants.

    PubMed

    Bauer, Ulrike; Clemente, C J; Renner, T; Federle, W

    2012-01-01

    Carnivorous plants of the genus Nepenthes have evolved a striking diversity of pitcher traps that rely on specialized slippery surfaces for prey capture. With a comparative study of trap morphology, we show that Nepenthes pitcher plants have evolved specific adaptations for the use of either one of two distinct trapping mechanisms: slippery wax crystals on the inner pitcher wall and 'insect aquaplaning' on the wet upper rim (peristome). Species without wax crystals had wider peristomes with a longer inward slope. Ancestral state reconstructions identified wax crystal layers and narrow, symmetrical peristomes as ancestral, indicating that wax crystals have been reduced or lost multiple times independently. Our results complement recent reports of nutrient source specializations in Nepenthes and suggest that these specializations may have driven speciation and rapid diversification in this genus. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  6. Gelling ability and crystal morphology of sunflower wax in soybean oil

    USDA-ARS?s Scientific Manuscript database

    Plant waxes can effectively form organogels with vegetable oils and these organogels have drawn considerable interests as alternatives to solid fats containing trans fats and saturated fats in margarines and spreads. Among them sunflower wax showed the most pronounced gelling ability. In an attempt ...

  7. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase.

    PubMed

    Li, Yonghua; Beisson, Fred; Ohlrogge, John; Pollard, Mike

    2007-07-01

    The interface between plants and the environment is provided for aerial organs by epicuticular waxes that have been extensively studied. By contrast, little is known about the nature, biosynthesis, and role of waxes at the root-rhizosphere interface. Waxes isolated by rapid immersion of Arabidopsis (Arabidopsis thaliana) roots in organic solvents were rich in saturated C18-C22 alkyl esters of p-hydroxycinnamic acids, but also contained significant amounts of both alpha- and beta-isomers of monoacylglycerols with C22 and C24 saturated acyl groups and the corresponding free fatty acids. Production of these compounds in root waxes was positively correlated to the expression of sn-glycerol-3-P acyltransferase5 (GPAT5), a gene encoding an acyltransferase previously shown to be involved in aliphatic suberin synthesis. This suggests a direct metabolic relationship between suberin and some root waxes. Furthermore, when ectopically expressed in Arabidopsis, GPAT5 produced very-long-chain saturated monoacylglycerols and free fatty acids as novel components of cuticular waxes. The crystal morphology of stem waxes was altered and the load of total stem wax compounds was doubled, although the major components typical of the waxes found on wild-type plants decreased. These results strongly suggest that GPAT5 functions in vivo as an acyltransferase to a glycerol-containing acceptor and has access to the same pool of acyl intermediates and/or may be targeted to the same membrane domain as that of wax synthesis in aerial organs.

  8. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation.

    PubMed

    Haslam, Tegan M; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A; Kunst, Ljerka; Joubès, Jérôme

    2015-03-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Dictyostelium discoideum Dgat2 Can Substitute for the Essential Function of Dgat1 in Triglyceride Production but Not in Ether Lipid Synthesis

    PubMed Central

    Du, Xiaoli; Herrfurth, Cornelia; Gottlieb, Thomas; Kawelke, Steffen; Feussner, Kristin; Rühling, Harald; Feussner, Ivo

    2014-01-01

    Triacylglycerol (TAG), the common energy storage molecule, is formed from diacylglycerol and a coenzyme A-activated fatty acid by the action of an acyl coenzyme A:diacylglycerol acyltransferase (DGAT). In order to conduct this step, most organisms rely on more than one enzyme. The two main candidates in Dictyostelium discoideum are Dgat1 and Dgat2. We show, by creating single and double knockout mutants, that the endoplasmic reticulum (ER)-localized Dgat1 enzyme provides the predominant activity, whereas the lipid droplet constituent Dgat2 contributes less activity. This situation may be opposite from what is seen in mammalian cells. Dictyostelium Dgat2 is specialized for the synthesis of TAG, as is the mammalian enzyme. In contrast, mammalian DGAT1 is more promiscuous regarding its substrates, producing diacylglycerol, retinyl esters, and waxes in addition to TAG. The Dictyostelium Dgat1, however, produces TAG, wax esters, and, most interestingly, also neutral ether lipids, which represent a significant constituent of lipid droplets. Ether lipids had also been found in mammalian lipid droplets, but the role of DGAT1 in their synthesis was unknown. The ability to form TAG through either Dgat1 or Dgat2 activity is essential for Dictyostelium to grow on bacteria, its natural food substrate. PMID:24562909

  10. Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Shanahan, Timothy M.; Hughen, Konrad A.; Ampel, Linda; Sauer, Peter E.; Fornace, Kyrstin

    2013-10-01

    The hydrogen isotope composition of plant waxes preserved in lacustrine sediments is a potentially valuable tool for reconstructing paleoenvironmental changes in the Arctic. However, in contrast to the mid- and low-latitudes, significantly less effort has been directed towards understanding the factors controlling D/H fractionation in high latitude plant waxes and the impact of these processes on the interpretation of sedimentary leaf wax δD records. To better understand these processes, we examined the D/H ratios of long chain fatty acids in lake surface sediments spanning a temperature and precipitation gradient on Baffin Island in the eastern Canadian Arctic. D/H ratios of plant waxes increase with increasing temperature and aridity, with values ranging from -240‰ to -160‰ over the study area. Apparent fractionation factors between n-alkanoic acids in Arctic lake sediments and precipitation(εFA-ppt) are less negative than those of mid-latitude lakes and modern plants by 25‰ to 65‰, consistent with n-alkane data from modern Arctic plants (Yang et al., 2011). Furthermore, εFA-ppt values from Arctic lakes become systematically more positive with increasing evaporation, in contrast to mid-latitude sites, which show little to no change in fractionation with aridity. These data are consistent with enhanced water loss and isotope fractionation at higher latitude in the Arctic summer, when continuous sunlight supports increased daily photosynthesis. The dominant control on δDFA variations on Baffin Island is temperature. However, changing εFA-ppt result in steeper δDFA-temperature relationships than observed for modern precipitation. The application of this δDFA-based paleotemperature calibration to existing δDFA records from Baffin Island produces much more realistic changes in late Holocene temperature and highlights the importance of these effects in influencing the interpretation of Arctic δDFA records. A better understanding of the controls on hydrogen isotope fractionation in high latitude leaf waxes will be essential to the proper interpretation of isotope records from sedimentary plant waxes in the Arctic.

  11. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora.

    PubMed

    Summons, R E; Bird, L R; Gillespie, A L; Pruss, S B; Roberts, M; Sessions, A L

    2013-09-01

    Ooids are one of the common constituents of ancient carbonate rocks, yet the role that microbial communities may or may not play in their formation remains unresolved. To search for evidence of microbial activity in modern and Holocene ooids, samples collected from intertidal waters, beaches and outcrops in the Bahamas and in Shark Bay in Western Australia were examined for their contents of lipid biomarkers. Modern samples from Cat and Andros islands in the Bahamas and from Carbla Beach in Hamelin Pool, Western Australia, showed abundant and notably similar distributions of hydrocarbons, fatty acids (FAs) and alcohols. A large fraction of these lipids were bound into the carbonate matrix and only released on acid dissolution, which suggests that these lipids were being incorporated continuously during ooid growth. The distributions of hydrocarbons, and their disparate carbon isotopic signatures, were consistent with mixed input from cyanobacteria together with small and variable amounts of vascular plant leaf wax [C27 -C35 ; δ(13) C -25 to -32‰Vienna Pee Dee Belemnite (VPDB)]. The FAs comprised a complex mixture of C12 -C18 normal and branched short-chain compounds with the predominant straight-chain components attributable to bacteria and/or cyanobacteria. Branched FA, especially 10-MeC16 and 10-MeC17 , together with the prevalence of elemental sulfur in the extracts, indicate an origin from sulfate-reducing bacteria. The iso- and anteiso-FA were quite variable in their (13) C contents suggesting that they come from organisms with diverse physiologies. Hydrogen isotopic compositions provide further insight into this issue. FAs in each sample show disparate δD values consistent with inputs from autotrophs and heterotrophs. The most enigmatic lipid assemblage is an homologous series of long-chain (C24 -C32 ) FA with pronounced even carbon number preference. Typically, such long-chain FA are thought to come from land plant leaf wax, but in this case, their (13) C-enriched isotopic signatures compared to co-occurring n-alkanes (e.g., Hamelin Pool TLE FA C24 -C32 ; δ(13) C -20 to -24.2‰ VPDB; TLE n-alkanes δ(13) C -24.1 to -26.2 -‰VPDB) indicate a microbial origin, possibly sulfate-reducing bacteria. Lastly, we identified homohopanoic acid and bishomohopanol as the primary degradation products of bacterial hopanoids. The distributions of lipids isolated from Holocene oolites from the Rice Bay Formation of Cat Island, Bahamas were very similar to the beach ooids described above and, in total, these modern and fossil biomarker data lead us to hypothesize that ooids are colonized by a defined microbial community and that these microbes possibly mediate calcification. © 2013 John Wiley & Sons Ltd.

  12. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector

    NASA Astrophysics Data System (ADS)

    Sicre, Marie-Alexandrine; Peltzer, Edward T.

    Aerosol samples collected on Ninety Mile Beach on the West coast of the North Island of New Zealand were analyzed for three classes of naturally occurring organic compounds ( n-alkanes, fatty alcohols and long-chain n-aldehydes) which are major constituents of epicuticular waxes of terrestrial plants. In the eight samples analyzed, we identified three distinct regional source signatures for these aerosols depending upon their origin: southwest Pacific Ocean, New Zealand or Australia. Source identifications were entirely consistent with the origin of the aerosols derived by isentropic air mass trajectories. Impactor studies provided additional information as to the source of the aerosols and the mode of introduction of the material into the atmosphere.

  13. Distribution and stable isotope composition of leaf wax n-alkanes as tracers for organic matter transport along hydrological transects in the NW Argentine Andes

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Sachse, Dirk; Schildgen, Taylor; Strecker, Manfred R.

    2015-04-01

    The burial of organic matter in marine sediments represents the main long-term sink for reduced carbon in the global carbon cycle, with the fluvial system being the predominant transport mechanism. Organic matter deposited in marine and continental sediments contains valuable information on ecological and climatic conditions, and organic proxy data is thus often used in paleoclimate research. To use sedimentary records to investigate past environmental conditions in the terrestrial realm, processes dictating the transport of organic matter, including spatial and temporal resolution as well as the influence of climatic and tectonic processes, have to be understood. In this study, we test if a lipid biomarker based approach can be used to trace present-day organic matter sources in a fluvial watershed draining two intermontane basins in the southern-central Andes of NW Argentina, a tectonically active region with pronounced topographic, rainfall, and vegetation gradients. We investigated the distribution of long-chain leaf-wax n-alkanes, a terrestrial plant biomarker (and as such representative of terrestrially sourced carbon), in river sediments and coarse particulate organic matter (CPOM) along two altitudinal and hydrological gradients. We used n-alkane abundances and their stable carbon and hydrogen isotopic values as three independent parameters for source discrimination. Additionally, we analyzed the control of environmental parameters on the isotopic signatures in leaf-wax n-alkanes. The general pattern of n-alkane distribution in river sediments and CPOM samples in our study area suggest that vascular plants are the major source of riverine organic matter. The stable carbon isotopic composition of nC29 alkanes suggests a nearly exclusive input of C3 vegetation. Although C4 plants are present in the lower catchment areas, the total percentage is too low to have a detectable influence on the carbon isotopic composition in river sediment and CPOM samples. Considering environmental parameters, nC29 alkane δ13C values are significantly correlated with mean annual rainfall in the respective catchment area, with less negative δ13C values in drier areas (r = - 0.63, p < 0.01). The variability in stable hydrogen isotopic composition (δD) of nC29 alkanes is determined mostly by the δD value of the source water and aridity. We find that the apparent fractionation (?app), defined as the difference in hydrogen isotopic composition of plant source waters and synthesized leaf-wax n-alkanes, is significantly correlated with aridity (r = -0.65, p < 0.005), with a smaller apparent fractionation in drier areas, as well as with mean annual rainfall (r = -0.59, p < 0.01), relative humidity (r = -0.56, p < 0.02), and actual evapotranspiration (r = -0.53, p < 0.05). Our data indicate that vascular plants are the major source of riverine organic matter, with their stable carbon and hydrogen isotopic compositions influenced by climatic parameters. Thus, on spatial scales covering large gradients in environmental parameters, the analysis of leaf-wax n-alkanes can be used for organic matter source assessment in orogenic settings.

  14. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods.

    PubMed

    Raymond, Yves; Champagne, Claude P

    2014-01-01

    The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO), chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS) or duodenum secretions (DS) at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm) as compared to the larger (2.5 mm) ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides) used in the development of functional foods.

  15. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.

    PubMed

    Kheradmandnia, Soheila; Vasheghani-Farahani, Ebrahim; Nosrati, Mohsen; Atyabi, Fatemeh

    2010-12-01

    Solid lipid nanoparticles (SLNs) have been proposed as suitable colloidal carriers for delivery of drugs with limited solubility. Ketoprofen as a model drug was incorporated into SLNs prepared from a mixture of beeswax and carnauba wax using Tween 80 and egg lecithin as emulsifiers. The characteristics of the SLNs with various lipid and surfactant composition were investigated. The mean particle size of drug-loaded SLNs decreased upon mixing with Tween 80 and egg lecithin as well as upon increasing total surfactant concentration. SLNs of 75 ± 4 nm with a polydispersity index of 0.2 ± 0.02 were obtained using 1% (vol/vol) mixed surfactant at a ratio of 60:40 Tween 80 to egg lecithin. The zeta potential of these SLNs varied in the range of -15 to -17 (mV), suggesting the presence of similar interface properties. High drug entrapment efficiency of 97% revealed the ability of SLNs to incorporate a poorly water-soluble drug such as ketoprofen. Differential scanning calorimetry thermograms and high-performance liquid chromatographic analysis indicated the stability of nanoparticles with negligible drug leakage after 45 days of storage. It was also found that nanoparticles with more beeswax content in their core exhibited faster drug release as compared with those containing more carnauba wax in their structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods

    PubMed Central

    Champagne, Claude P.

    2014-01-01

    The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO), chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS) or duodenum secretions (DS) at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm) as compared to the larger (2.5 mm) ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides) used in the development of functional foods. PMID:26904647

  17. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.

    PubMed

    Racovita, Radu C; Jetter, Reinhard

    2016-10-01

    The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase

    PubMed Central

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity. PMID:26714272

  19. Allocate carbon for a reason: priorities are reflected in the ¹³C/¹²C ratios of plant lipids synthesized via three independent biosynthetic pathways.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Grice, Kliti; Kayler, Zachary E; Zavadlav, Saša; Vogts, Angela; Rommerskirchen, Florian; Farquhar, Graham D; Gessler, Arthur

    2015-03-01

    It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition ((13)C/(12)C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ(13)C(bk-lp) (defined as δ(13)C(bulkleaftissue)-δ(13)C(lipid)) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-D-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ(13)C(bk-lp) between C3 and C4 plants Δδ(13)C(bk-lp,C4-C3) are also pathway-dependent: Δδ(13)C(ACT)(bk-lp,C4-C3) > Δδ(13)C(DXP(bk-lp,C4-C3) > Δδ(13)C(MVA)(bk-lp,C4-C3). These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ(13)C(bk-lp,C4-C3) can be successfully explained by C4-C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained by the fact that sterols act as regulatory hormones and membrane fluidity modulators in rather low concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Gene refashioning through innovative shifting of reading frames in mosses.

    PubMed

    Guan, Yanlong; Liu, Li; Wang, Qia; Zhao, Jinjie; Li, Ping; Hu, Jinyong; Yang, Zefeng; Running, Mark P; Sun, Hang; Huang, Jinling

    2018-04-19

    Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.

  1. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  2. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (

  3. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (

  4. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    PubMed

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    PubMed

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  6. A functional cutin matrix is required for plant protection against water loss

    PubMed Central

    Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-01-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution. PMID:22019635

  7. A functional cutin matrix is required for plant protection against water loss.

    PubMed

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-09-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.

  8. Analyses of plant biomarkers in modern ecosystems to improve vegetation reconstructions at hominid sites

    NASA Astrophysics Data System (ADS)

    Uno, K. T.; Boisserie, J. R.; Cerling, T. E.; Polissar, P. J.

    2017-12-01

    Reconstructing vegetation at hominid localities in eastern Africa remains a significant challenge for examining the role of climate and environment in human evolution. Plant wax biomarker approaches, particularly carbon isotopes of n-alkyl lipids, have been increasingly used to estimate the proportion of C3 and C4­ vegetation in past environments. Identifying new biomarkers indicative of vegetation type, specifically those that can be used to identify (C3) grasses prior to the late Miocene C4 expansion, will enable vegetation reconstructions during the first half of the Neogene, where much remains to be learned about hominid environments. Here, we begin to look beyond carbon isotopes from n-alkyl lipids by analyzing molecular distributions and screening for new plant biomarkers that can be used to identify plant functional types or possibly, more specific taxonomic information. We evaluate molecular distributions, carbon isotope ratios, and pentacyclic triterpenoid methyl esters (PTMEs) in modern soils from a wide range of ecosystems in Ethiopia and Kenya where vegetation types, fraction woody cover, and climatic conditions are known. Preliminary data suggest PTMEs are associated with grassy ecosystems but absent from forested ones. We also find that woody cover can be estimated using n-alkane molecular distributions. This non-isotopic approach to reconstructing woody cover opens the door to reconstructing Neogene vegetation provided the molecular distributions of C3 grasses in the past are similar to those of modern C4 grasses.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flore, J.A.; Bukovac, M.J.

    S-Ethyl dipropylthiocarbamate (EPTC, 2.24 kg/ha) altered wax composition on developing leaves of cabbage (Brassica oleracea L. (Capitata group) cv. Market Prize), but did not affect cutin composition. The alkane, ketone and secondary alcohol content of the epicuticular wax was reduced and ester content increased. C/sub 29/ constituents (alkane, ketone, aldehyde and sec-alcohol) accounted for 72.5% (34.1 ..mu..g/cm/sup 2/) and 40.2% (7.2 ..mu..g/cm/sup 2/) of the epicuticular wax on control and EPTC-treated leaves respectively. Homlog composition within a chemical group was not changed. Chemical composition was similar for abaxial and adaxial leaf surfaces, and the EPTC-induced change in chemical composition wasmore » similar for both surfaces. In contrast with epicuticular wax, cuticular wax contained higher percentages of fatty acids and primary alcohols, and lower percentages of alkanes, and ketones. All constituents except the unidentified polar materials and fatty acids were lower in cuticular wax extracted from EPTC-treated than non-treated plants. The main component of the cutin fraction from both control and EPTC-treated plants was identified as dihydroxyhexadecanoic acid. Cutin acids were not quantitatively changed by the EPTC treatment. 27 references, 3 figures, 5 tables.« less

  10. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  11. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature.

    PubMed

    Hao, Suxiao; Ma, Yiyi; Zhao, Shuang; Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng; Yao, Yuncong

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.

  12. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature

    PubMed Central

    Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits. PMID:29073205

  13. Cuticular Waxes of Arabidopsis thaliana Shoots: Cell-Type-Specific Composition and Biosynthesis

    PubMed Central

    Hegebarth, Daniela; Jetter, Reinhard

    2017-01-01

    It is generally assumed that all plant epidermis cells are covered with cuticles, and the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional differences and possibly different wax compositions. However, experiments probing cell-type-specific wax compositions and biosynthesis have been lacking until recently. This review summarizes new evidence showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been identified previously in some unrelated species, not all of them bearing trichomes. PMID:28686187

  14. The Effect of Formulation Excipients and Thermal Treatment on the Release Properties of Lisinopril Spheres and Tablets.

    PubMed

    Amador Ríos, Zoriely; Ghaly, Evone Shehata

    2015-01-01

    Multiparticulate systems are used in the development of controlled release systems. The objective of this study was to determine the effect of the wax level, the type of excipient, and the exposure of the tablets to thermal treatment on drug release. Spheres from multiparticulate system with different wax levels and excipients were developed using the drug Lisinopril and compressed into tablets; these tablets were analyzed to determine the drug release. All tablets contained constant level of Lisinopril (10% w/w) and Compritol (30% and 50% w/w). Also, as a diluent, all of them contained 30% w/w Avicel and 30% w/w dibasic calcium phosphate or lactose, or 60% Avicel. Tablets compacted from spheres prepared by extruder/marumerizer and using 30% w/w lipid and 60% Avicel released 84% of drug at six hours of dissolution testing, while tablets of the same composition but prepared using 30% dibasic calcium phosphate and 30% Avicel released 101%. When the tablets were thermally treated, the drug release reduced. As the percent of lipid increased in the formulation, the drug release decreased. Compaction of tablets prepared from spheres with wax has potential for controlling the drug release.

  15. Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal

    NASA Astrophysics Data System (ADS)

    Hoffmann, Bernd; Feakins, Sarah J.; Bookhagen, Bodo; Olen, Stephanie M.; Adhikari, Danda P.; Mainali, Janardan; Sachse, Dirk

    2016-10-01

    Fixation of atmospheric CO2 in terrestrial vegetation, and subsequent export and deposition of terrestrial plant organic matter in marine sediments is an important component of the global carbon cycle, yet it is difficult to quantify. This is partly due to the lack of understanding of relevant processes and mechanisms responsible for organic-matter transport throughout a landscape. Here we present a new approach to identify terrestrial plant organic matter source areas, quantify contributions and ascertain the role of ecologic, climatic, and geomorphic controls on plant wax export in the Arun River catchment spanning the world's largest elevation gradient from 205 to 8848 m asl, in eastern Nepal. Our approach takes advantage of the distinct stable hydrogen isotopic composition (expressed as δD values) of plant wax n-alkanes produced along this gradient, transported in river waters and deposited in flood deposits alongside the Arun River and its tributaries. In mainstem-flood deposits, we found that plant wax n-alkanes were mostly derived from the lower elevations constituting only a small fraction (15%) of the catchment. Informed by remote sensing data, we tested four differently weighted isotopic mixing models that quantify sourcing of tributary plant-derived organic matter along the Arun and compare it to our field observations. The weighting parameters included catchment area, net primary productivity (NPP) and annual rainfall amount as well as catchment relief as erosion proxy. When weighted by catchment area the isotopic mixing model could not explain field observations on plant wax δD values along the Arun, which is not surprising because the large arid Tibetan Plateau is not expected to be a major source. Weighting areal contributions by annual rainfall and NPP captured field observations within model prediction errors suggesting that plant productivity may influence source strength. However weighting by a combination of rainfall and catchment relief also captured the observed δD value pattern suggesting dominantly erosive control. We conclude that tributaries at the southern Himalayan front with high rainfall, high productivity, high relief and high erosion rates dominate plant wax exports from the catchment.

  16. Solubility of nitrogen in marine mammal blubber depends on its lipid composition.

    PubMed

    Koopman, Heather N; Westgate, Andrew J

    2012-11-01

    Understanding the solubility of nitrogen gas in tissues is a crucial aspect of diving physiology, especially for air-breathing tetrapods. Adipose tissue is of particular interest because of the high solubility of nitrogen in lipids. Surprisingly, nothing is known about nitrogen solubility in the blubber of any marine mammal. We tested the hypothesis that N(2) solubility is dependent on the lipid composition of blubber; most blubber is composed of triacylglycerols, but some toothed whales deposit large amounts of waxes in blubber instead. The solubility of N(2) in the blubber of 13 toothed whale species ranged from 0.062 to 0.107 ml N(2) ml(-1) oil. Blubber with high wax ester content had higher N(2) solubility, observed in the beaked (Ziphiidae) and small sperm (Kogiidae) whales, animals that routinely make long, deep dives. We also measured nitrogen solubility in the specialized cranial acoustic fat bodies associated with echolocation in a Risso's dolphin; values (0.087 ml N(2) ml(-1) oil) were 16% higher here than in its blubber (0.074 ml N(2) ml(-1) oil). As the acoustic fats of all Odontocetes contain waxes, even if the blubber does not, these tissues may experience greater interaction with N(2). These data have implications for our understanding and future modeling of diving physiology in Odontocetes, as our empirically derived values for nitrogen solubility in toothed whale adipose were up to 40% higher than the numbers traditionally assumed in marine mammal diving models.

  17. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  18. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    PubMed

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  19. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers.

    PubMed

    Matas, Antonio J; Sanz, María José; Heredia, Antonio

    2003-11-01

    The main component presents in the epicuticular waxes of needles of Pinus halepensis and the most of conifers, the secondary alcohol nonacosan-10-ol, has been investigated by X-ray diffraction and differential scanning calorimetry. The results obtained from these physical techniques permitted to establish a definitive structural model of the molecular arrangement of this wax, basically in good agreement with the model formulated by other authors from theoretical formulations. Biological implications of the proposed structure have been also formulated.

  20. Wax-tear and meibum protein, wax–β-carotene interactions in vitro using infrared spectroscopy

    PubMed Central

    Faheem, Samad; Kim, Sung-Hye; Nguyen, Jonathan; Neravetla, Shantanu; Ball, Matthew; Foulks, Gary N; Yappert, Marta C; Borchman, Douglas

    2012-01-01

    Protein–meibum and terpenoids–meibum lipid interactions could be important in the etiology of meibomian gland dysfunction (MGD) and dry eye symptoms. In the current model studies, attenuated total reflectance (ATR) infrared (IR) spectroscopy was used to determine if the terpenoid β-carotene and the major proteins in tears and meibum affect the hydrocarbon chain conformation and carbonyl environment of wax, an abundant component of meibum. The main finding of these studies is that mucin binding to wax disordered slightly the conformation of the hydrocarbon chains of wax and caused the wax carbonyls to become hydrogen bonded or experience a more hydrophilic environment. Lysozyme and lactoglobulin, two proteins shown to bind to monolayers of meibum, did not have such an effect. Keratin and β-carotene did not affect the fluidity (viscosity) or environment of the carbonyl moieties of wax. Based on these results, tetraterpenoids are not likely to influence the structure of meibum in the meibomian glands. In addition, these findings suggest that it is unlikely that keratin blocks meibomian glands by causing the meibum to become more viscous. Among the tear fluid proteins studied, mucin is the most likely to influence the conformation and carbonyl environment of meibum at the tear film surface. PMID:22564968

  1. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    PubMed

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  2. Comparative Analyses of Cuticular Waxes on Various Organs of Potato (Solanum tuberosum L.).

    PubMed

    Guo, Yanjun; Jetter, Reinhard

    2017-05-17

    Complex mixtures of cuticular waxes coat plant surfaces to seal them against environmental stresses, with compositions greatly varying between species and possibly organs. This paper reports comprehensive analyses of the waxes on both above- and below-ground organs of potato, where total wax coverages varied between petals (2.6 μg/cm 2 ), leaves, stems, and tubers (1.8-1.9 μg/cm 2 ), and rhizomes (1.1 μg/cm 2 ). The wax mixtures on above-ground organs were dominated by alkanes, occurring in homologous series of isomeric C 25 -C 35 n-alkanes, C 25 -C 35 2-methylalkanes, and C 26 -C 34 3-methylalkanes. In contrast, below-ground organs had waxes rich in monoacylglycerols (C 22 -C 28 acyls) and C 18 -C 30 alkyl ferulates, together with fatty acids (rhizomes) or primary alcohols (tubers). The organ-specific wax coverages, compound class distribution, and chain length profiles suggest highly regulated activities of wax biosynthesis enzymes, likely related to organ-specific ecophysiological functions.

  3. Rubber Elongation Factor (REF), a Major Allergen Component in Hevea brasiliensis Latex Has Amyloid Properties

    PubMed Central

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Cullin, Christophe; Deffieux, Alain; Peruch, Frédéric

    2012-01-01

    REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom. PMID:23133547

  4. Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Cullin, Christophe; Deffieux, Alain; Peruch, Frédéric

    2012-01-01

    REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom.

  5. Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).

    PubMed

    Nair, Shakunthala; Braman, S Kristine; Knauft, D A

    2012-10-01

    This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.

  6. Waterproofing in Arabidopsis: Following Phenolics and Lipids In situ by Confocal Raman Microscopy

    PubMed Central

    Prats Mateu, Batirtze; Hauser, Marie Theres; Heredia, Antonio; Gierlinger, Notburga

    2016-01-01

    Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes, and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299, 1600, and 3400 cm−1 band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobizing changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired. PMID:26973831

  7. Purification of a Jojoba Embryo Wax Synthase, Cloning of its cDNA, and Production of High Levels of Wax in Seeds of Transgenic Arabidopsis

    PubMed Central

    Lardizabal, Kathryn D.; Metz, James G.; Sakamoto, Tetsuo; Hutton, William C.; Pollard, Michael R.; Lassner, Michael W.

    2000-01-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a β-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. 13C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds. PMID:10712527

  8. Development of Long Chain Alkyl Diol δD as a Paleohydrological Proxy

    NASA Astrophysics Data System (ADS)

    Neary, A.; Russell, J. M.; Cordero, D.

    2017-12-01

    Understanding past hydroclimate is important to better understand and prepare for future climate changes. Past hydrological change is often studied through δD of lipid biomarkers preserved in sediment. Long chain alkyl diols are lipid biomarkers that are widely distributed in lake and marine sediments. These compounds are produced by certain species of diatoms and algae (Eustigmatophytes). Diol δD is expected to record relative precipitation and evaporation, and other lake surface processes. This would be a valuable addition to the repertoire of organic compounds used for hydrologic reconstruction, such as leaf waxes which record precipitation. While long chain alkyl diols present an opportunity to expand the range of compounds available for compound specific isotope analysis, studies of diol δD are scarce. This study aims to compare diol and leaf wax δD records from Lake Tanganyika spanning approximately the past 20 kyrs in order to elucidate the controlling factors on diol δD values and evaluate the effectiveness of such a record as a paleohydrological proxy. If viable, diol δD records could be used to gain a deeper understanding of past climates. δD leaf wax records have been previously measured in Lake Tanganyika cores (Tierney et al., 2008). This study measures δD of long chain alkyl diols from the same cores in order to compare records. Our current measurements show significant deviations of the diol record from the leaf wax record at times when large magnitude changes in the leaf wax record are occurring, such as a less pronounced Younger Dryas and a more gradual decrease in δD values after Heinrich 1 than the sudden shift expressed by the leaf wax record. In addition to generating a diol δD record through time at Lake Tanganyika, we have also measured diol δD in surface sediments from several east African lakes in order to examine the potential for a proxy calibration. A positive correlation between diol and lake water δD has been observed, suggesting that lake water δD is the primary control while other environmental factors may also effect diol δD values.

  9. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis.

    PubMed

    Hooker, Tanya S; Lam, Patricia; Zheng, Huanquan; Kunst, Ljerka

    2007-03-01

    The cuticle is an extracellular matrix composed of cutin polyester and waxes that covers aerial organs of land plants and protects them from environmental stresses. The Arabidopsis thaliana cer7 mutant exhibits reduced cuticular wax accumulation and contains considerably lower transcript levels of ECERIFERUM3/WAX2/YORE-YORE (CER3/WAX2/YRE), a key wax biosynthetic gene. We show here that CER7 protein is a putative 3'-5' exoribonuclease homologous to yeast Ribonuclease PH45 (RRP45p), a core subunit of the RNA processing and degrading exosome that controls the expression of CER3/WAX2/YRE. We propose that CER7 acts by degrading a specific mRNA species encoding a negative regulator of CER3/WAX2/YRE transcription. A second RRP45p homolog found in Arabidopsis, designated At RRP45a, is partially functionally redundant with CER7, and complete loss of RRP45 function in Arabidopsis is lethal. To our knowledge, CER7 is currently the only example of a core exosomal subunit specifically influencing a cellular process.

  10. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.

    PubMed

    Lee, Sanghun; Fu, Fuyou; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. © 2016 American Society of Plant Biologists. All rights reserved.

  11. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  12. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  13. Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance1[OPEN

    PubMed Central

    Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard

    2015-01-01

    Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C22 and C24 fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 104 and 1.5 × 104 s m−1 for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. PMID:25413359

  14. Investigation of liquid wax components of Egyptian jojoba seeds.

    PubMed

    El-Mallah, Mohammed Hassan; El-Shami, Safinaz Mohammed

    2009-01-01

    Egyptian jojoba seeds newly cultivated in Ismailia desert in Egypt promoted us to determine its lipid components. Fatty alcohols, fatty acids, wax esters and sterols patterns were determined by capillary GLC whereas, tocopherols profile, isopropenoid alcohols and sterylglycosides were determined by HPLC. The Egyptian seeds are rich in wax esters (55 %) with fatty alcohols C20:1 and C22:1 as major components and amounted to 43.0 % and 45.6 % respectively followed by C24:1 and C18:1(9.6 % and 1.3 % respectively). The fatty acids profile showed that C20:1 is the major constituent (60 %) followed by C18:1 and C22:1 (14.5 and 11.8 % respectively) whereas C24:1 was present at low concentration amounted to 1.6 %. In addition, the Egyptian jojoba wax contained C18:2 fatty acid at a level of 8.7 %. Wax esters composition showed that the local wax had C42 and C40 esters as major components amounted to 51.1 and 30.1 % respectively. Also, it had C44 and C38 at reasonable amounts (10.0 and 6.3 % respectively). Whereas C36 and C46 were present at lower concentrations amounted to 1.4 and 1.1 respectively. The sterols analysis showed the presence of campe-, stigma-, beta-sito-, and isofuco- sterol amounting to 18.4 %, 6.9 %, 68.7 %, and 6.0 % respectively. The tocopherols pattern revealed that the local seed wax contained gamma-tocopherol as major constituent (79.2 %) followed by alpha-tocopherol (20.3 %). beta-tocopherol as well as delta-tocopherol were found as minor constituents. The isopropenoid alcohols and the sterylglycosides (free and acylated) were not detected. The wax is proposed to be used in oleo chemistry and cosmetics.

  15. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    PubMed

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  16. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function

    PubMed Central

    Yeats, Trevor H.; Buda, Gregory J.; Wang, Zhonghua; Chehanovsky, Noam; Moyle, Leonie C.; Jetter, Reinhard; Schaffer, Arthur A.; Rose, Jocelyn K.C.

    2013-01-01

    Summary The cuticle covers the aerial epidermis of land plants and plays a primary role in water regulation and protection from external stresses. Remarkable species diversity in the structure and composition of its components, cutin and wax, have been catalogued, but few functional or genetic correlations have emerged. Tomato (Solanum lycopersicum) is part of a complex of closely related wild species endemic to the northern Andes and the Galapagos Islands (Solanum Sect. Lycopersicon). Although sharing an ancestor less than seven million years ago, these species are found in diverse environments and are subject to unique selective pressures. Furthermore, they are genetically tractable, since they can be crossed with S. lycopersicum, which has a sequenced genome. With the aim of evaluating the relationships between evolution, structure and function of the cuticle, we characterized the morphological and chemical diversity of fruit cuticles of seven species from Solanum Sect. Lycopersicon. Striking differences in cuticular architecture and quantities of cutin and waxes were observed, with wild species wax coverage exceeding that of S. lycopersicum by up to seven fold. Wax composition varied in the occurrence of wax esters and triterpenoid isomers. Using a S. habrochaites introgression line population, we mapped triterpenoid differences to a genomic region that includes two S. lycopersicum triterpene synthases. Based on known metabolic pathways for acyl wax compounds, hypotheses are discussed to explain the appearance of wax esters with atypical chain lengths. These results establish a model system for understanding the ecological and evolutionary functional genomics of plant cuticles. PMID:22007785

  17. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    PubMed Central

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-01-01

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis. PMID:27110768

  18. Long-chain aliphatic beta-diketones from epicuticular wax of Vanilla bean species. Synthesis of nervonoylacetone.

    PubMed

    Ramaroson-Raonizafinimanana, B; Gaydou, E M; Bombarda, I

    2000-10-01

    Analysis of the neutral lipids from Vanilla fragrans and Vanilla tahitensis (Orchidaceae) without saponification resulted in the isolation and identification of a new product family in this plant: beta-dicarbonyl compounds. The compound structures are composed of a long aliphatic chain with 2,4-dicarbonyl carbons and a cis double bond at the n-9 position. They represent approximately 28% of the neutral lipids, that is, 1.5%, in immature beans, and approximately 10% of the neutral lipids, that is, 0.9%, in mature beans. Using retention indices, gas chromatography-mass spectrometry, derivatization reactions, and chemical degradation, five beta-dicarbonyl compounds have been identified including 16-pentacosene-2,4-dione, 18-heptacosene-2,4-dione, 20-nonacosene-2, 4-dione, 22-hentriacontene-2,4-dione, and 24-tritriacontene-2, 4-dione. Among them (Z)-18-heptacosene-2,4-dione, or nervonoylacetone, has been synthesized in two steps starting from nervonic acid. The major constituent, nervonoylacetone, represented 74.5% of the beta-dicarbonyl fraction. The range of these compounds has been studied in relation with bean maturity for V. fragrans and V. tahitensis species. This compound family has not been found in the leaves or stems of any of the three vanilla species studied and is markedly absent in the beans of V. madagascariensis.

  19. Physical stability, centrifugation tests, and entrapment efficiency studies of carnauba wax-decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-06-01

    Aqueous nanoscale lipid dispersions consisting of carnauba wax-decyl oleate mixtures acting as carriers or accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate, and titanium dioxide were prepared by high pressure homogenization. For the manufacture of these nanosuspensions, three pigment concentrations (%wt), namely 2, 4, and 6, and two carnauba wax-decyl oleate ratios, 1:1 and 2:1, were used, being some of these combinations chosen for stability studies. Six-month physical stability tests at 4, 20, and 40 degrees C selecting the mean particle size and the polydispersity index of the nanosuspensions as reference parameters were performed. Centrifugation tests of the nanosuspensions assessed by transmission electron microscopy and by the determination of the content of pigments and carnauba wax in the separated fractions were done. The mean particle sizes and the polydispersity indices of the nanosuspensions were not altered after six-month storages at 20 and at 40 degrees C. However, the storage of those at 4 degrees C considerably increased the particle size and polydispersity of the systems, particularly when wax-oil ratios (2:1) were used for the entrapment of the pigments. Transmission electron micrographs of centrifuged samples denoted the presence of three major fractions showing the different types of particles integrated into the nanosuspensions. Furthermore, it was observed that not all the carnauba wax participated in the entrapment of the pigment. Regarding the amount of pigment being encapsulated or bonded by the wax-oil matrices, entrapment efficiencies higher than 85.52% were reported.

  20. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis.

    PubMed

    Conte, Maureen H; Weber, John C

    2002-06-06

    Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the (12)C/(13)C isotopic ratio (delta(13)C) of atmospheric carbon dioxide, because terrestrial photosynthesis strongly discriminates against (13)CO(2), whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Delta; ref. 5) at large regional scales, yet terrestrial ecosystem heterogeneity makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Delta over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Delta simply. Our estimates indicate a large (5 6 per thousand) seasonal variation in Delta of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C(3) and C(4) plants, and environmentally controlled adjustments in the photosynthetic discrimination of C(3)-plant-dominated ecosystems.

  1. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS

    PubMed Central

    von Wettstein-Knowles, Penny

    2017-01-01

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue–grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase—the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols. PMID:28698520

  2. Tennessee plant species screened for renewable energy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.; Bagby, M.O.

    The USDA Northern Regional Research Center (NRRC) has previously studied chemical and botanical characteristics of about 1000 plant species in efforts to identify potential new plant sources for industrial raw materials. For this report, an additional 51 species were collected from Tennessee and studied. Above-ground plant samples were analyzed for yields of oils, polyphenols, hydrocarbons, protein, and ash. Oils were examined for the presence of seven classes of lipids and analyzed for yields of fatty acids and unsaponifiable matter. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for average molecular weight (MW)more » and MW distribution. Chemical and botanical data are presented for eight of the 51 species. A checklist of the 43 other species is given; data on these are available from NRRC. Lapsana communis yielded the most oil (6.1%; dry, ash-free, plant sample basis). Ilex montana yielded the most polyphenol (21.5%) plus 4.5% oil. Agrimonia parviflora and Catalpa bignonioides gave substantial yields of polyphenol (20.0% and 17.9%, respectively), and Passiflora incarnata contained the most apparent protein (19.8%). Chrysopsis graminifolia, Solidago erecta, and Verbesina alternifolia were identified as rubber-producing species with 0.4-0.7% hydrocarbon.« less

  3. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

    NASA Astrophysics Data System (ADS)

    Daniels, William C.; Russell, James M.; Giblin, Anne E.; Welker, Jeffrey M.; Klein, Eric S.; Huang, Yongsong

    2017-09-01

    Leaf wax hydrogen isotopes (δDwax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δDwax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (εapp) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δDwax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to εapp at the watershed scale. Source water and εapp were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants' xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The εapp determined for our study species average -89 ± 14‰ and -106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and -182 ± 10‰ and -154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the εapp of related species in temperate and tropical regions, indicating that apparent fractionation is similar in Arctic relative to other regions, and there is no reduced fractionation in the Arctic. Sediment trap data suggest that waxes are primarily transported into lakes from local (watershed-scale) sources by overland flow during the spring freshet, and so δDwax within lakes depends on watershed-scale differences in water isotope compositions and in plant ecophysiology. As such, the large difference between our study species suggests that the relative abundance of graminoids and shrubs is potentially an important control on δDwax in lake sediments. These inferences are supported by δDwax data from surface sediments of 24 lakes where εapp, relative to δDxylem, averages -128 ± 13‰ and -130 ± 8‰ for n-acids and n-alkanes, respectively, and co-varies with vegetation type across watersheds. These new determinations of plant source water seasonality and εapp for the Arctic will improve the δDwax paleoclimate proxy at high latitudes.

  4. Temperature-enhanced alumina HPLC method for the analysis of wax esters, sterol esters, and methyl esters.

    PubMed

    Moreau, Robert A; Kohout, Karen; Singh, Vijay

    2002-12-01

    Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.

  5. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (flurbiprofen) comprising natural waxes.

    PubMed

    Baviskar, D T; Amritkar, A S; Chaudhari, H S; Jain, D K

    2012-08-01

    In this study, flurbiprofen (FLB) Solid Lipid Nanoparticles (SLN) composed from a mixture of beeswax and carnauba wax, Tween 80 and egg lecithin as emulsifiers have been prepared. FLB was incorporated as model lipophilic drug to assess the influence of matrix composition in the drug release profile. SLN were produced by microemulsion technique. In vitro studies were performed in Phosphate Buffered Saline (PBS). The FLB loaded SLN showed a mean particle size of 75 +/- 4 nm, a polydispersity index approximately 0.2 +/- 0.02 and an entrapment efficiency (EE) of more than 95%. Suspensions were stable, with zeta potential values in the range of -15 to -17 mV. DSC thermograms and UV analysis indicated the stability of nanoparticles with negligible drug leakage. Nanoparticles with higher beeswax content in their core exhibited faster drug release than those containing more carnauba wax.

  6. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects paleoenvironmental and vegetation changes. Average chain length (ACL) values of n-alkanes were of intermediate heritability (H2 = 0.30), suggesting that ACL values are more strongly influenced by genetic cues.

  7. A 3,000 year plant leaf wax D/H record of paleohydrology from Southern California

    NASA Astrophysics Data System (ADS)

    Cheetham, M. I.; Feakins, S. J.

    2011-12-01

    We report a high resolution record of hydrological variability based on plant leaf wax D/H measurements in a sediment core from Zaca Lake, Southern California spanning 3,000 years. Compound specific analysis of the n-alkanoic acid fraction yields a powerful suite of relative abundance and isotope data. Comparison to modern vegetation and sediments offers insights into the source of sedimentary waxes and their D/H signatures. We identify three potential sources of waxes at Zaca: 1) mid to long chains from emergent aquatic plants (C28 max), 2) mid chains from Pinus coulteri (C20-C24 only) and 3) mid to long chains from Quercus agrifolia (C28 and C30 max). We establish that long chains are dominated by Quercus and other terrestrial vegetation, whereas mid chains could have mixed sources. At Zaca, 80% shared variance between mid chain and long chain records suggests both derive from terrestrial plants influenced by a common driver, presumably the isotopic composition of precipitation or relative humidity influences on leaf water enrichment. Dendrogram analysis of molecular abundance variations allows us to flag where vegetation change cannot be ruled out. We therefore infer that regional atmospheric circulation changes drove the sustained negative isotope excursion of > 20% from about 2,700 to 2,000 years BP and superimposed higher frequency 20% variability throughout the record, including a number of large, rapid excursion (>20%, <20 years). The results of ongoing analyses will be presented at the meeting.

  8. Removal of trimethylamine (fishy odor) by C₃ and CAM plants.

    PubMed

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-08-01

    From screening 23 plant species, it was found that Pterocarpus indicus (C3) and Sansevieria trifasciata (crassulacean acid metabolism (CAM)) were the most effective in polar gaseous trimethylamine (TMA) uptake, reaching up to 90% uptake of initial TMA (100 ppm) within 8 h, and could remove TMA at cycles 1-4 without affecting photosystem II (PSII) photochemistry. Up to 55 and 45% of TMA was taken up by S. trifasciata stomata and leaf epicuticular wax, respectively. During cycles 1-4, interestingly, S. trifasciata changed its stomata apertures, which was directly induced by gaseous TMA and light treatments. In contrast, for P. indicus the leaf epicuticular wax and stem were the major pathways of TMA removal, followed by stomata; these pathways accounted for 46, 46, and 8%, respectively, of TMA removal percentages. Fatty acids, particularly tetradecanoic (C14) acid and octadecanoic (C18) acid, were found to be the main cuticular wax components in both plants, and were associated with TMA removal ability. Moreover, the plants could degrade TMA via multiple metabolic pathways associated with carbon/nitrogen interactions. In CAM plants, one of the crucial pathways enabled 78% of TMA to be transformed directly to dimethylamine (DMA) and methylamine (MA), which differed from C3 plant pathways. Various metabolites were also produced for further detoxification and mineralization so that TMA was completely degraded by plants.

  9. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases

    PubMed Central

    Lee, Sanghun; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-01-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. PMID:27354553

  10. Ultrastructure of integument wax and wax-producing structures in the melaleuca psyllid Boreioglycaspis melaleucae (Hemiptera: Psyllidae)

    USDA-ARS?s Scientific Manuscript database

    The melaleuca psyllid has been introduced to Florida as a biological control agent against Melaleuca quinquenervia, an invasive evergreen tree that has invaded large areas of Florida wetland since its introduction earlier from Australia as an ornamental plant. Colonies of the psyllid on young shoots...

  11. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes.

    PubMed

    Moles, Angela T; Wallis, Ian R; Foley, William J; Warton, David I; Stegen, James C; Bisigato, Alejandro J; Cella-Pizarro, Lucrecia; Clark, Connie J; Cohen, Philippe S; Cornwell, William K; Edwards, Will; Ejrnaes, Rasmus; Gonzales-Ojeda, Therany; Graae, Bente J; Hay, Gregory; Lumbwe, Fainess C; Magaña-Rodríguez, Benjamín; Moore, Ben D; Peri, Pablo L; Poulsen, John R; Veldtman, Ruan; von Zeipel, Hugo; Andrew, Nigel R; Boulter, Sarah L; Borer, Elizabeth T; Campón, Florencia Fernández; Coll, Moshe; Farji-Brener, Alejandro G; De Gabriel, Jane; Jurado, Enrique; Kyhn, Line A; Low, Bill; Mulder, Christa P H; Reardon-Smith, Kathryn; Rodríguez-Velázquez, Jorge; Seabloom, Eric W; Vesk, Peter A; van Cauter, An; Waldram, Matthew S; Zheng, Zheng; Blendinger, Pedro G; Enquist, Brian J; Facelli, Jose M; Knight, Tiffany; Majer, Jonathan D; Martínez-Ramos, Miguel; McQuillan, Peter; Prior, Lynda D

    2011-08-01

    • It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes. • We quantified the relationship between latitude and a broad range of chemical and physical traits across 301 species from 75 sites world-wide. • Six putative resistance traits, including tannins, the concentration of lipids (an indicator of oils, waxes and resins), and leaf toughness were greater in high-latitude species. Six traits, including cyanide production and the presence of spines, were unrelated to latitude. Only ash content (an indicator of inorganic substances such as calcium oxalates and phytoliths) and the properties of species with delayed greening were higher in the tropics. • Our results do not support the hypothesis that tropical plants have higher levels of resistance traits than do plants from higher latitudes. If anything, plants have higher resistance toward the poles. The greater resistance traits of high-latitude species might be explained by the greater cost of losing a given amount of leaf tissue in low-productivity environments. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    NASA Astrophysics Data System (ADS)

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  13. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model.

    PubMed

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-24

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  14. Paleohydrology of the Polar Urals from the Last Glacial Maximum Through the Holocene

    NASA Astrophysics Data System (ADS)

    Cowling, O.; Thomas, E.; Svendsen, J. I.; Haflidason, H.

    2017-12-01

    Paleohydrologic records provide important information concerning the past response of local hydrology to abrupt temperature changes. Arctic hydrology is particularly sensitive to temperature due to feedbacks involving sea ice and ice sheets. The most recent deglacial interval contains multiple abrupt temperature changes, which provide opportunities to study the relationship between temperature, ice sheets, and hydrology. We present a lacustrine δ2Hwax record from Bolshoye Schuchye, in the Polar Ural Mountains, spanning 24.5- 1.3 ka, and interpret hydroclimate conditions at a multi-centennial scale from the Last Glacial Maximum (LGM) through the Holocene. Bolshoye Schuchye's position beyond the reach of local glaciers during the LGM makes it a unique site, since lacustrine paleoclimate records from the Arctic rarely span this entire interval, so Bolshoye Schuchye helps to cover a gap in understanding of paleoclimate. Compound specific analysis of leaf wax hydrogen isotopes (δ2Hwax) is a hydroclimate proxy that can be used to infer moisture source area, transport history, and local aridity. Inferences based on δ2Hwax rely on mechanistic understanding of the process by which hydrogen from meteoric water is incorporated into waxes, and subsequently deposited in lake sediments. The δ2Hwax value of a sample reflects the isotopic composition of precipitation, while also incorporating fractionation that occurs between precipitation and uptake by plants, and biosynthetic fractionation during wax synthesis. Comparisons between different chain length waxes can be used to infer the isotopic composition of terrestrial and aquatic waxes, as terrestrial plants tend to produce longer chain lengths than aquatic macrophytes. The offset between terrestrial and aquatic δ2Hwax, expressed as ɛt-a, indicates differences between the precipitation used by terrestrial plants, and the lake water used by aquatic plants. Significant changes in ɛt-a can represent shifts in local aridity or precipitation seasonality. The record we present from Bolshoye Schuchye gives insights into terrestrial hydrologic changes resulting from rapid temperature shifts since the LGM.

  15. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures

    PubMed Central

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10−5 m s−1 at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15–50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm−2) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. PMID:27154622

  16. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds

    USDA-ARS?s Scientific Manuscript database

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WE) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very long-chain fatty alcohols, which must be oxidised to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and ...

  17. Multimodal cues drive host-plant assessment in Asian citrus psyllid (Diaphorina citri).

    PubMed

    Patt, Joseph M; Meikle, William G; Mafra-Neto, Agenor; Sétamou, Mamoudou; Mangan, Robert; Yang, Chenghai; Malik, Nasir; Adamczyk, John J

    2011-12-01

    Asian citrus psyllid (Diaphorina citri) transmits the causal agent of Huanglongbing, a devastating disease of citrus trees. In this study we measured behavioral responses of D. citri to combinations of visual, olfactory, and gustatory stimuli in test arenas. Stimuli were presented to the psyllids in droplets or lines of an emulsified wax formulation in two different arena types in no-choice tests. First, when placed on a colored ring situated halfway between the center and perimeter of a petri dish, D. citri spent more time on yellow versus gray rings; however, this response disappeared when either gray or yellow wax droplets were applied. When the psyllids were presented with droplets scented with terpenes, the response to both scent and color was increased. The addition of a dilute (≍0.1 M) sucrose solution to the wax droplets increased the magnitude of D. citri responses. Next, groups of D. citri were placed on plastic laboratory film covering a sucrose solution, to mimic a leaf surface. Test stimuli were presented via two 'midribs' made from lines of emulsified wax formulation. Probing levels were measured as a function of color saturation and scent composition, and concentration. The test scents were based on qualitatively major volatiles emitted by Murraya paniculata (L.) Jack, Citrus aurantifolia (Christm.) Swingle, and C. sinensis (L.) Osbeck. The highest probing response was observed on the middle concentration (20-μl scent/10 ml wax formulation) of the C. aurantifolia-scented wax lines. Results indicate that there are interactive effects between the different sensory modalities in directing host-plant assessment behavior.

  18. Spatial and Temporal Patterns in the Carbon Isotopic Signal of Leaf Wax Aerosols in Continental Air Masses: Linkages with Ecosystem Discrimination

    NASA Astrophysics Data System (ADS)

    Weber, J.; Conte, M. H.

    2006-12-01

    Temporal and spatial variations in the concentration and isotopic composition of atmospheric carbon dioxide can be used to estimate the relative magnitudes of the terrestrial and oceanic carbon sinks. An important model parameter is the terrestrial photosynthetic carbon isotopic fractionation of CO2 (Δ), yet estimating Δ over the large spatial scales required by models remains problematic. Epiculticular leaf waxes appear to closely reflect the plant's carbon isotopic discrimination; therefore, the ablated wax aerosols present in well-mixed continental air masses may be used as a proxy to estimate the magnitude of Δ integrated over large (subcontinental) spatial scales. Over the last several years, we have been conducting time-series studies of wax aerosol molecular and isotopic composition at strategically located sites (Maine, northern Alaska, Florida, Bermuda, Barbados) which receive continental air masses passing over major terrestrial biomes (northern temperate/ecotonal boreal forests, tundra, southern US pine/hardwood forests, North American and north African). In this presentation, we describe and contrast patterns of wax aerosol-derived estimates of Δ at these sites. In North American air masses, estimates of Δ range from 14.5-20.5 using the concentration-weighted average δ13C of wax n-acids and from 13.5-19.5 for the wax n-alcohols. Seasonal trends observed in the Florida (southern US) and Bermuda samples (mixed North American air masses) indicate maximum discrimination in early spring and minimum discrimination during the summer dry season. In northern US and high latitude air masses, seasonal trends are less pronounced but in general temporally offset with highest discrimination occurring during late summer. At Barbados, which is dominated by north African air masses passing over regions largely comprised of arid C4 grasslands, estimated Δ for the wax n-acids is significantly lower (14.0-15.5 per mil), consistent with a higher predominance of C4 plants in the aerosol source regions; however, the estimated Δ for the wax n-alcohols is roughly 2 per mil higher indicative of possible different weighting of vegetation sources. Interannual variability is also observed to some extent signifying that the wax aerosol signal of Δ is sensitive to year-to-year differences in environmental forcing (e.g. drought).

  19. ATP citrate lyase activity is post-translationally regulated by sink strength and impacts the wax, cutin and rubber biosynthetic pathways.

    PubMed

    Xing, Shufan; van Deenen, Nicole; Magliano, Pasqualina; Frahm, Lea; Forestier, Edith; Nawrath, Christiane; Schaller, Hubert; Gronover, Christian S; Prüfer, Dirk; Poirier, Yves

    2014-07-01

    Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system

    USDA-ARS?s Scientific Manuscript database

    We posed the hypothesis that eicosanoids act in reduction of oxidative stress in insects. Here we report that inhibiting eicosanoid biosynthesis throughout the larval, pupal and adult life led to major alterations on some oxidative and antioxidative parameters of the greater wax moth, Galleria mello...

  1. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis

    PubMed Central

    Li, Shibai; Wang, Xiaochen; He, Shan; Li, Jieru; Huang, Qingpei; Imaizumi, Takato; Qu, Leqing; Qin, Genji; Qu, Li-Jia; Gu, Hongya

    2016-01-01

    The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1) and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1. PMID:26745719

  2. Biomarkers reveal the effects of hydrography on the sources and fate of marine and terrestrial organic matter in the western Irish Sea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shane S.; Szpak, Michal T.; Flanagan, Paul V.; Monteys, Xavier; Murphy, Brian T.; Jordan, Sean F.; Allen, Christopher C. R.; Simpson, Andre J.; Mulligan, Stephen M.; Sandron, Sara; Kelleher, Brian P.

    2014-01-01

    A suite of lipid biomarkers were investigated from surface sediments and particulate matter across hydrographically distinct zones associated with the western Irish Sea gyre and the seasonal bloom. The aim was to assess the variation of organic matter (OM) composition, production, distribution and fate associated with coastal and southern mixed regions and also the summer stratified region. Based on the distribution of a suite of diagnostic biomarkers, including phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids, diatoms, dinoflagellates and green algae were identified as major contributors of marine organic matter (MOM) in this setting. The distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids indicate that copepod grazing represents an important process for mineralising this primary production. Net tow data from 2010 revealed much greater phytoplankton and zooplankton biomass in well-mixed waters compared to stratified waters. This appears to be largely reflected in MOM input to surface sediments. Terrestrial organic matter (TOM), derived from higher plants, was identified as a major source of OM regionally, but was concentrated in proximity to major riverine input at the Boyne Estuary and Dundalk Bay. Near-bottom residual circulation and the seasonal gyre also likely play a role in the fate of TOM in the western Irish Sea.

  3. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    USDA-ARS?s Scientific Manuscript database

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  4. Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado.

    PubMed

    Oliveira, A F; Salatino, A

    2000-01-01

    The epicuticular waxes of leaves of four species (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro) from the Caatinga, (a semi-arid ecosystem of Northeast Brazil) and four species (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa) from the Cerrado, (a savanna ecosystem covering one third of the Brazilian territory), were analyzed. Six species contained a high content (above 60 microg x cm(-2)) of wax, four of them from the Caatinga. Triterpenoids and n-alkanes were the most frequent and abundant constituents found in the species from both habitats. The distribution of n-alkanes predominated by homologues with 27, 29, 31 and 33 carbon atoms, displayed no consistent differences between species from the two habitats. Lupeol, beta-amyrin, epifriedelinol and ursolic acid were the triterpenoids found. Triterpenoids clearly predominate over alkanes in the waxes from the Cerrado species. The waxes of two evergreen species from the Caatinga yielded n-alkanes as predominant constituents. A comparison of foliar epicuticular waxes of native plants from ecosystems with different hydric constraints is discussed.

  5. Self-Replenishable Anti-Waxing Organogel Materials.

    PubMed

    Yao, Xi; Wu, Shuwang; Chen, Lie; Ju, Jie; Gu, Zhandong; Liu, Mingjie; Wang, Jianjun; Jiang, Lei

    2015-07-27

    Solid deposition, such as the formation of ice on outdoor facilities, the deposition of scale in water reservoirs, the sedimentation of fat, oil, and grease (FOG) in sewer systems, and the precipitation of wax in petroleum pipelines, cause a serious waste of resources and irreversible environmental pollution. Inspired by fish and pitcher plants, we present a self-replenishable organogel material which shows ultra-low adhesion to solidified paraffin wax and crude oil by absorption of low-molar-mass oil from its crude-oil environment. Adhesion of wax on the organogel surface was over 500 times lower than adhesion to conventional material surfaces and the wax was found to slide off under the force of gravity. This design concept of a gel with decreased adhesion to wax and oil can be extended to deal with other solid deposition problems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  6. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    PubMed Central

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  7. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    PubMed

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  8. Leaf Wax δ13C Varies with Elevation in the Peruvian Andes and Western Amazonia

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; Peters, T.; West, A. J.; Galy, V.; Bentley, L. P.; Salinas, N.; Shenkin, A.; Martin, R.; Asner, G. P.; Malhi, Y.

    2015-12-01

    Plant leaf wax carbon isotopic composition (δ13Cwax) reflects the net isotopic effects associated with diffusion into the leaf, fixation of carbon by Rubisco and biosynthesis of individual leaf wax biochemicals. As declining pCO2 with elevation affects the first two fractionations, we expect to find an isotopic gradient in δ13Cwax, if the fractionation of leaf wax biosynthesis is constant. To test this, we report δ13Cwax values from 500 samples of leaves collected by tree-climbers from the upper canopy from 9 forest-inventory plots spanning a 3.5km elevation transect in the Peruvian Andes and western Amazonia during the CHAMBASA field campaign. These samples provide a unique opportunity to study the relationship between δ13Cwax and pCO2 in diverse species across this remote tropical montane forest and lowland rainforest. The very wet climate throughout (2-5 m rainfall per year) minimizes fractionation effects due to stomatal restrictions (i.e. water use efficiency) that may be an important factor elsewhere. Preliminary results show δ13Cwax values on average increase with elevation by ~1.5‰/km, a trend consistent with bulk plant δ13C in previous studies. The mean epsilon between bulk and C29 n-alkane is -7.3±2.2‰. Inter-sample differences are large on the order of 10‰. Shaded leaves and understory leaves are found to be depleted relative to sunlit leaves, presumably due to a lower photosynthetic rate and use of respired CO2 in the understory. C29 n-alkanes are on average ~2.5‰ more depleted than C30 n-alkanoic acids, indicating fractionation during selective decarboxylation. We further compare results from plants with soil and river sediments to provide insights into how leaf wax signals are archived in soils and exported from the landscape. We find a ~1.4‰/km gradient in forest soils similar to plants. We observe a ~2‰ offset between C29 n-alkane in plant leaves and in soils across the elevation profile, which is likely a signal of degradation. Suspended sediments from the Kosñipata and Madre de Dios Rivers draining this region show δ13Cwax values aligned with soils from the mean elevation of the catchment, suggesting soils as the sources of waxes exported in rivers, with ages on average 400-2,000 years revealed by compound specific radiocarbon analysis.

  9. Changes in leaf epicuticular wax load and its effect on leaf temperature and physiological traits in wheat cultivars (Triticum aestivum L.) exposed to high temperatures during anthesis

    USDA-ARS?s Scientific Manuscript database

    The physiological functions of epicuticular wax (EW) include reflectance of irradiation and the reduction of water loss. When a plant experiences stressful conditions, most notably, high irradiance and temperature, damage to the photosynthetic apparatus can occur and is signaled by a decrease in the...

  10. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2005-05-01

    The purpose of this study was to characterize carrier systems for inorganic sunscreens based on a matrix composed of carnauba wax and decyl oleate. Ultraviolet radiation attenuators like barium sulfate, strontium carbonate and titanium dioxide were tested. The lipid matrices were used either as capsules or as accompanying vehicles for the pigments in aqueous dispersions. Manufacturing was performed using high pressure homogenization at 300bar and a temperature of 75 degrees C. To evaluate the effect of the pigments on the crystalline structure of the wax-oil mixture, X-ray diffraction and differential scanning calorimetry were used. Further parameters determined were particle size, polydispersity index, z-potential, viscosity and sun protection factor (SPF). Transmission electron microscopy was also applied for visualization of nanoparticles. The X-ray diffraction patterns and the melting points of the lipid mixtures remained unchanged after the pigments were added. The particle sizes of the encapsulated species ranged from 239 to 749.9nm showing polydispersity values between 0.100 and 0.425. Surface charge measurements comprising values up to -40.8mV denoted the presence of stable dispersions. The formulations could be described as ideal viscous presenting viscosities in a range of 1.40-20.5mPas. Significant increases in SPF up to about 50 were reported after the encapsulation of titanium dioxide. Freeze fracture micrographs confirmed the presence of encapsulated inorganic crystals.

  11. The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters.

    PubMed

    Paananen, Riku O; Rantamäki, Antti H; Parshintsev, Jevgeni; Holopainen, Juha M

    2015-12-01

    Tear film lipid layer (TFLL) is constantly exposed to reactive ozone in the surrounding air, which may have detrimental effects on ocular health. Behenyl oleate (BO), a representative tear film wax ester, was used to study the reaction with ozone at the air-water interface. Time-dependent changes in mean molecular area of BO monolayers were measured at different ozone concentrations and surface pressures. In addition, the effect of ascorbic acid on the reaction rate was determined. Reaction was followed using thin-layer chromatography and reaction products were identified using liquid chromatography-electrospray ionization mass spectrometry (LC-MS). Tear fluid samples from healthy subjects were analyzed with LC-MS for any ozonolysis reaction products. Behenyl oleate was found to undergo rapid ozonolysis at the air-water interface at normal indoor ozone concentrations. The reaction was observed as an initial expansion followed by a contraction of the film area. Ascorbic acid was found to decrease the rate of ozonolysis. Main reaction products were identified as behenyl 9-oxononanoate and behenyl 8-(5-octyl-1,2,4-trioxolan-3-yl)octanoate. Similar ozonolysis products were not detected in the tear fluid samples. At the air-water interface, unsaturated wax esters react readily with ozone in ambient air. However, no signs of ozonolysis products were found in the tear fluid. This is most likely due to the antioxidant systems present in tear fluid. Last, the results show that ozonolysis needs to be controlled in future surface chemistry studies on tear film lipids.

  12. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  13. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    PubMed

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.

  14. CER4 Encodes an Alcohol-Forming Fatty Acyl-Coenzyme A Reductase Involved in Cuticular Wax Production in Arabidopsis1[W

    PubMed Central

    Rowland, Owen; Zheng, Huanquan; Hepworth, Shelley R.; Lam, Patricia; Jetter, Reinhard; Kunst, Ljerka

    2006-01-01

    A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a β-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots. PMID:16980563

  15. Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development.

    PubMed

    Shumborski, Sarah J; Samuels, A Lacey; Bird, David A

    2016-10-01

    The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as 'amorphous,' lacking in ultrastructural features, and is often observed as a thin (~80-100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.

  16. Transport barriers made of cutin, suberin and associated waxes.

    PubMed

    Schreiber, Lukas

    2010-10-01

    Cutinized leaf epidermal cells and suberized root cell walls form important lipophilic interfaces between the plant and its environment, significantly contributing to the regulation of water uptake and the transport of solutes in and out of the plant. A wealth of new molecular information on the genes and enzymes contributing to cutin, suberin and wax biosynthesis have become available within the past few years, which is examined in the context of the functional properties of these barriers in terms of transport and permeability. Recent progress made in measuring transport properties of cutinized and suberized barriers in plants is reviewed, and promising approaches obtained with Arabidopsis and potato that might link the molecular information with transport properties are suggested. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Late-Quaternary Molecular Isotopic Paleohydrology of Lake Junin, Peru

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Liu, C.; Rodbell, D. T.; Abbott, M. B.

    2013-12-01

    There is great potential for reconstructing past changes in the hydrologic cycle using the hydrogen isotopic composition of plant-wax biomarkers. At present, empirical relationships relating plant-wax hydrogen isotope compositions (δDwax) to source water are almost exclusively based upon modern plants, soils and sediments. Relatively little is known about how plant-wax hydrogen isotopes track source water through time. Here we take advantage of existing paleoisotopic information from Lake Junin in the central Peruvian Andes to evaluate the temporal fidelity of δDwax to source water δD. In Lake Junin and the nearby region, oxygen isotopic records from lacustrine carbonates, speleothems and ice-cores provide robust constraints on the isotopic composition of lake water and precipitation in the past. Combined with new measurements of δDwax in Lake Junin sediments, these data allow us to evaluate the isotopic, climatic and vegetation influences on δDwax over the past 20,000 years. The n-alkanoic acid δDwax values exhibit trends through time that are similar to those for precipitation and lakewater δD. Highly negative δDwax values during the Last Glacial Maximum mirror depleted lakewater and precipitation δD values, more positive δDwax values at the beginning of the Holocene correspond to more enriched water δD values, and decreasing δDwax values over the past 10,000 years parallel the decreasing δD of lakewater and precipitation. However, the magnitude of the δDwax shifts are much larger than can be explained by changing δD water values. For example, the enrichment of δDwax values at the beginning of the Holocene is +30‰ and +80‰ larger than those of lakewater or precipitation δD, respectively. These differences could reflect changes in vegetation type, shifting proportions of aquatic and terrestrial plant sources, or environmental factors such as aridity. Vegetation type is an unlikely explanation as pollen abundances indicate only minor fluctuations, at least during the Holocene. Changing proportions of aquatic plant-wax sources may have had some influence as shorter-chain acids from aquatic macrophytes are more abundant in the early Holocene. However, aridity likely had a major role through greater evaporative isotopic enrichment of leaf and/or soil water. Early Holocene lake waters were significantly more highly evaporated indicating overall more arid conditions when leaf-wax δD values are most positive. Comparison of Lake Junin plant-wax and water δD values over the past 20,000 years indicate that although δDwax reflects trends in water δD, there are potentially large influences from evapotranspiration and shifting proportions of aquatic sources. While these factors have been previously identified in spatial calibration studies, our temporal calibration results emphasize the need to critically evaluate these influences on molecular δD at a single location through time.

  18. Recyclable zein-coated kraft paper and linerboard

    Treesearch

    Nicholas Parris; Marguerite Sykes; Leland C. Dickey; Jack L. Wiles; Thomas J. Urbanik; Peter H. Cooke

    2002-01-01

    Recyclability of kraft paper and linerboard coated with commercial zein and paraffin wax or a zein-lipid mixture was evaluated using conventional recycling processes. Zein, an alcohol-soluble protein from corn, exhibits both grease and water vapor barrier properties. Strength properties, grease resistance, and water vapor barrier proper-ties were measured on handsheets...

  19. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  20. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  1. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  2. Production of solid lipid nanoparticles (SLN): scaling up feasibilities.

    PubMed

    Dingler, A; Gohla, S

    2002-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as a new colloidal drug carrier system. In contrast to polymeric systems, such as Polylactic copolyol microcapsules, these systems show with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes, and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by 'hot homogenization' of melted lipids at elevated temperatures or by a 'cold homogenization' process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization. Based on the chosen fat components, a novel and easy manufacturing and scaling-up method was developed to maintain chemical and physical integrity of the encapsulated active ingredients in the carrier.

  3. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status.

    PubMed

    Lü, Shiyou; Zhao, Huayan; Des Marais, David L; Parsons, Eugene P; Wen, Xiaoxue; Xu, Xiaojing; Bangarusamy, Dhinoth K; Wang, Guangchao; Rowland, Owen; Juenger, Thomas; Bressan, Ray A; Jenks, Matthew A

    2012-07-01

    Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty acids tetracosanoic acid (C₂₄) and hexacosanoic acid (C₂₆). Relative to the wild type, cer9 mutants exhibit elevated cuticle membrane thickness over epidermal cells and cuticular ledges with increased occlusion of the stomatal pore. The cuticular phenotypes of cer9 are associated with delayed onset of wilting in plants experiencing water deficit, lower transpiration rates, and improved water use efficiency measured as carbon isotope discrimination. The CER9 protein thus encodes a novel determinant of plant drought tolerance-associated traits, one whose deficiency elevates cutin synthesis, redistributes wax composition, and suppresses transpiration. Map-based cloning identified CER9, and sequence analysis predicted that it encodes an E3 ubiquitin ligase homologous to yeast Doa10 (previously shown to target endoplasmic reticulum proteins for proteasomal degradation). To further elucidate CER9 function, the impact of CER9 deficiency on interactions with other genes was examined using double mutant and transcriptome analyses. For both wax and cutin, cer9 showed mostly additive effects with cer6, long-chain acyl-CoA synthetase1 (lacs1), and lacs2 and revealed its role in early steps of both wax and cutin synthetic pathways. Transcriptome analysis revealed that the cer9 mutation affected diverse cellular processes, with primary impact on genes associated with diverse stress responses. The discovery of CER9 lays new groundwork for developing novel cuticle-based strategies for improving the drought tolerance and water use efficiency of crop plants.

  4. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

    PubMed

    Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei

    2017-11-28

    The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

  5. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.).

    PubMed

    Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua

    2018-03-05

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary alcohols in hexaploid wheat and in response to multiple environmental stresses.

  7. Investigating genetic loci that encode plant-derived paleoclimate proxies

    NASA Astrophysics Data System (ADS)

    Bender, A. L. D.; Suess, M.; Chitwood, D. H.; Bradley, A. S.

    2016-12-01

    Long chain (>C25) n-alkanes in sediments predominantly derive from terrestrial plant waxes. Hydrogen isotope ratios (δD) of leaf wax hydrocarbons correlate with δDH2O of precipitation and are commonly used as paleoclimate proxies. However, biological variability in the isotopic fractionations between water and plant materials also affects the n-alkane δD values. Correct interpretation of this paleoclimate proxy requires that we resolve genetic and environmental effects. Genetic variability underlying differences in leaf wax structure and isotopic composition can be quantitatively determined through the use of model organisms. Interfertile Solanum sect. Lycopersicon (tomato) species provide an ideal model species complex for this approach. We used a set of 76 precisely defined near-isogenic lines (introgression lines [ILs]) in which small genomic regions from the wild tomato relative Solanum pennellii have been introduced into the genome of the domestic tomato, S. lycopersicum. By characterizing quantitative traits of these ILs (leaf wax structure and isotopic composition), we can resolve the degree to which each trait is regulated by genetic versus environmental factors. We present data from two growth experiments conducted with all 76 ILs. In this study, we quantify leaf wax traits, including δD values, δ13C values, and structural metrics including the methylation index (a variable that describes the ratio of iso­- and anteiso- to n-alkanes). Among ILs, δD values vary by up to 35‰ and 60‰ for C31 and C33 n-alkanes, respectively. Many ILs have methylation indices that are discernably different from the parent domesticated tomato (p < 0.001), which suggests that methylation is a highly polygenic trait. This pattern is similar to the genetics that control leaf shape, another trait commonly used as a paleoclimate proxy. Based on our preliminary analysis, we propose candidate genes that control aspects of plant physiology that affect these quantitative traits. Our results have important implications for uncovering the degree to which we can expect environmental versus genetic factors to modulate variability in n-alkane δD values. These findings can inform the interpretation of the proxy signal recovered from the geological record.

  8. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    PubMed

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. The effects of four arthropod diets on the body and organ weights of the leopard frog, Rana pipiens, during vitellogenesis.

    PubMed

    Lehman, G C

    1978-12-01

    Wild-caught adult Rana pipiens females were captured in midsummer and fed diets of crickets, flies sowbugs or wax moth larvae during a three-month period of active vitellogenesis. The cricket diet supported the most extensive body weight gain during this time and promoted a prolonged period of weight increase in an additional long-term study. Synchronous growth of the oocytes occurred in all four groups, but the ovaries and oviducts of cricket-fed animals were significantly larger than those of frogs on the other three diets. The significantly higher liver weights of frogs fed wax moth larvae may have reflected an augmentation of hepatic energy stores. Fat body weights were also highest in this group of animals. Frogs fed crickets and wax moth larvae possessed larger fat bodies than did the midsummer control animals killed immediately after their arrival in the laboratory. In contrast, frogs fed flies and sowbugs had smaller fat bodies than did the initial controls, suggesting that animals on these diets had utilized fat body lipid during vitellogenesis. Gastrocnemius and final body weights were lowest in frogs fed wax moth larvae. These findings may have reflected the nutritional content of the diet or the reduction in appetite frequently noted in these animals during observations of feeding behavior.

  10. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    PubMed

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Identification and Synthesis of Branched Wax-type Esters, Novel Surface Lipids from the Spider Argyrodes elevatus (Araneae: Theridiidae).

    PubMed

    Chinta, Satya Prabhakar; Goller, Stephan; Uhl, Gabriele; Schulz, Stefan

    2016-09-01

    The analysis of cuticular extracts from the kleptoparasitic spider Argyrodes elevatus revealed the presence of unusual esters, new for arthropods. These novel compounds proved to be methyl-branched long-chain fatty acid esters with methyl branches located either close or remote from the internally located ester group. The GC/MS analysis of the prosoma lipid blend from the male cuticle contained one major component, undecyl 2-methyltridecanoate (1). In contrast, four major wax-type esters, 2-methylundecyl 2,8-dimethylundecanoate (2), 2,8-dimethylundecyl 2,8-dimethylundecanoate (3), heptadecyl 4-methylheptanoate (4), and 14-methylheptadecyl 4-methylheptanoate (5), were identified in the lipid blend of female prosomata. Structure assignments were based on mass spectra, gas chromatographic retention indices, and microderivatization. Unambiguous proof of postulated structures was ensured by an independent synthesis of all five esters. Preferentially, odd-numbered carbon chains pointed to a distinct biosynthetic pathway, different from that of common fatty acids, because one or two C 3 starter units are incorporated during the biosynthesis of all acid and alcohol building blocks present in the five esters. The striking sexual dimorphism together with the unique biosynthesis points to a function of the esters in chemical communication of the spiders, although no behavioral data are currently available to test this assumption. © 2016 Wiley-VHCA AG, Zürich.

  12. Diel rhythmicity of lipid-body formation in a coral- Symbiodinium endosymbiosis

    NASA Astrophysics Data System (ADS)

    Chen, W.-N. U.; Kang, H.-J.; Weis, V. M.; Mayfield, A. B.; Jiang, P.-L.; Fang, L.-S.; Chen, C.-S.

    2012-06-01

    The biogenesis of intracellular lipid bodies (LBs) is dependent upon the symbiotic status between host corals and their intracellular dinoflagellates (genus Symbiodinium), though aside from this observation, little is known about LB behavior and function in this globally important endosymbiosis. The present research aimed to understand how LB formation and density are regulated in the gastrodermal tissue layer of the reef-building coral Euphyllia glabrescens. After tissue fixation and labeling with osmium tetroxide, LB distribution and density were quantified by imaging analysis of serial cryo-sections, and a diel rhythmicity was observed; the onset of solar irradiation at sunrise initiated an increase in LB density and size, which peaked at sunset. Both LB density and size then decreased to basal levels at night. On a seasonal timescale, LB density was found to be significantly positively correlated with seasonal irradiation, with highest densities found in the summer and lowest in the fall. In terms of LB lipid composition, only the concentration of wax esters, and not triglycerides or sterols, exhibited diel variability. This suggests that the metabolism and accumulation of lipids in LBs is at least partially light dependent. Ultrastructural examinations revealed that the LB wax ester concentration correlated with the number of electron-transparent inclusion bodies. Finally, there was a directional redistribution of the LB population across the gastroderm over the diel cycle. Collectively, these data reveal that coral gastrodermal LBs vary in composition and intracellular location over diel cycles, features which may shed light on their function within this coral-dinoflagellate mutualism.

  13. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  14. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  15. Effects of mesquite gum-candelilla wax based edible coatings on the quality of guava fruit (Psidium guajava L.)

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Bosquez-Molina, E.; Stolik, S.; Sánchez, F.

    2005-06-01

    The ability of composite edible coatings to preserve the quality of guava fruit (Psidium guajava L.) at 20ºC was studied for a period of 15 days. The edible coatings were formulated with candelilla wax blended with white mineral oil as the lipid phase and mesquite gum as the structural material. The use of edible coatings prolonged the shelf life of treated fruits by retarding ethylene emission and enhancing texture as compared to control samples. At the sixth day, the ethylene produced by the control samples was fivefold higher than the ethylene produced by the coated samples. In addition, the physiological weight loss of coated fruits was nearly 30% lower than the control samples.

  16. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability

    USDA-ARS?s Scientific Manuscript database

    The impact of water deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability, were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, ...

  17. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    PubMed Central

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  19. Leaf wax n-alkane patterns from plants and topsoils in the semi-humid to arid southern Caucasus region as a base for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Bliedtner, Marcel; von Suchodoletz, Hans; Schäfer, Imke; Zech, Roland

    2017-04-01

    Leaf waxes of terrestrial plants are relatively resistant against degradation and can thus serve as valuable biomarkers that are preserved in various sedimentary archives for millenia. Particularly long-chain n-alkanes are increasingly used for paleoenvironmental studies as they have the great potential to reconstruct past changes in vegetation and climate. However, prior to any robust interpretation of the homologue patterns of long-chain n-alkanes, reference samples from modern vegetation and topsoil material should be investigated at a regional scale, because it has been questioned recently, whether n-alkane patterns are suitable to distinguish between different vegetation types at a global scale (Bush and McInerney, 2013). Apart from Central and Southeastern Europe (Zech et al., 2013; Schäfer et al., 2016), systematic regional studies are still largely lacking. To address this issues and to test the potential of leaf wax n-alkanes for paleoenvironmental studies in the semi-humid to arid southern Caucasus region, we investigated the influence of different vegetation types on the leaf wax signal in modern plants and topsoil material in eastern Georgia. We sampled modern plant and topsoil (0-5 cm) material from (i) grassland sites that included steppe, cultivated grassland and meadows, and (ii) from sites that are dominated by deciduous hornbeam forests. The n-alkane results show distinct differences between samples from sites with grassland and deciduous forests and thus corroborate our results from Central and Southeastern Europe (Schäfer et al., 2016): n-Alkanes from grassland sites are mainly dominated by C31 and C33, while n-alkanes from deciduous sites show high abundances of C27 and C29. Thus, chain-length ratios allow to discriminate between these vegetation types and have a great potential when used for paleoenvironmental reconstructions at least in this region. We updated the existing end-member model of Zech et al. (2013) which accounts for degradation effects and allows semi-quantitative reconstructions of past changes in vegetation types. References Bush, Rosemary T.; McInerney, Francesca A. (2013): Leaf wax n-alkane distributions in and across modern plants. Implications for paleoecology and chemotaxonomy. In: Geochimica et Cosmochimica Acta 117, S. 161-179. Schäfer, Imke; Lanny, Verena; Franke, Jörg; Eglinton, Timothy I.; Zech, Michael; Vysloužilová, Barbora; Zech, Roland (2016): Leaf waxes in litter and topsoils along a European transect. In: SOIL Discuss., S. 1-18. Zech, Roland; Zech, Michael; Marković, Slobodan; Hambach, Ulrich; Huang, Yongsong (2013): Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, Northern Serbia. In: Palaeoge-ography, Palaeoclimatology, Palaeoecology 387, S. 165-175.

  20. Development of lamellar structures in natural waxes - an electron diffraction investigation

    NASA Astrophysics Data System (ADS)

    Dorset, Douglas L.

    1999-06-01

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.

  1. Scaling up feasibility of the production of solid lipid nanoparticles (SLN).

    PubMed

    Gohla, S H; Dingler, A

    2001-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as colloidal drug carrier system. In contrast to polymeric systems, such as polylactic copolyol capsules, these systems show up with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by "hot homogenisation" of melted lipids at elevated temperatures or a "cold homogenization" process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization (APV Deutschland GmbH, D-Lübeck). Based on the chosen fat components, a novel and easy manufacturing and scaling up method was developed to maintain chemical and physical integrity of encapsulated active and carrier.

  2. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid.

    PubMed

    Martin, Laetitia B B; Romero, Paco; Fich, Eric A; Domozych, David S; Rose, Jocelyn K C

    2017-07-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait)

    PubMed Central

    2013-01-01

    Background The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. Results This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. Conclusions The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers. PMID:23815794

  4. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait).

    PubMed

    Le Provost, Grégoire; Domergue, Frédéric; Lalanne, Céline; Ramos Campos, Patricio; Grosbois, Antoine; Bert, Didier; Meredieu, Céline; Danjon, Frédéric; Plomion, Christophe; Gion, Jean-Marc

    2013-07-01

    The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.

  5. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    PubMed Central

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less

  7. Mutation of the RESURRECTION1 Locus of Arabidopsis Reveals an Association of Cuticular Wax with Embryo Development1

    PubMed Central

    Chen, Xinbo; Goodwin, S. Mark; Liu, Xionglun; Chen, Xinlu; Bressan, Ray A.; Jenks, Matthew A.

    2005-01-01

    Insertional mutagenesis of Arabidopsis (Arabidopsis thaliana) was used to identify a novel recessive mutant, designated resurrection1 (rst1), which possesses a dramatic alteration in its cuticular waxes and produces shrunken nonviable seeds due to arrested embryo development. The RST1 gene sequence associated with these phenotypes was verified by three independent, allelic, insertion mutants, designated rst1-1, rst1-2, and rst1-3, with inserts in the first exon, 12th intron, and fourth exon, respectively. These three rst1 allelic mutants have nearly identical alterations in their wax profiles and embryo development. Compared to wild type, the wax on rst1 inflorescence stems is reduced nearly 60% in total amount, has a proportional reduction in aldehydes and aldehyde metabolites, and has a proportional increase in acids, primary alcohols, and esters. Compared to wild type, the C29 alkanes on rst1 are nearly 6-fold lower, and the C30 primary alcohols are 4-fold higher. These results indicate that rst1 causes shunting of most wax precursors away from alkane synthesis and into the primary-alcohol-producing branch of the pathway. In contrast to stems, the wax on rst1 mutant leaves increased roughly 43% in amount relative to the wild type, with the major increase occurring in the C31 and C33 alkanes. Unique among known wax mutants, approximately 70% of rst1 seeds are shrunken and nonviable, with these being randomly distributed within both inflorescence and silique. Viable seeds of rst1 are slightly larger than those of wild type, and although the viable rst1 seeds contain more total triacylglycerol-derived fatty acids, the proportions of these fatty acids are not significantly different from wild type. Shrunken seeds contain 34% of the fatty acids of wild-type seeds, with proportionally more palmitic, stearic, and oleic acids, and less of the longer and more desaturated homologs. Histological analysis of aborted rst1 seeds revealed that embryo development terminates at the approximate heart-shaped stage, whereas viable rst1 and wild-type embryos develop similarly. The RST1 gene encodes a predicted 1,841-amino acid novel protein with a molecular mass of 203.6 kD and a theoretical pI of 6.21. The RST1 transcript was found in all tissues examined including leaves, flowers, roots, stems, and siliques, but accumulation levels were not correlated with the degree to which different organs appeared affected by the mutation. The new RST1 gene reveals a novel genetic connection between lipid synthesis and embryo development; however, RST1's exact role is still quite unknown. The degree to which RST1 is associated with lipid signaling in development is an important focus of ongoing studies. PMID:16183838

  8. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation.

    PubMed

    Tapia, G; Morales-Quintana, L; Parra, C; Berbel, A; Alcorta, M

    2013-07-01

    The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.

  9. Preservation of Plant Biomolecules and the Relevance to the Interpretation of Paleoenvironmental Signals: Tertiary Metasequoia Fossils as Examples

    NASA Astrophysics Data System (ADS)

    Yang, H.; Leng, Q.

    2004-12-01

    The degradation and preservation of biomolecules in plant tissues not only affects the inference on paleoecology of ancient plants but also bears significance in the interpretation of paleoenvironmental signals. Using a combined SEM and geochemical approach, we are able to show the source, liability, and preservation of structural biopolymers from morphologically well-preserved Metasequoia tissues from three Tertiary deposits. We detected a continuum of biomolecular preservation in this evolutionarily-conserved conifer. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was applied to solvent-extracted residues from both fossil leaf and wood remains in comparison with tissues from their living counterparts. The late Paleocene-early Eocene leaves from Ellesmere Island, Canadian Arctic Archipelago, exhibit the best quality of biochemical preservation and show pyrolysis products derived from labile biomolecules characterized by large amounts of polysaccharides. These labile biomolecules are the oldest record of these kinds so far characterized by the pyrolysis technology. The middle Eocene leaf tissues from Axel Heiberg Island, Canadian Arctic Archipelago, yielded slightly lesser amounts of polysaccharide moieties, but the lignin products are similar to those identified from the Ellesmere Island fossils. Compared with these Arctic materials, the Metasequoia leaves from Miocene Clarkia, Idaho, USA, show the lowest quality of molecular preservation, characterized by a dramatic reduction of polysaccharides. This continuum of relative quality of biomolecular preservation is further confirmed by SEM observations of transverse sections of these fossil leaves. The investigation revealed tissue-specific degradation, and our data support the in-situ polymerization hypothesis for the origin of long-chain homologous pairs of aliphatic n-alk-1-enes/n-alkanes as leaf alteration products. The preferential degradation and selective removal of polysaccharides may be significant in estimating plant paleo-productivity whereas the addition of aliphatic components to the leaf wax lipid pool may potentially contribute to the accuracy of compound specific isotope analysis using these lipid markers.

  10. The β-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, Plays a Key Role in Synthesis of Barley Leaf Wax and Germination of Barley Powdery Mildew.

    PubMed

    Li, Chao; Haslam, Tegan M; Krüger, Anna; Schneider, Lizette M; Mishina, Kohei; Samuels, Lacey; Yang, Hongxing; Kunst, Ljerka; Schaffrath, Ulrich; Nawrath, Christiane; Chen, Guoxiong; Komatsuda, Takao; von Wettstein-Knowles, Penny

    2018-04-01

    The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, β-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.

  11. The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion1[C][W

    PubMed Central

    Panikashvili, David; Savaldi-Goldstein, Sigal; Mandel, Tali; Yifhar, Tamar; Franke, Rochus B.; Höfer, René; Schreiber, Lukas; Chory, Joanne; Aharoni, Asaph

    2007-01-01

    The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C16-18 fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses. PMID:17951461

  12. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion.

    PubMed

    Panikashvili, David; Savaldi-Goldstein, Sigal; Mandel, Tali; Yifhar, Tamar; Franke, Rochus B; Höfer, René; Schreiber, Lukas; Chory, Joanne; Aharoni, Asaph

    2007-12-01

    The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C(16-18) fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses.

  13. Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana

    PubMed Central

    Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition. PMID:24260561

  14. Evaluation and Quantitation of Intact Wax Esters of Human Meibum by Gas-Liquid Chromatography-Ion Trap Mass Spectrometry

    PubMed Central

    Butovich, Igor A.; Arciniega, Juan C.; Lu, Hua; Molai, Mike

    2012-01-01

    Purpose. Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Methods. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. Results. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C16–C18 fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C16:0-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C18:0-FA was 43:57. Interestingly, C17:0-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. Conclusions. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum. PMID:22531701

  15. Evaluation and quantitation of intact wax esters of human meibum by gas-liquid chromatography-ion trap mass spectrometry.

    PubMed

    Butovich, Igor A; Arciniega, Juan C; Lu, Hua; Molai, Mike

    2012-06-20

    Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C(16)-C(18) fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C(16:0)-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C(18:0)-FA was 43:57. Interestingly, C(17:0)-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum.

  16. Differential Lipid Composition and Gene Expression in the Semi-Russeted “Cox Orange Pippin” Apple Variety

    PubMed Central

    Legay, Sylvain; Cocco, Emmanuelle; André, Christelle M.; Guignard, Cédric; Hausman, Jean-Francois; Guerriero, Gea

    2017-01-01

    Russeting is characterized by a particular rough and brown phenotype, which is mainly due to the accumulation of suberin in the inner part of the epidermal cell walls. In our previous bulk transcriptomic analysis, comparing fully russeted, and waxy apple varieties, showed, in apple fruit skin, a massive decreased expression of cutin, wax and some pentacyclic triterpene biosynthesis genes in the russeted varieties, with an expected concomitant enhanced expression of the suberin biosynthetic genes. In the present work, we performed a deep investigation of the aliphatic composition of the cutin, suberin, waxes, and triterpenes in the waxy and russeted patches of the semi-russeted apple variety “Cox Orange Pippin.” A targeted gene expression profiling was performed to validate candidate genes which were identified in our previous work and might be involved in the respective metabolic pathways. Our results showed that a decrease of cuticular waxes, ursolic acid and oleanolic acid, accompanied by an accumulation of alkyl-hydroxycinamates and betulinic acid, occurs in the russeted patches. The suberin monomer composition is characterized by specific occurrence of 20, 22, and 24 carbon aliphatic chains, whereas cutin is mainly represented by common C16 and C18 aliphatic chains. This work depicts, for the first time in apple, the complex composition of suberin, cutin, waxes and triterpenes, and confirms the strong interplay between these epidermal polymers in apple fruit skin. PMID:29018466

  17. Differential Lipid Composition and Gene Expression in the Semi-Russeted "Cox Orange Pippin" Apple Variety.

    PubMed

    Legay, Sylvain; Cocco, Emmanuelle; André, Christelle M; Guignard, Cédric; Hausman, Jean-Francois; Guerriero, Gea

    2017-01-01

    Russeting is characterized by a particular rough and brown phenotype, which is mainly due to the accumulation of suberin in the inner part of the epidermal cell walls. In our previous bulk transcriptomic analysis, comparing fully russeted, and waxy apple varieties, showed, in apple fruit skin, a massive decreased expression of cutin, wax and some pentacyclic triterpene biosynthesis genes in the russeted varieties, with an expected concomitant enhanced expression of the suberin biosynthetic genes. In the present work, we performed a deep investigation of the aliphatic composition of the cutin, suberin, waxes, and triterpenes in the waxy and russeted patches of the semi-russeted apple variety "Cox Orange Pippin." A targeted gene expression profiling was performed to validate candidate genes which were identified in our previous work and might be involved in the respective metabolic pathways. Our results showed that a decrease of cuticular waxes, ursolic acid and oleanolic acid, accompanied by an accumulation of alkyl-hydroxycinamates and betulinic acid, occurs in the russeted patches. The suberin monomer composition is characterized by specific occurrence of 20, 22, and 24 carbon aliphatic chains, whereas cutin is mainly represented by common C16 and C18 aliphatic chains. This work depicts, for the first time in apple, the complex composition of suberin, cutin, waxes and triterpenes, and confirms the strong interplay between these epidermal polymers in apple fruit skin.

  18. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2010-01-01

    The aim of this study was to encapsulate ethylhexyl methoxycinnamate (EMC), a commonly used UVB filter, in a solid lipid matrix in order to obtain microparticles and then nanoparticles to reduce its photo-instability under UV light exposure. Glyceryl behenate, rice bran wax and ozokerite were investigated for encapsulating EMC. The suspensions of nanoparticles contained 70% encapsulated EMC (relative to the lipid mass). The absorbance level at 310 nm of suspensions containing nanoparticles was more than twice that of those containing microparticles. So, decreasing the size of particles improved the efficiency of light protection, regardless of the lipid material used. Moreover, free EMC presented a 30% loss of its efficiency after 2 h of irradiation, whereas the three NLC formulations showed a loss of absorbency between 10% and 21%. The in vitro cutaneous penetration test did not show a higher potential penetration for EMC contained in nanosuspensions compared to free EMC.

  19. Abiotic Condensation Synthesis of Glyceride Lipids and Wax Esters Under Simulated Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ∘C to 300 ∘C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ∘C and 250 ∘C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ∘C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ∘C and 250 ∘C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  20. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.

  1. Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Pagani, Mark

    2013-06-01

    Local climate and environment broadly affect the deuterium/hydrogen (D/H) ratios of plant materials, however the degree to which an individual plant's leaf waxes D/H ratios are affected by these parameters remains in question. Understanding these issues is particularly important in order to reconstruct past floral transitions and changes in the paleohydrologic cycle. For this study, we sampled five co-occurring tree species, Acer rubrum, Platanus occidentalis, Juniperus virginiana, Pinus taeda, and Pinus strobus and soils at forty sites along the East Coast of the US, from Florida to Maine. Hydrogen isotopic compositions of leaf wax n-alkanes, stem and surface waters were analyzed and compared against high-resolution temperature, precipitation, relative humidity, and vapor pressure deficit data to determine environmental controls on isotopic composition. Our results demonstrate that each tree species produce a unique distribution of n-alkanes with distinct chain length pattern. Average n-alkane chain lengths recovered from soils, A. rubrum, and J. virginiana leaves show significant correlations with mean annual temperature. δD values of A. rubrum leaf n-alkanes were strongly correlated to modeled mean annual precipitation δD values and other climate parameters related to latitude (i.e. temperature, relative humidity, vapor pressure deficit), while the δD values of J. virginiana n-alkanes were not. Differences in correspondence may reflect the timing of leaf wax synthesis between the two species. Further, soil n-alkane D/H compositions were strongly correlated to modeled mean annual precipitation δD values, while the apparent hydrogen isotopic fractionation was not. These findings indicate that the isotope ratio of n-alkanes from soils in Eastern North American forests and similar ecosystems likely represents a time-averaged value that smooth out the environmental influence any one plant experiences.

  2. Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana.

    PubMed

    Ménard, Rozenn; Verdier, Gaëtan; Ors, Mareva; Erhardt, Mathieu; Beisson, Fred; Shen, Wen-Hui

    2014-02-01

    The plant cuticle is a chemically heterogeneous lipophilic layer composed of a cutin polymer matrix and waxes which covers the aerial parts of plants. This layer plays an essential role in the survival of plants by protecting them from desiccation and (a)biotic stresses. Knowledge on the gene networks and mechanisms regulating the synthesis of cuticle components during organ expansion or stress response remains limited however. Here, using five loss-of-function mutants for histone monoubiquitination, we report on the role of two RING E3 ligases, namely HISTONE MONOUBIQUITINATION 1 and 2 (HUB1 and HUB2), in the selective transcriptional activation of four cuticle biosynthesis genes in Arabidopsis thaliana. Microscopy observations showed that in hub1-6 and hub2-2 mutants irregular epidermal cells and disorganized cuticle layers were present in rosette leaves. Water loss measurements on excised rosettes demonstrated that cuticular permeability was significantly increased in the mutants. Chemical analysis of cuticle components revealed that the wax composition was changed and that cutin 16:0 dicarboxylic acid was significantly reduced in all hub mutants. Analysis of transcript levels of selected genes indicated that LACS2, ATT1 and HOTHEAD involved in cutin biosynthesis and CER1 involved in wax biosynthesis were down-regulated in the hub mutants, while the expression of LACERATA, CER3, CER6 and CER10 remained unchanged. Chromatin immunoprecipitation assays further showed that hub mutants are impaired in dynamic changes of histone H2B monoubiquitination at several loci of down-regulated genes. Taken together, these data establish that the regulation of cuticle composition involves chromatin remodeling by H2B monoubiquitination.

  3. Comparison of the Chemical Compositions of the Cuticle and Dufour's Gland of Two Solitary Bee Species from Laboratory and Field Conditions.

    PubMed

    Pitts-Singer, Theresa L; Hagen, Marcia M; Helm, Bryan R; Highland, Steven; Buckner, James S; Kemp, William P

    2017-05-01

    Species-specific biochemistry, morphology, and function of the Dufour's gland have been investigated for social bees and some non-social bee families. Most of the solitary bees previously examined are ground-nesting bees that use Dufour's gland secretions to line brood chambers. This study examines the chemistry of the cuticle and Dufour's gland of cavity-nesting Megachile rotundata and Osmia lignaria, which are species managed for crop pollination. Glandular and cuticular lipid compositions were characterized and compared to each other and according to the nesting experience of adult females. Major lipid classes found were hydrocarbons, free fatty acids, and wax esters. Many components were common to the cuticle and Dufour's glands of each species, yet not identical in number or relative composition. Wax esters and fatty acids were more prevalent in Dufour's glands of M. rotundata than on cuticles. Wax esters were more abundant on cuticles of O. lignaria than in Dufour's glands. In both species, fatty acids were more prevalent in glands of field-collected females compared to any other sample type. Chemical profiles of cuticles and glands were distinct from each other, and, for O. lignaria, profiles of laboratory-maintained bees could be distinguished from those of field-collected bees. Comparison of percentiles of individual components of cuticular and glandular profiles of the same bee showed that the proportions of some cuticular components were predictive of the proportion of the same glandular components, especially for nesting females. Lastly, evidence suggested that Dufour's gland is the major source of nest-marking substances in M. rotundata, but evidence for this role in O. lignaria was less conclusive.

  4. Eemian and Holocene interglacial climate in northwest Greenland inferred from insect assemblages, lipid δ2H, and chitin δ18O preserved in lake sediments

    NASA Astrophysics Data System (ADS)

    McFarlin, J. M.; Axford, Y.; Osburn, M. R.; Lasher, G. E.; Kelly, M. A.; Osterberg, E. C.; Francis, D. R.; Farnsworth, L. B.

    2016-12-01

    We present a millennial-scale reconstruction of Holocene and Last Interglacial (Eemian) climate in northwest Greenland, inferred from insect assemblages (chironomid-inferred temperatures, CITs) and compound-specific organic isotopes (sedimentary lipid δ2H and chitin δ18O). Sediment cores collected from `Wax Lips Lake' (informal name), a non-glacial lake situated <2 km from the present margin of the Greenland Ice Sheet, yield radiocarbon ages that indicate preservation of Holocene lake sediments as well as an underlying unit of interglacial lake sediments that predate the Last Glacial Maximum (LGM). Terrestrial archives of continuous interglacial climate that predate the LGM and capture peak Last Interglacial (LIG) warmth are rare in Greenland and across the glaciated Arctic. Our quantitative estimates of LIG temperatures are derived from CITs and supported by enrichment in stable isotopes of precipitation (in both lipid δ2H and chitin δ18O) and the presence of the warm-dwelling insect Chaoboridae. Our record agrees with estimates of the peak LIG temperature anomaly (relative to the last millennium) from ice cores at NEEM (+8±4°C; Dahl-Jensen et al. 2013), also in northern Greenland. Peak LIG temperatures at both sites exceeded those of the Holocene. We pair an independent temperature proxy with proxies recording the stable isotopic composition of precipitation and lake water at this high-latitude site to provide insight on how hydroclimate changed over Arctic Greenland during two different warm periods - the Holocene Thermal Maximum and the LIG. We find general agreement amongst recorders of lake water isotopic composition, including δ18O of chitin from chironomid head capsules and δ2H of aquatic lipids. We infer the isotopic composition of precipitation from δ2H of long-chain n-alkanes from terrestrial plants. The δ2H of long-chain n-alkanes are internally consistent and deviate from lake water during prolonged periods of warmth, indicating changes in precipitation source, effective moisture, and/or seasonality associated with warming. We also briefly discuss our ongoing work to further characterize the source, distribution and isotopic composition of modern plant lipids in Greenlandic lakes, and thus clarify potential controls on past shifts recorded in sedimentary records.

  5. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    PubMed

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (<0.1%). The melt-granulated captopril in matrix systems containing 50% EC (45P, 100P or 100FP) and the melt-granulated metformin hydrochloride in reservoir systems coated with Kollicoat® SR 30D and Opadry® II (80:20 with 10% weight gain or 70:30 with 20% weight gain) exhibited release profiles adequate to sustained release formulations, for over 450min. Therefore, carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diverse Soil Carbon Dynamics Expressed at the Molecular Level

    NASA Astrophysics Data System (ADS)

    van der Voort, T. S.; Zell, C. I.; Hagedorn, F.; Feng, X.; McIntyre, C. P.; Haghipour, N.; Graf Pannatier, E.; Eglinton, T. I.

    2017-12-01

    The stability and potential vulnerability of soil organic matter (SOM) to global change remain incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and subalpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.

  7. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.

    PubMed

    Burton, Zachary; Bhushan, Bharat

    2006-01-01

    Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.

  8. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling.

    PubMed

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.

  9. The Formation and Function of Plant Cuticles1

    PubMed Central

    Yeats, Trevor H.; Rose, Jocelyn K.C.

    2013-01-01

    The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field. PMID:23893170

  10. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    PubMed Central

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids. PMID:27474711

  11. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  12. Lipoidal labellar secretions in Maxillaria ruiz & pav. (Orchidaceae).

    PubMed

    Davies, K L; Turner, M P; Gregg, A

    2003-03-01

    The labella of Maxillaria acuminata Lindl., M. cerifera Barb. Rodr. and M. notylioglossa Rchb.f., all members of the M. acuminata alliance, produce a viscid wax-like secretion. Histochemical analysis revealed that the chemical composition of the secretion is similar in all three species, consisting largely of lipid and protein. Light microscopy and low-vacuum scanning electron microscopy were used to investigate the secretory process. In a fourth taxon, M. cf. notylioglossa, transmission electron microscopy showed that lipid bodies are associated with smooth endoplasmic reticulum or occur as plastoglobuli within plastids. Lipid bodies vary in appearance and this may reflect differences in chemical composition. They become associated with the plasmalemma and eventually accumulate between the latter and the cell wall. The wall contains no pits or ectodesmata, and it is speculated that lipid passes through the wall as small lipid moieties before eventually reassembling to form lipid globules on the external surface of the cuticle. These globules are able to coalesce forming extensive viscid areas on the labellum. The possible significance of this process to pollination is discussed.

  13. Evaluating sourcing and fluvial integration of plant wax biomarkers from the Peruvian Andes to Amazonian lowlands

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; West, A. J.; Galy, V.

    2017-12-01

    The carbon and hydrogen isotopic compositions (respectively δ13C and δD) of plant wax biomarkers have been widely used to reconstruct past climate and environment. To understand how leaf waxes are sourced within a river catchment, and how their isotopic signature is transferred from source to sink, we study δ13C and δD of C29 n-alkanes and C30 n-alkanoic acids in the Madre de Dios River catchment along the eastern flank of the Peruvian Andes. We sampled soils across a 3.5km elevation transect and find gradients in δ13Cwax (ca. +1.5‰/km) and δDwax (ca. -10 ‰/km) similar to gradients in tree canopy leaves (Feakins et al., 2016 GCA; Wu et al., 2017 GCA). We also collected river suspended sediment samples along the Madre de Dios River and its tributaries, which together drain an area of 75,400 km2 and 6 km of elevation. We utilize soil data and a digital elevation model to construct isoscapes, delineate catchments for each river sampling location, predict river values assuming spatial uniform integration, and compare our predictions with observed values. Although both compounds generally follow isotopic gradients defined by catchment elevations, the dual isotope and compound-class comparison reveals additional processes. For C30 n-alkanoic acid we find an up to 1km lower-than-expected catchment signal, indicating degradation of upland contributions in transit and replacement with lowland inputs. In contrast, mountain-front river locations are susceptible to upland-biases (up to 1km higher sourcing) in C29 n-alkane sourcing, likely due to enhanced erosion and higher leaf wax stock in Andean soil compared to the lowland, and greater persistence of n-alkanes than n-alkanoic acids. For both compounds, the bias is eliminated with several hundred km of river transit across the floodplain. In one location, we identify significant petrogenic contamination of n-alkanes but not n-alkanoic acids. These results indicate the power in combining dual compound classes and dual isotopes to analyze source-to-sink processes and to evaluate sourcing of river exported plant wax biomarkers.

  14. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of the remaining POC, between 10 and 31% is fossil in origin (>26 000 yr), resulting from the physical erosion of ancient sedimentary rock and input of fossil fuel residues from anthropogenic activity, and 16-33% is modern carbon derived from terrestrial and aquatic productivity. These findings have implications both regarding the provenance and vintage of organic matter signatures emanating from the Yellow River basin and similar catchments containing extensive paleosol sequences, as well as for the reactivity and fate of this POC upon supply to adjacent marginal seas.

  15. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon.

    PubMed

    Gorinstein, S; Zemser, M; Haruenkit, R; Chuthakorn, R; Grauer, F; Martin-Belloso, O; Trakhtenberg, S

    1999-06-01

    Recent studies have shown that dietary fiber and polyphenols of vegetables and fruits improve lipid metabolism and prevent the oxidation of low density lipoprotein cholesterol (LDL-C), which hinder the development of atherosclerosis. The goal of this study was to measure the total polyphenol and dietary fiber contents of some tropical fruits (i.e., pineapple, wax apple, rambutan, lichi, guava, and mango) and compare the results to the content of these substances in the better characterized persimmon. It was found that lichi, guava, and ripe mango (cv. Keaw) have 3.35, 4.95, and 6.25 mg of total polyphenols in 100 g fresh fruit, respectively. This is significantly higher than in persimmon, pineapple, wax apple, mature green mango, and rambutan [P < 0.0005 for pineapple (Smooth Cayene variant), wax apple, persimmon, rambutan, mature green mango (cv. Keaw); the value of P < 0.001 is found only for pineapple (Phuket, Queen variant)]. The same relationship was observed for the contents of gallic acid and of dietary fiber. It can be supposed that among the studied fruit, lichi, guava, and ripe mango may be preferable for dietary prevention of atherosclerosis.

  16. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  17. Long-chain (C19-C29) 1-chloro-n-alkanes in leaf waxes of halophytes of the Chenopodiaceae.

    PubMed

    Grossi, Vincent; Raphel, Danielle

    2003-07-01

    The hydrocarbon fraction of leaf waxes of three halophytes of the Chenopodiaceae common to Mediterranean salt marshes (Suaeda vera, Sarcocornia fruticosa and Halimione portulacoides) revealed the presence of a minor series of odd and even chains 1-chloro-n-alkanes ranging from C(19) to C(29). The identification of these new chlorinated plant constituents was based on a combination of mass spectrometry data with selective chlorine detection (CPG-AED) and was confirmed by comparison with authentic standards. The qualitative and quantitative distributions of these 1-chloro-n-alkanes varied inter-specifically. Homologues with an odd carbon-chain were predominant in all species but maximised at C(25) and C(27) in S. vera and S. fruticosa, and at C(27) and C(29) in H. portulacoides. Remarkably, 1-chloro-nonacosane was an abundant homologue only in this latter species. Leaves of S. vera contained 4 to 7 times more of total chloroalkanes than leaves of the other two species. These compounds accounted for 10, 4 and 1% of the hydrocarbon fraction of leaf waxes of S. vera, S. fruticosa and H. portulacoides, respectively. Attempts to link the occurrence of these chloroalkanes with other classes of leaf waxes (n-alkenes, n-aldehydes and n-alcohols) did not allowed a clear precursor-product relationship to be established. The biological functions as well as the mode of synthesis of alkylchlorides in (halophyte) plants remain unknown but undoubtedly deserve further attention.

  18. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    PubMed

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  19. Products from Jojoba: a promising new crop for arid lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    This publication reviews the scientific background of the seed oil of Simmondsia chinensis and presents some conclusions by the Committee on Possibilities of Growing Jojoba as a Commercial Crop. The shrub grows wild over an extensive arid area in the Sonoran Desert that covers parts of Arizona, California and Mexico. The seeds contain about 50% by weight of an unsaturated liquid wax which resembles the oil from the sperm whale (now an endangered species) in chemical composition and physical behaviour. The wax is readily extractable in large quantities, mature plants in the USA yielding as much as 12 lb seedmore » (dry weight). The natural life span appears to exceed 100 years and may be twice this length. The plant can develop without any additional water in an area with an annual rainfall of 8 in-, although it is most prevalent when the rainfall is 15 to 18 inches. Chemical tests have shown that the wax can duplicate sperm oil performance as a high-pressure lubricant and it has industrial advantages over sperm oil. One product with an immediate market-potential is hydrogenated jojoba oil which could be a substitute for carnabuba wax. It is estimated that 17 Indian reservations in California and 9 in Arizona could grow jojoba as a viable industry. The crop could increase the productivity of arid lands not suitable for conventional crops and recommendations are made on continuing and expanding governmental support for development and research. 11 references.« less

  20. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants.

    PubMed

    Gawrońska, H; Bakera, B

    Higher plants, including spider plants, are able to take up and degrade/detoxify various pollutants in the air. Although nearly 120 plant species have been tested for indoor air phytoremediation, to the best of the authors' knowledge, data on particulate matter (PM) phytoremediation from indoor air are not yet available in literature. This work determined the ability of spider plants to take up PM, one of the most harmful pollutants to man, in the indoor air of five rooms housing different activities (a dental clinic, a perfume-bottling room, a suburban house, an apartment and an office). It was found that spider plants accumulate PM of both categories (water washable and trapped in waxes) and in all three size fractions determined and that the amount differed depending on the type of activity taking place in the particular rooms ranging from 13.62 to 19.79 μg/cm 2 . The amount of wax deposited on the leaves of plants grown in these rooms also differed (34.46-72.97 μg/cm 2 ). The results of this study also demonstrated that the amount of PM accumulated on aluminium plates was always significantly lower than that accumulated on the plants' leaves, showing that more than simply gravity forces are involved in PM accumulation on leaf blades.

  1. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare).

    PubMed

    Hebbern, Christopher A; Laursen, Kristian Holst; Ladegaard, Anne H; Schmidt, Sidsel B; Pedas, Pai; Bruhn, Dan; Schjoerring, Jan K; Wulfsohn, Dvoralai; Husted, Søren

    2009-03-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 microg Mn g(-1) dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by (13)C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.

  2. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  3. Inhibition of CUTIN DEFICIENT 2 Causes Defects in Cuticle Function and Structure and Metabolite Changes in Tomato Fruit.

    PubMed

    Kimbara, Junji; Yoshida, Miho; Ito, Hirotaka; Kitagawa, Mamiko; Takada, Wataru; Hayashi, Kayoko; Shibutani, Yusuke; Kusano, Miyako; Okazaki, Yozo; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2013-09-01

    Tomato (Solanum lycopersicum) fruit cuticle has been extensively studied due to its effect on the biochemical and physiological properties of the fruit. To date, several tomato mutants defective in proper cuticle formation have been identified. To gain insight into tomato cuticle formation, we investigated one such mutant, sticky peel/light green (pe lg). We verified the responsible gene by fine mapping and obtained the same conclusion as a previous report. To elucidate the pleiotropic effects of cuticle deficiency caused by the cd2 mutation, CD2 suppression lines were constructed. As found in the pe lg mutant, the suppression lines showed enhanced water permeability and aberrant leaf and fruit cuticles. Water use efficiency of the suppression line was lower than that of the wild type. However, photosynthetic ability was not affected in the suppression line. Since these phenotypes are related to altered deposition of wax and cutin, other lipidic metabolites might be changed, too. To confirm this hypothesis, we conducted metabolite profiling. The metabolite profiling revealed that not only lipid but also sugar, flavonoid and glycoalkaloid metabolites in fruit were changed in the cd2 mutant. These results indicate that CD2 is essential both for normal cutin and wax deposition and for proper accumulation of specific metabolites in tomato fruit.

  4. Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves

    PubMed Central

    Wang, Meiling; Wu, Hongqi; Xu, Jing; Li, Chunlian; Wang, Yong; Wang, Zhonghua

    2017-01-01

    The diploid Aegilops tauschii is the D-genome donor to hexaploid wheat (Triticum aestivum) and represents a potential source for genetic study in common wheat. The ubiquitous wax covering the aerial parts of plants plays an important role in protecting plants against non-stomatal water loss. Cuticular waxes are complex mixtures of very-long-chain fatty acids, alkanes, primary and/or secondary alcohols, aldehydes, ketones, esters, triterpenes, sterols, and flavonoids. In the present work, primary alcohols were identified as the major components of leaf cuticular wax in Ae. tauschii, with C26:0-OH being the dominant primary alcohol. Analysis by scanning electron microscope revealed that dense platelet-shaped wax crystals were deposited on leaf surfaces of Ae. tauschii. Ten putative wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) were identified in the genome of Ae. tauschii. Five of these genes, Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6, were found expressed in the leaf blades. Heterologous expression of the five Ae.tFARs in yeast (Saccharomyces cerevisiae) showed that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 were predominantly responsible for the accumulation of C16:0, C18:0, C26:0, C24:0, and C28:0 primary alcohols, respectively. In addition, nine Ae.tFAR paralogous genes were located on D chromosome of wheat and the wheat nullisomic–tetrasomic lines with the loss of Ae.tFAR3 and Ae.tFAR4 paralogous genes had significantly reduced levels of primary alcohols in the leaf blades. Collectively, these data suggest that Ae.tFAR1, Ae.tFAR2, Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 encode alcohol-forming FARs involved in the biosynthesis of primary alcohols in the leaf blades of Ae. tauschii. The information obtained in Ae. tauschii enables us to better understand wax biosynthesis in common wheat. PMID:28659955

  5. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ( composite function)C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  6. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions.

    PubMed

    McMahon, Anne; Lu, Hua; Butovich, Igor A

    2013-05-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.

  7. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    PubMed Central

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  8. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex.

    PubMed

    Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Jetter, Reinhard; Renne, Charlotte; Faure, Jean-Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2012-07-01

    In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.

  9. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies

    USGS Publications Warehouse

    Ribeiro da Luz, B.

    2006-01-01

    ??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).

  10. Middle to Late Holocene Fluctuations of C3 and C4 Vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B J; Moore, K A; Lehmann, C

    2006-05-26

    A 3.1 meter sediment core was analyzed for stable carbon isotope composition of organic matter and higher plant leaf wax (HPLW) lipid biomarkers to determine Holocene shifts in C{sub 3} (higher high marsh) and C{sub 4} (low and/or high marsh) plant deposition at the Sprague River Salt Marsh, Phippsburg, Maine. The carbon isotope composition of the bulk sediment and the HPLW parallel each other throughout most of the core, suggesting that terrestrial plants are an important source of organic matter to the sediments, and diagenetic alteration of the bulk sediments is minimal. The current salt marsh began to form 2500more » cal yr BP. Low and/or high C{sub 4} marsh plants dominated deposition at 2000 cal yr BP, 700 cal yr BP, and for the last 200 cal yr BP. Expansion of higher high marsh C{sub 3} plants occurred at 1300 and 600 cal yr BP. These major vegetation shifts result from a combination of changes in relative sea-level rise and sediment accumulation rates. Average annual carbon sequestration rates for the last 2500 years approximate 40 g C yr{sup -1} m{sup -2}, and are in strong agreement with other values published for the Gulf of Maine. Given that Maine salt marshes cover an area of {approx}79 km{sup 2}, they represent an important component of the terrestrial carbon sink. More detailed isotopic and age records from a network of sediment cores at Sprague Marsh are needed to truly evaluate the long term changes in salt marsh plant communities and the impact of more recent human activity, including global warming, on salt marsh vegetation.« less

  11. Techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/ZSM-5 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Sawy, A.; Gray, D.; Neuworth, M.

    1984-11-01

    A techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch reactor system was carried out. Mobil bench-scale data were evaluated and scaled to a commercial plant design that produced specification high-octane gasoline and high-cetane diesel fuel. Comparisons were made with three reference plants - a SASOL (US) plant using dry ash Lurgi gasifiers and Synthol synthesis units, a modified SASOL plant with a British Gas Corporation slagging Lurgi gasifier (BGC/Synthol) and a BGC/slurry-phase process based on scaled data from the Koelbel Rheinpreussen-Koppers plant. A conceptual commercial version of the Mobil two-stage process shows a higher process efficiency than a SASOL (US)more » and a BGC/Synthol plant. The Mobil plant gave lower gasoline costs than obtained from the SASOL (US) and BGC/Synthol versions. Comparison with published data from a slurry-phase Fischer-Tropsch (Koelbel) unit indicated that product costs from the Mobil process were within 6% of the Koelbel values. A high-wax version of the Mobil process combined with wax hydrocracking could produce gasoline and diesel fuel at comparable cost to the lowest values achieved from prior published slurry-phase results. 27 references, 18 figures, 49 tables.« less

  12. Effects of sugars on lipid bilayers during dehydration--SAXS/WAXS measurements and quantitative model.

    PubMed

    Lenné, Thomas; Garvey, Christopher J; Koster, Karen L; Bryant, Gary

    2009-02-26

    We present an X-ray scattering study of the effects of dehydration on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine bilayers in the presence of sugars. The presence of sugars has no effect on the average spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, we establish that for low sugar concentrations only a small amount of sugar exclusion occurs. Under these conditions, the effects of sugars on the membrane transition temperatures can be explained quantitatively by the reduction in hydration repulsion between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid headgroups is not required to explain this effect.

  13. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins.

    PubMed

    Feng, Xiaojuan; Vonk, Jorien E; van Dongen, Bart E; Gustafsson, Örjan; Semiletov, Igor P; Dudarev, Oleg V; Wang, Zhiheng; Montluçon, Daniel B; Wacker, Lukas; Eglinton, Timothy I

    2013-08-27

    Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.

  14. Demonstrating the Effect of Surfactant on Water Retention of Waxy Leaf Surfaces

    ERIC Educational Resources Information Center

    Chiu, Yu-Chun; Jenks, Matthew A.; Richards-Babb, Michelle; Ratclif, Betsy B.; Juvik, John A.; Ku, Kang-Mo

    2017-01-01

    We report here the development of an inexpensive and engaging laboratory-based activity that can help students learn about the scientific method and the role of plant epicuticular waxes and surfactant function on waxy plant leaves as real life example in the agricultural industry. Three each of nontreated collard leaves ("Brassica…

  15. Overexpression of transcription factor OsWR2 1 regulates wax/cutin biosynthesis and enhances drought tolerance in rice

    USDA-ARS?s Scientific Manuscript database

    Drought is the major abiotic stress limiting crop production. Plant cuticle represents the outer-most layer of the epidermis and previous studies demonstrate its association with plant response to climatological drought. We report here the functional characterization of the rice ((Oryza sativa L.) W...

  16. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  17. Cold Atmospheric-Pressure Plasmas Applied to Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Pedrow, Patrick; Fernandez, Sulmer; Pitts, Marvin

    2008-10-01

    Active packaging of fruits and vegetables uses films that absorb molecules from or contribute molecules to the produce. Applying uniform film to specific parts of a plant will enhance safe and economic adoption of expensive biofilms and biochemicals which would damage the plant or surrounding environment if misapplied. The pilot application will be to apply wax film to apples, replacing hot wax which is expensive and lowers the textural quality of the apple. The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (Argon + monomer) is sufficiently high to yield electron avalanches. The ``corona onset criterion'' is used to design the cold plasma reactor. The apple will be placed in a treatment chamber downstream from the activation zone. Key physical properties of the film will be measured. The deposition rate will be optimized in terms of economics and fruit surface quality for the purpose of determining if the technique is competitive in food processing plants.

  18. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals.

    PubMed

    Nadiminti, Pavani P; Dong, Yao D; Sayer, Chad; Hay, Phillip; Rookes, James E; Boyd, Ben J; Cahill, David M

    2013-03-13

    Agrochemical spray formulations applied to plants are often mixed with surfactants that facilitate delivery of the active ingredient. However, surfactants cause phytotoxicity and off-target effects in the environment. We propose the use of nanostructured liquid crystalline particles (NLCP) as an alternative to surfactant-based agrochemical delivery. For this, we have compared the application of commercial surfactants, di (2-ethylhexyl) sulfosuccinate and alkyl dimethyl betaine, with NLCP made from phytantriol, at concentrations of 0.1%, 1% and 5% on the adaxial surface of leaves of four plant species Ttriticum aestivum (wheat), Zea mays (maize), Lupinus angustifolius (lupin), and Arabidopsis thaliana. In comparison with the application of surfactants there was less phytotoxicity on leaves of each species following treatment with NLCP. Following treatment of leaves with NLCP analysis of cuticular wax micromorphology revealed less wax solubilization in the monocot species. The results clearly show that there are advantages in the use of NLCP rather than surfactants for agrochemical delivery.

  19. The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes

    NASA Astrophysics Data System (ADS)

    Colazza, Stefano; Lo Bue, Mauro; Lo Giudice, Daniela; Peri, Ezio

    2009-08-01

    Chemical footprints left behind by true bugs are perceived as contact kairomones by scelionid egg parasitoids. Female wasps encountering a contaminated artificial substrate display a characteristic arrestment posture, holding the body motionless and antennating the surface. In the system Nezara viridula (L.) and its egg parasitoid Trissolcus basalis (Wollaston), previous studies have shown that the kairomone mediating such behavior is part of N. viridula’s cuticular hydrocarbons (CHC) and furthermore that the wasp’s ability to discriminate host male and female footprints is mainly based on the presence/absence of nonadecane ( nC19). In this study, the effect of epicuticular waxes of leaves of broad bean, Vicia faba, on wasp responses to footprints of N. viridula females were investigated. Approximately 20% of T. basalis females displayed an arrestment posture when released on the adaxial leaf surfaces of broad bean plants with intact wax layer and without host chemical contamination; whereas ˜70% of wasps displayed the arrestment posture when intact leaves were contaminated by host female footprints. Adaxial leaf surfaces of broad bean plants dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females induced arrestment responses in about 10% of female wasps; the same percentage of arrestment (10%) was observed when the wasps were released on leaves contaminated by host females and subsequently dewaxed. The side of the polymer film that was appressed to the leaf surface, peeled from the contaminated leaves, induced an arrestment posture in about 95% of observed wasps. Scanning electron microscopy (SEM) revealed that the epicuticular waxes occurred as a film densely crystallized as irregularly shaped platelets with spherical granules randomly distributed. These findings demonstrated that epicuticular waxes of broad bean leaves can mediate the foraging behavior of T. basalis females by absorbing contact kairomones of the host.

  20. Lipid Content in Arctic Calanus: a Matter of Season and Size

    NASA Astrophysics Data System (ADS)

    Daase, M.; Søreide, J.; Freese, D.; Hatlebakk, M. K.; Jørgen, B.; Renaud, P.; Gabrielsen, T. M.; Vogedes, D.

    2016-02-01

    Copepods of the genus Calanus are considered key elements of the marine food chain of the Arctic and North Atlantic. They convert low-energy carbohydrates and proteins of their algae diet into high-energy wax ester lipids. These lipids are accumulated over the productive season and stored in a lipid sac which sustains the organism over long periods without algal food supply, and which makes Calanus spp. an important prey item. Here we investigated what determines the variability in lipid content of overwintering stages and adults of Arctic and North Atlantic Calanus species. Using image analysis of lipid sac area, we have estimated individual lipid content of Calanus species in the waters and fjords of Svalbard (78-81oN). Data were collected all year round, at surface and deep waters and in locations under the influence of either Atlantic or Arctic hydrographic conditions. Lipid content showed stage specific seasonal variability which can be related to life history strategies and the phenology of algae blooms. Depth specific differences in lipid content were only observed at the start of the overwintering period. Our data also demonstrate that species specific differences in lipid content were not as fundamentally different as previously assumed. Rather, based on molecular identification of the species, we show that the lipid content of the Arctic C. glacialis and the Atlantic C. finmarchicus is dependent on size alone, challenging the classical understanding of these two species yielding two distinctly different ecosystem services based upon a difference in lipid content.

  1. Microbial biosynthesis of wax esters during desiccation: an adaptation for colonization of the earliest terrestrial environments?

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Brassell, S. C.; Pratt, L. M.

    2008-12-01

    Biosynthesis of wax esters (WE) by prokaryotes in natural systems, notably bacteria from hot springs and marine phytoplankton, is poorly documented, primarily because saponification is a routine step in the analysis of microbial mat lipids. Use of this preparative procedure, critical for characterization of the diagnostic distributions of carboxylic acids in phospholipids, precludes recovery of intact WE. Examination of non-saponified lipids in emergent and desiccated mats with comparable microbial communities from the Warner Lake region, Oregon, reveals increases in the relative abundance (18.6 to 59.9μg/g Corg) and average chain length (C38 to C46) of WE in the latter, combined with assimilation of phytol and tocopherol moieties. Prokaryotes can accumulate WE as storage lipids in vitro, notably at elevated temperature or under nitrogen limiting conditions, but we propose that biosynthesis of long-chain WE that have a low solubility and are resistant to degradation/oxidation may represent an evolutionary strategy to survive desiccation in evaporative environments. Moreover, aeolian transport of desiccated mat-rip-ups between lake flats allows for migration of microbial communities within and between lake flats and basins during arid conditions. Subsequent rehydration within an alkaline environment would naturally saponify WE, and thereby regenerate alcohol and acid moieties that could serve as membrane lipids for the next viable microbial generation. The evolutionary cradle of WE was likely abiotic generation under hydrothermal conditions, which is consistent with the antiquity of the ester linkage necessitated by its integral role in the membranes of Eubacteria (though not Archaea) and in bacteriochlorophyll. The subsequent capability of microbes to biosynthesize WE may have facilitated their survival when nutrients were limiting, and production of long-chain WE (>C40) may represent a further critical evolutionary threshold that enabled their persistence through and during dehydration or desiccation cycles. Thus, production of WE may have facilitated microbial migration to the lake environments that represented the earliest terrestrial ecosystems, and survival through the Great Oxygenation Event.

  2. Lipid Biomarkers and Carbon Isotope Ratios of Lipids Isolated from Acid Mine Drainage Biofilms: Dual Biosignatures for Eukaryotic Evolution and Oxygenation of Primitive Earth

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Fang, J.; Zhang, L.; Li, J.

    2012-12-01

    Lipid analysis and carbon isotope ratios (δ13C) of lipids in biofilms in an acid mine drainage site (AMD) site in western Indiana revealed unique biogeochemical signatures of microeukaryotes, never recorded before. Dominance of photosynthetic microeukaryote Euglena was indicated by the detection of abundant phytadiene, phytol, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids, short-chain (C25-32) wax esters (WE), ergosterol, and tocopherols. The WE were probably synthesized in mitochondria under anoxic conditions by the reverse β-oxidation pathway, whereas the sterols (ergosterol and ergosta-7,22-dien-3β-ol) were likely synthesized in the cytosol in the presence of molecular oxygen. The dual aerobic and anaerobic biosynthetic pathways of Euglena may be a response to survive the recurring anoxic and oxic conditions in primitive Earth, whereby microeukaryotes retained this mechanism of conserved compartmentalization within their physiology to evolve and diversify in extreme conditions. Hydrocarbons, including n-alkenes, phytadienes, and wax esters showed heavy δ13C values than usual. The primary cause for the 13C-enrichment can be attributed to a CO2-limiting system that exists in the AMD, which is further regulated by the pH of the AMD. Floating biofilms BF2, 4, and 6 showed more depleted δ13C values for phytadienes and n-alkenes (average of -23.6‰) as compared to benthic biofilm BF5 (average of -20.8‰), indicating that physiology plays an important role in isotopic discrimination. 13C-enriched values of the esters could result from kinetic isotope effects at two branch points (pyruvate and/or acetyl CoA) in the biosynthetic pathway. Our understanding of biogeochemical conditions in this AMD environment would allow us to identify unique sets of biosignatures that can act as a proxy in deciphering the links between eukaryotic evolutions, oxygenation of the early atmosphere, formation of BIF, and possibly iron-rich extraterrestrial environments.

  3. Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leaves from post-industrial habitats.

    PubMed

    Talik, Ewa; Guzik, Adam; Małkowski, Eugeniusz; Woźniak, Gabriela; Sierka, Edyta

    2018-05-01

    Vascular plants are able to conduct biomineralization processes and collect synthesized compounds in their internal tissues or to deposit them on their epidermal surfaces. This mechanism protects the plant from fluctuations of nutrient levels caused by different levels of supply and demand for them. The biominerals reflect both the metabolic characteristics of a vascular plant species and the environmental conditions of the plant habitat. The SEM/EDX method was used to examine the surface and cross-sections of the Calamagrostis epigejos and Phragmites australis leaves from post-industrial habitats (coal and zinc spoil heaps). The results from this study have showed the presence of mineral objects on the surfaces of leaves of both grass species. The calcium oxalate crystals, amorphous calcium carbonate spheres, and different silica forms were also found in the inner tissues. The high variety of mineral forms in the individual plants of both species was shown. The waxes observed on the leaves of the studied plants might be the initializing factor for the crystalline forms and structures that are present. For the first time, wide range of crystal forms is presented for C. epigejos. The leaf samples of P. australis from the post-industrial areas showed an increased amount of mineral forms with the presence of sulfur.

  4. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny.

    PubMed

    Wang, Aiming; Xia, Qun; Xie, Wenshuang; Dumonceaux, Tim; Zou, Jitao; Datla, Raju; Selvaraj, Gopalan

    2002-06-01

    Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen-pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general.

  5. MIXTA-Like Transcription Factors and WAX INDUCER1/SHINE1 Coordinately Regulate Cuticle Development in Arabidopsis and Torenia fournieri[C][W

    PubMed Central

    Oshima, Yoshimi; Shikata, Masahito; Koyama, Tomotsugu; Ohtsubo, Norihiro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2013-01-01

    The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation. PMID:23709630

  6. 21 CFR 155.200 - Certain other canned vegetables.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Bottom cuts or cuts—tips removed. Bean sprouts Sprouts of the Mung bean Shelled beans Seed shelled from green or wax bean pods, with or without snaps (pieces of immature unshelled pods) Lima beans or butter beans Seed shelled from the pods of the lima bean plant Beets Root of the beet plant Whole; slices or...

  7. 21 CFR 155.200 - Certain other canned vegetables.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Bottom cuts or cuts—tips removed. Bean sprouts Sprouts of the Mung bean Shelled beans Seed shelled from green or wax bean pods, with or without snaps (pieces of immature unshelled pods) Lima beans or butter beans Seed shelled from the pods of the lima bean plant Beets Root of the beet plant Whole; slices or...

  8. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cell...

  9. Changes in Vegetation Cover over the Indian Peninsula and Implications for the Indian Monsoon System during the Holocene

    NASA Astrophysics Data System (ADS)

    Ponton, C.; Giosan, L.; Eglinton, T. I.; Scientific Team Of Indian National Gas Hydrate Program Expedition 01

    2010-12-01

    The Asian monsoon, composed of the East Asian and Indian systems affects the most densely populated region of the planet. The Indian monsoon is one of the most energetic and dynamic climate processes that occur today on Earth, but we still do not have a detailed understanding of large-scale hydrological variability over the Indian peninsula during the Holocene. Previous studies of the salinity variations in the Bay of Bengal indicate that during the last glacial maximum the Indian monsoon system was weaker and precipitation over the area was lower than today. Here we provide the first high resolution Holocene climate record for central India measured on a sediment core recovered offshore the mouth of the Godavari River, on the eastern Indian shelf. The δ13C composition of leaf waxes preserved in the core shows a large range of variation suggesting a major change in the relative proportions of C3 and C4 plant-derived wax inputs during the Holocene. Using reported values for modern plants, we estimate that C3 plants suffered a reduction in the Godavari basin from ~45% to ~15% over the Holocene. Negative excursions of δ13C leaf wax suggest that short-lived events of C3 plant resurgence (and inferred higher precipitation) punctuated the process of aridification of peninsular India. The vegetation structure and inferred aridity in central India is consistent with reconstructions of Indian monsoon precipitation and wind intensity in the Arabian Sea, salinity in the Bay of Bengal, and precipitation proxy records for the East Asian monsoon, suggesting a coherent behavior of the Asian monsoon system over the Holocene.

  10. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots.

    PubMed

    Panikashvili, David; Shi, Jian Xin; Bocobza, Samuel; Franke, Rochus Benni; Schreiber, Lukas; Aharoni, Asaph

    2010-05-01

    Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes. Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predominantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development.

  11. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events.

    PubMed

    Gilding, Edward K; Marks, M David

    2010-10-01

    Transcriptome analysis using the Affymetrix ATH1 platform has been completed on purified trichomes from the gl3-sst mutant. These trichomes display immature features, such as glassy cell walls and blunted branches. The gl3-sst trichome transcriptome was greatly enriched for genes involved in lipid biosynthesis, including those mediating the synthesis of fatty acids and wax. In addition, gl3-sst trichomes displayed reduced expression of the R3 MYBs TRY and CPC, which normally function to limit trichome development. The expression of the MIXTA-like MYB gene NOK was elevated. Members of the MIXTA-like family promote conical cell outgrowth, and in some cases, trichome initiation in diverse plant species. In contrast, NOK limits trichome outgrowth in wild-type Arabidopsis plants. Similar to other MIXTA-like genes, NOK was required for the expansion of gl3-sst trichomes, as the gl3-sst nok double mutant trichomes were greatly reduced in size. Expression of NOK in nok mutants reduced branch formation, whereas in gl3-sst nok, NOK expression promoted trichome cell outgrowth, illustrating duel roles for NOK in both promoting and limiting trichome development. MIXTA-like genes from phylogenetically diverse plant species could substitute for NOK in both nok and gl3-sst nok backgrounds. These findings suggest that certain aspects of NOK and MIXTA-like gene function have been conserved. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  12. Biomarker evidence for increasing aridity in south-central India over the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Wilkes, H.; Prasad, S.; Brauer, A.; Basavaiah, N.; Strecker, M. R.; Sachse, D.

    2012-12-01

    Summer monsoonal rainfall has played an important role in the development and sustenance of the largely agro-based economy in the Indian subcontinent in the recent past. A better understanding of past variations in monsoonal rainfall can therefore lead to an assessment of its potential impact on early human societies. However, our knowledge of spatiotemporal patterns of past monsoon strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from continental archives. Here, we reconstruct centennial-scale hydrological variability associated with changes in the intensity of the Indian Summer Monsoon based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10-m-long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of south-central India. We identified three periods of distinct hydrology over the Holocene in south-central India. The period between 10.4 and 6.5 ka BP was characterized by a relatively high abundance of land-plant biomarkers, such as long-chain n-alkanes. The composition of these leaf-wax n-alkanes (weighted average of concentration of different chain-length n-alkanes, expressed as the ACL index) and their negative δ13C (-30‰ to -33 ‰) indicate the dominance of woody C3 vegetation in the catchment, and negative δD (-170‰ to -175‰) values argue for a wet period due to an intensified monsoon. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 6.5 and 4 ka BP indicate an unstable lake ecosystem, culminating in a transition to arid conditions. Higher ACL values and a pronounced shift to more positive δ13C values (up to -22‰) of leaf-wax n-alkanes over this period indicate a change of dominant vegetation to C4 grasses. Along with a 40‰ increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, we interpret this period to reflect the driest conditions in the region during the last 10 ka. This transition led to protracted late Holocene arid conditions and a permanent saline lake. This is supported by the great abundance of the triterpene lipid tetrahymanol, generally considered as a marker for water-column stratification and salinity. A late Holocene peak of algal/cyanobacterial biomarker input at 1.3 ka BP may represent an event of lake eutrophication, possibly due to human impact and cattle/livestock farming in the catchment. Our record suggests substantial weakening of the monsoon over continental south-central India during the Holocene, placing the onset of aridification at 6.5 ka BP, earlier than observed in marine records throughout the Indian Ocean. Since human colonization in this region, as suggested by archeological evidence, dates back to late Holocene (ca. 3.5/3.2 ka BP) a possible human influence on the observed vegetation change at 6.5 ka BP is unlikely. Despite the prevailing arid conditions in the region since 6.5 ka the availability of freshwater through perennial springs around the lake may have attracted human settlements close to the lake for grazing of animals or small-scale farming.

  13. South Pacific Convergence Zone Changes during the Late Holocene Identified from Hydrogen Isotope Ratios of Terrestrial and Aquatic Biomarkers from Freshwater Lake Sediments in Vanuatu

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Ladd, N.; Nelson, D. B.; Sachs, J. P.; Dubois, N.

    2017-12-01

    The South Pacific Convergence Zone (SPCZ) is one of Earth's major precipitation features. Mean annual rainfall rates are as high as 10 mm/day in the Solomon Islands in the northwest portion of the SPCZ, and decline to 4 mm/day in portions of French Polynesia the southeastern reach of the SPCZ. Coral records suggest that the mean annual position and precipitation intensity associated with the SPCZ have most likely expanded and contracted on decadal to centennial timescales, but existing data is limited, making it difficult to constrain and characterize these changes. Thion Island (15.03 °S, 167.09 °E) is located off the east coast of Espírito Santo in Vanuatu, at an intermediate position in the modern SPCZ. As such, it should be sensitive to major contractions and expansions of the SPCZ, with wetter conditions when the SPCZ expands southeast, and drier conditions when it contracts to the northwest. In order to determine changes in precipitation over the past millennium on Thion Island, we collected sediment cores from two adjacent freshwater lakes on the island, White Lake and Red Lake, and measured compound specific hydrogen isotope ratios (2H/1H) of lipid biomarkers from terrestrial plants (long-chain n-alkanes and n­-alkanoic acids), aquatic plants (mid-chain n­-alkanes and n-alkanoic acids), and microalgae (dinosterol and botryococcenes). For all measured biomarkers, 2H/1H ratios were higher during the Little Ice Age (LIA, late 14th century to early 19th century) relative to the preceding Medieval Climate Anomaly (MCA) and to the 20th century, suggesting drier conditions at this location during the LIA. The magnitude of decrease in 2H/1H ratios was twice as large for microalgal dinosterol ( 40 ‰ decrease) as for leaf waxes associated with higher plants ( 20 ‰ decrease). The leaf wax data likely reflects changes in precipitation isotopes due to the amount effect, while the microalgal values should change with lake water 2H/1H, which is sensitive to both changes in the 2H/1H ratios of incoming precipitation, and to evaporative enrichment of lake water.

  14. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    PubMed Central

    Biresaw, Girma; Gordon, Sherald

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity. PMID:29484216

  15. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  16. LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor.

    PubMed

    Ruffinengo, Sergio; Eguaras, Martin; Floris, Ignazio; Faverin, Claudia; Bailac, Pedro; Ponzi, Marta

    2005-06-01

    The repellent and acaricidal effects of some essential oils from the most typical wild plant species of northern Patagonia, Argentina, on Varroa destructor Anderson & Trueman were evaluated using a complete exposure test. Honey bees, Apis mellifera L., and mites (five specimens of each per dish) were introduced in petri dishes having different oil concentrations (from 0.1 to 25 micro per cage). Survival of bees and mites was registered after 24, 48, and 72 h. An attraction/repellence test was performed using a wax tube impregnated with essential oil and another tube containing wax only. The lowest LD50 values for mites were registered for Acantholippia seriphioides (A. Gray) Mold. (1.27 microl per cage) and Schinus molle L. (2.65 microl per cage) after 24 h, and for Wedelia glauca (Ortega) O. Hoffm. ex Hicken (0.59 microl per cage) and A. seriphioides (1.09 microl per cage) after 72 h of treatment. The oil with the highest selectivity ratio (A. mellifera LD50/V. destructor LD50) was the one extracted from S. molle (>16). Oils of Lippia junelliana (Mold.) Troncoso, Minthostachys mollis (HBK) Grieseb., and Lippia turbinata Grieseb. mixed with wax had repellent properties. None of the oils tested had attractive effects on Varroa mites.

  17. Molecular marker study of extractable organic matter in aerosols from urban areas of China

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Sheng, Guoying; Chen, Xiaojing; Fu, Jiamo; Zhang, Jian; Xu, Yuping

    The solvent-extractable compounds (lipids) of aerosol samples, which were collected from a western suburb of Beijing, in the city of Guiyang and on the outskirts of Guangzhou, P.R. China, using a standard high volume air sampler, were investigated to determine the distributions of homologous compounds and biomarkers. These preliminary results show that all samples contain aliphatic hydrocarbons including n-alkanes, steranes and triterpanes, derived from both biogenic sources (vascular plant wax input) and fossil fuel contamination (coal, crude oil, etc.). Polynuclear aromatic hydrocarbons, which are considered to be combustion products from fossil fuels such as petroleum and, especially in this case, coal burning, are also widely distributed in all samples. Oxygenated compounds (e.g. alkanoic acids, alkanones and alkanols) are present as major fractions and are derived from mainly natural sources. Furthermore, some compositional differences are observed for the organic compounds in samples from different heights above ground. This is interpreted to be due to dilution at higher levels of locally generated aerosol with upper air aerosol transported over longer distances.

  18. Investigations on spruce decline in the Bavarian forest.

    PubMed

    Osswald, W F; Elstner, E F

    1987-01-01

    The primary damaging reactions in spruce needles may operate as follows: 1) Trees under "stress" produce the plant hormone ethylene. 2) Ethylene and ozone react extremely fast forming hydrogen peroxide and formaldehyde, compounds which may damage the wax layer. 3) Ozone as a very aggressive oxidant will inactivate membrane bound enzymes through oxidation of their thiol groups. Thus the translocation of sugars from the chloroplast into the phloem may be inhibited or blocked. The result will be an "over-reduction" of the electron transport chain resulting in the formation of reactive oxygen species in the light. These reactive oxygen species will induce lipid peroxidation and pigment co-oxidation. 4) The visible effects are bleached needles and an impairment of structural resistance against fungal infections. 5) In addition ozone will directly reduce the content of antifungal compounds such as p-HAP. 6) Furthermore p-HAP may be involved in the bleaching reaction after its release from picein. 7) Finally, fungi may penetrate the needles and eventually grow faster in bleached needles. Infected needles will become necrotic and abscise.

  19. Effect of cold storage and packaging material on the major aroma components of sweet cream butter.

    PubMed

    Lozano, Patricio R; Miracle, Evan R; Krause, Andrea J; Drake, Maryanne; Cadwallader, Keith R

    2007-09-19

    The major aroma compounds of commercial sweet cream AA butter quarters were analyzed by GC-olfactometry and GC-MS combined with dynamic headspace analysis (DHA) and solvent-assisted flavor evaporation (SAFE). In addition, the effect of long-term storage (0, 6, and 12 months) and type of wrapping material (wax parchment paper vs foil) on the aroma components and sensory properties of these butters kept under refrigerated (4 degrees C) and frozen (-20 degrees C) storage was evaluated. The most intense compounds in the aroma of pasteurized AA butter were butanoic acid, delta-octalactone, delta-decalactone, 1-octen-3-one, 2-acetyl-1-pyrroline, dimethyl trisulfide, and diacetyl. The intensities of lipid oxidation volatiles and methyl ketones increased as a function of storage time. Refrigerated storage caused greater flavor deterioration compared with frozen storage. The intensity and relative abundance of styrene increased as a function of time of storage at refrigeration temperature. Butter kept frozen for 12 months exhibited lower styrene levels and a flavor profile more similar to that of fresh butter compared to butter refrigerated for 12 months. Foil wrapping material performed better than wax parchment paper in preventing styrene migration into butter and in minimizing the formation of lipid oxidation and hydroxyl acid products that contribute to the loss of fresh butter flavor.

  20. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  1. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  2. Fruiting of browse plants affected by pine site preparation in east Texas

    Treesearch

    John J. Stransky; Douglas Richardson

    1977-01-01

    Pine planting sites prepared by burning yielded 120 kg/ha of browse fruits the third growing season after site treatment. Control plots yielded 74, KG-bladed plots 57, and chopped plots 41 kg/ha. Blackberries, American beautyberry, sumac, Sebastian bush, muscadine grape, blueberries, and southern wax-myrtle were the principal species. Most fruit was available in summer...

  3. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  4. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    PubMed Central

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-01-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033

  5. The nature and origin of sesquiterpenoids in some tertiary fossil resins

    NASA Astrophysics Data System (ADS)

    Grantham, P. J.; Douglas, A. G.

    1980-11-01

    Analyses of two Tertiary fossil resins and a Tertiary montan wax have revealed the presence of a number of sesquiterpenoids. Using gas chromatographic retention data obtained on both polar and non-polar stationary phases and mass spectral comparisons with authentic compounds, the sesquiterpenoids α-cedrene, cedrane, cuparene, cedren-10-one, 8βH cedran-9-one and cuparenic acid have been identified in the fossil resin retinellite and a montain wax (both Oligocene) from lignite beds in the Bovey basin of Devon, England, and in the Pliocene fossil resin ionite from the lone valley of California. U.S.A. The sesquiterpenoids α-cedrene, cuparene and cuparenic acid are characteristic constituents of the essential oils of the Cupressaceae, a family of trees and shrubs of the order Coniferales, and it is argued that these fossil resins, and the montan wax, were derived from older forms of this family of plants. The ketones cedren-10-one and 8βH cedran-9-one, and the saturated hydrocarbon cedrane, are not reported to be constituents of modern genera of Cupressaceae and may have been formed during diagenesis. The cedrane occurring in these deposits appears to be a chemical hydrogenation product of α-cedrene. The ketones, on the other hand, may have resulted from the oxidation of α-cedrene although the mechanism of these reactions is not clear. If the ketones are not undetected constituents of these plants, then the presence in these deposits of both oxidised and fully-reduced α-cedrene products infers that separate phases of oxidation and reduction occurred during the diagenesis of the fossil resins and the montan wax.

  6. A Pleistocene palaeovegetation record from plant wax biomarkers from the Nachukui Formation, West Turkana, Kenya

    PubMed Central

    Uno, Kevin T.; Polissar, Pratigya J.; Kahle, Emma; Feibel, Craig; Harmand, Sonia; Roche, Hélène; deMenocal, Peter B.

    2016-01-01

    Reconstructing vegetation at hominin fossil sites provides us critical information about hominin palaeoenvironments and the potential role of climate in their evolution. Here we reconstruct vegetation from carbon isotopes of plant wax biomarkers in sediments of the Nachukui Formation in the Turkana Basin. Plant wax biomarkers were extracted from samples from a wide range of lithologies that include fluvial–lacustrine sediments and palaeosols, and therefore provide a record of vegetation from diverse depositional environments. Carbon isotope ratios from biomarkers indicate a highly dynamic vegetation structure (ca 5–100% C4 vegetation) from 2.3 to 1.7 Ma, with an overall shift towards more C4 vegetation on the landscape after about 2.1 Ma. The biomarker isotope data indicate ca 25–30% more C4 vegetation on the landscape than carbon isotope data of pedogenic carbonates from the same sequence. Our data show that the environments of early Paranthropus and Homo in this part of the Turkana Basin were primarily mixed C3–C4 to C4-dominated ecosystems. The proportion of C4-based foods in the diet of Paranthropus increases through time, broadly paralleling the increase in C4 vegetation on the landscape, whereas the diet of Homo remains unchanged. Biomarker isotope data associated with the Kokiselei archaeological site complex, which includes the site where the oldest Acheulean stone tools to date were recovered, indicate 61–97% C4 vegetation on the landscape. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298466

  7. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  8. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.

    PubMed

    Lu, Ping; Qin, Jinxia; Wang, Guoxin; Wang, Lili; Wang, Zhenzhong; Wu, Qiuhong; Xie, Jingzhong; Liang, Yong; Wang, Yong; Zhang, Deyun; Sun, Qixin; Liu, Zhiyong

    2015-08-01

    By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.

  9. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef

    2013-08-09

    Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application.

    PubMed

    Hu, Jing; Guo, Huiyuan; Li, Junli; Wang, Yunqiang; Xiao, Lian; Xing, Baoshan

    2017-07-11

    Nutrient-containing nanomaterials have been developed as fertilizers to foster plant growth and agricultural yield through root applications. However, if applied through leaves, how these nanomaterials, e.g. γ-Fe 2 O 3 nanoparticles (NPs), influence the plant growth and health are largely unknown. This study is aimed to assess the effects of foliar-applied γ-Fe 2 O 3 NPs and their ionic counterparts on plant physiology of Citrus maxima and the associated mechanisms. No significant changes of chlorophyll content and root activity were observed upon the exposure of 20-100 mg/L γ-Fe 2 O 3 NPs and Fe 3+ . In C. maxima roots, no oxidative stress occurred under all Fe treatments. In the shoots, 20 and 50 mg/L γ-Fe 2 O 3 NPs did not induce oxidative stress while 100 mg/L γ-Fe 2 O 3 NPs did. Furthermore, there was a positive correlation between the dosages of γ-Fe 2 O 3 NPs and Fe 3+ and iron accumulation in shoots. However, the accumulated iron in shoots was not translocated down to roots. We observed down-regulation of ferric-chelate reductase (FRO2) gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ treatments. The gene expression of a Fe 2+ transporter, Nramp3, was down regulated as well under γ-Fe 2 O 3 NPs exposure. Although 100 mg/L γ-Fe 2 O 3 NPs and 20-100 mg/L Fe 3+ led to higher wax content, genes associated with wax formation (WIN1) and transport (ABCG12) were downregulated or unchanged compared to the control. Our results showed that both γ-Fe 2 O 3 NPs and Fe 3+ exposure via foliar spray had an inconsequential effect on plant growth, but γ-Fe 2 O 3 NPs can reduce nutrient loss due to their the strong adsorption ability. C. maxima plants exposed to γ-Fe 2 O 3 NPs and Fe 3+ were in iron-replete status. Moreover, the biosynthesis and transport of wax is a collaborative and multigene controlled process. This study compared the various effects of γ-Fe 2 O 3 NPs, Fe 3+ and Fe chelate and exhibited the advantages of NPs as a foliar fertilizer, laying the foundation for the future applications of nutrient-containing nanomaterials in agriculture and horticulture. Graphical abstract γ-Fe 2 O 3 NPs exposed on plants via foliar spray and genes associated with the absorption and transformation of iron, as well as wax synthesis and secretion in Citrus maxima leaves.

  11. Epicuticular Wax in Developing Olives (Olea europaea) Is Highly Dependent upon Cultivar and Fruit Ripeness.

    PubMed

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep; Barrios, Gonçal; Mateu, Jordi; Ninot, Antonia; Romero, Agustí

    2016-08-03

    The epicuticular wax (EW) layer is located on the surface of most plant organs. It provides the cuticle with most of its properties and is the primary barrier against biotic and abiotic stress. Despite the importance of Olea europaea cultivation, few studies have characterized the EW covering leaves and olives, which could be involved in resistance to both infection and environmental conditions. In the present study, wide-ranging screening was carried out using direct-injection electrospray ionization coupled to high-resolution mass spectrometry to analyze EW in developing olives of nine varieties. The proportions of EW fractions [wax esters (WEs), diacylglycerols, triacylglycerols (TAGs), triterpenic acids, and aldehydes] strongly depended upon the olive cultivar and, in only a few cases, were influenced by the sampling date. The specific compositions of the major fractions, WEs and TAGs, were strictly related to the cultivar, while the degree of unsaturation and chain length of the WEs evolved throughout the 4 weeks prior to the olive turning color.

  12. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao

    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreasedmore » within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.« less

  13. Layered lipid microcapsules for mesalazine delayed-release in children.

    PubMed

    Balducci, Anna Giulia; Colombo, Gaia; Corace, Giuseppe; Cavallari, Cristina; Rodriguez, Lorenzo; Buttini, Francesca; Colombo, Paolo; Rossi, Alessandra

    2011-12-15

    The goal was to make available a delayed-release dosage form of mesalazine to be dispersed in water to facilitate swallowing in adults and children. Mesalazine microparticles containing carnauba wax were prepared by spray-congealing technique. A second step of spray-congealing of carnauba microparticles dispersed in liquefied stearic acid gave rise to mesalazine lipid microcapsules in which several carnauba microparticles remained embedded as cores in a reservoir structure. In order to favor their water dispersion, the lipid microcapsules were dry coated by tumbling them with different ratios of mannitol/lecithin microparticles prepared by spray-drying. Release rate measurements showed a delayed-release behavior, in particular a pH-dependence with less than 10% of drug released in acidic medium and complete release in phosphate buffer pH 7.4 in 4-5h. The layering with hydrophilic excipient microparticles allowed manufacturing of a pH-dependent dosage form suitable for extemporaneous oral use in adults and children. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The effect of repeated lateral compression and expansions mimicking blinking on selected tear film polar lipid monofilms.

    PubMed

    Patterson, Matthew; Vogel, Hans J; Prenner, Elmar J

    2017-03-01

    The tear film lipid layer is formed on the anterior surface of the eye, functioning as a barrier to excess evaporation and foreign particles, while also providing stability to the tear film. The lipid layer is organized into a polar lipid layer consisting of phospholipids, ceramides, and free fatty acids that act as a surfactant to a non-polar multilayer of wax and cholesterol esters. Due to shear forces from eye movement and the compression and expansion of blinking, the tear lipids are under constant stress. However, tear film is able to resist immediate rupture and remains intact over multiple blinks. This work aimed to better understand the lateral organization of selected tear film polar lipids. The polar lipid biomimetic studied here consisted of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM). Surface pressure-area isocycles mimicked blinking and films were visualized by Brewster angle microscopy (BAM). All lipid systems formed relatively reversible films as indicated by limited hysteresis. However, pure DPPC and PSM films experienced greater changes in lipid packing upon compression and expansion compared to pure PGC and DPPE. This suggests that the driving force behind maintaining the lateral organization of the polar lipids from tear film may be the hydrogen bonding propensities of the head groups. Additionally, isocycles of films containing DPPC, DPPE, and PGC mixtures exhibited evidence for reversible multilayer formation or folding. This was supported by 3D analysis of structures that formed during compression but reintegrated back into the bulk lipid film during expansion near the in vitro tear film surface pressure of the open eye. Therefore, the polar lipids of tear film may be directly involved in preventing film rupture during a blink. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Lipid class and depth-specific thermal properties in the blubber of the short-finned pilot whale and the pygmy sperm whale.

    PubMed

    Bagge, Laura E; Koopman, Heather N; Rommel, Sentiel A; McLellan, William A; Pabst, D A

    2012-12-15

    Blubber, the specialized hypodermis of cetaceans, provides thermal insulation through the quantity and quality of lipids it contains. Quality refers to percent lipid content; however, not all lipids are the same. Certain deep-diving cetacean groups possess blubber with lipids - wax esters (WE) - that are not typically found in mammals, and the insulative quality of 'waxy' blubber is unknown. Our study explored the influence of lipid storage class - specifically WE in pygmy sperm whales (Kogia breviceps; N=7) and typical mammalian triacylglycerols in short-finned pilot whales (Globicephala macrorhynchus; N=7) - on blubber's thermal properties. Although the blubber of both species had similar total lipid contents, the thermal conductivity of G. macrorhynchus blubber (0.20±0.01 W m(-1) °C(-1)) was significantly higher than that of K. breviceps (0.15±0.01 W m(-1) °C(-1); P=0.0006). These results suggest that lipid class significantly influences the ability of blubber to resist heat flow. In addition, because the lipid content of blubber is known to be stratified, we measured its depth-specific thermal conductivities. In K. breviceps blubber, the depth-specific conductivity values tended to vary inversely with lipid content. In contrast, G. macrorhynchus blubber displayed unexpected depth-specific relationships between lipid content and conductivity, which suggests that temperature-dependent effects, such as melting, may be occurring. Differences in heat flux measurements across the depth of the blubber samples provide evidence that both species are capable of storing heat in their blubber. The function of blubber as an insulator is complex and may rely upon its lipid class, stratified composition and dynamic heat storage capabilities.

  16. The Transcription Factor WIN1/SHN1 Regulates Cutin Biosynthesis in Arabidopsis thaliana[W

    PubMed Central

    Kannangara, Rubini; Branigan, Caroline; Liu, Yan; Penfield, Teresa; Rao, Vijaya; Mouille, Grégory; Höfte, Herman; Pauly, Markus; Riechmann, José Luis; Broun, Pierre

    2007-01-01

    The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influences the composition of cutin, a polyester that forms the backbone of the cuticle. WIN1 overexpression induces compositional changes and an overall increase in cutin production in vegetative and reproductive organs, while its downregulation has the opposite effect. Changes in cutin composition are preceded by the rapid and coordinated induction of several genes known or likely to be involved in cutin biosynthesis. This transcriptional response is followed after a delay by the induction of genes associated with wax biosynthesis, suggesting that the regulation of cutin and wax production by WIN1 is a two-step process. We demonstrate that at least one of the cutin pathway genes, which encodes long-chain acyl-CoA synthetase LACS2, is likely to be directly targeted by WIN1. Overall, our results suggest that WIN1 modulates cuticle permeability in Arabidopsis by regulating genes encoding cutin pathway enzymes. PMID:17449808

  17. The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana.

    PubMed

    Kannangara, Rubini; Branigan, Caroline; Liu, Yan; Penfield, Teresa; Rao, Vijaya; Mouille, Grégory; Höfte, Herman; Pauly, Markus; Riechmann, José Luis; Broun, Pierre

    2007-04-01

    The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influences the composition of cutin, a polyester that forms the backbone of the cuticle. WIN1 overexpression induces compositional changes and an overall increase in cutin production in vegetative and reproductive organs, while its downregulation has the opposite effect. Changes in cutin composition are preceded by the rapid and coordinated induction of several genes known or likely to be involved in cutin biosynthesis. This transcriptional response is followed after a delay by the induction of genes associated with wax biosynthesis, suggesting that the regulation of cutin and wax production by WIN1 is a two-step process. We demonstrate that at least one of the cutin pathway genes, which encodes long-chain acyl-CoA synthetase LACS2, is likely to be directly targeted by WIN1. Overall, our results suggest that WIN1 modulates cuticle permeability in Arabidopsis by regulating genes encoding cutin pathway enzymes.

  18. ECERIFERUM2-LIKE Proteins Have Unique Biochemical and Physiological Functions in Very-Long-Chain Fatty Acid Elongation1[OPEN

    PubMed Central

    Haslam, Tegan M.; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A.; Kunst, Ljerka; Joubès, Jérôme

    2015-01-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. PMID:25596184

  19. Microbial Lipid and C Isotopic Biosignatures of a Unique Community at Grand Prismatic Spring, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Parenteau, Mary; Farmer, Jack

    2012-01-01

    The microbial communities found in modern hot springs are considered analogs to ones that may have existed in hydrothermal systems on the early Earth and possibly Mars. Our goal was to characterize the microbial biosignatures and to assess the preservation of organic matter in the silica-depositing Grand Prismatic Spring in Yellowstone National Park. This study combines 16S rRNA surveys, lipid biomarkers, and C isotopes to query, "Who's there and what are they doing?" On the edge of the approximately 90 m diameter blue vent pool (56.1 C, pH 8.5), a floating green streamer community grew over a benthic pink community. The membrane lipids in the green streamers and pink mat were composed of unusual ester-linked fatty acids, indicating the presence of novel bacterial groups. In particular, we discovered a series of 2-methyl and 2,X-dimethyl phospholipid fatty acids (C18-22). We are attempting to use the 16S rRNA surveys to link these compounds to source organisms. Wax esters, biomarkers for Chloroflexi, were present in both communities, but displayed different profiles. A higher proportion of branched wax esters were found in the green streamers, and were associated with a relatively high concentration of long-chain di- and trienes (C29-31). This suggests that Chloroflexus primarily grew in the green streamers, while a pink mat of Roseiflexus grew on the sinter substrate underneath. Cyanobacterial alkanes were found in the green streamers (n-C17, 7-, 6- and 5-monomethyl-C17, 7,11-dimethyl-C17, n-C19, n-C19:1). We also detected a series of monoalkylglycerylethers and geologically relevant hopanoids in both communities. Carbon isotope analyses indicated that Chloroflexus was growing photoheterotrophically using cyanobacterial photosynthate. Roseiflexus also traditionally grows photoheterotrophically, but the C isotopic signatures of the lipids in the pink mat were approximately 10 %0 lighter than the cyanobacterial and Chloroflexus lipids, indicating a potentially novel metabolic mechanism or prior secondary reworking of substrates before reaching Roseiflexus. This arrangement of Synechococcus-Chloroflexus green streamers floating over a benthic pink community of Roseiflexus is different from the classical laminated Synechococcus-Chloroflexi mats at Octopus Hot Spring.

  20. Reconstructing hydroclimatic variations using compound-specific hydrogen isotope analysis of biomarkers from a maar lake in the Central Highlands, Vietnam

    NASA Astrophysics Data System (ADS)

    Doiron, K. E.; Stevens, L. R.; Sauer, P. E.

    2017-12-01

    Monsoonal variation in Southeast Asia affects a significant portion of the global population, but knowledge regarding response of the monsoon system to changing boundary conditions is limited. The paleoclimatic tool of compound-specific isotope analysis(CSIA) provides the ability to reconstruct past precipitation using a diverse set of biomarkers preserved in the sedimentary record. Limited proxies in tropical southeast Asia and difficult site access have led to a deficit in paleoclimate records. Ia M'He (14°10'45" N, 107°52' E) is a shallow volcanic crater (maar) lake, approximately 57 ha, located in the Central Highlands of Vietnam. Precipitation in the Central Highlands is sensitive to reorganizations of major climatic features, such as the migration of the ITCZ and the coupled Indo-Asian monsoon, ENSO and related shifts in the Pacific Walker Circulation and typhoon frequency. To examine this complex behavior, this pilot study aims to provide a 500-year record of effective moisture inferred from CSIA of hydrogen isotopes on biomarkers. This study highlights the use of hydrogen isotopes of C28 n-alkanoic acid and dominant n-alkane chain lengths of C27 and C29, associated with terrestrial plant leaf waxes, as tracers for precipitation. The hydrogen isotope ratios of the plant wax components provide a proxy for paleo precipitation in a region where rainfall and droughts heavily influence population dynamics and create social discord. The CSIA record is expected to correlate with records from northern Vietnam, the South China Sea and Indonesia, with greater precipitation during the Little Ice Age. The CSIA data of terrestrial plant leaf waxes will be compared with secondary proxies including: diatoms, C/N and biogenic silica.

  1. δ 13C values of lipids from phototrophic zone microplankton and bathypelagic shrimps at the Azores sector of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pond, D. W.; Sargent, J. R.; Fallick, A. E.; Allen, C.; Bell, M. V.; Dixon, D. R.

    2000-01-01

    The lipid composition and δ 13C values of phototrophic zone microplankton, and species of bathypelagic shrimp that are not associated with hydrothermal vents, were determined for samples collected from the water column above the Mid-Atlantic Ridge. These analyses were compared with similar previously published data for vent bresiliid shrimp to address the hypothesis that deep-sea hydrothermal vent ecosystems are reliant on specific dietary nutrients produced by photosynthetic organisms. Microplankton (<200 μm) sampled from the surface layer (˜4 m deep) and from the region of maximum light scattering (LSM, 48-75 m deep) were analysed to determine δ 13C values of individual fatty acids in particulate matter. The distributions of fatty acids in total lipid from the surface layer and from the LSM were very similar, with high levels (˜45% of the total) of saturated fatty acids, particularly 14 : 0, 16 : 0 and 18 : 0, and moderate amounts (˜31% of the total) of polyunsaturated fatty acids (PUFA), dominated by 22 : 6(n-3). δ 13C values of fatty acids from the surface layer and LSM were also very similar (mean values of -27.6 and -28.8‰, respectively), with a range of values from -25.0 to -32.2‰ and PUFA being somewhat depleted in 13C relative to saturated and monounsaturated fatty acids. Total lipid of abdominal muscle from three species of bathypelagic decapod shrimp, Ephyrina bidentata, Parapasiphaea sulcatifrons and Sergia japonicus collected from 2000 m contained 18 : 1(n-9), 16 : 0, 22 : 6(n-3) and 20 : 5(n-3) as major fatty acids in all cases. The fatty acids in total lipid from the wax ester-rich hepatopancreas of all three shrimps were dominated (˜50% of the total) by 18 : 1(n-9) and contained substantially lower levels of PUFA than muscle lipid. Total lipids from the hepatopancreas of E. bidentata and S. japonicus contained high levels of 22 : 1 alcohols and 16 : 0 alcohol, respectively, whereas total hepatopancreatic lipid from P. sulcatifrons contained mainly 18 : 1 alcohols and 16 : 0 alcohol. δ 13C values for the fatty acids in the three species ranged from -22.4 to -30.7‰ for muscle (mean value -25.7‰) and from -23.9 to -31.9‰ for hepatopancreas (mean value -26.1‰), with PUFA again being depleted in 13C relative to saturated and monounsaturated fatty acids. δ 13C values for the fatty alcohols in the three species ranged from -25.7 to -29.5‰ (mean value -27.1‰). These lipid analytical and δ 13C data are consistent with PUFAs in bathypelagic shrimps originating unmodified from PUFAs in the photic zone and wax esters in bathypelagic shrimps originating substantially from animal biosynthetic activity.

  2. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress.

    PubMed

    Pan, Yanlin; Li, Jianrui; Jiao, Licong; Li, Cong; Zhu, Dengyun; Yu, Jingjuan

    2016-01-01

    Lipid transfer proteins (LTPs) are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A non-specific LTP gene ( SiLTP ) was isolated from a foxtail millet ( Setaria italica ) suppression subtractive hybridization library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers, and siliques of transgenic Arabidopsis . Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol, and abscisic acid (ABA). SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT). To further assess the function of SiLTP, SiLTP overexpression (OE) and RNA interference (RNAi)-based transgenic foxtail millet were obtained. SiLTP -OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor ABA-responsive DRE-binding protein (SiARDP) could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo , respectively. Moreover, the SiLTP expression levels were higher in SiARDP -OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be upregulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and drought tolerance levels.

  3. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid1[OPEN

    PubMed Central

    2017-01-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. PMID:28483881

  4. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  5. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  6. With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

    PubMed

    Bauer, Ulrike; Di Giusto, Bruno; Skepper, Jeremy; Grafe, T Ulmar; Federle, Walter

    2012-01-01

    Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.

  7. With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants

    PubMed Central

    Bauer, Ulrike; Di Giusto, Bruno; Skepper, Jeremy; Grafe, T. Ulmar; Federle, Walter

    2012-01-01

    Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as ‘insect aquaplaning’ on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to ‘flick’ insects into the trap. Depending on the experimental conditions (simulated ‘rain’, wet after ‘rain’, or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid. PMID:22719998

  8. Diclofenac salts, part 6: release from lipid microspheres.

    PubMed

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.

  9. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high‐value products

    PubMed Central

    Sabirova, Julia S.; Haddouche, R.; Van Bogaert, I. N.; Mulaa, F.; Verstraete, W.; Timmis, K. N.; Schmidt‐Dannert, C.; Nicaud, J. M.; Soetaert, W.

    2011-01-01

    Summary The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high‐value biotechnological, nutritional or pharmacological products. Under the EU‐sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high‐throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid‐derived compounds like wax esters (WE), isoprenoid‐derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added‐value products. PMID:21255371

  10. Fatty acid signatures of stomach oil and adipose tissue of northern fulmars (Fulmarus glacialis) in Alaska: Implications for diet analysis of Procellariiform birds

    USGS Publications Warehouse

    Wang, S.W.; Iverson, S.J.; Springer, A.M.; Hatch, Shyla A.

    2007-01-01

    Procellariiforms are unique among seabirds in storing dietary lipids in both adipose tissue and stomach oil. Thus, both lipid sources are potentially useful for trophic studies using fatty acid (FA) signatures. However, little is known about the relationship between FA signatures in stomach oil and adipose tissue of individuals or whether these signatures provide similar information about diet and physiology. We compared the FA composition of stomach oil and adipose tissue biopsies of individual northern fulmars (N = 101) breeding at three major colonies in Alaska. Fatty acid signatures differed significantly between the two lipid sources, reflecting differences in dietary time scales, metabolic processing, or both. However, these signatures exhibited a relatively consistent relationship between individuals, such that the two lipid sources provided a similar ability to distinguish foraging differences among individuals and colonies. Our results, including the exclusive presence of dietary wax esters in stomach oil but not adipose tissue, are consistent with the notion that stomach oil FA signatures represent lipids retained from prey consumed during recent foraging and reflect little metabolic processing, whereas adipose tissue FA signatures represent a longer-term integration of dietary intake. Our study illustrates the potential for elucidating short- versus longer-term diet information in Procellariiform birds using different lipid sources. ?? 2007 Springer-Verlag.

  11. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    PubMed

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  12. Naturally occurring ω-Hydroxyacids.

    PubMed

    Wertz, P W

    2018-02-01

    ω-Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω-hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω-hydroxyacids. ω-Hydroxyacids are produced by two different P450-dependent mechanisms. The longer (30-34 carbons) ω-hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω-hydroxyacids found in plants and 20-eicosatetraenoic acid (20-HETE) by a different P450. The C16 and C18 ω-hydroxyacids are components of polymers in plants. The long-chain ω-hydroxyacids are found in epidermal sphingolipids, in giant-ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella.

    PubMed

    Büyükgüzel, Ender; Büyükgüzel, Kemal; Snela, Milena; Erdem, Meltem; Radtke, Katarzyna; Ziemnicki, Kazimierz; Adamski, Zbigniew

    2013-04-01

    Boric acid is widely used as an insecticide, acaricide, herbicide, and fungicide and also during various industrial processings. Hence, numerous populations are subjects to this toxic compound. Its action on animals is still not fully known and understood. We examined the effect of boric acid on larvae of greater wax moth (Galleria mellonella). The chemical appeared to be toxic for larvae, usually in a concentration-dependent manner. Exposed groups revealed increased lipid peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase. We also observed changes of ultrastructure, which were in tune with biochemical assays. We suggest that boric acid has a broad mode of action, which may affect exposed larvae, and even if sublethal, they may lead to disturbances within exposed populations.

  14. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    PubMed

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  15. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    PubMed

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    NASA Astrophysics Data System (ADS)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  17. A Phagostimulant Blend for the Asian Citrus Psyllid.

    PubMed

    Lapointe, Stephen L; Hall, David G; George, Justin

    2016-09-01

    Chemical cues that elicit orientation by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are of interest because it is the primary vector of the causal pathogen of citrus greening disease. Non-pesticidal control methods for D. citri remain a high priority for the citrus industry. While searching for semiochemicals that may be involved in orientation to host plants, we previously identified a blend of formic and acetic acids that stimulated substrate probing by D. citri. Here, we applied geometric mixture designs and response surface modeling to identify and optimize a 3-component blend that further increased the number of salivary sheaths produced by D. citri on a wax substrate containing a 3.5:1.6:1 blend of formic acid, acetic acid, and p-cymene, respectively. No evidence was found for remote orientation by D. citri adults through olfaction to the phagostimulant blends. Increased probing in response to the presence of phagostimulants in the wax matrix occurred after contact with the substrate. Yellow wax beads always attracted more D. citri adults and received more probes compared with white wax beads. Yellow beads containing the 3-component blend of phagostimulants were probed by D. citri 2 to 3 times more often compared with yellow beads alone. The phagostimulant effect also was tested by covering wax beads containing the 3-component blend with a plastic film to minimize olfaction or contact chemoreception by antennation. The plastic film did not affect the probing response, thus suggesting that chemosensation was associated with mouthparts and not olfactory receptors. Salivary sheaths produced in wax beads containing the phagostimulant blend were 4.5 times longer than sheaths produced in beads without tastants. This phenomenon might be used to improve a trap, design an attract-and-kill product, or enhance other means of managing D. citri and citrus greening disease.

  18. Microorganisms and methods for degrading plant cell walls and complex hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polne-Fuller, M.

    1991-09-24

    This patent describes a biologically pure multinucleated marine amoeba having the identifying characteristics of ATCC 40319. The amoeba being capable of digesting algal cell walls and having the further capacity to degrade paraffin, wax, polyethylene, polypropylene, polyvinyl chloride polyvinylidene di-chloride and mixtures thereof.

  19. Biodiesel from non-food alternative feed-stock

    USDA-ARS?s Scientific Manuscript database

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  20. Genetic characterization of glossy-leafed mutant broccoli lines

    USDA-ARS?s Scientific Manuscript database

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  1. Biomarkers in Transit Reveal the Nature of Fluvial Integration

    NASA Astrophysics Data System (ADS)

    Ponton, C.; West, A.; Feakins, S. J.; Galy, V.

    2013-12-01

    The carbon and hydrogen isotopic composition of vascular plant leaf waxes are common proxies for hydrologic and vegetation change. Sedimentary archives off major river systems are prime targets for continental paleoclimate studies under the assumption that rivers integrate changes in terrestrial organic carbon (OC) composition over their drainage basin. However, the proportional contribution of sources within the basin (e.g. head waters vs. floodplain) and the transit times of OC through the fluvial system remain largely unknown. This lack of quantifiable information about the proportions and timescales of integration within large catchments poses a challenge for paleoclimate reconstructions. To examine the sources of terrestrial OC eroded and supplied to a river system and the spatial distribution of these sources, we use compound specific isotope analysis (i.e. δ13C, Δ14C, and δD) on plant-derived leaf waxes, filtered from large volumes of river water (20-200L) along a major river system. We selected the Kosñipata River that drains the western flank of the Andes in Peru, joins the Madre de Dios River across the Amazonian floodplain, and ultimately contributes to the Amazon River. Our study encompassed an elevation gradient of >4 km, in an almost entirely forested catchment. Precipitation δD values vary by >50‰ due to the isotopic effect of elevation, a feature we exploit to identify the sources of plant wax n-alkanoic acids transported by the river. We used the δD plant wax values from tributary rivers as source constrains and the main stem values as the integrated signal. In addition, compound specific radiocarbon on individual chain length n-alkanoic acids provide unprecedented detail on the integrated age of these compounds. Preliminary results have established that 1) most of the OC transport occurs in the wet season; 2) total carbon transport in the Madre de Dios is dominated by lowland sources because of the large floodplain area, but initial data suggest that OC from high elevations may be proportionally overrepresented relative to areal extent, with possibly important implications for biomarker isotope composition; 3) timescales of different biomarkers vary considerably; 4) the composition of OC varies downstream and with depth stratification within large rivers. We filtered >1000L of river water in this remote location during the wet season, and are presently replicating that study during the dry season, providing a seasonal comparison of OC transport in this major river system.

  2. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies.

    PubMed

    Moran, Jonathan A; Hawkins, Barbara J; Gowen, Brent E; Robbins, Samantha L

    2010-03-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH(4)(+) uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H(+) fluxes to maintain less acid pitcher fluid than found in 'typical' species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of 'typical' insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes.

  3. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies

    PubMed Central

    Moran, Jonathan A.; Hawkins, Barbara J.; Gowen, Brent E.; Robbins, Samantha L.

    2010-01-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH4+ uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H+ fluxes to maintain less acid pitcher fluid than found in ‘typical’ species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of ‘typical’ insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes. PMID:20150519

  4. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: a randomized, double-blind clinical trial.

    PubMed

    Samadi, Nazli; Mozaffari-Khosravi, Hassan; Rahmanian, Masoud; Askarishahi, Mohsen

    2017-03-01

    Propolis, a natural resinous substance made by bees from material extracted from plants, flowers and bee's wax, has shown great therapeutic effects and been widely used in food and drug industries. Recently, some researchers have studied the effect of this substance in the treatment of diabetes. The purpose of this trial was to determine the effect of bee propolis on glycemic control, serum lipid profile and insulin resistance indices in patients with type 2 diabetes (T2D). This randomized clinical trial involved 66 patients with T2D, which were randomly divided into two groups of intervention (IG) and placebo (PG). IG received 300 mg three times a day for a total of 900 mg/d of propolis pills, while PG received similar pills, lacking propolis, on the same schedule for 12 weeks. Fasting blood glucose (FBG), hemoglobin A1c (HbA1c), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), serum insulin and insulin resistance indices were the main outcome measures. The mean change in FBG between the IG ((17.76 ± 27.72) mg/dL decrease) and the PG ((6.48 ± 42.77) mg/dL increase) was significantly different (P = 0.01). Change in mean HbA1c had a similar pattern to FBG. The mean change in TC between the IG ((5.16 ± 43.80) mg/dL increase) and the PG ((28.9 ± 27.4) mg/dL increase) was also significantly different (P = 0.01), showing the protective role of propolis against the increase in TC. The change in mean LDL was similar to mean TC. There was no significant difference in other lipids or insulin resistance indices between the two groups. Based on this study, the daily intake of 900 mg of bee propolis supplement for 12 weeks results in improvement of glycemic and some serum lipid levels in patients with T2D. This study is registered on the website of Iranian Ministry of Health (www.irct.ir) with proprietary code of IRCT2014080218659N1.

  5. Identification of a new class of lipid droplet-associated proteins in plants

    USDA-ARS?s Scientific Manuscript database

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  6. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  7. On the Lipid Composition of Human Meibum and Tears: Comparative Analysis of Nonpolar Lipids

    PubMed Central

    Butovich, Igor A.

    2009-01-01

    PURPOSE To qualitatively compare the nonpolar lipids present in meibomian gland (MG) secretions (samples T1) with aqueous tears (AT) collected from the lower tear menisci of healthy, non-dry eye volunteers using either glass microcapillaries (samples T2) or Schirmer test strips (samples T3). METHODS Samples T1 to T3 were analyzed with the use of high-pressure liquid chromatography/positive ion mode atmospheric pressure chemical ionization mass spectrometry. Where possible, the unknown lipids were compared with known standards. RESULTS Samples T1 had the simplest lipid composition among all the tested specimens. Samples T2 and T3 were similar to each other but were noticeably different from samples T1. In addition to all the compounds detected in samples T1, lower molecular weight wax esters and other compounds were found in samples T2 and T3. No appreciable amounts of fatty acid amides (e.g., oleamide), ceramides, or monoacyl glycerols were routinely detected. The occasionally observed minor signals of oleamide (m/z 282) in samples T3 were attributed to the contamination of the samples with common plasticizers routinely found in plastic ware extractives and organic solvents. CONCLUSIONS The MG is a prominent source of lipids for the tear film. However, it would have been a mistake to exclude from consideration other likely sources of lipids such as conjunctiva, cornea, and tears produced by the lacrimal glands. These data showed that lipids in AT are more complex than MG secretions, which necessitates more cautious interpretation of the functions of the latter in the tear film. PMID:18487374

  8. On the lipid composition of human meibum and tears: comparative analysis of nonpolar lipids.

    PubMed

    Butovich, Igor A

    2008-09-01

    To qualitatively compare the nonpolar lipids present in meibomian gland (MG) secretions (samples T1) with aqueous tears (AT) collected from the lower tear menisci of healthy, non-dry eye volunteers using either glass microcapillaries (samples T2) or Schirmer test strips (samples T3). Samples T1 to T3 were analyzed with the use of high-pressure liquid chromatography/positive ion mode atmospheric pressure chemical ionization mass spectrometry. Where possible, the unknown lipids were compared with known standards. Samples T1 had the simplest lipid composition among all the tested specimens. Samples T2 and T3 were similar to each other but were noticeably different from samples T1. In addition to all the compounds detected in samples T1, lower molecular weight wax esters and other compounds were found in samples T2 and T3. No appreciable amounts of fatty acid amides (e.g., oleamide), ceramides, or monoacyl glycerols were routinely detected. The occasionally observed minor signals of oleamide (m/z 282) in samples T3 were attributed to the contamination of the samples with common plasticizers routinely found in plastic ware extractives and organic solvents. The MG is a prominent source of lipids for the tear film. However, it would have been a mistake to exclude from consideration other likely sources of lipids such as conjunctiva, cornea, and tears produced by the lacrimal glands. These data showed that lipids in AT are more complex than MG secretions, which necessitates more cautious interpretation of the functions of the latter in the tear film.

  9. Carbon isotopic composition of assimilated and respired CO2 in Southeastern US pine forests

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Conte, M. H.; Chanton, J.; Martin, T.; Teklemerian, T.; Cropper, W.; Weber, J.

    2010-12-01

    We measured the 13C of assimilated carbon [foliage organic matter (δCOM), leaf soluble carbohydrates ((δCSC), and leaf waxes ((δCW)] and respiratory carbon [foliage (δCF), soil (δCS) and ecosystem respired CO2 (δCR)] over a two-year period at two sites in central Florida that are typical of Southeastern US coastal plain pine ecosystems. Our objective was to determine how climatic variables, operating by affecting plant physiology and photosynthetic discrimination (Δ), influence the isotopic composition of assimilated carbon pools and of ecosystem respired CO2. The first site was a naturally regenerated 32 m tall stand of mature longleaf pine (Pinus palustris Mill.) with mature slash pine (Pinus elliottii) subdominants, while the second was a planted, mid-rotation 13 m tall stand of slash pine (Pinus elliottii var. elliottii Engelm.). δCOM, δCSC, δCW, and δCF of P. palustris were 13C enriched by about 2‰ relative to that of P. elliottii in the mid-rotation plantation. Despite this enrichment, mean δCR of the P. palustris stand was similar to that at the P. elliottii plantation, reflecting additional respiratory inputs from the more isotopically depleted P. elliottii subdominant and understory. In both P. palustris and P. elliottii, a small decrease was observed in δCOM over the two year study, but not in δCSC, δCF, δCS or δCR. Intriguingly, a significant 2‰ decrease was also observed in the very long chain needlewaxes (C32-36 n-alkanoic acids), but not the more abundant C24-28 waxes. As the carbon in waxes is supplied by internal storage reserves, our data suggest there may be distinct carbon source pathways for waxes of differing chain lengths. The long-term decrease in the 13C of foliar carbon and waxes also suggests recovery from severe drought conditions prior to our study. δCF and δCR were consistently 13C enriched relative to assimilated C and were insensitive to variations in vapor pressure deficit (D). The small variability in δCA and δCR at this site is likely due to the shallow water table that mediates moisture stress as well as the low sensitivity of stomatal conductance to D in these species.

  10. Resin collection and social immunity in honey bees

    USDA-ARS?s Scientific Manuscript database

    We determined if the use of resins, complex plant secretions with diverse antimicrobial properties, acts as a colony-level immune defense by honey bees. Colonies were enriched with extracts of Brazilian or Minnesotan propolis (a bee mixture of resins and wax) or were left as controls. We measured ge...

  11. Can Stress-Induced Biochemical Differences drive Variation in the Hydrogen Isotope Composition of Leaf Wax n-Alkanes from Terrestrial Higher Plants?

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.; Dawson, L.

    2014-12-01

    Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed investigation of interrelated metabolic networks in a range of plants, to further constrain the isotope effects associated with the cycling of H in plant secondary compounds. Such research will be critical to further develop quantitative interpretations of leaf wax biomarker δ2H records in both modern and ancient contexts.

  12. Exploiting Natural Variation to Uncover an Alkene Biosynthetic Enzyme in Poplar

    DOE PAGES

    Gonzales-Vigil, Eliana; Hefer, Charles A.; von Loessl, Michelle E.; ...

    2017-07-20

    Alkenes are linear hydrocarbons with one or more double bonds. Despite their potential as biofuels and precursors for specialty chemicals, the underlying biochemistry and genetics of alkene biosynthesis in plants remain elusive. Here, we report on a screen of natural accessions of poplar (Populus trichocarpa), revealing that the leaf cuticular waxes are predominantly composed of alkanes and alkenes. Interestingly, the accumulation of alkenes increases with leaf development, is limited to the abaxial side of the leaf, and is impaired in a few accessions. Among other genes, a b-ketoacyl CoA synthase gene (PotriKCS1) was downregulated in leaves from non-alkene-producing accessions. Wemore » demonstrated biochemically that PotriKCS1 elongates monounsaturated fatty acids and is responsible for the recruitment of unsaturated substrates to the cuticular wax. Moreover, we found significant associations between the presence of alkenes and tree growth and resistance to leaf spot. These findings highlight the crucial role of cuticular waxes as the first point of contact with the environment, and they provide a foundation for engineering long-chain monounsaturated oils in other species.« less

  13. Exploiting Natural Variation to Uncover an Alkene Biosynthetic Enzyme in Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales-Vigil, Eliana; Hefer, Charles A.; von Loessl, Michelle E.

    Alkenes are linear hydrocarbons with one or more double bonds. Despite their potential as biofuels and precursors for specialty chemicals, the underlying biochemistry and genetics of alkene biosynthesis in plants remain elusive. Here, we report on a screen of natural accessions of poplar (Populus trichocarpa), revealing that the leaf cuticular waxes are predominantly composed of alkanes and alkenes. Interestingly, the accumulation of alkenes increases with leaf development, is limited to the abaxial side of the leaf, and is impaired in a few accessions. Among other genes, a b-ketoacyl CoA synthase gene (PotriKCS1) was downregulated in leaves from non-alkene-producing accessions. Wemore » demonstrated biochemically that PotriKCS1 elongates monounsaturated fatty acids and is responsible for the recruitment of unsaturated substrates to the cuticular wax. Moreover, we found significant associations between the presence of alkenes and tree growth and resistance to leaf spot. These findings highlight the crucial role of cuticular waxes as the first point of contact with the environment, and they provide a foundation for engineering long-chain monounsaturated oils in other species.« less

  14. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    PubMed Central

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm), with optimum charge distribution (−55.8 to −45.12 mV), pH (6.79–6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689

  15. The Identification and Quantification of Suberin Monomers of Root and Tuber Periderm from Potato (Solanum tuberosum) as Fatty Acyl tert-Butyldimethylsilyl Derivatives.

    PubMed

    Company-Arumí, Dolors; Figueras, Mercè; Salvadó, Victoria; Molinas, Marisa; Serra, Olga; Anticó, Enriqueta

    2016-11-01

    Protective plant lipophilic barriers such as suberin and cutin, with their associated waxes, are complex fatty acyl derived polyesters. Their precise chemical composition is valuable to understand the specific role of each compound to the physiological function of the barrier. To develop a method for the compositional analysis of suberin and associated waxes by gas chromatography (GC) coupled to ion trap-mass spectrometry (IT-MS) using N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) as sylilating reagent, and apply it to compare the suberin of the root and tuber periderm of potato (Solanum tuberosum). Waxes and suberin monomers from root and periderm were extracted subsequently using organic solvents and by methanolysis, and subjected to MTBSTFA derivatisation. GC analyses of periderm extracts were used to optimise the chromatographic method and the compound identification. Quantitative data was obtained using external calibration curves. The method was fully validated and applied for suberin composition analyses of roots and periderm. Wax and suberin compounds were successfully separated and compound identification was based on the specific (M-57) and non-specific ions in mass spectra. The use of calibration curves built with different external standards provided quantitative accurate data and showed that suberin from root contains shorter chained fatty acyl derivatives and a relative predominance of α,ω-alkanedioic acids compared to that of the periderm. We present a method for the analysis of suberin and their associated waxes based on MTBSTFA derivatisation. Moreover, the characteristic root suberin composition may be the adaptive response to its specific regulation of permeability to water and gases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain.

    PubMed

    Lai, Xiaoting; Khanal, Bishnu Prasad; Knoche, Moritz

    2016-11-01

    The continuous deposition of cutin and wax during leaf and fruit growth is crucial to alleviate elastic strain of the cuticle, minimize the risk of failure and maintain its barrier functions. The cuticular membrane (CM) is a lipoidal biopolymer that covers primary surfaces of terrestrial plants. CMs have barrier functions in water and solute transfer and pathogen invasion. These require intact CMs throughout growth. This is a challenge particularly for fruit, because they increase in area from initiation through to maturity. Our paper investigates the effects of cutin and wax deposition on strain buildup in the CM. We use developing fruits and leaves of apple (Malus × domestica) and sweet cherry (Prunus avium) as models. The hypothesis was that the continuous deposition of the CM prevents the buildup of excessive elastic strain in fruit and leaves. Strains were quantified from decreases in surface area of CMs after isolation from epidermal discs, after wax extraction and from increases in surface area during development. Cuticle mass per unit area increased throughout development in apple fruit, and leaves of apple and sweet cherry. In sweet cherry fruit, however, CM mass increased only initially, but thereafter decreased as the surface expanded rapidly. The release of strain on CM isolation was low in apple fruit and leaves and sweet cherry leaves, but high in sweet cherry fruit. Conversely, strains fixed by the deposition of wax and cutin were high in apple fruit and leaves and sweet cherry leaves, but low in sweet cherry fruit. Our results indicate that in expanding organs, deposition of cutin and wax in the CM allows conversion of elastic to plastic strain. Hence, any lack of such deposition allows buildup of high, potentially catastrophic, elastic strain.

  17. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  18. The identification of cutin synthase: formation of the plant polyester cutin.

    PubMed

    Yeats, Trevor H; Martin, Laetitia B B; Viart, Hélène M-F; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J; Buda, Gregory J; Domozych, David S; Clausen, Mads H; Rose, Jocelyn K C

    2012-07-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

  19. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    PubMed

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology.

    PubMed

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar

    2017-12-20

    For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p < 0.05) affected by lipid concentration. The release mechanism followed Higuchi and zero order models, while n > 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  1. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large dataset of δDwax from trees and grasses that aimed to mirror the variability of environmental factors over geological time frames showed the lapse rates were significant, but much smaller than in previous studies. Most importantly our result demonstrated that the lapse rate significantly differed for both transects (p = 0.0068), i.e. 0.87 ± 0.71‰/100 m (R2 = 0.28, p = 0.2841, n = 6) and 2.28 ± 0.82‰/100 m (R2 = 0.34, p = 0.0135, n = 17) for Indian monsoon and Westerly dominated areas, respectively. This suggests that different moisture sources might strongly affected the observed lapse rates. In consequences altitude reconstructions are strongly complicated in areas with likely changing air masses like the Tibetan Plateau.

  2. Organic materials in the wall paintings in Pompei: a case study of Insula del Centenario

    PubMed Central

    2012-01-01

    Background The present research concerns the Roman wall paintings preserved at Insula del Centenario (IX, 8), the important Pompeian block situated in the Regio IX, along Via di Nola. Results The aims of this research are two: to verify the presence of lipidic and proteinaceous material to spread the pigments, and to identify organic matter in painting materials owing to previous restoration works. The samples collected from the wall paintings of different rooms have been investigated by Fourier Transform Infrared Spectroscopy (FT-IR), and Gas Chromatography/ Mass Spectrometry (GC/MS). Conclusions The analytical results show that these Roman wall paintings were realized without the use of lipidic and proteinaceous materials, supposedly in fresco technique. Moreover, it was detected that wax, egg, and animal glue were used in previous restoration works for protective purpose and to restore the wall paintings to their original brilliant colours. PMID:23006771

  3. Determination of thermal stability of specific biomarker lipids of the freshwater fern Azolla through hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Sap, Merel; Speelman, Eveline N.; Lewan, Michael D.; Sinninghe Damsté, Jaap S.; Reichart, Gert-Jan

    2010-05-01

    Enormous blooms of the free-floating freshwater fern Azolla occurred within the Arctic Basin during an extended period of ~1.2 Ma during the middle Eocene (Brinkhuis et al. 2006; Speelman et al., GB, 2009). The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic basin may have substantially contributed to decreasing atmospheric CO2 levels by burial of Azolla-derived organic matter. Speelman et al. (OG, 2009) reported biomarkers for Azolla (1,w20 C32 - C36 diols, structurally related C29 ω20,ω21 diols, C29 1,20,21 triols, C29 dihydroxy fatty acids as well as a series of wax esters containing these mono- and dihydroxy lipids), which can be used to reconstruct palaeo-environmental conditions. Here we assess the thermal stability of these compounds, to extend their biomarker potential. We specifically focused on the thermal stability of the Azolla biomarkers using hydrous pyrolysis in order to determine which burial conditions allow reconstruction of past occurrences of Azolla. In addition, hydrous pyrolysis was also performed on samples from the Eocene Arctic Ocean (ACEX core), to test if and how the biomarkers change under higher temperatures and pressures in situ. During hydrous pyrolysis, the biomass was heated under high pressure at temperatures ranging between 220 and 365°C for 72 hours. Four experiments were also run using different durations to explore the kinetics of biomarker degradation at specific temperatures. First results indicate that the Azolla specific diols are still present at 220°C, while the corresponding wax esters are already absent. At 300°C all Azolla specific biomarkers are destroyed. More specific determination of the different biomarkers' stability and kinetics would potentially allow the reconstruction of the temperature and pressure history of Azolla deposits. Literature: • Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damste, J. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K. (2006), Episodic fresh surface waters in the Eocene Arctic Ocean, Nature 441, 606-609. • Speelman, E. N., M. M. L. van Kempen, J. Barke, H. Brinkhuis, G. J. Reichart, A. J. P. Smolders, J. G. M. Roelofs, F. Sangiorgi, J. W. de Leeuw, A. F. Lotter, J. S. Sinnighe Damsté (2009), The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown, Geobiology, 7, 155-170. • Speelman, E. N., G.-J. Reichart, J.W. de Leeuw, W. I. C. Rijpstra, Jaap S. Sinnighe Damsté (2009), Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean, Organic Geochemistry, 40, 628-637.

  4. Maternal Lipid Provisioning Mirrors Evolution of Reproductive Strategies in Direct-Developing Whelks.

    PubMed

    Carrasco, Sergio A; Phillips, Nicole E; Sewell, Mary A

    2016-06-01

    The energetic input that offspring receive from their mothers is a well-studied maternal effect that can influence the evolution of life histories. Using the offspring of three sympatric whelks: Cominella virgata (one embryo per capsule); Cominella maculosa (multiple embryos per capsule); and Haustrum scobina (multiple embryos per capsule and nurse-embryo consumption), we examined how contrasting reproductive strategies mediate inter- and intraspecific differences in hatchling provisioning. Total lipid content (as measured in μg hatchling(-1) ± SE) was unrelated to size among the 3 species; the hatchlings of H. scobina were the smallest but had the highest lipid content (33.8 ± 8.1 μg hatchling(-1)). In offspring of C. maculosa, lipid content was 6.6 ± 0.4 μg hatchling(-1), and in offspring of C. virgata, it was 21.7 ± 3.2 μg hatchling(-1) The multi-encapsulated hatchlings of C. maculosa and H. scobina were the only species that contained the energetic lipids, wax ester (WE) and methyl ester (ME). However, the overall composition of energetic lipid between hatchlings of the two Cominella species reflected strong affinities of taxonomy, suggesting a phylogenetic evolution of the non-adelphophagic development strategy. Inter- and intracapsular variability in sibling provisioning was highest in H. scobina, a finding that implies less control of allocation to individual hatchlings in this adelphophagic developer. We suggest that interspecific variability of lipids offers a useful approach to understanding the evolution of maternal provisioning in direct-developing species. © 2016 Marine Biological Laboratory.

  5. Temporal variability in lipid dynamics of three coexisting dominant krill species in the St. Lawrence Estuary

    NASA Astrophysics Data System (ADS)

    Cabrol, J.; Aulanier, F.; Tremblay, R.; Starr, M.; Plourde, S.; Rainville, L.; Winkler, G.

    2016-02-01

    The St. Lawrence Estuary (Canada) is a subarctic ecosystem characterised by a strong stratification with a cold intermediate layer providing different thermal habitats occupied by different krill species (Meganyctiphanes norvegica, Thysanoessa raschii, Thysanoessa inermis), ranging from temperate to arctic. Krill is an important consumer of phyto/zooplankton allowing energy transfer (mostly lipids) towards upper trophic levels. However, lipid dynamics and trophic interactions between these krill species are poorly understood in the St. Lawrence Estuary. Here, we describe the seasonal variability in their lipids classes and fatty acids composition in relation to biotic and abiotic factors. Lipid content of the temperate species M. norvegica showed high levels of triacylglycerol (TAG) comparatively to the arctic species T. inermis. In this latter species,the wax ester (WE) predominated, as in many other arctic species. In contrast to many other regions of its geographical distribution, we detected a significant quantity of WE in M. norvegica that could represent an adaptation of this species to subarctic environments in order to survive during the wintertime. M. norvegica had however less lipid content per individual than T. raschii and T, inermis, whereas M. norvegica is the bigger species. In addition, lipids content of M. norvegica was related to copepod density in the St. Lawrence Estuary suggesting dominance of "carnivorous feeding". This feeding dominance was confirmed by fatty acids composition of tissues. In opposite, Thysanoessa sp. seems to be more generalist (omnivorous) although with a preference for phytoplankton. Our results are discussed in the context of climate change predicted.

  6. Expression Profiling of Nonpolar Lipids in Meibum From Patients With Dry Eye: A Pilot Study

    PubMed Central

    Chen, Jianzhong; Keirsey, Jeremy K.; Green, Kari B.; Nichols, Kelly K.

    2017-01-01

    Purpose The purpose of this investigation was to characterize differentially expressed lipids in meibum samples from patients with dry eye disease (DED) in order to better understand the underlying pathologic mechanisms. Methods Meibum samples were collected from postmenopausal women with DED (PW-DED; n = 5) and a control group of postmenopausal women without DED (n = 4). Lipid profiles were analyzed by direct infusion full-scan electrospray ionization mass spectrometry (ESI-MS). An initial analysis of 145 representative peaks from four classes of lipids in PW-DED samples revealed that additional manual corrections for peak overlap and isotopes only slightly affected the statistical analysis. Therefore, analysis of uncorrected data, which can be applied to a greater number of peaks, was used to compare more than 500 lipid peaks common to PW-DED and control samples. Statistical analysis of peak intensities identified several lipid species that differed significantly between the two groups. Data from contact lens wearers with DED (CL-DED; n = 5) were also analyzed. Results Many species of the two types of diesters (DE) and very long chain wax esters (WE) were decreased by ∼20% in PW-DED, whereas levels of triacylglycerols were increased by an average of 39% ± 3% in meibum from PW-DED compared to that in the control group. Approximately the same reduction (20%) of similar DE and WE was observed for CL-DED. Conclusions Statistical analysis of peak intensities from direct infusion ESI-MS results identified differentially expressed lipids in meibum from dry eye patients. Further studies are warranted to support these findings. PMID:28426869

  7. Deciphering the mechanisms for targeting and interaction of Arabidopsis Lipid Droplet Associated Protein (LDAP) to the lipid droplet surface

    USDA-ARS?s Scientific Manuscript database

    We recently identified a new class of lipid-droplet associated proteins (LDAPs) in plants that share extensive sequence similarity with abundant structural proteins that coat rubber particles in rubber-producing plants. A majority of higher plants, however, including those that do not produce rubber...

  8. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  9. Sorption of aromatic organic pollutants to grasses from water

    USGS Publications Warehouse

    Barbour, J.P.; Smith, J.A.; Chiou, C.T.

    2005-01-01

    The influence of plant lipids on the equilibrium sorption of three aromatic solutes from water was studied. The plant-water sorption isotherms of benzene, 1,2-dichlorobenzene, and phenanthrene were measured over a large range of solute concentrations using sealed vessels containing water, dried plant material, and solute. The plant materials studied include the shoots of annual rye, tall fescue, red fescue, and spinach as well as the roots of annual rye. Seven out of eight sorption isotherms were linear with no evidence of competitive effects between the solutes. For a given plant type, the sorption coefficient increased with decreasing solute water solubility. For a given solute, sorption increased with increasing plant lipid content. The estimated lipid-water partition coefficients of individual solutes were found to be significantly greater than the corresponding octanol-water partition coefficients. This indicates that plant lipids are a more effective partition solvent than octanol for the studied aromatic compounds. As expected, the solute lipid-water partition coefficients were log-linearly related to the respective water solubilities. For the compounds studied, partitioning into the lipids is believed to be the primary sorption mechanism. ?? 2005 American Chemical Society.

  10. Thumbnail Sketches: EDTA-Type Chelating Agents in Everyday Consumer Products: Some Food, Cleaning, and Photographic Applications.

    ERIC Educational Resources Information Center

    Hart, J. Roger

    1985-01-01

    Discusses the role of chelating agents in (1) mayonnaise and salad dressings; (2) canned legumes; (3) plant foods; (4) liquid dishwashing detergents; (5) toilet soaps; (6) floor wax removers; (7) hard surface cleaners; (8) carpet cleaning; (9) bathtub and tile cleaners; and (10) photography. (JN)

  11. Leaf composition of American bur-reed (Sparganium americanum Nutt.) to determine pesticide mitigation capability

    USDA-ARS?s Scientific Manuscript database

    American bur-reed (Sparganium americanum Nutt.), a common aquatic plant in the middle and eastern United States and Canada, is often located in water-retaining drainage areas. The purpose of this study was to determine the leaf composition of S. americanum, paying attention to the cuticular waxes a...

  12. Efficient identification of causal mutations through sequencing of bulked F2 from two allelic bloomless mutants

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor Moench, L.) plant accumulates copious layers of epi-cuticular waxes (EW) on its aerial surfaces, more spectacular than most other crops. It provides a vapor barrier to reduce water loss and is considered as a major determinant of its superior drought tolerance. However, litt...

  13. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status

    USDA-ARS?s Scientific Manuscript database

    A unique set of allelic Arabidopsis mutants are described that exhibit either suppressed or completely inhibited expression of a gene designated ECERIFERUM9 (CER9). These mutants exhibit a dramatic elevation in the total amount of leaf cutin monomers, and a dramatic shift in the leaf cuticular wax p...

  14. 40 CFR Appendix B to Part 300 - National Priorities List

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Des Moines TCE Des Moines IA Electro-Coatings, Inc Cedar Rapids IA Fairfield Coal Gasification Plant... Contamination Des Moines IA Shaw Avenue Dump Charles City IA Vogel Paint & Wax Co Orange City C ID Bunker Hill... Control, Inc Rockford IL Jennison-Wright Corporation Granite City IL Johns-Manville Corp Waukegan C IL...

  15. Diagnosis of ambient air pollution injury to red maple leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, C.R.

    1981-01-01

    Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less

  16. Identification of a New Class of Lipid Droplet-Associated Proteins in Plants1[C][W][OPEN

    PubMed Central

    Horn, Patrick J.; James, Christopher N.; Gidda, Satinder K.; Kilaru, Aruna; Dyer, John M.; Mullen, Robert T.; Ohlrogge, John B.; Chapman, Kent D.

    2013-01-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  17. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    NASA Astrophysics Data System (ADS)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  18. Specific heat determination of plant barrier lipophilic components: biological implications.

    PubMed

    Casado, C G; Heredia, A

    2001-04-02

    The specific heat of isolated plant cuticles and their corresponding cuticular waxes have been measured for the physiological temperature in the range of 273-318 K at regular intervals. C(p) values ranged from 1.5 up to 4 J K(-1) g(-1) indicating a high cohesion, at the molecular level, of the molecular lipophilic components that constitute the plant cuticle. Second order phase transitions around 293 K, assigned to the cuticular matrix mainly constituted of the biopolyester cutin, have been detected and measured. Ecophysiological and physical implications of these thermodynamic data are discussed.

  19. The identification of cutin synthase: formation of the plant polyester cutin

    PubMed Central

    Yeats, Trevor H.; Martin, Laetitia B. B.; Viart, Hélène M.-F.; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J.; Buda, Gregory J.; Domozych, David S.; Clausen, Mads H.; Rose, Jocelyn K. C.

    2012-01-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol (2-MHG). CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase. PMID:22610035

  20. High latitude hydrological changes during the Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy

    2014-10-01

    The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ∼56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (∼ 20 ‰) relative to ;pre-event; values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (∼ - 15 ‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures. If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H-enriched signals at the base of the event, including (1) intense local drying and cooling leading to evaporative 2H-enrichment; (2) changes in frequency/intensity of storm events and its impact on high latitude amount effects; and (3) changes in low-latitude temperatures. Evidence for hydrological shifts at the base of both hyperthermals suggests that hydrological change or the factors promoting hydrological change played a role in triggering the release of greenhouse gases. Generation of similar high-resolution isotopic- and temperature records at other latitudes is crucial for understanding the causal links between temperature and hydrological changes and may help constrain the source and mechanism of carbon release that triggered the early Eocene hyperthermals.

  1. Factors influencing particulate lipid production in the East Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.

    2014-07-01

    Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.

  2. New insights into the properties of pubescent surfaces: peach fruit as a model.

    PubMed

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; Del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-08-01

    The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.

  3. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model1[OA

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-01-01

    The surface of peach (Prunus persica ‘Calrico’) is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context. PMID:21685175

  4. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2016-10-01

    Marginal seas are estimated to account for up to 90% of organic carbon (OC) burial in marine sediments, and thus play an important role in global carbon cycle. However, comprehensive assessments of carbon budgets for marginal sea systems are challenging due to their inherent complexity, with spatial and temporal variability in carbon inputs and dispersal processes. We examine the Bohai Sea and Yellow Sea (BS-YS) in order to further our understanding of sedimentary OC delivery, translocation and accumulation in a shallow marginal sea system. Bulk properties and the content and isotopic compositions (Δ14C, δ13C) of source-specific plant wax n-alkyl lipid biomarkers were determined for a suite of surficial sediment samples. Variable δ13C values (-25.1‰ to -28.5‰) and contemporary radiocarbon ages of short-chain n-fatty acids (FAs; C16, C18) reflect modern autochthonous marine and/or fresh terrestrial plant input. In contrast, extremely depleted Δ14C values (-932‰ to -979‰) of short-chain n-alkanes (C16, C18) suggest a predominant input from sedimentary rocks (petrogenic OC) or petroleum. Abundance-weighted average δ13C and Δ14C values of long-chain leaf wax lipids (C26+28+30n-FAs, C24+26+28n-alkanols, C27+29+31n-alkanes) are -29.1 ± 1.1‰ to -30.2 ± 0.3‰, and -286 ± 150‰ to -442 ± 119‰, respectively, illustrating that terrestrial OC delivery is dominated by pre-aged (∼3000-5000 14C yrs) C3 vegetation sources. A coupled carbon-isotopic mixing model, based on the bulk and compound-specific biomarker δ13C and Δ14C values, is used to partition the BS-YS sedimentary OC into three components that reflect both origins and transport processes. For all sampling sites, 31-64% is modern/contemporary OC, 24-49% is pre-aged terrestrial OC, and 7-26% is fossil OC, the latter likely derived from both physical erosion of ancient sedimentary rocks and fossil fuel sources. Pre-aged soil OC is most prominent in front of the modern and old Huanghe (Yellow River) delta (48% and 49%), and fossil OC is most significant north of the old Huanghe mouth (26%). Significant pre-aged soil contributions (33%) are also evident for sites further offshore, where transport and deposition of eolian dust supply may be important. For the three major deposition areas of the BS-YS system (Bohai Basin, sub-aqueous Huanghe delta and central south YS basin), we estimate that about 3.02 Mt/yr of refractory, plant-derived pre-aged soil OC and 0.98 Mt/yr of 14C-depleted fossil OC accumulates in surface sediments, corresponding to 35% and 11% of sediment TOC, respectively. Compared with estimates for fluxes from corresponding sources, the burial efficiency is close to 100% for pre-aged soil OC and 70% for fossil OC, implying efficient OC burial in delta and shelf environments. Re-burial of these two pools of terrigenous OC only affects carbon cycling on millennial and longer timescales respectively, and exerts little influence on the modern carbon cycle (<100 yr). Carbon isotopic compositions of source specific biomarkers are a useful tool not only for constraining OC sources and transport vectors, but also for delineating their impact on the contemporary carbon cycling in marginal sea systems.

  5. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  6. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  7. Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog

    PubMed Central

    Biegen, Vanessa R.; McCue, John P.; Donovan, Taryn A.; Shelton, G. Diane

    2015-01-01

    A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurological examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful, and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurological signs have been described in humans with this group of diseases, descriptions of advanced imaging, and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis, and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy. PMID:26664991

  8. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting

    PubMed Central

    Yamada, Koji; Suzuki, Hideyuki; Takeuchi, Takuto; Kazama, Yusuke; Mitra, Sharbanee; Abe, Tomoko; Goda, Keisuke; Suzuki, Kengo; Iwata, Osamu

    2016-01-01

    Euglena gracilis, a microalgal species of unicellular flagellate protists, has attracted much attention in both the industrial and academic sectors due to recent advances in the mass cultivation of E. gracilis that have enabled the cost-effective production of nutritional food and cosmetic commodities. In addition, it is known to produce paramylon (β-1,3-glucan in a crystalline form) as reserve polysaccharide and convert it to wax ester in hypoxic and anaerobic conditions–a promising feedstock for biodiesel and aviation biofuel. However, there remain a number of technical challenges to be solved before it can be deployed in the competitive fuel market. Here we present a method for efficient selective breeding of live oil-rich E. gracilis with fluorescence-activated cell sorting (FACS). Specifically, the selective breeding method is a repetitive procedure for one-week heterotrophic cultivation, staining intracellular lipids with BODIPY505/515, and FACS-based isolation of top 0.5% lipid-rich E. gracilis cells with high viability, after inducing mutation with Fe-ion irradiation to the wild type (WT). Consequently, we acquire a live, stable, lipid-rich E. gracilis mutant strain, named B1ZFeL, with 40% more lipid content on average than the WT. Our method paves the way for rapid, cost-effective, energy-efficient production of biofuel. PMID:27212384

  9. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration

    PubMed Central

    Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg

    2007-01-01

    Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993

  11. Highlights of the International Symposium on Plant Lipids, 18th ISPL 2008, Bordeaux July 20–25th, 2008

    USDA-ARS?s Scientific Manuscript database

    Plant lipids are of considerable interest in economic sectors such as agriculture, food, health and the cosmetics industry. In addition, the sector of renewable energies is showing increasing interest in the field of plant lipids. Our society is highly dependent on raw fossil materials whose reserve...

  12. Adaptational changes in the lipids and fatty acid profile of the cell and thylakoid membrane of rice plants exposed to sunlight.

    PubMed

    Vaz, Janet F; Sharma, Prabhat Kumar

    2010-07-01

    Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.

  13. Mechanism for rapid passive-dynamic prey capture in a pitcher plant.

    PubMed

    Bauer, Ulrike; Paulin, Marion; Robert, Daniel; Sutton, Gregory P

    2015-10-27

    Plants use rapid movements to disperse seed, spores, or pollen and catch animal prey. Most rapid-release mechanisms only work once and, if repeatable, regaining the prerelease state is a slow and costly process. We present an encompassing mechanism for a rapid, repeatable, passive-dynamic motion used by a carnivorous pitcher plant to catch prey. Nepenthes gracilis uses the impact of rain drops to catapult insects from the underside of the canopy-like pitcher lid into the fluid-filled trap below. High-speed video and laser vibrometry revealed that the lid acts as a torsional spring system, driven by rain drops. During the initial downstroke, the tip of the lid reached peak velocities similar to fast animal motions and an order of magnitude faster than the snap traps of Venus flytraps and catapulting tentacles of the sundew Drosera glanduligera. In contrast to these active movements, the N. gracilis lid oscillation requires neither mechanical preloading nor metabolic energy, and its repeatability is only limited by the intensity and duration of rainfall. The underside of the lid is coated with friction-reducing wax crystals, making insects more vulnerable to perturbations. We show that the trapping success of N. gracilis relies on the combination of material stiffness adapted for momentum transfer and the antiadhesive properties of the wax crystal surface. The impact-driven oscillation of the N. gracilis lid represents a new kind of rapid plant movement with adaptive function. Our findings establish the existence of a continuum between active and passive trapping mechanisms in carnivorous plants.

  14. Mechanism for rapid passive-dynamic prey capture in a pitcher plant

    PubMed Central

    Bauer, Ulrike; Paulin, Marion; Robert, Daniel; Sutton, Gregory P.

    2015-01-01

    Plants use rapid movements to disperse seed, spores, or pollen and catch animal prey. Most rapid-release mechanisms only work once and, if repeatable, regaining the prerelease state is a slow and costly process. We present an encompassing mechanism for a rapid, repeatable, passive-dynamic motion used by a carnivorous pitcher plant to catch prey. Nepenthes gracilis uses the impact of rain drops to catapult insects from the underside of the canopy-like pitcher lid into the fluid-filled trap below. High-speed video and laser vibrometry revealed that the lid acts as a torsional spring system, driven by rain drops. During the initial downstroke, the tip of the lid reached peak velocities similar to fast animal motions and an order of magnitude faster than the snap traps of Venus flytraps and catapulting tentacles of the sundew Drosera glanduligera. In contrast to these active movements, the N. gracilis lid oscillation requires neither mechanical preloading nor metabolic energy, and its repeatability is only limited by the intensity and duration of rainfall. The underside of the lid is coated with friction-reducing wax crystals, making insects more vulnerable to perturbations. We show that the trapping success of N. gracilis relies on the combination of material stiffness adapted for momentum transfer and the antiadhesive properties of the wax crystal surface. The impact-driven oscillation of the N. gracilis lid represents a new kind of rapid plant movement with adaptive function. Our findings establish the existence of a continuum between active and passive trapping mechanisms in carnivorous plants. PMID:26438874

  15. Disentangling Seasonality and Mean Annual Precipitation in the Indo-Pacific Warm Pool: Insights from Coupled Plant Wax C and H Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.

    2016-12-01

    There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.

  16. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas

    NASA Astrophysics Data System (ADS)

    Tesi, Tommaso; Semiletov, Igor; Dudarev, Oleg; Andersson, August; Gustafsson, Örjan

    2016-03-01

    This study seeks an improved understanding of how matrix association affects the redistribution and degradation of terrigenous organic carbon (TerrOC) during cross-shelf transport in the Siberian margin. Sediments were collected at increasing distance from two river outlets (Lena and Kolyma Rivers) and one coastal region affected by erosion. Samples were fractionated according to density, size, and settling velocity. The chemical composition in each fraction was characterized using elemental analyses and terrigenous biomarkers. In addition, a dual-carbon-isotope mixing model (δ13C and Δ14C) was used to quantify the relative TerrOC contributions from active layer (Topsoil) and Pleistocene Ice Complex Deposits (ICD). Results indicate that physical properties of particles exert first-order control on the redistribution of different TerrOC pools. Because of its coarse nature, plant debris is hydraulically retained in the coastal region. With increasing distance from the coast, the OC is mainly associated with fine/ultrafine mineral particles. Furthermore, biomarkers indicate that the selective transport of fine-grained sediment results in mobilizing high-molecular weight (HMW) lipid-rich, diagenetically altered TerrOC while lignin-rich, less degraded TerrOC is retained near the coast. The loading (µg/m2) of lignin and HMW wax lipids on the fine/ultrafine fraction drastically decreases with increasing distance from the coast (98% and 90%, respectively), which indicates extensive degradation during cross-shelf transport. Topsoil-C degrades more readily (90 ± 3.5%) compared to the ICD-C (60 ± 11%) during transport. Altogether, our results indicate that TerrOC is highly reactive and its accelerated remobilization from thawing permafrost followed by cross-shelf transport will likely represent a positive feedback to climate warming.

  17. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    PubMed

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  18. A Stratigraphic Record from 16 Ma to Present of Compound-Specific Hydrogen Isotopes from northern Tibet: Implications for Paleoaltimetry and Paleoclimate of the Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Brandon, M. T.; Pagani, M.

    2012-12-01

    The paleotopographic evolution of Tibet remains a key issue in testing models for the formation of orogenic plateaus. Stable isotopes from paleosols and lake carbonates provide the primary tool for estimating paleotopography. Unfortunately, the deposits are strongly controlled by evaporation, which means that the surface waters from which they formed were shifted towards heavier isotopic compositions relative to initial (pre-evaporation) meteoric compositions. As a result, estimates from these settings probably represent a lower bound for paleotopography. We report here on new analyses of compound-specific hydrogen stable isotopes, which were determined for n-alkanes extracts from 36 samples from Neogene strata in the northern Tibetan Plateau. N-alkanes represent long-chain hydrocarbons, commonly formed as leaf waxes in terrestrial high plants. The advantage of this record is that it is linked to times when moisture transport was high and evaporation low, as required to allow for the plants to thrive. Distributions of n-alkanes show maxima at C27, C29, and C31 with high odd-over-even preference values, suggesting excellent preservation of lipid biomarkers from terrestrial high plants. The deuterium values highly co-vary between three compounds. Application of an apparent fractionation factor based on modern ground waters and soil-derived lipid biomarkers suggest a multiple-phase evolution of paleometeoric waters consistent with well-constrained tectonic and climatic histories in the northern Tibetan Plateau. For example, a ~60‰ negative shift in δD between 16-10 Ma correlates well with sedimentological and thermochronologic evidence for rapid erosion at that time. The magnitude of this isotopic shift is equivalent to an increase in elevation of 2 to 3 km, assuming that the isotopic composition of the moisture source remained constant during this time. An abrupt positive δD shift at ~10 Ma is consistent with studies supporting intensified aridity in central Asia, whereas a negative δD shift at ~6.5 Ma potentially reflects a change to more moist conditions related to the onset/intensified East Asia Summer Monsoon. The attainment of high elevations in northern Tibetan Plateau is synchronous with the attainment of maximum elevation in the south-central Tibetan Plateau and with the transition from dominant tectonic extrusion to distributed crustal shortening in the northern Tibetan Plateau.

  19. Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance

    PubMed Central

    2014-01-01

    Background Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits. Results Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants. Conclusion Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species. PMID:24423145

  20. In Vivo Lipid "Tag and Track" Approach Shows Acyl Editing of Plastid Lipids and Chloroplast Import of Phosphatidylglycerol Precursors in Arabidopsis thaliana.

    PubMed

    Hurlock, Anna K; Wang, Kun; Takeuchi, Tomomi; Horn, Patrick J; Benning, Christoph

    2018-06-19

    In plant lipid metabolism, the synthesis of many intermediates or end products often appears overdetermined with multiple synthesis pathways acting in parallel. Lipid metabolism is also dynamic with interorganelle transport, turnover, and remodeling of lipids. To explore this complexity in vivo, we developed an in vivo lipid "tag and track" method. Essentially, we probed lipid metabolism in Arabidopsis thaliana by expressing a coding sequence for a fatty acid desaturase from Physcomitrella patens (Δ6D). This enzyme places a double bond after the 6 th carbon from the carboxyl end of an acyl group attached to phosphatidylcholine at its sn-2 glyceryl position providing a subtle, but easily trackable modification of the glycerolipid. Phosphatidylcholine is a central intermediate in plant lipid metabolism as it is modified and converted to precursors for other lipids throughout the plant cell. Taking advantage of the exclusive location of Δ6D in the endoplasmic reticulum (ER) and its known substrate specificity for one of the two acyl groups on phosphatidylcholine, we were able to "tag and track" the distribution of lipids within multiple compartments and their remodeling in transgenic lines of different genetic backgrounds. Key findings were the presence of ER-derived precursors in plastid phosphatidylglycerol and prevalent acyl editing of thylakoid lipids derived from multiple pathways. We expect that this "tag and track" method will serve as a tool to address several unresolved aspects of plant lipid metabolism, such as the nature and interaction of different subcellular glycerolipid pools during plant development or in response to adverse conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Natural plant chemicals: source of industrial and medicinal materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.

    1985-01-01

    Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plants cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. Inmore » the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control. 65 references.« less

  2. 76 FR 27657 - Notice of Domestic Interested Party Petitioner's Desire To Contest the Tariff Classification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... by offering guidance in understanding the scope of the headings and GRIs. The wickless wax objects... Wickless Wax Objects AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION... imported wickless wax objects identified in entry documents as ``wax cylinders'', ``wax pillars'', ``wax...

  3. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    PubMed Central

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104

  4. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  5. Physicochemical, total phenols and pectin methylesterase changes on quality maintenance on guava fruit (Psidium guajava L.) coated with candeuba wax solid lipid nanoparticles-xanthan gum.

    PubMed

    García-Betanzos, Claudia Idalid; Hernández-Sánchez, Humberto; Bernal-Couoh, Tanía Florencia; Quintanar-Guerrero, David; Zambrano-Zaragoza, María de la Luz

    2017-11-01

    The objective of this work was to evaluate the application of candeuba wax solid lipid nanoparticles (SLN) and xanthan gum (XG) as coatings on guava, and their effect on the fruit's physicochemical and nutritional parameters, complementing a previous publication carried out by Zambrano-Zaragoza et al. (2013). The concentrations of SLN were selected according to those reported as the most (65g/L) and least (75g/L) efficient in post-harvest life preservation, and were compared to a coating of XG and untreated control samples. According to results, the submicron-sized systems used in the coatings with a particle size range of 267-344nm, a polydispersity index <0.2, and zeta potential of -22.8 to -30mV remained stable during 8weeks of storage. The best results were from the fruits coated with 65g/L of SLN and stored at 10°C, as they showed the lowest O 2 and CO 2 respiration rates and, consequently, less weight loss. They also had the best retention of ascorbic acid and total phenol content, with less change in fruit color compared to the control guava and those coated only with XG. These findings indicate that this batch continued their natural maturation process, but at a slower rate than the other samples. The firmness was affected by the activity of the enzyme pectin methylesterase, but results show that the 65g/L coating was efficient in maintaining fruit texture. In contrast, the 75g/L coating produced epoxy in the fruit, causing physiological damage. Finally, the guava coated with XG only had a maturation rate similar to that of the control fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pseudopollen in Eria Lindl. section Mycaranthes Rchb.f. (Orchidaceae).

    PubMed

    Davies, K L; Turner, M P

    2004-11-01

    Pseudopollen is a whitish, mealy material produced upon the labella of a number of orchid species as labellar hairs either become detached or fragment. Since individual hair cells are rich in protein and starch, it has long been speculated that pseudopollen functions as a reward for visiting insects. Although some 90 years have passed since Beck first described pseudopollen for a small number of Eria spp. currently assigned to section Mycaranthes Rchb.f., we still know little about the character of pseudopollen in this taxon. The use of SEM and histochemistry would re-address this deficit in our knowledge whereas comparison of pseudopollen in Eria (S.E. Asia), Maxillaria (tropical and sub-tropical America), Polystachya (largely tropical Africa and Madagascar) and Dendrobium unicum (Thailand and Laos) would perhaps help us to understand better how this feature may have arisen and evolved on a number of different continents. Pseudopollen morphology is described using light microscopy and scanning electron microscopy. Hairs were tested for starch, lipid and protein using IKI, Sudan III and the xanthoproteic test, respectively. The labellar hairs of all eight representatives of section Mycaranthes examined are identical. They are unicellular, clavate with a narrow 'stalk' and contain both protein and starch but no detectable lipid droplets. The protein is distributed throughout the cytoplasm and the starch is confined to amyloplasts. The hairs become detached from the labellar surface and bear raised cuticular ridges and flaky deposits that are presumed to be wax. In that they are unicellular and appear to bear wax distally, the labellar hairs are significantly different from those observed for other orchid species. Comparative morphology indicates that they evolved independently in response to pollinator pressures similar to those experienced by other unrelated pseudopollen-forming orchids on other continents.

  7. Effects of Date and Frequency of Burning on Southern Bayberry (Myrica cerifera) in Central Louisiana

    Treesearch

    James D. Haywood; Henry A. Pearson; Harold E. Grelen; Thomas W. Popham

    2000-01-01

    Myrica cerifera (southern bayberry or waxmyrtle) is one of the most common shrubs in the longleaf pine/bluestem forest type in the West Gulf Coastal Plain. During controlled burns, individual plants can burn intensely because the wax coated foliage and fruits are very flammable. However, Myrica cerifera can survive tires on...

  8. Extractable organic matter in PM10 from LiWan district of Guangzhou City, PR China.

    PubMed

    Bi, Xinhui; Sheng, Guoying; Peng, Peng an; Zhang, Zhiqiang; Fu, Jiamo

    2002-12-02

    PM10 (particulate matter with aerodynamic diameter <10 microm) samples were collected at LiWan District of Guangzhou, PR China during April and July 2001 using a high volume air sampler to determine the distributions of homologous compounds and biomarkers. Polycyclic aromatic hydrocarbons (PAHs) including non-alkylated PAHs, methyl-alkylated PAHs, and some PAHs containing S/O atoms and n-alkanes were measured using gas chromatography/mass spectrometry analysis. The sigma(n)-alkane and sigmaPAHs ranged from 26.4 to 719.2 ng/m3 and 7.4 to 159.4 ng/m3, respectively. A seasonal fluctuation was clearly evident with higher concentrations occurring during the colder months (April). In addition, some compositional differences are observed for the organic compounds in samples collected from different heights above ground level. Higher sites had a significant contribution from vascular plant wax. The presence of petroleum products with no carbon number preference, pristane, phytane and a significant unresolved complex mixture (UCM) with unresolved to resolved components ratio (U/R) of 6.2-13.2 confirm the petroleum component. The relative distribution of n-alkanes and the values of molecular diagnostic ratio, such as carbon preference index (CPI) values ranging from 1.0 to 1.4 (for the whole range of n-alkanes), indicated the importance of petroleum and diesel residues and gasoline emissions, as well as the minor contribution of n-alkanes emitted directly from epicuticular waxes. Indeed, the percent contribution of leaf 'wax' n-alkanes (5.2-19.4%) indicated a low contribution of biogenic sources. The fossil fuel biomarkers, hopanes and steranes were observed in the PM10 samples, which indicate a petroleum origin. The distribution pattern of PAHs was characteristic of anthropogenic emissions. Coupling carbon number maximum (Cmax), CPI, U/R values, molecular marker and molecular diagnostic ratios for alkanes and PAHs revealed a classification of natural biogenic and anthropogenic components of atmospheric aerosols. These analyses support the conclusion that vehicular emission was the major source of organic compounds during the study period, while the contribution of epicuticular waxes emitted by terrestrial plants was minor.

  9. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    PubMed

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  10. Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows.

    PubMed

    Heublein, C; Südekum, K-H; Gill, F L; Dohme-Meier, F; Schori, F

    2017-02-01

    The objective of this study was to test whether diet selection of dairy cows under grazing conditions could be estimated using plant wax markers. Furthermore, differences between 2 cow strains and the effect of concentrate supplementation on plant species selection were investigated. The experiment was a study with a crossover design performed on an organic farm with 12 Swiss Holstein cows and 12 New Zealand Holstein cows. Both experimental periods consisted of a 21-d adaptation and a 7-d measurement period. All cows grazed full time in a rotational stocking system and received either no concentrate or 6 kg/d of a commercial cereal-grain mix. Representative herbage samples of each grazed paddock were taken and botanical composition of subsamples was manually determined. The average proportions of the plant species were 27.8% Lolium perenne, 6.1% Dactylis glomerata, 10.4% Trifolium repens, and 9.0% Taraxacum officinale. Other grass species were merged as "other grass" (38.2%) and other forb species as "other forbs" (8.5%). n-Alkanes, long-chain fatty acids, and long-chain alcohols (LCOH) were analyzed in the samples of plant species, concentrate, and feces from each cow. A linear discriminant analysis indicated that diet components were differentiated best with LCOH (96%) and worst with the combination of all marker groups together (12%). For each marker, the fecal marker recovery (FR) relative to dosed ytterbium was determined in 2 ways. Estimation of diet composition was performed with the software "EatWhat," and results were compared with botanical composition with the Aitchison distance. The results indicate that the diet composition of grazing dairy cows can be estimated using plant wax markers. Additionally, the calculation of FR led to mostly reliable results, yet this approach needs further validation. The most accurate estimation was achieved with the marker combination of n-alkanes and LCOH with a correction for FR. Less accurate estimations were achieved with long-chain fatty acids alone or in combination with n-alkanes. No difference relating to diet selection between the 2 cow strains was recorded, but supplemented cows apparently ingested higher proportions of T. repens than nonsupplemented cows. Awareness that supplementation influences selection behavior of grazing dairy cows may lead to adaptations in botanical composition of the pasture according to the demand of the animals. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development

    PubMed Central

    Xiao, Fangming; Mark Goodwin, S; Xiao, Yanmei; Sun, Zhaoyu; Baker, Douglas; Tang, Xiaoyan; Jenks, Matthew A; Zhou, Jian-Min

    2004-01-01

    Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces. PMID:15241470

  12. High-throughput optofluidic profiling of Euglena gracilis with morphological and chemical specificity

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-11-01

    The world is faced with environmental problems and the energy crisis due to the combustion and depletion of fossil fuels. The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate a high-throughput optofluidic Euglena gracilis profiler which consists of an optical time-stretch microscope and a fluorescence analyzer on top of an inertial-focusing microfluidic device that can detect fluorescence from lipid droplets in their cell body and provide images of E. gracilis cells simultaneously at a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method provides a promise for evaluating the efficiency of lipid-inducing techniques for biofuel production, which is also applicable for identifying biomedical samples such as blood cells and cancer cells.

  13. Synthesis of neutral ether lipid monoalkyl-diacylglycerol by lipid acyltransferases[S

    PubMed Central

    Ma, Zhengping; Onorato, Joelle M.; Chen, Luping; Nelson, David W.; Yen, Chi-Liang Eric; Cheng, Dong

    2017-01-01

    In mammals, ether lipids exert a wide spectrum of signaling and structural functions, such as stimulation of immune responses, anti-tumor activities, and enhancement of sperm functions. Abnormal accumulation of monoalkyl-diacylglycerol (MADAG) was found in Wolman’s disease, a human genetic disorder defined by a deficiency in lysosomal acid lipase. In the current study, we found that among the nine recombinant human lipid acyltransferases examined, acyl-CoA:diacylglycerol acyltransferase (DGAT)1, DGAT2, acyl-CoA:monoacylglycerol acyltransferase (MGAT)2, MGAT3, acyl-CoA:wax-alcohol acyltransferase 2/MFAT, and DGAT candidate 3 were able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG). These enzymes demonstrated different enzymatic turnover rates and relative efficiencies for the first and second acylation steps leading to the synthesis of MAMAG and MADAG, respectively. They also exhibited different degrees of substrate preference when presented with 1-monooleoylglycerol versus 1-MAkG. In CHO-K1 cells, treatment with DGAT1 selective inhibitor, XP-620, completely blocked the synthesis of MADAG, indicating that DGAT1 is the predominant enzyme responsible for the intracellular synthesis of MADAG in this model system. The levels of MADAG in the adrenal gland of DGAT1 KO mice were reduced as compared with those of the WT mice, suggesting that DGAT1 is a major enzyme for the synthesis of MADAG in this tissue. Our findings indicate that several of these lipid acyltransferases may be able to synthesize neutral ether lipids in mammals. PMID:28420705

  14. Production and early preservation of lipid biomarkers in iron hot springs.

    PubMed

    Parenteau, Mary N; Jahnke, Linda L; Farmer, Jack D; Cady, Sherry L

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration.

  15. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fattymore » acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.« less

  16. Valorization of lubricant-based wastewater for bacterial neutral lipids production: Growth-linked biosynthesis.

    PubMed

    Da Silva, Pedro D M P; Lima, Filipa; Alves, Maria Madalena; Bijmans, Martijn F M; Pereira, Maria Alcina

    2016-09-15

    Lipids produced by microorganisms are currently of great interest as raw material for either biofuels or oleochemicals production. Significant biosynthesis of neutral lipids, such as triacylglycerol (TAG) and wax esters (WE) are thought to be limited to a few strains. Hydrocarbonoclastic bacteria (HCB), key players in bioremediation of hydrocarbon contaminated ecosystems, are among this group of strains. Hydrocarbon rich wastewaters have been overlooked concerning their potential as raw material for microbial lipids production. In this study, lubricant-based wastewater was fed, as sole carbon source, to two HCB representative wild strains: Alcanivorax borkumensis SK2, and Rhodococcus opacus PD630. Neutral lipid production was observed with both strains cultivated under uncontrolled conditions of pH and dissolved oxygen. A. borkumensis SK2 was further investigated in a pH- and OD-controlled fermenter. Different phases were assessed separately in terms of lipids production and alkanes removal. The maximum TAG production rate occurred during stationary phase (4 mg-TAG/L h). The maximum production rate of WE-like compounds was 15 mg/L h, and was observed during exponential growth phase. Hydrocarbons removal was 97% of the gas chromatography (GC) resolved straight-chain alkanes. The maximum removal rate was observed during exponential growth phase (6 mg-alkanes/L h). This investigation proposes a novel approach for the management of lubricant waste oil, aiming at its conversion into valuable lipids. The feasibility of the concept is demonstrated under low salt (0.3%) and saline (3.3%) conditions, and presents clues for its technological development, since growth associated oil production opens the possibility for establishing continuous fermentation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Seasonal lipid dynamics of Calanus finmarchicus and C. helgolandicus in the Norwegian Sea: The role of energy for "decision making" in life-cycle events

    NASA Astrophysics Data System (ADS)

    Melle, W.; Broms, C.; Meier, S.; Mæhle, S.; Skern, R.

    2016-02-01

    Accumulation and utilization of stored lipids impact important life-cycle events of Calanus species. The con-generic copepods Calanus finmarchicus (cold-temperate) and C. helgolandicus (warm-temperate) co-occur in the Norwegian Sea, although their abundances and seasonal dynamics differ. These species also exhibit important differences regarding behaviour, fat metabolism and deposition, and diet. During one year, C. finmarchicus and C. helgolandicus were sampled at a number of stations in the Norwegian Sea in January, May and November. The samples are depth-stratified, taken down to 1500 meters depth, and have been analyzed to copepodite stages IV, V and VI males and females. The species are separated based on genetic analysis. The lipid classes (phospholipids, triacylglycerol and wax esters) composition of the different species are analysed by Folch extraction and Thin-Layer Chromatography (TLC) followed by gas chromatography analysis of fatty acids and alcohols. The species-, stage-, and depth specific lipid contents have been related to the Calanus species vertical distribution, physical environment, prey field, and invertebrate predator field. Questions that have been attempted answered: How does the lipid content affect vertical seasonal migration? How does the lipid content affect overwintering depth and duration of diapause? Can lipid content explain differences in behaviour and phenology between C. finmarchicus and C. helgolandicus? Preliminary analyses of fatty acids reveals only small differences in the diet composition of C. finmarchicus and C. helgolandicus sampled at the same location. The Calanus species are adapted to different habitats and temperature regimes. Improving our understanding of how diet and fat accumulation and utilization affects important life-cycle events will allow us to better predict how these species, and thus the herbivore community of the Norwegian Sea, will change in response to global warming.

  18. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    PubMed Central

    Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-01-01

    Abstract The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration. Key Words: Lipid biomarkers—Photosynthesis—Iron—Hot springs—Mars. Astrobiology 14, 502–521. PMID:24886100

  19. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  20. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    PubMed

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  1. Observation of the sweating in lipstick by scanning electron microscopy.

    PubMed

    Seo, S Y; Lee, I S; Shin, H Y; Choi, K Y; Kang, S H; Ahn, H J

    1999-06-01

    The relationship between the wax matrix in lipstick and sweating has been investigated by observing the change of size and shape of the wax matrix due to sweating by Scanning Electron Microscopy (SEM). For observation by SEM, a lipstick sample was frozen in liquid nitrogen. The oil in the lipstick was then extracted in cold isopropanol (-70 degrees C) for 1-3 days. After the isopropanol was evaporated, the sample was sputtered with gold and examined by SEM. The change of wax matrix underneath the surface from fine, uniform structure to coarse, nonuniform structure resulted from the caking of surrounding wax matrix. The oil underneath the surface migrated to the surface of lipstick with sweating; consequently the wax matrix in that region was rearranged into the coarse matrix. In case of flamed lipstick, sweating was delayed and the wax matrix was much coarser than that of the unflamed one. The larger wax matrix at the surface region was good for including oil. The effect of molding temperature on sweating was also studied. As the molding temperature rose, sweating was greatly reduced and the size of the wax matrix increased. It was found that sweating was influenced by the compatibility of wax and oil. A formula consisting of wax and oil that have good compatibility has a tendency to reduce sweating and increase the size of the wax matrix. When pigments were added to wax and oil, the size of the wax matrix was changed, but in all cases sweating was increased due to the weakening of the binding force between wax and oil. On observing the thick membrane of wax at the surface of lipstick a month after molding it was also found that sweating was influenced by ageing. In conclusion, the structure of the wax matrix at the surface region of lipstick was changed with the process of flaming, molding temperature, compatibility of wax and oil, addition of pigment, and ageing. In most cases, as the size of the wax matrix was increased, sweating was reduced and delayed.

  2. Molecular Characterization of TaFAR1 Involved in Primary Alcohol Biosynthesis of Cuticular Wax in Hexaploid Wheat.

    PubMed

    Wang, Yong; Wang, Meiling; Sun, Yulin; Hegebarth, Daniela; Li, Tingting; Jetter, Reinhard; Wang, Zhonghua

    2015-10-01

    Cuticular waxes are complex mixtures of very long chain (VLC) fatty acids and their derivatives in which primary alcohols are the most abundant components in the leaf surface of common wheat (Triticum aestivum L.). However, the genes involved in primary alcohol biosynthesis in wheat are still largely unknown. Here we identified, via a homology-based approach, the TaFAR1 gene belonging to the fatty acyl-CoA reductases (FARs) from wheat. Heterologous expression of TaFAR1 in yeast (Saccharomyces cerevisiae) and in the Arabidopsis (Arabidopsis thaliana) cer4-3 mutant afforded production of C22 primary alcohol and C22-C24 primary alcohols, respectively, and transgenic expression of TaFAR1 in tomato (Solanum lycopersicum) cv MicroTom leaves and fruits resulted in the accumulation of C26-C30 primary alcohols and C30-C34 primary alcohols, respectively. The TaFAR1 protein was localized to the endoplasmic reticulum (ER) in rice (Oryza sativa L.) leaf protoplasts. Moreover, the TaFAR1 expression pattern across various organs correlated with the levels of primary alcohols accumulating in corresponding waxes, and with the presence of platelet-shaped epicuticular wax crystals formed by primary alcohols. A nullisomic-tetrasomic wheat line lacking TaFAR1 had significantly reduced levels of primary alcohols in its leaf blade and anther wax. TaFAR1 was located on chromosome 4AL and appeared to be highly conserved, with only one haplotype among 32 wheat cultivars. Finally, TaFAR1 expression was induced by drought and cold stress in an ABA-dependent manner. Taken together, our results show that TaFAR1 is an active enzyme forming primary alcohols destined for the wheat cuticle. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-01-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS–PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. PMID:25468933

  4. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Imaging lipid droplets in Arabidopsis mutants

    USDA-ARS?s Scientific Manuscript database

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  6. Rapid Mobilization of Membrane Lipids in Wheat Leaf-Sheaths during Incompatible Interactions with Hessian Fly*

    PubMed Central

    Zhu, Lieceng; Liu, Xuming; Wang, Haiyan; Khajuria, Chitvan; Reese, John C.; Whitworth, R. Jeff; Welti, Ruth; Chen, Ming-Shun

    2013-01-01

    Hessian fly (HF) is a biotrophic insect that interacts with wheat on a gene-for-gene basis. We profiled changes in membrane lipids in two isogenic wheat lines: a susceptible line and its backcrossed offspring containing the resistance gene H13. Our results revealed a 32 to 45% reduction in total concentrations of 129 lipid species in resistant plants during incompatible interactions within 24 h after HF attack. A smaller and delayed response was observed in susceptible plants during compatible interactions. Microarray and real-time PCR analyses of 168 lipid-metabolism related transcripts revealed that the abundance of many of these transcripts increased rapidly in resistant plants after HF attack, but did not change in susceptible plants. In association with the rapid mobilization of membrane lipids, the concentrations of some fatty acids and 12-oxo-phytodienoic acid (OPDA) increased specifically in resistant plants. Exogenous application of OPDA increased mortality of HF larvae significantly. Collectively, our data, along with previously published results, indicate that the lipids were mobilized through lipolysis, producing free fatty acids, which were likely further converted into oxylipins and other defense molecules. Our results suggest that rapid mobilization of membrane lipids constitutes an important step for wheat to defend against HF attack. PMID:22668001

  7. Lipid transfer from plants to arbuscular mycorrhiza fungi

    PubMed Central

    Keymer, Andreas; Pimprikar, Priya; Wewer, Vera; Huber, Claudia; Brands, Mathias; Bucerius, Simone L; Delaux, Pierre-Marc; Klingl, Verena; von Röpenack-Lahaye, Edda; Wang, Trevor L; Eisenreich, Wolfgang; Dörmann, Peter; Parniske, Martin; Gutjahr, Caroline

    2017-01-01

    Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts. DOI: http://dx.doi.org/10.7554/eLife.29107.001 PMID:28726631

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Zhu; Jack A. Walker; J. Liang

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phasemore » behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.« less

  9. Effect of alkali treatment on the physical and surface properties of Indian hemp fibers

    NASA Astrophysics Data System (ADS)

    Sangappa, Rao, B. Lakshmeesha; Asha, S.; Somashekar, R.

    2013-02-01

    The Plant fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for reinforcement of polymeric materials. Hemp (Cannabis Sativa L.) fibers were subjected to alkalization using 1N sodium hydroxide (NaOH). The structural properties and surface morphology of untreated and chemically modified fibers have been studied using X-ray diffraction (WAXS) and Scanning electron microscopy (SEM) respectively.

  10. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    PubMed

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  11. Analyses of Tomato Fruit Brightness Mutants Uncover Both Cutin-Deficient and Cutin-Abundant Mutants and a New Hypomorphic Allele of GDSL Lipase[C][W][OPEN

    PubMed Central

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-01-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants. PMID:24357602

  12. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    PubMed

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    PubMed Central

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-01-01

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211

  14. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  15. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    PubMed

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF fabrics were slightly irritant, comparing with the commercial wound dressing. Therefore, SF fabrics coated with waxes, particularly carnauba wax, would be promising choices of non-adhesive wound dressing. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ear wax

    MedlinePlus

    See your provider if your ears are blocked with wax and you are unable to remove the wax. Also call if you have an ear wax blockage and you develop new symptoms, such as: Drainage from the ear Ear pain Fever Hearing loss that continues after you clean the wax

  17. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers

    PubMed Central

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-01-01

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°–122° and 129°–144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0–7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°–152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity. PMID:28336839

  18. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers.

    PubMed

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-12-30

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°-122° and 129°-144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0-7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°-152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity.

  19. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum

    PubMed Central

    Wang, Meiling; Wang, Yong; Wu, Hongqi; Xu, Jing; Li, Tingting; Hegebarth, Daniela; Jetter, Reinhard; Chen, Letian; Wang, Zhonghua

    2016-01-01

    Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20–C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0–C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses. PMID:27112792

  20. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS.

    PubMed

    Tada, Atsuko; Jin, Zhe-Long; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi

    2005-10-01

    Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.

  1. GDSL lipases modulate immunity through lipid homeostasis in rice

    PubMed Central

    Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Shui, Guanghou

    2017-01-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. PMID:29131851

  2. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  3. 21 CFR 872.6890 - Intraoral dental wax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  4. 21 CFR 872.6890 - Intraoral dental wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  5. 21 CFR 872.6890 - Intraoral dental wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  6. 21 CFR 872.6890 - Intraoral dental wax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  7. 21 CFR 872.6890 - Intraoral dental wax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  8. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and organogels

    USDA-ARS?s Scientific Manuscript database

    There is increased interest in natural waxes as alternatives to partially hydrogenated oils and saturated fats as oil structuring agents. Using relatively low concentrations (0.5-5%), natural waxes are able to form crystalline networks, or organogels, which bind liquid oil. Each natural wax is uniqu...

  9. Properties of cookies made with natural wax-vegetable oil organogels

    USDA-ARS?s Scientific Manuscript database

    Organogels prepared with a natural wax and a vegetable oil were examined as alternatives to a commercial margarine in cookie. To investigate effects of wax and vegetable oil on properties of cookie dough and cookies, organogels prepared from four different waxes including sunflower wax, rice bran wa...

  10. Quantitative trait loci controlling amounts and types of epicuticular waxes in onion

    USDA-ARS?s Scientific Manuscript database

    Natural variation exists in onion (Allium cepa L.) for amounts and types of epicuticular waxes on leaves. Wild-type waxy onion possesses copious amounts of these waxes, while the foliage of semi-glossy and glossy phenotypes accumulate significantly less wax. Reduced amounts of epicuticular waxes hav...

  11. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    USDA-ARS?s Scientific Manuscript database

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  12. 21 CFR 178.3720 - Petroleum wax, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Petroleum wax, synthetic. 178.3720 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3720 Petroleum wax, synthetic. Synthetic petroleum wax may be safely used in applications and under the same conditions where naturally derived petroleum wax...

  13. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  14. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  15. 21 CFR 178.3720 - Petroleum wax, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax, synthetic. 178.3720 Section 178.3720... Certain Adjuvants and Production Aids § 178.3720 Petroleum wax, synthetic. Synthetic petroleum wax may be safely used in applications and under the same conditions where naturally derived petroleum wax is...

  16. Research on influence of wax deposition on flow state in coiled tubing with cable inside

    NASA Astrophysics Data System (ADS)

    Ye, Qinyou; Xian, Linyun; Zhang, Fan; Yu, Han; Li, Xiao

    2018-04-01

    The effect of the morphology of the wax on the flow state in the coiled tubing with concentric cable was studied by numerical simulation. The results show that flow stream lines of crude oil are parallel to each other in the tubing with no waxing. It is disturbed at the two ends of wax deposition, transvers flow is formed at ends of wax and flow oil is speeded up in gap between wax and cable, friction pressure loss is then increased. This kind of influence becomes more serious with the increase of wax deposition proportion and thickness. An equivalent thickness is proposed to incorporate the influence of wax deposition proportion, length and thickness. With this parameter, a model is developed to calculate the pressure loss induced by wax on the base of concentric model, which can be used conveniently in engineering.

  17. Wax transfer printing to enable robust barrier definition in devices based on non-standard porous materials

    NASA Astrophysics Data System (ADS)

    To, Anthony; Downs, Corey; Fu, Elain

    2017-05-01

    Wax printing has become a common method of fabricating channels in cellulose-based microfluidic devices. However, a limitation of wax printing is that it is restricted to relatively thin, smooth substrates that are compatible with processing by a commercial wax printer. In the current report, we describe a simple patterning method that extends the utility of wax printers for creating hydrophobic barriers on non-standard porous substrates via a process called wax transfer printing. We demonstrate the use of multiple wax transfer cycles to create well-defined, robust, and reproducible barriers in a thick cellulose substrate that is not compatible with feeding through a wax printer. We characterize the method for (i) wax spreading within the substrate as a function of heating time, (ii) the ability to create functional barriers in a substrate, and (iii) reproducibility in line width.

  18. Diversity of cuticular wax among Salix species and Populus species hybrids.

    PubMed

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  19. Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea.

    PubMed

    Malpassi, Rosana N

    2006-04-01

    Eleusine indica and Portulaca oleracea are two common weeds in peanut crops in southern Córdoba. Two chemicals are frequently used to control them, quizalofop for grasses and lactofen for dicots. The objective is to study the effects of quizalofop and lactofen on cuticle ultrastructure in E. indica and P. oleracea, respectively. In the lab, quizalofop was applied on E. indica and lactofen on P. oleracea. Three plant categories were analyzed in each species: 3, 1-2, and no tiller in E. indica, and 8, 6, and 2 nomophylls in P. oleracea. Leaf samples from both species were collected at 7 and 16 days post-application and were treated for scanning electron microscopy. E. indica cuticle treated with lethal dose shows areas where epicuticular waxes disappear, specially in the youngest individuals. These areas are located predominantly on periclinal walls of typical epidermic cells and subsidiary cells. On the other hand, P. oleracea shows cuticle discontinuities that may be caused by lactofen entry. They are smaller and less frequent in plants having 8 or more nomophylls. The remaining waxes act as a herbicide accumulation compartment and, therefore, would partially prevent the active ingredient entry to epidermic cells.

  20. The lipid language of plant-fungal interactions.

    PubMed

    Christensen, Shawn A; Kolomiets, Michael V

    2011-01-01

    Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated. Published by Elsevier Inc.

Top