Science.gov

Sample records for plant-pathogenic bacterium erwinia

  1. Immuno gold staining (IGS) and immuno gold silver staining (IGSS) for the identification of the plant pathogenic bacterium Erwinia amylovora (Burrill) Winslow et al.

    PubMed

    Van Laere, O; De Wael, L; De Mey, J

    1985-01-01

    For the identification of the plant pathogenic bacterium Erwinia amylovora, the immuno gold staining (IGS) and immuno gold silver staining (IGSS) techniques are tested. The IGS and IGSS methods are at least as sensitive an indirect immunofluorescence and require less primary antiserum. Moreover they have the advantage that the preparations can be conserved permanently and unchanged. The preparation of the IGS can be observed with transmitted light or--with considerable better result--using epipolarization microscopy. The IGSS method deserves special attention because of its high contrast in normal brigth field microscopy with transmitted light.

  2. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia chrysanthemi 3937▿

    PubMed Central

    Boughammoura, Aïda; Matzanke, Berthold F.; Böttger, Lars; Reverchon, Sylvie; Lesuisse, Emmanuel; Expert, Dominique; Franza, Thierry

    2008-01-01

    During infection, the phytopathogenic enterobacterium Erwinia chrysanthemi has to cope with iron-limiting conditions and the production of reactive oxygen species by plant cells. Previous studies have shown that a tight control of the bacterial intracellular iron content is necessary for full virulence. The E. chrysanthemi genome possesses two loci that could be devoted to iron storage: the bfr gene, encoding a heme-containing bacterioferritin, and the ftnA gene, coding for a paradigmatic ferritin. To assess the role of these proteins in the physiology of this pathogen, we constructed ferritin-deficient mutants by reverse genetics. Unlike the bfr mutant, the ftnA mutant had increased sensitivity to iron deficiency and to redox stress conditions. Interestingly, the bfr ftnA mutant displayed an intermediate phenotype for sensitivity to these stresses. Whole-cell analysis by Mössbauer spectroscopy showed that the main iron storage protein is FtnA and that there is an increase in the ferrous iron/ferric iron ratio in the ftnA and bfr ftnA mutants. We found that ftnA gene expression is positively controlled by iron and the transcriptional repressor Fur via the small antisense RNA RyhB. bfr gene expression is induced at the stationary phase of growth. The σS transcriptional factor is necessary for this control. Pathogenicity tests showed that FtnA and the Bfr contribute differentially to the virulence of E. chrysanthemi depending on the host, indicating the importance of a perfect control of iron homeostasis in this bacterial species during infection. PMID:18165304

  3. Draft genome sequence of ‘Candidatus Phytoplasma pruni’ strain CX, a plant pathogenic bacterium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Candidatus Phytoplasma pruni’ strain CX, belonging to subgroup 16SrIII-A, is a plant pathogenic bacterium causing economically important diseases in many fruit crops. Here we report the draft genome sequence that consists of 598,508 bases, with a G+C content of 27.21 mol%. ...

  4. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    PubMed

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Fischer-Le Saux, Marion; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier; Lemaire, Christophe; Jacques, Marie-Agnès

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  5. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  6. Phenotypic Variation in the Plant Pathogenic Bacterium Acidovorax citrulli

    PubMed Central

    Shrestha, Ram Kumar; Rosenberg, Tally; Makarovsky, Daria; Eckshtain-Levi, Noam; Zelinger, Einat; Kopelowitz, June; Sikorski, Johannes; Burdman, Saul

    2013-01-01

    Acidovorax citrulli causes bacterial fruit blotch (BFB) of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs) of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P)-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic and/or epigenetic

  7. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  8. Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023

  9. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora

    PubMed Central

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei

    2015-01-01

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin. PMID:26525796

  10. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    PubMed

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2015-11-02

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.

  11. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E.

    PubMed

    Smits, Theo H M; Duffy, Brion

    2011-10-01

    Genomics has clarified the biosynthetic pathway for desferrioxamine E critical for iron acquisition in the enterobacterial fire blight pathogen Erwinia amylovora. Evidence for each of the individual steps and the role of desferrioxamine E biosynthesis in pathogen virulence and cell protection from host defenses is presented. Using comparative genomics, it can be concluded that desferrioxamine biosynthesis is ancestral within the genera Erwinia and Pantoea.

  12. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia.

    PubMed

    Kube, Michael; Migdoll, Alexander Michael; Müller, Ines; Kuhl, Heiner; Beck, Alfred; Reinhardt, Richard; Geider, Klaus

    2008-09-01

    The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.

  13. Proteome analysis of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae.

    PubMed

    Xu, Shu; Luo, Jianying; Pan, Xiayan; Liang, Xiaoyu; Wu, Jian; Zheng, Wenjun; Chen, Changjun; Hou, Yiping; Ma, Hongyu; Zhou, Mingguo

    2013-08-01

    The plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, which is one of the most serious diseases of rice. Xoo has been studied for over one century, and much has been learned about it, but proteomic investigation has been neglected. In this study, proteome reference maps of Xoo were constructed by two-dimensional gel electrophoresis, and 628 spots in the gels representing 469 different protein species were identified with MALDI-TOF/TOF MS. The identified spots were assigned to 15 functional categories according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the annotations from the National Center for Biotechnology Information (NCBI) database. The data set has been deposited in the World-2DPAGE database (Database ID: 0044). In addition, comparative proteomic analysis revealed that proteins related to the TonB-dependent transportation system and energy metabolism are involved in the phenazine-1-carboxylic acid resistance in Xoo. In conclusion, we have established a proteome database for Xoo and have used this database in a comparative proteomic analysis that identified proteins potentially contributing to phenazine-1-carboxylic acid resistance in Xoo.

  14. The cost of phage resistance in a plant pathogenic bacterium is context-dependent.

    PubMed

    Meaden, Sean; Paszkiewicz, Konrad; Koskella, Britt

    2015-05-01

    Parasites are ubiquitous features of living systems and many parasites severely reduce the fecundity or longevity of their hosts. This parasite-imposed selection on host populations should strongly favor the evolution of host resistance, but hosts typically face a trade-off between investment in reproductive fitness and investment in defense against parasites. The magnitude of such a trade-off is likely to be context-dependent, and accordingly costs that are key in shaping evolution in nature may not be easily observable in an artificial environment. We set out to assess the costs of phage resistance for a plant pathogenic bacterium in its natural plant host versus in a nutrient-rich, artificial medium. We demonstrate that mutants of Pseudomonas syringae that have evolved resistance via a single mutational step pay a substantial cost for this resistance when grown on their tomato plant hosts, but do not realize any measurable growth rate costs in nutrient-rich media. This work demonstrates that resistance to phage can significantly alter bacterial growth within plant hosts, and therefore that phage-mediated selection in nature is likely to be an important component of bacterial pathogenicity.

  15. Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum.

    PubMed

    Mattinen, Laura; Nissinen, Riitta; Riipi, Tero; Kalkkinen, Nisse; Pirhonen, Minna

    2007-10-01

    Pectobacterium atrosepticum is a Gram-negative plant pathogenic bacterium that causes rotting in potato stems and tubers. The secreted proteins of this pathogen were analyzed with proteomics from culture supernatant of cells grown in minimal medium supplemented with host extracts. More than 40 proteins were identified, among them known virulence determinants, such as pectic enzymes, metalloprotease, and virulence protein Svx, along with flagella proteins, GroEL and cyclophilin-type chaperones and several hypothetical proteins or proteins with unknown function. Some of the identified proteins may be involved in utilization of nutrients or transport of minerals. Northern and real-time RT-PCR analyses suggested that most of the proteins upregulated by plant extract were transcriptionally regulated. Among the identified proteins were VgrG and four homologs of hemolysin-coregulated proteins (Hcps). A mutant strain lacking one of the hcp genes was not affected in virulence, while a bacterial strain overexpressing the same gene was shown to have increased virulence, which suggests that these proteins may be new virulence determinants of P. atrosepticum. Comparison of the secretomes of wild type cells and hrcC mutant defective in Type III secretion suggested that the production of the identified proteins was independent of functional Type III secretion system.

  16. The cost of phage resistance in a plant pathogenic bacterium is context‐dependent

    PubMed Central

    Meaden, Sean; Paszkiewicz, Konrad; Koskella, Britt

    2015-01-01

    Parasites are ubiquitous features of living systems and many parasites severely reduce the fecundity or longevity of their hosts. This parasite‐imposed selection on host populations should strongly favor the evolution of host resistance, but hosts typically face a trade‐off between investment in reproductive fitness and investment in defense against parasites. The magnitude of such a trade‐off is likely to be context‐dependent, and accordingly costs that are key in shaping evolution in nature may not be easily observable in an artificial environment. We set out to assess the costs of phage resistance for a plant pathogenic bacterium in its natural plant host versus in a nutrient‐rich, artificial medium. We demonstrate that mutants of Pseudomonas syringae that have evolved resistance via a single mutational step pay a substantial cost for this resistance when grown on their tomato plant hosts, but do not realize any measurable growth rate costs in nutrient‐rich media. This work demonstrates that resistance to phage can significantly alter bacterial growth within plant hosts, and therefore that phage‐mediated selection in nature is likely to be an important component of bacterial pathogenicity. PMID:25809535

  17. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    PubMed Central

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  18. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens.

  19. Complete Genome Sequence of Pseudomonas brassicacearum LBUM300, a Disease-Suppressive Bacterium with Antagonistic Activity toward Fungal, Oomycete, and Bacterial Plant Pathogens.

    PubMed

    Novinscak, Amy; Gadkar, Vijay J; Joly, David L; Filion, Martin

    2016-01-28

    Pseudomonas brassicacearum LBUM300, a plant rhizosphere-inhabiting bacterium, produces 2,4-diacetylphloroglucinol and hydrogen cyanide and has shown antagonistic activity against the plant pathogens Verticillium dahliae, Phytophthora cactorum, and Clavibacter michiganensis subsp. michiganensis. Here, we report the complete genome sequence of P. brassicacearum LBUM300.

  20. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum).

    PubMed

    van der Wolf, Jan M; Nijhuis, Els H; Kowalewska, Malgorzata J; Saddler, Gerry S; Parkinson, Neil; Elphinstone, John G; Pritchard, Leighton; Toth, Ian K; Lojkowska, Ewa; Potrykus, Marta; Waleron, Malgorzata; de Vos, Paul; Cleenwerck, Ilse; Pirhonen, Minna; Garlant, Linda; Hélias, Valérie; Pothier, Joël F; Pflüger, Valentin; Duffy, Brion; Tsror, Leah; Manulis, Shula

    2014-03-01

    Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.

  1. Draft Genome Sequence of Erwinia toletana, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. Savastanoi.

    PubMed

    Passos da Silva, Daniel; Devescovi, Giulia; Paszkiewicz, Konrad; Moretti, Chiaraluce; Buonaurio, Roberto; Studholme, David J; Venturi, Vittorio

    2013-05-09

    Erwinia toletana was first reported in 2004 as a bacterial species isolated from olive knots caused by the plant bacterium Pseudomonas savastanoi pv. savastanoi. Recent studies have shown that the presence of this bacterium in the olive knot environment increases the virulence of the disease, indicating possible interspecies interactions with P. savastanoi pv. savastanoi. Here, we report the first draft genome sequence of an E. toletana strain.

  2. Draft Genome Sequence of Erwinia toletana, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. Savastanoi

    PubMed Central

    Passos da Silva, Daniel; Devescovi, Giulia; Paszkiewicz, Konrad; Moretti, Chiaraluce; Buonaurio, Roberto; Studholme, David J.

    2013-01-01

    Erwinia toletana was first reported in 2004 as a bacterial species isolated from olive knots caused by the plant bacterium Pseudomonas savastanoi pv. savastanoi. Recent studies have shown that the presence of this bacterium in the olive knot environment increases the virulence of the disease, indicating possible interspecies interactions with P. savastanoi pv. savastanoi. Here, we report the first draft genome sequence of an E. toletana strain. PMID:23661482

  3. [Physiological and biochemical properties of the bacterium Erwinia rhapontici, a producer of isomaltulose synthase].

    PubMed

    Korneeva, O S; Bozhko, O Iu; Mangueva, Z M

    2008-01-01

    Optimum conditions for the biosynthesis of isomaltulose synthase by submerged cultures of the bacterium Erwinia rhapontici, grown in the presence of 10% sucrose, have been determined (temperature of culturing, 30 degrees C; initial pH level, 7.5; duration of culturing, 54 h). The electrophoretically homogeneous preparation of the enzyme, thus obtained, had a specific activity of 210 U/mg protein. Optimum function of the enzyme was observed at 30 degrees C and pH 6.0. Isomaltulose synthase exhibited maximum stability at 20-30 degrees C and pH 6.0-7.0. The catalytic activity of the enzyme amounted to 3300 U/cm3, which is 40 to 50 times higher that the values reported for strains studied previously.

  4. Draft Genome Sequence of 16SrIII-J Phytoplasma, a Plant Pathogenic Bacterium with a Broad Spectrum of Hosts

    PubMed Central

    Zamorano, Alan

    2016-01-01

    Phytoplasmas are bacterial plant pathogens that can affect different vegetal hosts. In South America, a phytoplasma belonging to ribosomal subgroup 16SrIII-J has been reported in many crops. Here we report its genomic draft sequence, showing a total length of 687,253 bp and a G+C content of 27.72%. PMID:27365349

  5. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    PubMed

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  6. Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria.

    PubMed

    Szczesny, Robert; Jordan, Matthias; Schramm, Claudia; Schulz, Steve; Cogez, Virginie; Bonas, Ulla; Büttner, Daniela

    2010-09-01

    *Type II secretion (T2S) systems of many plant-pathogenic bacteria often secrete cell wall-degrading enzymes into the plant apoplast. *Here, we show that the Xps-T2S system from the plant pathogen Xanthomonas campestris pv vesicatoria (Xcv) promotes disease and contributes to the translocation of effector proteins that are delivered into the plant cell by the type III secretion (T3S) system. *The Xcs-T2S system instead lacks an obvious virulence function. However, individual xcs genes can partially complement mutants in homologous xps genes, indicating that they encode functional components of T2S systems. Enzyme activity assays showed that the Xps system contributes to secretion of proteases and xylanases. We identified the virulence-associated xylanase XynC as a substrate of the Xps system. However, homologs of known T2S substrates from other Xanthomonas spp. are not secreted by the T2S systems from Xcv. Thus, T2S systems from Xanthomonas spp. appear to differ significantly in their substrate specificities. *Transcript analyses revealed that expression of xps genes in Xcv is activated by HrpG and HrpX, key regulators of the T3S system. By contrast, expression of xynC and extracellular protease and xylanase activities are repressed by HrpG and HrpX, suggesting that components and substrates of the Xps system are differentially regulated.

  7. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells.

    PubMed

    Muranaka, Lígia S; Takita, Marco A; Olivato, Jacqueline C; Kishi, Luciano T; de Souza, Alessandra A

    2012-09-01

    Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.

  8. Microbial conversion of tomato by a plant pathogenic bacterium Pectobacterium atrosepticum: a plant-microbial approach to control pathogenic Candida species.

    PubMed

    Bajpai, Vivek K; Kang, Sun Chul; Lee, Soon-Gu; Baek, Kwang-Hyun

    2012-01-01

    This study was carried out to produce bioconverted products by microbial fermentation of tomato using a plant pathogenic bacterium Pectobacterium atrosepticum and to evaluate their in vitro antimycotic effect against pathogenic Candida species. The bioconverted products (500 microg/disc) provoked promising antimycotic effects against pathogenic isolates of Candida species as shown by the diameters of zones of inhibition (9 +/- 0.6 to 14 +/- 0.4 mm), along with their respective minimum inhibitory and minimum fungicidal concentration values, which increased from 250 to 1000 and 250 to 2000 microg/mL, respectively. With the viable counts of the tested fungal pathogens, exposure of the bioconverted products revealed a remarkable antimycotic effect. In addition, the morphology of a clinical isolate of C. glabrata KBN06P00368, visualized by scanning electron microscopy, showed a severe detrimental effect produced by the bioconverted products at the minimum inhibitory concentration (250 microg/mL). The bioconverted products significantly inhibited the in vitro growth of all the tested clinical and pathogenic laboratory isolates of Candida species. This study confirmed the potent antimycotic efficacy of the bioconverted products of tomato, hence justifying the therapeutic uses of bioconverted products in pharmaceutical preparations as an alternative approach to support the antifungal activity of conventional antimycotics.

  9. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  10. Type III-Dependent Translocation of HrpB2 by a Nonpathogenic hpaABC Mutant of the Plant-Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria

    PubMed Central

    Scheibner, Felix; Schulz, Steve; Hausner, Jens; Marillonnet, Sylvestre

    2016-01-01

    ABSTRACT The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch protein HpaC, which suppresses secretion and translocation of the predicted inner rod protein HrpB2 and promotes secretion of translocon and effector proteins. We previously reported that HrpB2 interacts with HpaC and the cytoplasmic domain of the inner membrane protein HrcU (C. Lorenz, S. Schulz, T. Wolsch, O. Rossier, U. Bonas, and D. Büttner, PLoS Pathog 4:e1000094, 2008, http://dx.doi.org/10.1371/journal.ppat.1000094). However, the molecular mechanisms underlying the control of HrpB2 secretion are not yet understood. Here, we located a T3S and translocation signal in the N-terminal 40 amino acids of HrpB2. The results of complementation experiments with HrpB2 deletion derivatives revealed that the T3S signal of HrpB2 is essential for protein function. Furthermore, interaction studies showed that the N-terminal region of HrpB2 interacts with the cytoplasmic domain of HrcU, suggesting that the T3S signal of HrpB2 contributes to substrate docking. Translocation of HrpB2 is suppressed not only by HpaC but also by the T3S chaperone HpaB and its secreted regulator, HpaA. Deletion of hpaA, hpaB, and hpaC leads to a loss of pathogenicity but allows the translocation of fusion proteins between the HrpB2 T3S signal and effector proteins into leaves of host and non-host plants. IMPORTANCE The T3S system of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for pathogenicity and delivers effector proteins into plant cells. T3S depends on HrpB2, which is a component of the predicted periplasmic inner rod structure of the secretion apparatus. HrpB2 is secreted during the early stages of the

  11. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry.

    PubMed

    Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard

    2014-05-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.

  12. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum.

    PubMed

    Dimkpa, Christian O; McLean, Joan E; Britt, David W; Anderson, Anne J

    2013-12-01

    Fungal plant pathogens such as Fusarium graminearum cause severe global economic losses in cereals crops, and current control measures are limited. This work addresses the potential for ZnO nanoparticles (NPs) and biocontrol bacteria to be used in plant fungal control strategies. Growth of F. graminearum was significantly (p = 0.05) inhibited by inclusion of the NPs in a mung bean broth agar and in sand. Suspension in mung bean broth medium modified the surface charge, dissolution, and aggregation state of the ZnO NPs, in comparison to processes occurring in water suspension. The ZnO NPs were significantly more inhibitory to fungal growth than micro-sized particles of ZnO, although both types of particles released similar levels of soluble Zn, indicating size-dependent toxicity of the particles. Zn ions produced dose-dependent inhibition, noticeable at the level of soluble Zn released from NPs after seven-day suspension in medium; inhibitory levels caused acidification of the growth medium. Transfer of fungal inoculum after exposure to the ZnO NPs to fresh medium did not indicate adaptation to the stress because growth was still inhibited by the NPs. The ZnO NPs did not prevent metabolites from a biocontrol bacterium, Pseudomonas chlororaphis O6, from inhibiting Fusarium growth: no synergism was observed in the mung bean agar. Because other studies find that soil amendment with ZnO NPs required high doses for inhibition of plant growth, the findings of pathogen growth control reported in this paper open the possibility of using ZnO NP-based formulations to complement existing strategies for improving crop health in field settings.

  13. Cloning, purification, crystallization and 1.57 Å resolution X-ray data analysis of AmsI, the tyrosine phosphatase controlling amylovoran biosynthesis in the plant pathogen Erwinia amylovora.

    PubMed

    Benini, Stefano; Caputi, Lorenzo; Cianci, Michele

    2014-12-01

    The Gram-negative bacterium Erwinia amylovora is a destructive pathogen of plants belonging to the Rosaceae family. Amongst its pathogenicity factors, E. amylovora produces the exopolysaccharide amylovoran, which contributes to the occlusion of plant vessels, causing wilting of shoots and eventually resulting in plant death. Amylovoran biosynthesis requires the presence of 12 genes (from amsA to amsL) clustered in the ams region of the E. amylovora genome. They mostly encode glycosyl transferases (AmsG, AmsB, AmsD, AmsE, AmsJ and AmsK), proteins involved in amylovoran translocation and assembly (AmsH, AmsL and AmsC), and also a tyrosine kinase (AmsA) and a tyrosine phosphatase (AmsI), which are both involved in the regulation of amylovoran biosynthesis. The low-molecular-weight protein tyrosine phosphatase AmsI was overexpressed as a His6-tagged protein in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to a maximum resolution of 1.57 Å in space group P3121.

  14. Physiology and biochemistry of a lignin degrading bacterium Erwinia sp. Cu 3614

    SciTech Connect

    Rajan, J.S.

    1992-01-01

    Previous researchers have reported the isolation of a diphenylether cleaving organism, Erwinia sp., using an enrichment medium containing lignin. A copper and dinitrophenol resistant mutant of this organism, Erwinia sp. Cu3614, has also been reported. To assess the effect of copper on the growth and biochemistry of this organism, continuous cultivation was used employing an apparently optimized medium containing ethanol as carbon source. Upon increasing the concentration of copper sulfate in the medium from 5 [mu]g/ml to 10 [mu]g/ml increases in maximum specific growth rate and growth yield were seen. Also decrease in the values for doubling time and the coefficient for maintenance energy were seen. At higher levels of copper sulfate a [open quotes]non competitive[close quotes] inhibition of growth was seen as indicated by the values calculated for substrate affinity constant, and inhibition constant. To assess this organism's ligninolytic ability, an assay for residual lignin was developed. The assay measured a reaction between diazotized sulfanilic acid and lignin in alkaline solution by spectrophotometric monitoring of the resulting adduct. Use of this technique indicated that Erwinia sp. Cu3614 could degrade up to 80% of lignin in batch cultures. Further evidence about the ligninolytic ability of this organism was provided by examination of electron micrographs of lignocellulosic substrates incubated with cell suspensions. An assay for monitoring diphenylether cleaving abilities was also developed using resazurin, a redox dye. In vivo assays with cells obtained from continuous culture studies indicated a linear relationship between the rates of reaction with resazurin and the amount of copper associated with cells. In vitro assays, employing cell free extracts and resazurin, were used to obtain a fraction enriched in diphenylether cleaving activity by a heat treatment procedure.

  15. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici.

    PubMed

    Börnke, F; Hajirezaei, M; Sonnewald, U

    2001-04-01

    Erwinia rhapontici is able to convert sucrose into isomaltulose (palatinose, 6-O-alpha-D-glucopyranosyl-D-fructose) and trehalulose (1-O-alpha-D-glucopyranosyl-D-fructose) by the activity of a sucrose isomerase. These sucrose isomers cannot be metabolized by plant cells and most other organisms and therefore are possibly advantageous for the pathogen. This view is supported by the observation that in vitro yeast invertase activity can be inhibited by palatinose, thus preventing sucrose consumption. Due to the lack of genetic information, the role of sucrose isomers in pathogenicity has not been evaluated. Here we describe for the first time the cloning and characterization of the palatinose (pal) genes from Erwinia rhapontici. To this end, a 15-kb chromosomal DNA fragment containing nine complete open reading frames (ORFs) was cloned. The pal gene products of Erwinia rhapontici were shown to be homologous to proteins involved in uptake and metabolism of various sugars from other microorganisms. The palE, palF, palG, palH, palK, palQ, and palZ genes were oriented divergently with respect to the palR and palI genes, and sequence analysis suggested that the first set of genes constitutes an operon. Northern blot analysis of RNA extracted from bacteria grown under various conditions implies that the expression of the palI gene and the palEFGHKQZ genes is oppositely regulated at the transcriptional level. Genes involved in palatinose uptake and metabolism are down regulated by sucrose and activated by palatinose. Palatinose activation is inhibited by sucrose. Functional expression of palI and palQ in Escherichia coli revealed sucrose isomerase and palatinase activity, respectively.

  16. Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the antibacterial activity of clove oil against seven different genera of plant pathogenic bacteria including Gram-negative Agrobacterium tumefaciens, Erwinia carotovora pv. carotovora, Pseudomonas syringae pv. syringae, Ralstonia solanacearum, and Xanthomonas campestris pv. pelargonii...

  17. Identification of Erwinia stewartii by a ligase chain reaction assay.

    PubMed Central

    Wilson, W J; Wiedmann, M; Dillard, H R; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed such that only E. stewartii DNA gave a product in the LCR assay. The ligated product was separated from the radioactively labelled primers by denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Twenty-four different Erwinia species and strains were tested by PCR-coupled LCR to verify the specificity of the assay, and only E. stewartii strains gave a positive reaction. In addition, infected and healthy plant material was also assayed. E. stewartii was detected in infected plant material, even when large populations of epiphytic bacteria were present. No enrichment was necessary for detection of the pathogen in corn leaves. This assay has potential as a diagnostic technique for the detection of E. stewartii in infected plant and vector material. Images PMID:7509585

  18. Thermo-responsive expression and differential secretion of the extracellular enzyme levansucrase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea.

    PubMed

    Li, Hongqiao; Schenk, Alexander; Srivastava, Abhishek; Zhurina, Daria; Ullrich, Matthias S

    2006-12-01

    In the plant pathogen Pseudomonas syringae, production of the exopolysaccharide levan is mediated by extracellular levansucrase (Lsc), which is encoded by two functional genes, lscB and lscC. Comparison of extracellular protein profiles of P. syringae pv. glycinea PG4180 grown at 18 and 28 degrees C and Western blots revealed that Lsc was predominantly found in the supernatant at 18 degrees C, a temperature fostering virulence of this pathogen. Northern blot analysis indicated that transcription of lscB and lscC was temperature-dependent. Quantification of Lsc in supernatants and cellular protein samples of mutants defective in either lscB or lscC confirmed that LscB secretion at low temperature was due to a combination of thermo-regulated transcription and secretion. In contrast, LscC accumulated in the periplasmic space. LscB and LscC differ in only five amino acid residues, one of which is a cysteine residue. Temperature shift experiments suggested that de novo synthesized protein(s) at 18 degrees C might be responsible for differential LscB secretion and that the presumed secretory machinery was stable when cells were shifted to 28 degrees C. Our results imply that Lsc export and secretion may occur by yet-to-be identified novel mechanism(s).

  19. Hemipterans as plant pathogens.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2005-01-01

    Integration of the tools of genetics, genomics, and biochemistry has provided new approaches for identifying genes responding to herbivory. As a result, a picture of the complexity of plant-defense signaling to different herbivore feeding guilds is emerging. Plant responses to hemipteran insects have substantial overlap with responses mounted against microbial pathogens, as seen in changes in RNA profiles and emission of volatiles. Responses to known defense signals and characterization of the signaling pathways controlled by the first cloned insect R gene (Mi-1) indicate that perception and signal transduction leading to resistance may be similar to plant-pathogen interactions. Additionally, novel signaling pathways are emerging as important components of plant defense to insects. The availability of new tools and approaches will further enhance our understanding of the nature of defense in plant-hemipteran interactions.

  20. Ecology of Fungal Plant Pathogens.

    PubMed

    Termorshuizen, Aad J

    2016-12-01

    Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

  1. [Population genetics of plant pathogens].

    PubMed

    Zhu, Wen; Zhan, Jia-Sui

    2012-02-01

    Comparing to natural ecosystems, the evolution of plant pathogens in agricultural ecosystems is generally faster due to high-density monocultures, large-scale application of agrochemicals, and international trade in agricultural products. Knowledge of the population genetics and evolutionary biology of plant pathogens is necessary to understand disease epidemiology, effectively breed and use resistant cultivars, and control plant diseases. In this article, we outlined the aims of population genetic studies in plant pathogens, discuss contributions of five evolutionary forces (i.e., mutation, gene flow, recombination, random genetic drift, and natural selection) to origin, maintenance, and distribution of genetic variation in time and space, and gave an overview of current research status in this field.

  2. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    PubMed

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  3. Whole-Genome Sequence of Pseudomonas fluorescens EK007-RG4, a Promising Biocontrol Agent against a Broad Range of Bacteria, Including the Fire Blight Bacterium Erwinia amylovora

    PubMed Central

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad; Taheri, Parissa; Kjøller, Annelise Helene; Brejnrod, Asker; Madsen, Jonas Stenløkke

    2017-01-01

    ABSTRACT Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several other pathogenic and non-pathogenic bacteria. PMID:28360179

  4. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  5. Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission.

    PubMed

    Ordax, Mónica; Piquer-Salcedo, Jaime E; Santander, Ricardo D; Sabater-Muñoz, Beatriz; Biosca, Elena G; López, María M; Marco-Noales, Ester

    2015-01-01

    Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be transmitted by the medfly. Our experimental results show: i) E. amylovora can survive for at least 8 days inside the digestive tract of the medfly and until 28 days on its external surface, and ii) medflies are able to transmit the bacteria from inoculated apples to both detached shoots and pear plants, being the pathogen recovered from lesions in both cases. This is the first report on E. amylovora internalization and survival in/on C. capitata, as well as the experimental transmission of the fire blight pathogen by this insect. Our results suggest that medfly can act as a potential vector for E. amylovora, and expand our knowledge on the possible role of these and other insects in its life cycle.

  6. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    PubMed

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  7. Evolutionary insights from Erwinia amylovora genomics.

    PubMed

    Smits, Theo H M; Rezzonico, Fabio; Duffy, Brion

    2011-08-20

    Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.

  8. The alternative sigma factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp-inducing conditions.

    PubMed

    Cesbron, Sophie; Paulin, Jean-Pierre; Tharaud, Michel; Barny, Marie-Anne; Brisset, Marie-Noëlle

    2006-04-01

    In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative sigma factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria.

  9. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium.

    PubMed

    Pemberton, C L; Whitehead, N A; Sebaihia, M; Bell, K S; Hyman, L J; Harris, S J; Matlin, A J; Robson, N D; Birch, P R J; Carr, J P; Toth, I K; Salmond, G P C

    2005-04-01

    Seven new genes controlled by the quorum-sensing signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) have been identified in Erwinia carotovora subsp. carotovora. Using TnphoA as a mutagen, we enriched for mutants defective in proteins that could play a role in the interaction between E. carotovora subsp. carotovora and its plant hosts, and identified NipEcc and its counterpart in E. carotovora subsp. atroseptica. These are members of a growing family of proteins related to Nep1 from Fusarium oxysporum which can induce necrotic responses in a variety of dicotyledonous plants. NipEcc produced necrosis in tobacco, NipEca affected potato stem rot, and both affected virulence in potato tubers. In E. carotovora subsp. carotovora, nip was shown to be subject to weak repression by the LuxR family regulator, EccR, and may be regulated by the negative global regulator RsmA.

  10. Asparaginase Erwinia chrysanthemi

    MedlinePlus

    Asparaginase Erwinia chrysanthemi is used with other chemotherapy medications to treat acute lymphocytic leukemia (ALL; a type ... types of allergic reactions to medications similar to asparaginase Erwinia chrysanthemi such as (asparaginase [Elspar] or pegaspargase [ ...

  11. Alginate Production by Plant-Pathogenic Pseudomonads

    PubMed Central

    Fett, William F.; Osman, Stanley F.; Fishman, Marshall L.; Siebles, T. S.

    1986-01-01

    Eighteen plant-pathogenic and three non-plant-pathogenic pseudomonads were tested for the ability to produce alginic acid as an exopolysaccharide in vitro. Alginate production was demonstrated for 10 of 13 fluorescent plant-pathogenic pseudomonads tested with glucose or gluconate as the carbon source, but not for all 5 nonfluorescent plant pathogens and all 3 non-plant pathogens tested. With sucrose as the carbon source, some strains produced alginate while others produced both polyfructan (levan) and alginate. Alginates ranged from <1 to 28% guluronic acid, were acetylated, and had number-average molecular weights of 11.3 × 103 to 47.1 × 103. Polyfructans and alginates were not elicitors of the soybean phytoalexin glyceollin when applied to wounded cotyledon surfaces and did not induce prolonged water soaking of soybean leaf tissues. All or most pseudomonads in rRNA-DNA homology group I may be capable of synthesizing alginate as an exopolysaccharide. PMID:16347146

  12. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art.

    PubMed

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Valcke, R

    2013-05-01

    Plants are host to a large amount of pathogenic bacteria. Fire blight, caused by the bacterium Erwinia amylovora, is an important disease in Rosaceae. Pathogenicity of E. amylovora is greatly influenced by the production of exopolysaccharides, such as amylovoran, and the use of the type III secretion system, which enables bacteria to penetrate host tissue and cause disease. When infection takes place, plants have to rely on the ability of each cell to recognize the pathogen and the signals emanating from the infection site in order to generate several defence mechanisms. These mechanisms consist of physical barriers and the production of antimicrobial components, both in a preformed and an inducible manner. Inducible defence responses are activated upon the recognition of elicitor molecules by plant cell receptors, either derived from invading micro-organisms or from pathogen-induced degradation of plant tissue. This recognition event triggers a signal transduction cascade, leading to a range of defence responses [reactive oxygen species (ROS), plant hormones, secondary metabolites, …] and redeployment of cellular energy in a fast, efficient and multiresponsive manner, which prevents further pathogen ingress. This review highlights the research that has been performed during recent years regarding this specific plant-pathogen interaction between Erwinia amylovora and Rosaceae, with a special emphasis on the pathogenicity and the infection strategy of E. amylovora and the possible defence mechanisms of the plant against this disease.

  13. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen.

    PubMed

    Llop, Pablo; Cabrefiga, Jordi; Smits, Theo H M; Dreo, Tanja; Barbé, Silvia; Pulawska, Joanna; Bultreys, Alain; Blom, Jochen; Duffy, Brion; Montesinos, Emilio; López, María M

    2011-01-01

    Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.

  14. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    PubMed

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  15. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  16. Epigenetic control of effectors in plant pathogens.

    PubMed

    Gijzen, Mark; Ishmael, Chelsea; Shrestha, Sirjana D

    2014-01-01

    Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr) factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in filamentous plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  17. Threats and opportunities of plant pathogenic bacteria.

    PubMed

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae.

  18. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species.

    PubMed

    Kers, Johan A; Cameron, Kimberly D; Joshi, Madhumita V; Bukhalid, Raghida A; Morello, Joanne E; Wach, Michael J; Gibson, Donna M; Loria, Rosemary

    2005-02-01

    Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.

  19. EPCOT, NASA and plant pathogens in space.

    PubMed

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  20. Microsatellite markers in plant pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the genetic diversity of plant pathogenic fungi is essential in the management of crops and disease. The genetic variability of fungal pathogens can be evaluated using molecular markers, among which, microsatellites are a relatively inexpensive source of information. We have developed an e...

  1. Bacteriophages of Erwinia amylovora

    PubMed Central

    Gill, J. J.; Svircev, A. M.; Smith, R.; Castle, A. J.

    2003-01-01

    Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae. PMID:12676693

  2. Plant Pathogen Forensics: Capabilities, Needs, and Recommendations

    PubMed Central

    Fletcher, J.; Bender, C.; Budowle, B.; Cobb, W. T.; Gold, S. E.; Ishimaru, C. A.; Luster, D.; Melcher, U.; Murch, R.; Scherm, H.; Seem, R. C.; Sherwood, J. L.; Sobral, B. W.; Tolin, S. A.

    2006-01-01

    A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented. PMID:16760310

  3. Comparative analysis of twelve Dothideomycete plant pathogens

    SciTech Connect

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  4. Hypersensitive response and acyl‐homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae

    PubMed Central

    Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

    2008-01-01

    Summary Fire blight caused by the Gram‐negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl‐homoserine lactone for bacterial cell‐to‐cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight. PMID:21261861

  5. Plant pathogen nanodiagnostic techniques: forthcoming changes?

    PubMed

    Khiyami, Mohammad A; Almoammar, Hassan; Awad, Yasser M; Alghuthaymi, Mousa A; Abd-Elsalam, Kamel A

    2014-09-03

    Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens.

  6. Plant pathogen nanodiagnostic techniques: forthcoming changes?

    PubMed Central

    Khiyami, Mohammad A.; Almoammar, Hassan; Awad, Yasser M.; Alghuthaymi, Mousa A.; Abd-Elsalam, Kamel A.

    2014-01-01

    Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens. PMID:26740775

  7. Paleogene Radiation of a Plant Pathogenic Mushroom

    PubMed Central

    Coetzee, Martin P. A.; Bloomer, Paulette; Wingfield, Michael J.; Wingfield, Brenda D.

    2011-01-01

    Background The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere. PMID:22216099

  8. Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens.

    PubMed

    Naum, Marianna; Brown, Eric W; Mason-Gamer, Roberta J

    2009-10-01

    This study uses sequences from four genes, which are involved in the formation of the type III secretion apparatus, to determine the role of horizontal gene transfer in the evolution of virulence genes for the enterobacterial plant pathogens. Sequences of Erwinia, Brenneria, Pectobacterium, Dickeya and Pantoea were compared (a) with one another, (b) with sequences of enterobacterial animal pathogens, and (c) with sequences of plant pathogenic gamma and beta proteobacteria, to evaluate probable paths of lateral exchange leading to the current distribution of virulence determinants among these micro-organisms. Phylogenies were reconstructed based on hrcC, hrcR, hrcJ and hrcV gene sequences using parsimony and maximum-likelihood algorithms. Virulence gene phylogenies were also compared with several housekeeping gene loci in order to evaluate patterns of lateral versus vertical acquisition. The resulting phylogenies suggest that multiple horizontal gene transfer events have occurred both within and among the enterobacterial plant pathogens and plant pathogenic gamma and beta proteobacteria. hrcJ sequences are the most similar, exhibiting anywhere from 2 to 50 % variation at the nucleotide level, with the highest degree of variation present between plant and animal pathogen sequences. hrcV sequences are conserved among plant and animal pathogens at the N terminus. The C-terminal domain is conserved only among the enterobacterial plant pathogens, as are the hrcC and hrcR sequences. Additionally, hrcJ and hrcV sequence phylogenies suggest that at least some type III secretion system virulence genes from enterobacterial plant pathogens are related more closely to those of the genus Pseudomonas, a conclusion neither supported nor refuted by hrcC or hrcR.

  9. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M; El-Nouby, Mahmoud A M

    2016-01-01

    This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol), out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC) that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5%) and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack.

  10. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria

    PubMed Central

    Badawy, Mohamed E. I.; Rabea, Entsar I.; Taktak, Nehad E. M.; El-Nouby, Mahmoud A. M.

    2016-01-01

    This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol), out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC) that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5%) and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack. PMID:27127676

  11. RXLR effectors of plant pathogenic oomycetes.

    PubMed

    Morgan, William; Kamoun, Sophien

    2007-08-01

    Oomycetes are a phylogenetically distinct group of organisms that include some of the most devastating plant pathogens. Recent characterization of four oomycete Avr genes revealed that they encode effector proteins with a common modular structure, including a N-terminal conserved RXLR motif. Several lines of evidence initially indicated, with support from more recent works, that these Avr proteins are secreted by the pathogen and then translocated into the host cell during infection. In addition to elucidating the machinery required for host-cell transport, future works remain to determine the myriad virulence functions of oomycete RXLR effector proteins.

  12. Gall midges (Hessian flies) as plant pathogens.

    PubMed

    Stuart, Jeff J; Chen, Ming-Shun; Shukle, Richard; Harris, Marion O

    2012-01-01

    Gall midges constitute an important group of plant-parasitic insects. The Hessian fly (HF; Mayetiola destructor), the most investigated gall midge, was the first insect hypothesized to have a gene-for-gene interaction with its host plant, wheat (Triticum spp.). Recent investigations support that hypothesis. The minute larval mandibles appear to act in a manner that is analogous to nematode stylets and the haustoria of filamentous plant pathogens. Putative effector proteins are encoded by hundreds of genes and expressed in the HF larval salivary gland. Cultivar-specific resistance (R) genes mediate a highly localized plant reaction that prevents the survival of avirulent HF larvae. Fine-scale mapping of HF avirulence (Avr) genes provides further evidence of effector-triggered immunity (ETI) against HF in wheat. Taken together, these discoveries suggest that the HF, and other gall midges, may be considered biotrophic, or hemibiotrophic, plant pathogens, and they demonstrate the potential that the wheat-HF interaction has in the study of insect-induced plant gall formation.

  13. Immunity to plant pathogens and iron homeostasis.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity.

  14. Fastidious xylem-limited bacterial plant pathogens.

    PubMed

    Purcell, A H; Hopkins, D L

    1996-01-01

    Numerous bacteria have been isolated from within plants, and many reported from xylem, but only three species of xylem-limited bacteria (XLB) that are fastidious in cultural requirements, are plant pathogens, and exclusively occupy xylem, have been well characterized. Two XLB, Xylella fastidiosa and Pseudomonas syzygii, are transmitted by sucking insects that feed on xylem sap but are not transmitted mechanically from plant to plant. In contrast, Clavibacter xyli is mechanically transmitted to plants by cutting tools. All of these XLB occupy a highly specialized yet diverse ecological niche: the water-conducting systems of an extremely wide range of plant hosts. A variety of detection methods are available as diagnostic aids; each method has advantages and disadvantages; no single method is best for all uses. Molecular and genetic comparisons of strains of XLB lag behind progress being made for many other plant-pathogenic bacteria, but such studies are needed to answer important questions: (a) How do XLB move from cell to cell within plants? (b) What are the physiological and genetic bases of plant host specificity for XLB? (c) Why are only xylem-feeding specialists vectors of X. fastidiosa (and probably P. syzygii), when many leafhoppers feed regularly (but not continuously) on xylem?

  15. Phytotoxins produced by plant pathogenic Streptomyces species.

    PubMed

    Bignell, D R D; Fyans, J K; Cheng, Z

    2014-02-01

    Streptomyces is a large genus consisting of soil-dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best-characterized CS-causing pathogen, Streptomyces scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD-891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases.

  16. Antibody-mediated resistance against plant pathogens.

    PubMed

    Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

    2011-01-01

    Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.

  17. Speciation in fungal and oomycete plant pathogens.

    PubMed

    Restrepo, Silvia; Tabima, Javier F; Mideros, Maria F; Grünwald, Niklaus J; Matute, Daniel R

    2014-01-01

    The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.

  18. Antibody-based resistance to plant pathogens.

    PubMed

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  19. Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens.

    PubMed

    Lee, Hyun-Hee; Park, Jungwook; Lim, Jae Yun; Kim, Hun; Choi, Gyung Ja; Kim, Jin-Cheol; Seo, Young-Su

    2015-10-10

    Bacillus velezensis G341 can suppress plant pathogens by producing antagonistic active compounds including bacillomycin D, fengycin, and (oxy) difficidin. The complete genome sequence of this bacterium was characterized by one circular chromosome of 4,009,746bp with 3953 open reading frames. The genome contained 36 pseudogenes, 30 rRNA operons, and 95 tRNAs. This complete genome sequence provides an additional resource for the development of antimicrobial compounds.

  20. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  1. Draft Genome Sequence of Stenotrophomonas maltophilia Strain B418, a Promising Agent for Biocontrol of Plant Pathogens and Root-Knot Nematode.

    PubMed

    Wu, Yuanzheng; Wang, Yilian; Li, Jishun; Hu, Jindong; Chen, Kai; Wei, Yanli; Bazhanov, Dmitry P; Bazhanova, Alesia A; Yang, Hetong

    2015-02-19

    Stenotrophomonas maltophilia strain B418 was isolated from a barley rhizosphere in China. This bacterium exhibits broad-spectrum inhibitory activities against plant pathogens and root-knot nematode along with growth-promoting effects. Here, we present the draft genome sequence of S. maltophilia B418.

  2. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    PubMed Central

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M.; Corsaro, Maria Michela

    2017-01-01

    Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry. PMID:28273861

  3. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide.

    PubMed

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M; Corsaro, Maria Michela

    2017-03-04

    Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry.

  4. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides.

    PubMed

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-05-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH(2)). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED(50)) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED(50) of 1.3 to 7.3 microM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants.

  5. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria.

    PubMed

    Choi, Min-Seon; Kim, Wooki; Lee, Chanhui; Oh, Chang-Sik

    2013-10-01

    Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.

  6. Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides

    PubMed Central

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-01-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH2). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED50) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED50 of 1.3 to 7.3 μM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants. PMID:16672470

  7. A Single-Step Purification of Cauliflower Lysozyme and Its Dual Role Against Bacterial and Fungal Plant Pathogens.

    PubMed

    Manikandan, Muthu; Balasubramaniam, R; Chun, Se-Chul

    2015-09-01

    A novel lysozyme from cauliflower was purified in a single step, for the first time, using Sephadex G100 column chromatography. The purified lysozyme exhibited a homogenized single band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular mass was calculated to be 22.0 kDa. The purified lysozyme showed activity between 30 to 60 °C with 40 °C as the optimum temperature for its maximal activity. Although the purified lysozyme was functional at pH ranges between 3.0 and 9.0, the optimum pH for the enzyme activity was 8.0. By Michaelis-Menten equation, the threshold substrate concentration for the optimal enzyme activity was calculated to be 133.0 μg. The purified lysozyme showed extraordinary activity against plant pathogenic bacteria and fungi. At 10-μg concentrations, it inhibited the growth of plant pathogenic bacteria such as Pseudomonas syringae, Xanthomonas campestris, and Erwinia carotovora exhibiting 4.28, 5.90, and 3.88-fold inhibition, respectively. Further, it also completely inhibited the conidial germination of Archemonium obclavatum and, to a very large extent, other fungal species such as Fusarium solani (79.3 %), Leptosphaeria maculans (88.6 %), Botrytis cinera (73.3 %), Curvularia lunata (68 %), Rhizoctonia solani (79.6 %), and Alternaria alternata (83.6 %).

  8. Fe2+ chelator proferrorosamine A: a gene cluster of Erwinia rhapontici P45 involved in its synthesis and its impact on growth of Erwinia amylovora CFBP1430.

    PubMed

    Born, Yannick; Remus-Emsermann, Mitja N P; Bieri, Marco; Kamber, Tim; Piel, Jörn; Pelludat, Cosima

    2016-02-01

    Proferrorosamine A (proFRA) is an iron (Fe2+) chelator produced by the opportunistic plant pathogen Erwinia rhapontici P45. To identify genes involved in proFRA synthesis, transposon mutagenesis was performed. The identified 9.3 kb gene cluster, comprising seven genes, designated rosA-rosG, encodes proteins that are involved in proFRA synthesis. Based on gene homologies, a biosynthetic pathway model for proFRA is proposed. To obtain a better understanding of the effect of proFRA on non-proFRA producing bacteria, E. rhapontici P45 was co-cultured with Erwinia amylovora CFBP1430, a fire-blight-causing plant pathogen. E. rhapontici P45, but not corresponding proFRA-negative mutants, led to a pink coloration of E. amylovora CFBP1430 colonies on King's B agar, indicating accumulation of the proFRA-iron complex ferrorosamine, and growth inhibition in vitro. By saturating proFRA-containing extracts with Fe2+, the inhibitory effect was neutralized, suggesting that the iron-chelating capability of proFRA is responsible for the growth inhibition of E. amylovora CFBP1430.

  9. [Review on hrp genes of plant pathogenic bacteria].

    PubMed

    Yang, Jun; Yin, Qi-Sheng; Song, Ji-Zhen; Hou, Ming-Sheng

    2005-09-01

    The hrp genes exist in 4 kinds of Gram-negative plant pathogenic bacteria and are responsible for the pathogenicity of bacteria. They can induce hypersensitive response on non-host and resistant plants. In the present paper, we summarized the hrp genes clusters, the relationship between hrp and avr genes, harpin proteins encoded by hrp genes, modulation and function of hrp genes, and plant-bacteria interactions mediated by hrp genes in more details. Moreover, trends in future research of plant pathogenic bacteria hrp genes have also been analyzed.

  10. Screening of endophytic bacteria against fungal plant pathogens.

    PubMed

    Ohike, Tatsuya; Makuni, Kohei; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    Bacterial endophytes were found from 6 plant leaves among 35 plant leaves screened. Two of the isolated bacteria showed antagonistic activity against fungal plant pathogens. An isolate named KL1 showed the clear inihibition against plant pathogens, Fusarium oxysporum and Rhizoctonia solani, on PDA as well as TSA plate. Supernatant of the bacterial culture also showed the clear inhibition against the fungal growth on the plate and the antibiotic substance was identified as iturin A by HPLC analysis. KL1 was identified as Bacillus sp. from the 16S rRNA gene analysis. Very thin hyphae of R. solani was miccroscopically observed when the fungus was co-cultivated with KL1.

  11. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria.

    PubMed

    Ji, Dongjin; Yi, Youngkeun; Kang, Ga-Hwa; Choi, Yong-Hwa; Kim, Pankyung; Baek, Nam-In; Kim, Yonggyun

    2004-10-15

    An entomopathogenic bacterium, Xenorhabdus nematophila, is known to have potent antibiotic activities to maintain monoxenic condition in its insect host for effective pathogenesis and ultimately for optimal development of its nematode symbiont, Steinernema carpocapsae. In this study we assess its antibacterial activity against plant-pathogenic bacteria and identify its unknown antibiotics. The bacterial culture broth had significant antibacterial activity that increased with development of the bacteria and reached its maximum at the stationary growth phase. The antibiotic activities were significant against five plant-pathogenic bacterial strains: Agrobacterium vitis, Pectobacterium carotovorum subsp. atrosepticum, P. carotovorum subsp. carotovorum, Pseudomonas syringae pv. tabaci, and Ralstonia solanacearum. The antibacterial factors were extracted with butanol and fractionated using column chromatography with the eluents of different hydrophobic intensities. Two active antibacterial subfractions were purified, and the higher active fraction was further fractionated and identified as a single compound of benzylideneacetone (trans-4-phenyl-3-buten-2-one). With heat stability, the synthetic compound showed equivalent antibiotic activity and spectrum to the purified compound. This study reports a new antibiotic compound synthesized by X. nematophila, which is a monoterpenoid compound and active against some Gram-negative bacteria.

  12. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants.

    PubMed

    Cornelis, K; Ritsema, T; Nijsse, J; Holsters, M; Goethals, K; Jaziri, M

    2001-05-01

    Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues.

  13. Plants, Pathogens, and People: Extending the Classroom to the Web

    ERIC Educational Resources Information Center

    Bruce, Bertram C.; Dowd, Heather; Eastburn, Darin M.; D'arcy, Cleora J.

    2005-01-01

    Plants, Pathogens, and People is a Web site promoting agricultural awareness via multimedia lectures about plant diseases and online lab activities in which students investigate phenomena. The use of the site in large-enrollment classes for 6-plus years affords a well-documented case of Web-enhanced instruction. Qualitative and quantitative data…

  14. PhytoPath: an integrative resource for plant pathogen genomics

    PubMed Central

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D.; Staines, Daniel M.; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-01

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. PMID:26476449

  15. A case for re-inventory of Australia's plant pathogens.

    PubMed

    Hyde, K D; Chomnunti, P; Crous, P W; Groenewald, J Z; Damm, U; Ko Ko, T W; Shivas, R G; Summerell, B A; Tan, Y P

    2010-12-01

    Australia has efficient and visible plant quarantine measures, which through various border controls and survey activities attempt to prevent the entry of unwanted pests and diseases. The ability to successfully perform this task relies heavily on determining what pathogens are present and established in Australia as well as those pathogens that are exotic and threatening. There are detailed checklists and databases of fungal plant pathogens in Australia, compiled, in part, from surveys over many years sponsored by Federal and State programmes. These checklists and databases are mostly specimen-based, which enables validation of records with reference herbarium specimens and sometimes associated cultures. Most of the identifications have been based on morphological examination. The use of molecular methods, particularly the analysis of DNA sequence data, has recently shown that several well-known and important plant pathogenic species are actually complexes of cryptic species. We provide examples of this in the important plant pathogenic genera Botryosphaeria and its anamorphs, Colletotrichum, Fusarium, Phomopsis / Diaporthe and Mycosphaerella and its anamorphs. The discovery of these cryptic species indicates that many of the fungal names in checklists need scrutiny. It is difficult, and often impossible, to extract DNA for sequence analysis from herbarium specimens in order to validate identifications that may now be considered suspect. This validation can only be done if specimens are recollected, re-isolated and subjected to DNA analysis. Where possible, herbarium specimens as well as living cultures are needed to support records. Accurate knowledge of the plant pathogens within Australia's borders is an essential prerequisite for the effective discharge of plant quarantine activities that will prevent or delay the arrival of unwanted plant pathogens.

  16. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria.

    PubMed

    Monroc, Sylvie; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-11-01

    Head-to-tail cyclic peptides of 4-10 residues consisting of alternating hydrophilic (Lys) and hydrophobic (Leu and Phe) amino acids were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Xanthomonas vesicatoria and Pseudomonas syringae. The antibacterial activity, evaluated as the minimal inhibitory concentration (MIC), the cytotoxicity against human red blood cells and stability towards protease degradation were determined. The influence of cyclization, ring size, and replacement of l-Phe with d-Phe on antibacterial and hemolytic activities was studied and correlated with the degree of structuring and hydrophobicity. Our results showed that linear peptides were inactive against the three bacteria tested. Cyclic peptides were active only toward X. vesicatoria and P. syringae, being c(KLKLKFKLKQ) (BPC10L) the most active peptide with MIC values of 6.25 and 12.5 microM, respectively. The improved antibacterial activity of cyclic peptides compared to their linear counterparts was associated to an increase of the hydrophobicity, represented as RP-HPLC retention time (t(R)), and secondary structure content which are related to an enhanced amphipathicity. A decrease of antibacterial and hemolytic activities was observed when a d-Phe was introduced into the cyclic sequences, which was attributed to their low amphipathicity as shown by their low secondary structure content and low t(R). The small size, simple structure, bactericidal effect, and stability to protease degradation of the best peptides make them potential candidates for the development of effective antibacterial agents for use in plant protection.

  17. Variation and selection of quantitative traits in plant pathogens.

    PubMed

    Lannou, Christian

    2012-01-01

    The first section presents the quantitative traits of pathogenicity that are most commonly measured by plant pathologists, how the expression of those traits is influenced by environmental factors, and why the traits must be taken into account for understanding pathogen evolution in agricultural systems. Particular attention is given to the shared genetic control of these traits by the host and the pathogen. Next, the review discusses how quantitative traits account for epidemic development and how they can be related to pathogen fitness. The main constraints that influence the evolution of quantitative traits in pathogen populations are detailed. Finally, possible directions for research on the management of pathogen virulence (as defined by evolutionists) and host quantitative resistance are presented. The review evaluates how the theoretical corpus developed by epidemiologists and evolutionists may apply to plant pathogens in the context of agriculture. The review also analyzes theoretical papers and compares the modeling hypotheses to the biological characteristics of plant pathogens.

  18. Effects of alkyl parabens on plant pathogenic fungi.

    PubMed

    Ito, Shinsaku; Yazawa, Satoru; Nakagawa, Yasutaka; Sasaki, Yasuyuki; Yajima, Shunsuke

    2015-04-15

    Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage.

  19. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.

  20. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  1. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies

    PubMed Central

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction. PMID:24917874

  2. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    PubMed

    Dubey, Akanksha; Jeon, Junhyun

    2016-10-17

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.

  3. Exploring laccase genes from plant pathogen genomes: a bioinformatic approach.

    PubMed

    Feng, B Z; Li, P Q; Fu, L; Yu, X M

    2015-10-30

    To date, research on laccases has mostly been focused on plant and fungal laccases and their current use in biotechnological applications. In contrast, little is known about laccases from plant pathogens, although recent rapid progress in whole genome sequencing of an increasing number of organisms has facilitated their identification and ascertainment of their origins. In this study, a comparative analysis was performed to elucidate the distribution of laccases among bacteria, fungi, and oomycetes, and, through comparison of their amino acids, to determine the relationships between them. We retrieved the laccase genes for the 20 publicly available plant pathogen genomes. From these, 125 laccase genes were identified in total, including seven in bacterial genomes, 101 in fungal genomes, and 17 in oomycete genomes. Most of the predicted protein models of these genes shared typical fungal laccase characteristics, possessing four conserved domains with one cysteine and ten histidine residues at these domains. Phylogenetic analysis illustrated that laccases from bacteria and oomycetes were grouped into two distinct clades, whereas fungal laccases clustered in three main clades. These results provide the theoretical groundwork regarding the role of laccases in plant pathogens and might be used to guide future research into these enzymes.

  4. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, Tbk; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Halpern, Malka

    2016-01-01

    Phaseolibacter flectens strain ATCC 12775(T) (Halpern et al., Int J Syst Evol Microbiol 63:268-273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  5. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    DOE PAGES

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; ...

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp.more » It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  6. List of New Names of Plant Pathogenic Bacteria (2008-2010)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2010 the International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria published the Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007 to provide an authoritative register of names of plant pathogens. In this manuscript we up-date the list of na...

  7. Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages.

    PubMed

    Estes, Anne M; Hearn, David J; Burrack, Hannah J; Rempoulakis, Polychronis; Pierson, Elizabeth A

    2012-04-01

    The microbiome of the olive fruit fly, Bactrocera oleae (Gmelin), a worldwide pest of olives (Olea europaea L.), has been examined for >100 yr as part of efforts to identify bacteria that are plant pathogens vectored by the fly or are beneficial endosymbionts essential for the fly's survival and thus targets for possible biological control. Because tephritid fruit flies feed on free-living bacteria in their environment, distinguishing between the transient, acquired bacteria of their diet and persistent, resident bacteria that are vertically transmitted endosymbionts is difficult. Several culture-dependent and -independent studies have identified a diversity of species in the olive fruit fly microbiome, but they have not distinguished the roles of the microbes. Candidatus Erwinia dacicola, has been proposed to be a coevolved endosymbiont of the olive fruit fly; however, this was based on limited samples from two Italian populations. Our study shows that C. Erwinia dacicola was present in all New and Old World populations and in the majority of individuals of all life stages sampled in 2 yr. Olive fruit flies reared on olives in the laboratory had frequencies of C. Erwinia dacicola similar to that of wild populations; however, flies reared on artificial diets containing antibiotics in the laboratory rarely had the endosymbiont. The relative abundance of C. Erwinia dacicola varied across development stages, being most abundant in ovipositing females and larvae. This uniform presence of C. Erwini dacicola suggests that it is a persistent, resident endosymbiont of the olive fruit fly.

  8. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens

    PubMed Central

    Sammer, Ulrike F; Reiher, Katharina; Spiteller, Dieter; Wensing, Annette; Völksch, Beate

    2012-01-01

    The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range. PMID:23233458

  9. Surface Survival and Internalization of Salmonella through Natural Cracks on Developing Cantaloupe Fruits, Alone or in the Presence of the Melon Wilt Pathogen Erwinia tracheiphila

    PubMed Central

    Gautam, Dhiraj; Dobhal, Shefali; Payton, Mark E.; Fletcher, Jacqueline; Ma, Li Maria

    2014-01-01

    Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2–3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types. PMID:25147942

  10. Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen erwinia tracheiphila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains o...

  11. The Olive Fly Endosymbiont, “Candidatus Erwinia dacicola,” Switches from an Intracellular Existence to an Extracellular Existence during Host Insect Development▿ †

    PubMed Central

    Estes, Anne M.; Hearn, David J.; Bronstein, Judith L.; Pierson, Elizabeth A.

    2009-01-01

    As polyphagous, holometabolous insects, tephritid fruit flies (Diptera: Tephritidae) provide a unique habitat for endosymbiotic bacteria, especially those microbes associated with the digestive system. Here we examine the endosymbiont of the olive fly [Bactrocera oleae (Rossi) (Diptera: Tephritidae)], a tephritid of great economic importance. “Candidatus Erwinia dacicola” was found in the digestive systems of all life stages of wild olive flies from the southwestern United States. PCR and microscopy demonstrated that “Ca. Erwinia dacicola” resided intracellularly in the gastric ceca of the larval midgut but extracellularly in the lumen of the foregut and ovipositor diverticulum of adult flies. “Ca. Erwinia dacicola” is one of the few nonpathogenic endosymbionts that transitions between intracellular and extracellular lifestyles during specific stages of the host's life cycle. Another unique feature of the olive fly endosymbiont is that unlike obligate endosymbionts of monophagous insects, “Ca. Erwinia dacicola” has a G+C nucleotide composition similar to those of closely related plant-pathogenic and free-living bacteria. These two characteristics of “Ca. Erwinia dacicola,” the ability to transition between intracellular and extracellular lifestyles and a G+C nucleotide composition similar to those of free-living relatives, may facilitate survival in a changing environment during the development of a polyphagous, holometabolous host. We propose that insect-bacterial symbioses should be classified based on the environment that the host provides to the endosymbiont (the endosymbiont environment). PMID:19767463

  12. Ralfuranone thioether production by the plant pathogen Ralstonia solanacearum.

    PubMed

    Pauly, Julia; Spiteller, Dieter; Linz, Jeanine; Jacobs, Jonathan; Allen, Caitilyn; Nett, Markus; Hoffmeister, Dirk

    2013-11-04

    Ralfuranones are aryl-substituted furanone secondary metabolites of the Gram-negative plant pathogen Ralstonia solanacearum. New sulfur-containing ralfuranone derivatives were identified, including the methyl thioether-containing ralfuranone D. Isotopic labeling in vivo, as well as headspace analyses of volatiles from R. solanacearum liquid cultures, established a mechanism for the transfer of an intact methylthio group from L-methionine or α-keto-γ-methylthiobutyric acid. The methylthio acceptor molecule ralfuranone I, a previously postulated biosynthetic intermediate in ralfuranone biosynthesis, was isolated and characterized by NMR. The highly reactive Michael acceptor system of this intermediate readily reacts with various thiols, including glutathione.

  13. Dickeyafangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia).

    PubMed

    Tian, Yanli; Zhao, Yuqiang; Yuan, Xiaoli; Yi, Jianping; Fan, Jiaqin; Xu, Zhigang; Hu, Baishi; De Boer, Solke H; Li, Xiang

    2016-09-01

    Gram-stain-negative, pectinolytic bacteria were repeatedly isolated from pear trees displaying symptoms of bleeding canker in China. Three strains, JS5T, LN1 and QZH3, had identical 16S rRNA gene sequences that shared 99 % similarity to the type strain of Dickeya dadantii. Phylogenetic analysis of strains JS5T, LN1 and QZH3 with isolates representing all species of the genus Dickeya and related Pectobacterium species supported their affiliation to Dickeya. Multi-locus sequence typing employing concatenated sequences encoding recA, fusA, gapA, purA, rplB, dnaX and the intergenic spacer illustrated a phylogeny which placed strains JS5T, LN1 and QZH3 as a distinct clade, separate from all other species of the genus Dickeya. Average nucleotide identity values obtained in comparison with all species of the genus Dickeya supported the distinctiveness of strain JS5T within the genus Dickeya. Additionally, all three strains were phenotypically distinguished from other species of the genus Dickeya by failing to hydrolyse casein, and by producing acids from (-)-d-arabinose, (+)melibiose, (+)raffinose, mannitol and myo-inositol, but not from 5-keto-d-gluconate or β-gentiobiose. The name Dickeya fangzhongdai sp. nov. is proposed to accommodate these strains; the type strain is JS5T (=CGMCC 1.15464T=DSM 101947T).

  14. Physical, Chemical and Proteomic Evidence of Potato Suberin Degradation by the Plant Pathogenic Bacterium Streptomyces scabiei

    PubMed Central

    Beaulieu, Carole; Sidibé, Amadou; Jabloune, Raoudha; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Monga, Ernest; Bernards, Mark A.

    2016-01-01

    Potato peels consist of a tissue called phellem, which is formed by suberized cell layers. The degradation of suberin, a lipidic and recalcitrant polymer, is an ecological process attributed to soil fungal populations; however, previous studies have suggested that Streptomyces scabiei, the causal agent of potato common scab, possesses the ability to degrade suberin. In the present study, S. scabiei was grown in medium containing suberin-enriched potato phellem as the sole carbon source and its secretome was analyzed periodically (10- to 60-d-old cultures) with a special focus on proteins potentially involved in cell wall degradation. Although the amount and diversity of proteins linked to polysaccharide degradation remained high throughout the experiment, their abundance decreased over time. In contrast, proteins dedicated to lipid metabolism represented a small fraction of the secretome; however, their abundance increased during the experiment. The lipolytic enzymes detected may be involved in the degradation of the aliphatic fraction of suberin because the results of optical and transmission electron microscopy examinations revealed a loss in the integrity of suberized tissues exposed to S. scabiei cells. Chemical analyses identified a time period in which the concentration of aliphatic compounds in potato phellem decreased and the sugar concentration increased; at the end of the 60-d incubation period, the sugar concentration in potato phellem was significantly reduced. This study demonstrated the ability of S. scabiei to degrade the aliphatic portion of suberin. PMID:27853060

  15. Phenotypic diversification by gene silencing in Phytophthora plant pathogens.

    PubMed

    Vetukuri, Ramesh R; Asman, Anna Km; Jahan, Sultana N; Avrova, Anna O; Whisson, Stephen C; Dixelius, Christina

    2013-11-01

    Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA "hotspots" originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.

  16. Phytohormone mediation of interactions between herbivores and plant pathogens.

    PubMed

    Lazebnik, Jenny; Frago, Enric; Dicke, Marcel; van Loon, Joop J A

    2014-07-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in sequential tri-partite interactions among plants, pathogenic microbes, and herbivorous insects, based on the most recent literature. We discuss the importance of pathogen trophic strategy in the interaction with herbivores that exhibit different feeding modes. Plant resistance mechanisms also affect plant quality in future interactions with attackers. We discuss exemplary evidence for the hypotheses that (i) biotrophic pathogens can facilitate chewing herbivores, unless plants exhibit effector-triggered immunity, but (ii) facilitate or inhibit phloem feeders. (iii) Necrotrophic pathogens, on the other hand, can inhibit both phloem feeders and chewers. We also propose herbivore feeding mode as predictor of effects on pathogens of different trophic strategies, providing evidence for the hypotheses that (iv) phloem feeders inhibit pathogen attack by increasing SA induction, whereas (v) chewing herbivores tend not to affect necrotrophic pathogens, while they may either inhibit or facilitate biotrophic pathogens. Putting these hypotheses to the test will increase our understanding of phytohormonal regulation of plant defense to sequential attack by plant pathogens and insect herbivores. This will provide valuable insight into plant-mediated ecological interactions among members of the plant-associated community.

  17. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  18. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium.

    PubMed

    Mohamed, Kettani-Halabi; Daniel, Tran; Aurélien, Dauphin; El-Maarouf-Bouteau, Hayat; Rafik, Errakhi; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Florence, Val; Mustapha, Ennaji Moulay; François, Bouteau

    2015-01-01

    Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.

  19. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  20. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    PubMed Central

    Embaby, Amira M.; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S.

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1–13) and temperature (45–80°C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries. PMID:25614886

  1. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  2. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens.

    PubMed

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Gajanandana, Oraprapai; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2014-07-15

    The global seed market is considered to be an important industry with a total value of $10,543 million US dollars in 2012. Because plant pathogens such as bacteria and viruses cause a significant economic loss to both producers and exporters, the seed export industry urgently requires rapid, sensitive, and inexpensive testing for the pathogens to prevent disease spreading worldwide. This study developed an antibody array in a multiwell plate format to simultaneously detect four crucial plant pathogens, namely, a bacterial fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), Chilli veinal mottle virus (ChiVMV, potyvirus), Watermelon silver mottle virus (WSMoV, tospovirus serogroup IV), and Melon yellow spot virus (MYSV, tospovirus). The capture antibodies specific to the pathogens were immobilized on each well at preassigned positions by an automatic microarrayer. The antibodies on the arrays specifically captured the corresponding pathogens present in the sample extracts. The presence of pathogens bound on the capture antibodies was subsequently detected by a cocktail of fluorescently conjugated secondary antibodies. The limits of detection of the developed antibody array for the detection of Aac, ChiVMV, WSMoV, and MYSV were 5 × 10(5) CFU/mL, 30 ng/mL, 1000 ng/mL, and 160 ng/mL, respectively, which were very similar to those of the conventional ELISA method. The antibody array in a multiwell plate format accurately detected plant pathogens in single and multiple detections. Moreover, this format enables easy handling of the assay at a higher speed of operation.

  3. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum.

    PubMed

    Haack, Frederike S; Poehlein, Anja; Kröger, Cathrin; Voigt, Christian A; Piepenbring, Meike; Bode, Helge B; Daniel, Rolf; Schäfer, Wilhelm; Streit, Wolfgang R

    2016-01-01

    Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.

  4. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters.

    PubMed

    Monteil, Caroline L; Lafolie, François; Laurent, Jimmy; Clement, Jean-Christophe; Simler, Roland; Travi, Yves; Morris, Cindy E

    2014-07-01

    The airborne plant pathogenic bacterium Pseudomonas syringae is ubiquitous in headwaters, snowpack and precipitation where its populations are genetically and phenotypically diverse. Here, we assessed its population dynamics during snowmelt in headwaters of the French Alps. We revealed a continuous and significant transport of P.syringae by these waters in which the population density is correlated with water chemistry. Via in situ observations and laboratory experiments, we validated that P.syringae is effectively transported with the snow melt and rain water infiltrating through the soil of subalpine grasslands, leading to the same range of concentrations as measured in headwaters (10(2) -10(5) CFU l(-1) ). A population structure analysis confirmed the relatedness between populations in percolated water and those above the ground (i.e. rain, leaf litter and snowpack). However, the transport study in porous media suggested that water percolation could have different efficiencies for different strains of P.syringae. Finally, leaching of soil cores incubated for up to 4 months at 8°C showed that indigenous populations of P.syringae were able to survive in subalpine soil under cold temperature. This study brings to light the underestimated role of hydrological processes involved in the long distance dissemination of P.syringae.

  5. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum

    PubMed Central

    Haack, Frederike S.; Poehlein, Anja; Kröger, Cathrin; Voigt, Christian A.; Piepenbring, Meike; Bode, Helge B.; Daniel, Rolf; Schäfer, Wilhelm; Streit, Wolfgang R.

    2016-01-01

    Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen. PMID:27833590

  6. Profiling of small RNAs involved in plant-pathogen interactions.

    PubMed

    Niu, Dongdong; Wang, Zhaoyun; Wang, Shune; Qiao, Lulu; Zhao, Hongwei

    2015-01-01

    Small RNA (sRNA)-mediated gene silencing is an important gene expression regulatory mechanism conserved in eukaryotes. Such sRNAs, first discovered in plants, are involved in diverse biological processes. In plants, sRNAs participate in many growth and developmental processes, such as embryo development, seed germination, flowering, hormone synthesis and distribution, and nutrient assimilation. However, the significance of sRNA in shaping the relationship between plants and their symbiotic microbes or pathogens has been underestimated. Recent progress in profiling sRNA, especially advances in next-generation sequencing technology, has revealed its extensive and complicated involvement in interactions between plants and viruses, bacteria, and fungi. In this review, we will summarize recent findings regarding sRNA in plant-pathogen interactions.

  7. Plant-pathogen interactions: disease resistance in modern agriculture.

    PubMed

    Boyd, Lesley A; Ridout, Christopher; O'Sullivan, Donal M; Leach, Jan E; Leung, Hei

    2013-04-01

    The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.

  8. Genomic variability as a driver of plant-pathogen coevolution?

    PubMed

    Karasov, Talia L; Horton, Matthew W; Bergelson, Joy

    2014-04-01

    Pathogens apply one of the strongest selective pressures in plant populations. Understanding plant-pathogen coevolution has therefore been a major research focus for at least sixty years [1]. Recent comparative genomic studies have revealed that the genes involved in plant defense and pathogen virulence are among the most polymorphic in the respective genomes. Which fraction of this diversity influences the host-pathogen interaction? Do coevolutionary dynamics maintain variation? Here we review recent literature on the evolutionary and molecular processes that shape this variation, focusing primarily on gene-for-gene interactions. In summarizing theoretical and empirical studies of the processes that shape this variation in natural plant and pathogen populations, we find a disconnect between the complexity of ecological interactions involving hosts and their myriad microbes, and the models that describe them.

  9. Chemical signaling between plants and plant-pathogenic bacteria.

    PubMed

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  10. Natural competence and recombination in the plant pathogen Xylella fastidiosa.

    PubMed

    Kung, Stephanie H; Almeida, Rodrigo P P

    2011-08-01

    Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 10(6) cells when exogenous plasmid DNA was supplied and one out of every 10(7) cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa.

  11. Erwinia amylovora Expresses Fast and Simultaneously hrp/dsp Virulence Genes during Flower Infection on Apple Trees

    PubMed Central

    Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia

    2012-01-01

    Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular

  12. Plant pathogens as a source of diverse enzymes for lignocellulose digestion.

    PubMed

    Gibson, Donna M; King, Brian C; Hayes, Marshall L; Bergstrom, Gary C

    2011-06-01

    The plant cell wall is a major barrier that many plant pathogens must surmount for successful invasion of their plant hosts. Full genome sequencing of a number of plant pathogens has revealed often large, complex, and redundant enzyme systems for degradation of plant cell walls. Recent surveys have noted that plant pathogenic fungi are highly competent producers of lignocellulolytic enzymes, and their enzyme activity patterns reflect host specificity. We propose that plant pathogens may contribute to biofuel production as diverse sources of accessory enzymes for more efficient conversion of lignocellulose into fermentable sugars.

  13. Plant-pathogen interactions: what microarray tells about it?

    PubMed

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  14. Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas.

    PubMed

    Schmidtke, Cornelius; Abendroth, Ulrike; Brock, Juliane; Serrania, Javier; Becker, Anke; Bonas, Ulla

    2013-09-01

    Small noncoding RNAs (sRNAs) are ubiquitous posttranscriptional regulators of gene expression. Using the model plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv), we investigated the highly expressed and conserved sRNA sX13 in detail. Deletion of sX13 impinged on Xcv virulence and the expression of genes encoding components and substrates of the Hrp type III secretion (T3S) system. qRT-PCR analyses revealed that sX13 promotes mRNA accumulation of HrpX, a key regulator of the T3S system, whereas the mRNA level of the master regulator HrpG was unaffected. Complementation studies suggest that sX13 acts upstream of HrpG. Microarray analyses identified 63 sX13-regulated genes, which are involved in signal transduction, motility, transcriptional and posttranscriptional regulation and virulence. Structure analyses of in vitro transcribed sX13 revealed a structure with three stable stems and three apical C-rich loops. A computational search for putative regulatory motifs revealed that sX13-repressed mRNAs predominantly harbor G-rich motifs in proximity of translation start sites. Mutation of sX13 loops differentially affected Xcv virulence and the mRNA abundance of putative targets. Using a GFP-based reporter system, we demonstrated that sX13-mediated repression of protein synthesis requires both the C-rich motifs in sX13 and G-rich motifs in potential target mRNAs. Although the RNA-binding protein Hfq was dispensable for sX13 activity, the hfq mRNA and Hfq::GFP abundance were negatively regulated by sX13. In addition, we found that G-rich motifs in sX13-repressed mRNAs can serve as translational enhancers and are located at the ribosome-binding site in 5% of all protein-coding Xcv genes. Our study revealed that sX13 represents a novel class of virulence regulators and provides insights into sRNA-mediated modulation of adaptive processes in the plant pathogen Xanthomonas.

  15. Plant pathogens as a source of diverse enzymes for lignocellulose digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is a major barrier that many plant pathogens must surmount for successful invasion of their plant hosts. Full genome sequencing of a number of plant pathogens has revealed often large, complex, and redundant enzyme systems for degradation of plant cell walls. Recent surveys have ...

  16. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of plant pathogenic fungi by mycoviruses can attenuate their virulence on plants and vigor in culture. In this study, we described the viromes of 275 isolates of five widely dispersed plant pathogenic fungal species (Colletotrichum truncatum, Macrophomina phaseolina, Phomopsis longicolla, ...

  17. Insights into Cross-Kingdom Plant Pathogenic Bacteria

    PubMed Central

    Kirzinger, Morgan W.B.; Nadarasah, Geetanchaly; Stavrinides, John

    2011-01-01

    Plant and human pathogens have evolved disease factors to successfully exploit their respective hosts. Phytopathogens utilize specific determinants that help to breach reinforced cell walls and manipulate plant physiology to facilitate the disease process, while human pathogens use determinants for exploiting mammalian physiology and overcoming highly developed adaptive immune responses. Emerging research, however, has highlighted the ability of seemingly dedicated human pathogens to cause plant disease, and specialized plant pathogens to cause human disease. Such microbes represent interesting systems for studying the evolution of cross-kingdom pathogenicity, and the benefits and tradeoffs of exploiting multiple hosts with drastically different morphologies and physiologies. This review will explore cross-kingdom pathogenicity, where plants and humans are common hosts. We illustrate that while cross-kingdom pathogenicity appears to be maintained, the directionality of host association (plant to human, or human to plant) is difficult to determine. Cross-kingdom human pathogens, and their potential plant reservoirs, have important implications for the emergence of infectious diseases. PMID:24710301

  18. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    PubMed

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.

  19. Plants, plant pathogens, and microgravity--a deadly trio.

    PubMed

    Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

    2001-06-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  20. Plants, plant pathogens, and microgravity--a deadly trio

    NASA Technical Reports Server (NTRS)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; Guikema, J. A.

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  1. WITHHOLDING AND EXCHANGING IRON: Interactions Between Erwinia spp. and Their Plant Hosts.

    PubMed

    Expert, D

    1999-01-01

    The critical role of iron in plant host-parasite relationships has been elucidated in diseases as different as the soft rot and fire blight incited by Erwinia chrysanthemi and E. amylovora, respectively. As in animal infections, the role of iron and its ligands in the virulence of plant pathogens seems to be more subtle than might be expected, and is intimately related to the life cycle of the pathogen within its host. This review discusses how iron, because of its unique position in biological systems, controls the activities of these plant pathogens. Molecular studies illustrating the key question of iron acquisition and homeostasis during pathogenesis are described. The production of siderophores by pathogens not only represents a powerful strategy to acquire iron from host tissues but may also act as a protective agent against iron toxicity. The need of the host to bind and possibly sequester the metal during pathogenesis is another central issue. Possible modes of iron competition between plant host and pathogen are considered.

  2. Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp.

    PubMed

    Cui, Y; Chatterjee, A; Liu, Y; Dumenyo, C K; Chatterjee, A K

    1995-09-01

    The production of extracellular enzymes such as pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt) is activated by the cell density (quorum)-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (HSL); plant signals; and aep genes during postexponential growth of Erwinia carotovora subsp. carotovora 71. Studies with mutants of E. carotovora subsp. carotovora 71 derepressed in exoenzyme production led to the identification of a negative regulator gene, rsmA (rsm, repressor of secondary metabolites). Nucleotide sequencing, transcript assays, and protein analysis established that a 183-bp open reading frame encodes the 6.8-kDa RsmA. rsmA has extensive homology with the csrA gene of Escherichia coli, which specifies a negative regulator of carbon storage. Moreover, the suppression of glycogen synthesis in E. coli by rsmA indicates that the Erwinia gene is functionally similar to csrA. Southern hybridizations revealed the presence of rsmA homologs in soft-rotting and non-soft-rotting Erwinia spp. and in other enterobacteria such as Enterobacter aerogenes, E. coli, Salmonella typhimurium, Shigella flexneri, Serratia marcescens, and Yersinia pseudotuberculosis. rsmA suppresses production of Pel, Peh, Cel, and Prt, plant pathogenicity, and synthesis of HSL in E. carotovora subsp. atroseptica, E. carotovora subsp. betavasculorum, E. carotovora subsp. carotovora, and E. chrysanthemi. In the E. carotovora subsp. carotovora 71, rsmA reduces the levels of transcripts of hslI, a luxI homolog required for HSL biosynthesis. This specific effect and the previous finding that HSL is required for extracellular enzyme production and pathogenicity in soft-rotting Erwinia spp. support the hypothesis that rsmA controls these traits by modulating the levels of the cell density (quorum)-sensing signal.

  3. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria.

    PubMed

    Poiatti, Vera A D; Dalmas, Fernando R; Astarita, Leandro V

    2009-01-01

    The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in defense mechanisms

  4. Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry

    DTIC Science & Technology

    2008-01-01

    Erwinia amylovora Chromobacterium violaceum 1/3 Herbaspirillum rubrisubalbicans Herbaspirillum seropedicae Leifsonia xyli sp. cynodontis Clavibacter...flaccumfaciens LMG3645 Kidney bean; Hungary 3 Curtobacterium flaccumfaciens pv. violaceum ATCC23827 Bean seed; NE; USA 3 Curtobacterium

  5. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    SciTech Connect

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, TBK; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C.; Halpern, Malka

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  6. Genome evolution in filamentous plant pathogens: why bigger can be better.

    PubMed

    Raffaele, Sylvain; Kamoun, Sophien

    2012-05-08

    Many species of fungi and oomycetes are plant pathogens of great economic importance. Over the past 7 years, the genomes of more than 30 of these filamentous plant pathogens have been sequenced, revealing remarkable diversity in genome size and architecture. Whereas the genomes of many parasites and bacterial symbionts have been reduced over time, the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansions. In these lineages, the genes encoding proteins involved in host interactions are frequently polymorphic and reside within repeat-rich regions of the genome. Here, we review the properties of these adaptable genome regions and the mechanisms underlying their plasticity, and we illustrate cases in which genome plasticity has contributed to the emergence of new virulence traits. We also discuss how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts.

  7. Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens.

    PubMed

    Bressan, Alberto

    2014-03-01

    Arsenophonus bacteria are among the most biologically diverse and widespread endosymbionts of arthropods. Notably, two species, Phlomobacter fragariae and Arsenophonus phytopathogenicus, have been characterized as phloem-restricted plant pathogens that are obligatorily transmitted by and hosted in planthoppers of the family Cixiidae (Hemiptera: Auchenorrhyncha). Here, I review the current understanding on the lifestyle transition, evolution, host interaction, and infection cycles of these emerging plant pathogens.

  8. Samsonia erythrinae gen. nov., sp. nov., isolated from bark necrotic lesions of Erythrina sp., and discrimination of plant-pathogenic Enterobacteriaceae by phenotypic features.

    PubMed

    Sutra, L; Christen, R; Bollet, C; Simoneau, P; Gardan, L

    2001-07-01

    Bacterial strains isolated from diseased erythrina (Erythrina sp.) trees in Martinique (French West Indies) were studied using phenotypic tests, 16S rDNA sequence analysis and DNA-DNA hybridization. Numerical analysis of phenotypic characteristics showed that these strains formed an homogeneous phenon among plant-pathogenic Enterobacteriaceae, and gave useful and updated information for the identification of these bacteria. Results of DNA-DNA hybridization indicated that strains from erythrina belonged to a discrete genomospecies (89-100% hybridization) and had low levels of DNA relatedness (2-33% hybridization) with reference strains of phytopathogenic Erwinia, Brenneria, Pectobacterium, Pantoea and Enterobacter species. 16S rDNA sequence analysis using three different methods revealed that the position of strain CFBP 5236T isolated from erythrina was variable in the different trees, so that strains from erythrina could not be assigned to any recognized genus. It is proposed that these strains are included in a new genus, Samsonia. The name Samsonia erythrinae is proposed for the new species. The G+C content of the DNA of the type strain, CFBP 5236T (= ICMP 13937T), is 57.0 mol%.

  9. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    PubMed

    Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  10. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants.

    PubMed

    Harris, S J; Shih, Y L; Bentley, S D; Salmond, G P

    1998-05-01

    We have identified a gene important for the regulation of exoenzyme virulence factor synthesis in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc) and virulence and motility in Erwinia carotovora ssp. atroseptica (Eca). This gene, hexA (hyperproduction of exoenzymes), is a close relative of the Erwinia chrysanthemi (Echr) gene pecT and encodes a member of the LysR family of transcriptional regulators. hexA mutants in both Ecc and Eca produce abnormally high levels of the exoenzyme virulence factors pectate lyase, cellulase and protease. In addition, Eca hexA mutants show increased expression of the fliA and fliC genes and hypermotility. Consistent with a role as a global regulator, expression of hexA from even a low-copy plasmid can suppress exoenzyme production in Ecc and Eca and motility in Eca. Production of the quorum-sensing pheromone OHHL in Ecc hexA is higher throughout the growth curve compared with the wild-type strain. Overexpression of Ecc hexA also caused widespread effects in several strains of the opportunistic human pathogen, Serratia. Low-copy hexA expression resulted in repression of exoenzyme, pigment and antibiotic production and repression of the spreading phenotype. Finally, mutations in hexA were shown to increase Ecc or Eca virulence in planta.

  11. Highways in the sky: scales of atmospheric transport of plant pathogens.

    PubMed

    Schmale, David G; Ross, Shane D

    2015-01-01

    Many high-risk plant pathogens are transported over long distances (hundreds of meters to thousands of kilometers) in the atmosphere. The ability to track the movement of these pathogens in the atmosphere is essential for forecasting disease spread and establishing effective quarantine measures. Here, we discuss the scales of atmospheric dispersal of plant pathogens along a transport continuum (pathogen scale, farm scale, regional scale, and continental scale). Growers can use risk information at each of these dispersal scales to assist in making plant disease management decisions, such as the timely application of appropriate pesticides. Regional- and continental-scale atmospheric features known as Lagrangian coherent structures (LCSs) may shuffle plant pathogens along highways in the sky. A promising new method relying on overlapping turbulent back-trajectories of pathogen-laden parcels of air may assist in localizing potential inoculum sources, informing local and/or regional management efforts such as conservation tillage. The emergence of unmanned aircraft systems (UASs, or drones) to sample plant pathogens in the lower atmosphere, coupled with source localization efforts, could aid in mitigating the spread of high-risk plant pathogens.

  12. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2011-02-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.

  13. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions

    PubMed Central

    Schmidtke, Cornelius; Findeiß, Sven; Sharma, Cynthia M.; Kuhfuß, Juliane; Hoffmann, Steve; Vogel, Jörg; Stadler, Peter F.; Bonas, Ulla

    2012-01-01

    The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85–10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved −10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5′-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. PMID:22080557

  14. [Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].

    PubMed

    Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

    2013-08-01

    The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance.

  15. Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack.

    PubMed

    Monteil, Caroline L; Guilbaud, Caroline; Glaux, Catherine; Lafolie, François; Soubeyrand, Samuel; Morris, Cindy E

    2012-08-01

    The recently discovered ubiquity of the plant pathogen Pseudomonas syringae in headwaters and alpine ecosystems worldwide elicits new questions about the ecology of this bacterium and subsequent consequences for disease epidemiology. Because of the major contribution of snow to river run-off during crop growth, we evaluated the population dynamics of P.syringae in snowpack and the underlying leaf litter during two years in the Southern French Alps. High population densities of P.syringae were found on alpine grasses, and leaf litter was identified as the main source of populations of P.syringae in snowpack, contributing more than the populations arriving with the snowfall. The insulating properties of snow foster survival of P.syringae throughout the winter in the 10 cm layer of snow closest to the soil. Litter and snowpack harboured populations of P.syringae that were very diverse in terms of phenotypes and genotypes. Neither substrate nor sampling site had a marked effect on the structure of P.syringae populations, and snow and litter had genotypes in common with other non-agricultural habitats and with crops. These results contribute to the mounting evidence that a highly diverse P.syringae metapopulation is disseminated throughout drainage basins between cultivated and non-cultivated zones.

  16. The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and Subspecific introgression in Central America.

    PubMed

    Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A; Ruiz Sánchez, Rebeca; Stouthamer, Richard

    2014-01-01

    The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.

  17. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence.

    PubMed

    Pumplin, Nathan; Voinnet, Olivier

    2013-11-01

    RNA silencing is a central regulator of gene expression in most eukaryotes and acts both at the transcriptional level through DNA methylation and at the post-transcriptional level through direct mRNA interference mediated by small RNAs. In plants and invertebrates, the same pathways also function directly in host defence against viruses by targeting viral RNA for degradation. Successful viruses have consequently evolved diverse mechanisms to avoid silencing, most notably through the expression of viral suppressors of RNA silencing. RNA silencing suppressors have also been recently identified in plant pathogenic bacteria and oomycetes, suggesting that disruption of host silencing is a general virulence strategy across several kingdoms of plant pathogens. There is also increasing evidence that plants have evolved specific defences against RNA-silencing suppression by pathogens, providing yet another illustration of the never-ending molecular arms race between plant pathogens and their hosts.

  18. Validation of real-time PCR assays for bioforensic detection of model plant pathogens.

    PubMed

    James, Mindy; Blagden, Trenna; Moncrief, Ian; Burans, James P; Schneider, Katherine; Fletcher, Jacqueline

    2014-03-01

    The U.S. agricultural sector is vulnerable to intentionally introduced microbial threats because of its wide and open distribution and economic importance. To investigate such events, forensically valid assays for plant pathogen detection are needed. In this work, real-time PCR assays were developed for three model plant pathogens: Pseudomonas syringae pathovar tomato, Xylella fastidiosa, and Wheat streak mosaic virus. Validation included determination of the linearity and range, limit of detection, sensitivity, specificity, and exclusivity of each assay. Additionally, positive control plasmids, distinguishable from native signature by restriction enzyme digestion, were developed to support forensic application of the assays. Each assay displayed linear amplification of target nucleic acid, detected 100 fg or less of target nucleic acid, and was specific to its target pathogen. Results obtained with these model pathogens provide the framework for development and validation of similar assays for other plant pathogens of high consequence.

  19. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.

    PubMed

    Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M

    2013-05-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.

  20. Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora.

    PubMed

    Tucker, Alex C; Escalante-Semerena, Jorge C

    2010-12-01

    Sirtuins are NAD(+)-dependent protein deacylases that are conserved in all domains of life and are involved in diverse cellular processes, including control of gene expression and central metabolism. Eukaryotic sirtuins have N-terminal extensions that have been linked to protein multimerization and cellular localization. Here the first evidence of sirtuin isoforms in bacteria is reported. The enterobacterium Salmonella enterica synthesizes two isoforms of CobB sirtuin, a shorter 236-amino-acid isoform (here CobB(S)) and a longer 273-amino-acid isoform (here CobB(L)). The N-terminal 37-amino-acid extension of CobB(L) is amphipathic, containing 18 basic amino acids (12 of which are Arg) and 13 hydrophobic ones; both isoforms were active in vivo and in vitro. Northern blot and transcription start site analyses revealed that cobB is primarily expressed as two monocistronic cobB mRNAs from two transcription start sites, one of which was mapped within the neighboring ycfX gene and the other of which was located within cobB. Additionally, a low-abundance ycfX-cobB bicistronic mRNA was observed which could encode up to three proteins (YcfX, CobB(L), and CobB(S)). CobB(L) isoforms are common within the family Enterobacteriaceae, but species of the genus Erwinia (including the plant pathogen Erwinia amylovora) encode only the CobB(L) isoform. The CobB(L) isoform from E. amylovora restored growth of as S. enterica cobB mutant strain on low acetate.

  1. Disentangling effects of vector birth rate, mortality rate, and abundance on spread of a plant pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For insect-transmitted plant pathogens, rates of pathogen spread are a function of vector abundance. While vector abundance is recognized to be important, parameters that govern vector population size receive little attention. For example, epidemiological models often fix vector population size by a...

  2. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria

    PubMed Central

    Tampakaki, Anastasia P.

    2014-01-01

    Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts. PMID:24723933

  3. A generic risk-based surveying method for invading plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant pathogens are increasing with international trade and travel with damaging environmental and economic consequences. Recent examples include tree diseases such as Sudden Oak Death in the Western US and Ash Dieback in Europe. To control an invading pathogen it is crucial that newly in...

  4. A long-term study of burning effects on a plant pathogen in tallgrass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tallgrass prairie species have evolved with regular exposure to fire. Yet burning has been used as a management tool for reducing plant disease in agricultural systems, posing the question of how plant pathogens of tallgrass prairie will be affected by burning. We studied the rust fungus Puccinia ...

  5. The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens.

    PubMed

    Stukenbrock, Eva H

    2016-02-01

    Hybridization in fungi has recently been recognized as a major force in the generation of new fungal plant pathogens. These include the grass pathogen Zymoseptoria pseudotritici and the powdery mildew pathogen Blumeria graminis triticale of triticale. Hybridization also plays an important role in the transfer of genetic material between species. This process is termed introgressive hybridization and involves extensive backcrossing between hybrid and the parental species. Introgressive hybridization has contributed substantially to the successful spread of plant pathogens such as Ophiostoma ulmi and O. novo-ulmi, the causal agents of Dutch elm disease, and other tree pathogens such as the rust pathogen Melampsora. Hybridization occurs more readily between species that have previously not coexisted, so-called allopatric species. Reproductive barriers between allopatric species are likely to be more permissive allowing interspecific mating to occur. The bringing together of allopatric species of plant pathogens by global agricultural trade consequently increases the potential for hybridization between pathogen species. In light of global environmental changes, agricultural development, and the facilitated long-distance spread of fungal plant pathogens, hybridization should be considered an important mechanism whereby new pathogens may emerge. Recent studies have gained insight into the genetics and biology of fungal hybrids. Here I summarize current knowledge about hybrid speciation and introgressive hybridization. I propose that future studies will benefit greatly from the availability of large genome data sets and that genome data provide a powerful resource in combination with experimental approaches for analyses of hybrid species.

  6. Functional analysis of Pcipg2 from the straminopilous plant Pathogen Phytophthora capsici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici is an oomycete plant pathogen that causes severe diseases in a wide variety of crops. Polygalacturonases (PGs) play a major role in the degradation pectin in plant cell walls. A genomic library was made from a highly virulent strain of P. capsici with high PGs activity. Seven pg...

  7. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria.

    PubMed

    Tampakaki, Anastasia P

    2014-01-01

    Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.

  8. List of new names of plant pathogenic bacteria (2011-2012)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria has responsibility to evaluate the names of newly proposed pathovars for adherence to the International Standards for Naming Pathovars of Phytopathogenic Bacteria. Currently, the Comprehensive List of...

  9. Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella Graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...

  10. Fun Microbiology: Using a Plant Pathogenic Fungus To Demonstrate Koch's Postulates.

    ERIC Educational Resources Information Center

    Mitchell, James K.; Orsted, Kathy M.; Warnes, Carl E.

    1997-01-01

    Describes an experiment using a plant pathogenic fungus in which students learn to follow aseptic techniques, grow and produce spores of a fungus, use a hemacytometer for enumerating spores, prepare serial dilutions, grow and inoculate plants, isolate a pure culture using agar streak plates, and demonstrate the four steps of Koch's postulates.…

  11. Mycosphaerella graminicola sequencing heads towards the first finished genome of a filamentous plant pathogenic fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella is one of the largest genera of plant pathogenic fungi with more than 1,000 named species, a few of which cause disease in humans and other vertebrates. The genomes of M. graminicola and M. fijiensis, two of the most economically important pathogens of wheat and banana, respectively, ...

  12. Thaxtomin biosynthesis: The path to plant pathogenicity in the genus Streptomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptomyces species are best known for their ability to produce a wide array of medically- and agriculturally-important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically-impor...

  13. Multicomponent synthesis of acylated short peptoids with antifungal activity against plant pathogens.

    PubMed

    Galetti, Matías D; Cirigliano, Adriana M; Cabrera, Gabriela M; Ramírez, Javier A

    2012-02-01

    In this article, we describe the synthesis of a small library of short peptoids composed of four glycine residues and acylated with a fatty acid that showed a remarkable in vitro activity against two fungal plant pathogens. Their straightforward synthesis implied two consecutive Ugi reactions and can be efficiently extended to the construction of highly diverse libraries.

  14. Draft genome sequence of Dactylonectria macrodydima, a plant pathogenic fungus in the Nectriaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dactylonectria macrodidyma is part of the Nectriaceae, a family containing important plant pathogens. This species possesses the ability to induce disease on grapevine, avocado and olive. Here, we report the first draft genome of D. macrodidyma isolate JAC15-08. The assembled genome was 58 Mbp and c...

  15. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    PubMed

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2016-11-21

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.

  16. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  17. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish famine pathogen, P. infestans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global movement of plant pathogens threatens natural ecosystems, food security, and commercial interests. Introduction of a plant pathogen to new geographic regions has been the primary mechanism by which new pathogens have emerged. Another documented mechanism for the emergence of plant pathoge...

  18. Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae.

    PubMed

    Xu, Shu; Pan, Xiayan; Luo, Jianying; Wu, Jian; Zhou, Zehua; Liang, Xiaoyu; He, Yawen; Zhou, Mingguo

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the casual agent of bacterial blight, which is one of the most serious diseases of rice. The antibiotic phenazine-1-carboxylic acid (PCA), which is primarily produced by Pseudomonas spp., was found and previously reported very effective against Xoo. However, the biological effects of PCA on Xoo remain unclear. In this study, we found that PCA increased the accumulation of reactive oxygen species (ROS) and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) in Xoo. Xoo was more sensitive to H2O2 than Xanthomonas oryzae pv. oryzicola (Xoc), and had a much lower expression of CAT genes. In addition, proteomic analysis indicated that PCA inhibited carbohydrate metabolism and nutrient uptake in Xoo, and analysis of carbon source utilization further confirmed that carbohydrate metabolism in Xoo was repressed by PCA. In conclusion, PCA acted as a redox-cycling agent that disturbed the redox balance in Xoo and reduced CAT and SOD activities, resulting in higher accumulation of ROS, altered carbohydrate metabolism, and lower energy production and nutrient uptake. Moreover, a deficient antioxidant system in Xoo made it very sensitive to PCA.

  19. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis.

    PubMed Central

    Bereswill, S; Pahl, A; Bellemann, P; Zeller, W; Geider, K

    1992-01-01

    Detection and identification of the fire blight pathogen, Erwinia amylovora, can be accurately done by polymerase chain reaction (PCR) analysis in less than 6 h. Two oligomers derived from a 29-kb plasmid which is common to all strains of E. amylovora were used to amplify a 0.9-kb fragment of the plasmid. By separation of the PCR products on agarose gel, this fragment wa specifically detected when E. amylovora DNA was present in the amplification assay. It was not found when DNA from other plant-pathogenic bacteria was used for the assay. A visible band specific to the 0.9-kb fragment was produced with DNA from fewer than 100 E. amylovora cells. A signal of similar strength was also obtained from E. amylovora cell lysates in the presence of the mild detergent Tween 20. Signals were weaker when bacteria were added to the PCR mixture without the detergent. As with results obtained from hybridization experiments using pEA29 DNA< the PCR signal was obtained with E. amylovora isolates from various geographic regions. This technique could also be used for detection of the fire blight pathogen in extracts of tissue obtained from infected plant material. Images PMID:1482178

  20. Functional diversity among metallo-beta-lactamases: characterization of the CAR-1 enzyme of Erwinia carotovora.

    PubMed

    Stoczko, Magdalena; Frère, Jean-Marie; Rossolini, Gian Maria; Docquier, Jean-Denis

    2008-07-01

    Metallo-beta-lactamases (MBLs) are zinc-dependent bacterial enzymes characterized by an efficient hydrolysis of carbapenems and a lack of sensitivity to commercially available beta-lactamase inactivators. Apart from the acquired subclass B1 enzymes, which exhibit increasing clinical importance and whose evolutionary origin remains unclear, most MBLs are encoded by resident genes found in the genomes of organisms belonging to at least three distinct phyla. Using genome database mining, we identified an open reading frame (ORF) (ECA2849) encoding an MBL-like protein in the sequenced genome of Erwinia carotovora, an important plant pathogen. Although no detectable beta-lactamase activity could be found in E. carotovora, a recombinant Escherichia coli strain in which the ECA2849 ORF was cloned showed decreased susceptibility to several beta-lactams, while carbapenem MICs were surprisingly poorly affected. The enzyme, named CAR-1, was purified by means of ion-exchange chromatography steps, and its characterization revealed unique structural and functional features. This new MBL was able to efficiently hydrolyze cephalothin, cefuroxime, and cefotaxime and, to a lesser extent, penicillins and the other cephalosporins but only poorly hydrolyzed meropenem, while imipenem was not recognized. CAR-1 is the first example of a functional naturally occurring MBL in the family Enterobacteriaceae (order Enterobacteriales) and highlights the extraordinary structural and functional diversity exhibited by MBLs.

  1. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.

  2. Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides.

    PubMed

    Caputi, Lorenzo; Nepogodiev, Sergey A; Malnoy, Mickael; Rejzek, Martin; Field, Robert A; Benini, Stefano

    2013-12-18

    Erwinia amylovora is a plant pathogen that affects Rosaceae, such as apple and pear. In E. amylovora the fructans, produced by the action of a levansucrase (EaLsc), play a role in virulence and biofilm formation. Fructans are bioactive compounds, displaying health-promoting properties in their own right. Their use as food and feed supplements is increasing. In this study, we investigated the biomolecular properties of EaLsc using HPAEC-PAD, MALDI-TOF MS, and spectrophotometric assays. The enzyme, which was heterologously expressed in Escherichia coli in high yield, was shown to produce mainly fructooligosaccharides (FOSs) with a degree of polymerization between 3 and 6. The kinetic properties of EaLsc were similar to those of other phylogenetically related Gram-negative bacteria, but the good yield of FOSs, the product spectrum, and the straightforward production of the enzyme suggest that EaLsc is an interesting biocatalyst for future studies aimed at producing tailor-made fructans.

  3. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.

  4. Streptomyces coelicolor encodes a urate-responsive transcriptional regulator with homology to PecS from plant pathogens.

    PubMed

    Huang, Hao; Mackel, Brian J; Grove, Anne

    2013-11-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.

  5. RipAY, a Plant Pathogen Effector Protein, Exhibits Robust γ-Glutamyl Cyclotransferase Activity When Stimulated by Eukaryotic Thioredoxins*

    PubMed Central

    Fujiwara, Shoko; Kawazoe, Tomoki; Ohnishi, Kouhei; Kitagawa, Takao; Popa, Crina; Valls, Marc; Genin, Stéphane; Nakamura, Kazuyuki; Kuramitsu, Yasuhiro; Tanaka, Naotaka; Tabuchi, Mitsuaki

    2016-01-01

    The plant pathogenic bacterium Ralstonia solanacearum injects more than 70 effector proteins (virulence factors) into the host plant cells via the needle-like structure of a type III secretion system. The type III secretion system effector proteins manipulate host regulatory networks to suppress defense responses with diverse molecular activities. Uncovering the molecular function of these effectors is essential for a mechanistic understanding of R. solanacearum pathogenicity. However, few of the effectors from R. solanacearum have been functionally characterized, and their plant targets remain largely unknown. Here, we show that the ChaC domain-containing effector RipAY/RSp1022 from R. solanacearum exhibits γ-glutamyl cyclotransferase (GGCT) activity to degrade the major intracellular redox buffer, glutathione. Heterologous expression of RipAY, but not other ChaC family proteins conserved in various organisms, caused growth inhibition of yeast Saccharomyces cerevisiae, and the intracellular glutathione level was decreased to ∼30% of the normal level following expression of RipAY in yeast. Although active site mutants of GGCT activity were non-toxic, the addition of glutathione did not reverse the toxicity, suggesting that the toxicity might be a consequence of activity against other γ-glutamyl compounds. Intriguingly, RipAY protein purified from a bacterial expression system did not exhibit any GGCT activity, whereas it exhibited robust GGCT activity upon its interaction with eukaryotic thioredoxins, which are important for intracellular redox homeostasis during bacterial infection in plants. Our results suggest that RipAY has evolved to sense the host intracellular redox environment, which triggers its enzymatic activity to create a favorable environment for R. solanacearum infection. PMID:26823466

  6. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.

  7. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi

    PubMed Central

    Van Minh, Nguyen; Woo, E-Eum; Kim, Ji-Yul; Kim, Dae-Won; Hwang, Byung Soon; Lee, Yoon-Ju; Lee, In-Kyoung

    2015-01-01

    In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria. PMID:26539051

  8. Nitric Oxide in the Offensive Strategy of Fungal and Oomycete Plant Pathogens.

    PubMed

    Arasimowicz-Jelonek, Magdalena; Floryszak-Wieczorek, Jolanta

    2016-01-01

    In the course of evolutionary changes pathogens have developed many invasion strategies, to which the host organisms responded with a broad range of defense reactions involving endogenous signaling molecules, such as nitric oxide (NO). There is evidence that pathogenic microorganisms, including two most important groups of eukaryotic plant pathogens, also acquired the ability to synthesize NO via non-unequivocally defined oxidative and/or reductive routes. Although the both kingdoms Chromista and Fungi are remarkably diverse, the experimental data clearly indicate that pathogen-derived NO is an important regulatory molecule controlling not only developmental processes, but also pathogen virulence and its survival in the host. An active control of mitigation or aggravation of nitrosative stress within host cells seems to be a key determinant for the successful invasion of plant pathogens representing different lifestyles and an effective mode of dispersion in various environmental niches.

  9. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  10. Nitric Oxide in the Offensive Strategy of Fungal and Oomycete Plant Pathogens

    PubMed Central

    Arasimowicz-Jelonek, Magdalena; Floryszak-Wieczorek, Jolanta

    2016-01-01

    In the course of evolutionary changes pathogens have developed many invasion strategies, to which the host organisms responded with a broad range of defense reactions involving endogenous signaling molecules, such as nitric oxide (NO). There is evidence that pathogenic microorganisms, including two most important groups of eukaryotic plant pathogens, also acquired the ability to synthesize NO via non-unequivocally defined oxidative and/or reductive routes. Although the both kingdoms Chromista and Fungi are remarkably diverse, the experimental data clearly indicate that pathogen-derived NO is an important regulatory molecule controlling not only developmental processes, but also pathogen virulence and its survival in the host. An active control of mitigation or aggravation of nitrosative stress within host cells seems to be a key determinant for the successful invasion of plant pathogens representing different lifestyles and an effective mode of dispersion in various environmental niches. PMID:26973690

  11. Small non-coding RNAs in plant-pathogenic Xanthomonas spp.

    PubMed

    Abendroth, Ulrike; Schmidtke, Cornelius; Bonas, Ulla

    2014-01-01

    The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.

  12. Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes

    PubMed Central

    Adhikari, Bishwo N.; Hamilton, John P.; Zerillo, Marcelo M.; Tisserat, Ned; Lévesque, C. André; Buell, C. Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence. PMID:24124466

  13. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora.

    PubMed

    Torto, Trudy A; Li, Shuang; Styer, Allison; Huitema, Edgar; Testa, Antonino; Gow, Neil A R; van West, Pieter; Kamoun, Sophien

    2003-07-01

    Plant pathogenic microbes have the remarkable ability to manipulate biochemical, physiological, and morphological processes in their host plants. These manipulations are achieved through a diverse array of effector molecules that can either promote infection or trigger defense responses. We describe a general functional genomics approach aimed at identifying extracellular effector proteins from plant pathogenic microorganisms by combining data mining of expressed sequence tags (ESTs) with virus-based high-throughput functional expression assays in plants. PexFinder, an algorithm for automated identification of extracellular proteins from EST data sets, was developed and applied to 2147 ESTs from the oomycete plant pathogen Phytophthora infestans. The program identified 261 ESTs (12.2%) corresponding to a set of 142 nonredundant Pex (Phytophthora extracellular protein) cDNAs. Of these, 78 (55%) Pex cDNAs were novel with no significant matches in public databases. Validation of PexFinder was performed using proteomic analysis of secreted protein of P. infestans. To identify which of the Pex cDNAs encode effector proteins that manipulate plant processes, high-throughput functional expression assays in plants were performed on 63 of the identified cDNAs using an Agrobacterium tumefaciens binary vector carrying the potato virus X (PVX) genome. This led to the discovery of two novel necrosis-inducing cDNAs, crn1 and crn2, encoding extracellular proteins that belong to a large and complex protein family in Phytophthora. Further characterization of the crn genes indicated that they are both expressed in P. infestans during colonization of the host plant tomato and that crn2 induced defense-response genes in tomato. Our results indicate that combining data mining using PexFinder with PVX-based functional assays can facilitate the discovery of novel pathogen effector proteins. In principle, this strategy can be applied to a variety of eukaryotic plant pathogens, including

  14. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.

    PubMed

    Adhikari, Bishwo N; Hamilton, John P; Zerillo, Marcelo M; Tisserat, Ned; Lévesque, C André; Buell, C Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence.

  15. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    PubMed

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  16. Synthesis and antifungal activity of 2-allylphenol derivatives against fungal plant pathogens.

    PubMed

    Qu, Tianli; Gao, Shumei; Li, Jianqiang; Hao, Jianjun J; Ji, Pingsheng

    2017-01-01

    2-Allylphenol (2-AP) is an effective fungicide against a number of plant pathogens, which can be metabolized and bio-transformed to four chemical compounds by Rhizoctonia cerealis. To determine if its degradation affects antifungal activity, two major metabolites derived from 2-AP including 2-(2-hydroxypropyl) phenol and 2-(3-hydroxypropyl) phenol were synthesized. Inhibition of mycelial growth of several plant pathogens by the metabolites was evaluated, and structures of two metabolites were determined by hydrogen nuclear magnetic resonance ((1)H NMR). Among these metabolites, only 2-(2-hydroxypropyl) phenol inhibited test pathogens effectively. EC50 values of 2-(2-hydroxypropyl) phenol for inhibition of mycelial growth of R. cerealis, Pythium aphanidermatum, Valsa mali and Botrytis cinerea ranged from 1.0 to 23.5μg/ml, which were lower than the parental fungicide 2-AP that ranged from 8.2 to 48.8μg/ml. Hyphae of R. cerealis and P. aphanidermatum treated with 2-(2-hydroxypropyl) phenol were twisted. Newly developed hyphae were slender, twisted and swollen on the tip, while old hyphae were hollow and ruptured. This is the first report indicating the formation of 2-(2-hydroxypropyl) phenol may have contributed to toxicity of 2-allylphenol in control of plant pathogens.

  17. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    PubMed

    Lau, Han Yih; Palanisamy, Ramkumar; Trau, Matt; Botella, Jose R

    2014-01-01

    Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  18. Disentangling Effects of Vector Birth Rate, Mortality Rate, and Abundance on Spread of Plant Pathogens.

    PubMed

    Sisterson, Mark S; Stenger, Drake C

    2016-04-01

    Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.

  19. Punctuated changes in plant pathogen populations associated with passage of atmospheric Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Ross, Shane; Tallapragada, Phanindra; Schmale, David

    2010-11-01

    The atmospheric transport of airborne microorganisms (e.g., plant pathogens) is poorly understood, yet necessary to assess their ecological roles in agricultural ecosystems and to evaluate risks posed by invasive species. The atmospheric transport of plant pathogens can be roughly divided into three phases: liberation of pathogen spores, drift (transport in the atmosphere) and deposition. If liberated spores escape into the planetary boundary layer, they could be transported over thousands of kilometers before being deposited. The drift phase is poorly understood, due to the complex nature of atmospheric transport and relative lack of observational data. In this talk, we present a framework of Lagrangian coherent structures to determine the important atmospheric transport barriers (ATBs) that partition the atmosphere and systematically organize the mesoscale transport problem. Using autonomous unmanned aerial vehicles, we measure the concentration of spores of a plant pathogenic fungus (Fusarium) sampled in the atmosphere above Virginia Tech's Kentland Farm. We report correlations between concentrations of Fusarium with the local movement of ATBs determined from archived meteorological data.

  20. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    PubMed

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively.

  1. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Srinivasa, Chandrashekar; Sharanaiah, Umesha; Shivamallu, Chandan

    2012-03-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  2. Characterization of the Agrobacterium vitis pehA gene and comparison of the encoded polygalacturonase with the homologous enzymes from Erwinia carotovora and Ralstonia solanacearum.

    PubMed

    Herlache, T C; Hotchkiss, A T; Burr, T J; Collmer, A

    1997-01-01

    DNA sequencing of the Agrobacterium vitis pehA gene revealed a predicted protein with an M(r) of 58,000 and significant similarity to the polygalacturonases of two other plant pathogens, Erwinia carotovora and Ralstonia (= Pseudomonas or Burkholderia) solanacearum. Sequencing of the N terminus of the PehA protein demonstrated cleavage of a 34-amino-acid signal peptide from pre-PehA. Mature PehA accumulated primarily in the periplasm of A. vitis and pehA+ Escherichia coli cells during exponential growth. A. vitis PehA released dimers, trimers, and monomers from polygalacturonic acid and caused less electrolyte leakage from potato tuber tissue than did the E. carotovora and R. solanacearum polygalacturonases.

  3. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp.

    PubMed

    Smits, Theo H M; Rezzonico, Fabio; Kamber, Tim; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Duffy, Brion

    2010-04-01

    Fire blight, caused by the enterobacterium Erwinia amylovora, is a devastating disease of rosaceous plants that has global economic importance for apple and pear production and trade. The complete genome of E. amylovora CFBP 1430 was sequenced, annotated, and compared with the genomes of other Erwinia spp. Several singleton and shared features of the E. amylovora CFBP 1430 genome were identified that offer a first view into evolutionary aspects within the genus Erwinia. Comparative genomics identified or clarified virulence and fitness determinants and secretion systems. Novel insights revealed in the genome of E. amylovora CFBP 1430 hold potential for exploitation to improve the design of more effective fire blight control strategies.

  4. Haemagglutinins and fimbriae of soft rot Erwinias.

    PubMed

    Wallace, A; Pérombelon, M C

    1992-08-01

    Strains of phytopathogenic soft rot Erwinia spp. were examined for haemagglutinin (HA) production. Mannose-sensitive HA was found only in five of 15 strains of E. carotovora subsp. carotovora. Mannose-resistant HA (MRHA) was found in 12 of 15 strains of E.c. carotovora, ten of 13 strains of E.c. subsp. atroseptica and the single strain of E.c. subsp. betavasculorum, as well as all seven strains of E. chrysanthemi. MRHA, detectable only in a microtitre tray HA assay was of either broad- or narrow-spectrum activity when examined against blood of seven different animal species and could be inhibited by the beta-galactoside asialofetuin. Fimbriae of ca 10 nm diameter were found on MRHA(+) bacteria E.c. carotovora and E.c. atroseptica.

  5. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    PubMed Central

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  6. Genetic Elucidation of Nitric Oxide Signaling in Incompatible Plant-Pathogen Interactions[w

    PubMed Central

    Zeier, Jürgen; Delledonne, Massimo; Mishina, Tatiana; Severi, Emmanuele; Sonoda, Masatoshi; Lamb, Chris

    2004-01-01

    Recent experiments indicate that nitric oxide (NO) plays a pivotal role in disease resistance and several other physiological processes in plants. However, most of the current information about the function of NO in plants is based on pharmacological studies, and additional approaches are therefore required to ascertain the role of NO as an important signaling molecule in plants. We have expressed a bacterial nitric oxide dioxygenase (NOD) in Arabidopsis plants and/or avirulent Pseudomonas syringae pv tomato to study incompatible plant-pathogen interactions impaired in NO signaling. NOD expression in transgenic Arabidopsis resulted in decreased NO levels in planta and attenuated a pathogen-induced NO burst. Moreover, NOD expression in plant cells had very similar effects on plant defenses compared to NOD expression in avirulent Pseudomonas. The defense responses most affected by NO reduction during the incompatible interaction were decreased H2O2 levels during the oxidative burst and a blockage of Phe ammonia lyase expression, the key enzyme in the general phenylpropanoid pathway. Expression of the NOD furthermore blocked UV light-induced Phe ammonia lyase and chalcone synthase gene expression, indicating a general signaling function of NO in the activation of the phenylpropanoid pathway. NO possibly functions in incompatible plant-pathogen interactions by inhibiting the plant antioxidative machinery, and thereby ensuring locally prolonged H2O2 levels. Additionally, albeit to a lesser extent, we observed decreases in salicylic acid production, a diminished development of hypersensitive cell death, and a delay in pathogenesis-related protein 1 expression during these NO-deficient plant-pathogen interactions. Therefore, this genetic approach confirms that NO is an important regulatory component in the signaling network of plant defense responses. PMID:15347797

  7. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    PubMed

    Martini, Xavier; Hoffmann, Mark; Coy, Monique R; Stelinski, Lukasz L; Pelz-Stelinski, Kirsten S

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  8. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  9. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective.

    PubMed

    Naseem, Muhammad; Srivastava, Mugdha; Tehseen, Muhammad; Ahmed, Nazeer

    2015-01-01

    The plant hormone auxin regulates a whole repertoire of plant growth and development. Many plant-associated microorganisms, by virtue of their auxin production capability, mediate phytostimulation effects on plants. Recent studies, however, demonstrate diverse mechanisms whereby plant pathogens manipulate auxin biosynthesis, signaling and transport pathways to promote host susceptibility. Auxin responses have been coupled to their antagonistic and synergistic interactions with salicylic acid and jasmonate mediated defenses, respectively. Here, we discuss that a better understanding of auxin crosstalk to plant immune networks would enable us to engineer crop plants with higher protection and low unintended yield losses.

  10. Multiplex detection of plant pathogens through the Luminex MagPlex bead system.

    PubMed

    van der Vlugt, René A A; van Raaij, Henry; de Weerdt, Marjanne; Bergervoet, Jan H W

    2015-01-01

    Here we describe a versatile multiplex method for both the serological and molecular detection of plant pathogens. The Luminex MagPlex bead system uses small paramagnetic microspheres ("beads"), either coated with specific antibodies or oligonucleotides, which capture respectively viruses and/or bacteria or PCR products obtained from their genetic material. The Luminex MagPlex bead system allows true multiplex detection of up to 500 targets in a single sample on a routine basis. The liquid suspension nature of the method significantly improves (1) assay speed, (2) detection limits and (3) dynamic range. It can also considerably reduce labor and consumables costs.

  11. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.

    PubMed

    Hammond-Kosack, Kim E; Parker, Jane E

    2003-04-01

    Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.

  12. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata.

    PubMed

    Tsuge, Takashi; Harimoto, Yoshiaki; Akimitsu, Kazuya; Ohtani, Kouhei; Kodama, Motoichiro; Akagi, Yasunori; Egusa, Mayumi; Yamamoto, Mikihiro; Otani, Hiroshi

    2013-01-01

    Host-selective toxins (HSTs) produced by fungal plant pathogens are generally low-molecular-weight secondary metabolites with a diverse range of structures that function as effectors controlling pathogenicity or virulence in certain plant-pathogen interactions. There are now seven known diseases caused by Alternaria alternata in which HSTs are responsible for fungal pathogenesis. The pathogens have been defined as pathotypes of A. alternata because of morphological similarity but pathological differences. Chemical structures of HSTs from six pathotypes have been determined. The role of A. alternata HSTs in pathogenesis has been studied extensively, and discovery of the release of HSTs from germinating conidia prior to penetration aids in understanding the early participation of HSTs to induce susceptibility of host cells by suppressing their defence reactions. Many attempts have been made to find the target sites of A. alternata HSTs, and four cellular components, plasma membrane, mitochondrion, chloroplast and a metabolically important enzyme, have been identified as the primary sites of each HST action, leading to elucidation of the molecular mechanisms of HST sensitivity in host plants. Studies of the molecular genetics of HST production have identified supernumerary chromosomes encoding HST gene clusters and have provided new insights into the evolution of A. alternata pathotypes.

  13. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  14. Type III chaperones & Co in bacterial plant pathogens: a set of specialized bodyguards mediating effector delivery.

    PubMed

    Lohou, David; Lonjon, Fabien; Genin, Stéphane; Vailleau, Fabienne

    2013-11-22

    Gram-negative plant pathogenic bacteria possess a type III secretion system (T3SS) to inject bacterial proteins, called type III effectors (T3Es), into host cells through a specialized syringe structure. T3Es are virulence factors that can suppress plant immunity but they can also conversely be recognized by the plant and trigger specific resistance mechanisms. The T3SS and injected T3Es play a central role in determining the outcome of a host-pathogen interaction. Still little is known in plant pathogens on the assembly of the T3SS and the regulatory mechanisms involved in the temporal control of its biosynthesis and T3E translocation. However, recent insights point out the role of several proteins as prime candidates in the role of regulators of the type III secretion (T3S) process. In this review we report on the most recent advances on the regulation of the T3S by focusing on protein players involved in secretion/translocation regulations, including type III chaperones (T3Cs), type III secretion substrate specificity switch (T3S4) proteins and other T3S orchestrators.

  15. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  16. Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness.

    PubMed

    Cerboneschi, Matteo; Decorosi, Francesca; Biancalani, Carola; Ortenzi, Maria Vittoria; Macconi, Sofia; Giovannetti, Luciana; Viti, Carlo; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Tegli, Stefania

    The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a

  17. The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple.

    PubMed

    Ramos, Laura S; Lehman, Brian L; Sinn, Judith P; Pfeufer, Emily E; Halbrendt, Noemi O; McNellis, Timothy W

    2013-10-01

    RpoN is a σ(54) factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild-type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)-inducing liquid medium. A plasmid-borne copy of the wild-type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum.

  18. Identification of Erwinia amylovora Genes Induced during Infection of Immature Pear Tissue

    PubMed Central

    Zhao, Youfu; Blumer, Sara E.; Sundin, George W.

    2005-01-01

    The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoCEA, and membrane-bound lytic murein transglycosylase MltEEA. An insertional mutation within hopPtoCEA did not result in reduced virulence; however, an mltEEA knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts. PMID:16291682

  19. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking.

    PubMed

    McGhee, Gayle C; Sundin, George W

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the

  20. Identification of Erwinia amylovora genes induced during infection of immature pear tissue.

    PubMed

    Zhao, Youfu; Blumer, Sara E; Sundin, George W

    2005-12-01

    The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.

  1. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system.

    PubMed

    Pontais, Isabelle; Treutter, Dieter; Paulin, Jean-Pierre; Brisset, Marie-Noëlle

    2008-03-01

    Fire blight is a disease affecting Maloideae caused by the necrogenic bacterium Erwinia amylovora, which requires the type III protein secretion system (TTSS) for pathogenicity. Profiles of methanol-extractable leaf phenolics of two apple (Malus x domestica) genotypes with contrasting susceptibility to this disease were analyzed by HPLC after infection. Some qualitative differences were recorded between the constitutive compositions of the two genotypes but in both of them dihydrochalcones accounted for more than 90% of total phenolics. Principal component analysis separated leaves inoculated with a virulent wild-type strain from those inoculated with a non-pathogenic TTSS-defective mutant or with water. The changes in levels of the various groups of phenolics in response to the virulent bacterium were similar between the two genotypes, with a significant decrease of dihydrochalcones and a significant increase of hydroxycinnamate derivatives. Differences between genotypes were, however, recorded in amplitude and kinetic of variation in these groups. Occurrence of oxidation and polymerization reactions is proposed, based on the browning process of infected tissues, but whether some by-products act in defense as toxic compounds remain to be tested. Among direct antibacterial constitutive compounds present in apple leaves, the dihydrochalcone phloretin only was found at levels close to lethal concentrations in both genotypes. However, E. amylovora exhibited the ability to stabilize this compound at sublethal levels even in the resistant apple, rejecting the hypothesis of its involvement in the resistance of this genotype.

  2. Quorum sensing-controlled Evr regulates a conserved cryptic pigment biosynthetic cluster and a novel phenomycin-like locus in the plant pathogen, Pectobacterium carotovorum.

    PubMed

    Williamson, Neil R; Commander, Paul M B; Salmond, George P C

    2010-07-01

    Pectobacterium carotovorum SCRI193 is a phytopathogenic Gram-negative bacterium. In this study, we have identified a novel cryptic pigment biosynthetic locus in P. carotovorum SCRI193 which we have called the Pectobacterium orange pigment (pop) cluster. The pop cluster is flanked by two tRNA genes and contains genes that encode non-ribosomal peptide synthases and polyketide synthase and produces a negatively charged polar orange pigment. Orange pigment production is activated when an adjacent transcriptional activator sharing sequence similarity with the Erwinia virulence regulator (Evr) is overexpressed. Evr was shown to positively activate its own transcription and that of the pigment biosynthetic genes and an unlinked locus encoding a phenomycin homologue. In addition, the expression of Evr and orange pigment production was shown to be regulated by N-(3-oxohexanoyl)-HSL (OHHL) quorum sensing and have a virulence phenotype in potato. Finally, by comparative genomics and Southern blotting we demonstrate that this pigment biosynthetic cluster is present in multiple P. carotovorum spp., Pectobacterium brasiliensis 1692 and a truncated version of the cluster is present in Pectobacterium atrosepticum. The conserved nature of this cluster in P. carotovorum and P. brasiliensis suggests that the pop cluster has an important function in these broad-host-range soft rotting bacteria, which is no longer required in the narrow-host-range P. atrosepticum SCRI1043.

  3. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  4. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    PubMed Central

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-01-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  5. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    PubMed

    Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan

    2013-01-01

    The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  6. SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly.

    PubMed

    Ollagnier-de Choudens, Sandrine; Nachin, Laurence; Sanakis, Yiannis; Loiseau, Laurent; Barras, Frederic; Fontecave, Marc

    2003-05-16

    SufA is a component of the recently discovered suf operon, which has been shown to play an important function in bacteria during iron-sulfur cluster biosynthesis and resistance to oxidative stress. The SufA protein from Erwinia chrysanthemi, a Gram-negative plant pathogen, has been purified to homogeneity and characterized. It is a homodimer with the ability to assemble rather labile [2Fe-2S] and [4Fe-4S] clusters as shown by Mössbauer spectroscopy. These clusters can be transferred to apoproteins such as ferredoxin or biotin synthase during a reaction that is not inhibited by bathophenanthroline, an iron chelator. Cluster assembly in these proteins is much more efficient when iron and sulfur are provided by holoSufA than by free iron sulfate and sodium sulfide. We propose the function of SufA is that of a scaffold protein for [Fe-S] cluster assembly and compare it to IscA, a member of the isc operon also involved in cluster biosynthesis in both prokaryotes and eukaryotes. Mechanistic and physiological implications of these results are also discussed.

  7. Three-dimensional structure of Erwinia carotovora L-asparaginase

    SciTech Connect

    Kislitsyn, Yu. A. Kravchenko, O. V.; Nikonov, S. V. Kuranova, I. P.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement method using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)

  8. Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens

    PubMed Central

    Nelson, Berlin D.; Ajayi-Oyetunde, Olutoyosi; Bradley, Carl A.; Hughes, Teresa J.; Hartman, Glen L.; Eastburn, Darin M.

    2016-01-01

    ABSTRACT Mycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi, Colletotrichum truncatum, Macrophomina phaseolina, Diaporthe longicolla, Rhizoctonia solani, and Sclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembled de novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages: Barnaviridae, Benyviridae, Chrysoviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mononegavirales, Narnaviridae, Ophioviridae, Ourmiavirus, Partitiviridae, Tombusviridae, Totiviridae, Tymoviridae, and Virgaviridae. More than half of the viral sequences were predicted to be members of the Mitovirus genus in the family Narnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae, Ophioviridae, and Virgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts. IMPORTANCE Plant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens

  9. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    PubMed

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields.

  10. A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes.

    PubMed

    Espindola, Andres; Schneider, William; Hoyt, Peter R; Marek, Stephen M; Garzon, Carla

    2015-01-01

    Early stage infections caused by fungal/oomycete spores may not be detected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target multiple unique signature loci of pathogens in an infected plant metagenome. NGS has significant potential for diagnosis of important eukaryotic plant pathogens. However, the assembly and analysis of huge amounts of sequence is laborious, time consuming, and not necessary for diagnostic purposes. Previous work demonstrated that a bioinformatic tool termed Electronic probe Diagnostic Nucleic acid Analysis (EDNA) had potential for greatly simplifying detecting fungal and oomycete plant pathogens in simulated metagenomes. The initial study demonstrated limitations for detection accuracy related to the analysis of matches between queries and metagenome reads. This study is a modification of EDNA demonstrating a better accuracy for detecting fungal and oomycete plant pathogens.

  11. Bergamotane Sesquiterpenes with Alpha-Glucosidase Inhibitory Activity from the Plant Pathogenic Fungus Penicillium expansum.

    PubMed

    Ying, You-Min; Fang, Cheng-An; Yao, Feng-Qi; Yu, Yuan; Shen, Ying; Hou, Zhuo-Ni; Wang, Zhen; Zhang, Wei; Shan, Wei-Guang; Zhan, Zha-Jun

    2017-01-01

    Two new bergamotane sesquiterpene lactones, named expansolides C and D (1 and 2), together with two known compounds expansolides A and B (3 and 4), were isolated from the plant pathogenic fungus Penicillium expansum ACCC37275. The structures of the new compounds were established by detailed analyses of the spectroscopic data, especially 1D-, 2D-NMR, and HR-ESI-MS. In an in vitro bioassay, the epimeric mixture of expansolides C and D (1 and 2) (in a ratio of 2:1 at the temprature of the bioassay) exhibited more potent α-glucosidase inhibitory activity (IC50 =0.50 ± 0.02 mm) as compared with the positive control acarbose (IC50 = 1.90 ± 0.05 mm). To the best of our knowledge, it was the first report on the α-glucosidase inhibitory activity of bergamotane sesquiterpenes.

  12. Identifying and naming plant-pathogenic fungi: past, present, and future.

    PubMed

    Crous, Pedro W; Hawksworth, David L; Wingfield, Michael J

    2015-01-01

    Scientific names are crucial in communicating knowledge about fungi. In plant pathology, they link information regarding the biology, host range, distribution, and potential risk. Our understanding of fungal biodiversity and fungal systematics has undergone an exponential leap, incorporating genomics, web-based systems, and DNA data for rapid identification to link species to metadata. The impact of our ability to recognize hitherto unknown organisms on plant pathology and trade is enormous and continues to grow. Major challenges for phytomycology are intertwined with the Genera of Fungi project, which adds DNA barcodes to known biodiversity and corrects the application of old, established names via epi- or neotypification. Implementing the one fungus-one name system and linking names to validated type specimens, cultures, and reference sequences will provide the foundation on which the future of plant pathology and the communication of names of plant pathogens will rest.

  13. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Canet-Perez, Juan V; Fleming, Thomas; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2016-07-01

    Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants.

  14. Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus

    PubMed Central

    Thakker, Janki N.; Dalwadi, Pranay; Dhandhukia, Pinakin C.

    2013-01-01

    The development of reliable processes for the synthesis of gold nanoparticles is an important aspect of current nanotechnology research. Recently, reports are published on the extracellular as well as intracellular biosynthesis of gold nanoparticles using microorganisms. However, these methods of synthesis are rather slow. In present study, rapid and extracellular synthesis of gold nanoparticles using a plant pathogenic fungus F. oxysporum f. sp. cubense JT1 (FocJT1) is reported. Incubation of FocJT1 mycelium with auric chloride solution produces gold nanoparticles in 60 min. Gold nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and particle size analysis. The particles synthesized were of 22 nm sized, capped by proteins, and posed antimicrobial activity against Pseudomonas sp. PMID:25969773

  15. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection

    PubMed Central

    Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics. PMID:26177507

  16. Reverse engineering gene regulatory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum.

    PubMed

    Lin, Kuang; Husmeier, Dirk; Dondelinger, Frank; Mayer, Claus D; Liu, Hui; Prichard, Leighton; Salmond, George P C; Toth, Ian K; Birch, Paul R J

    2010-01-01

    The objective of the project reported in the present chapter was the reverse engineering of gene regulatory networks related to quorum sensing in the plant pathogen Pectobacterium atrosepticum from micorarray gene expression profiles, obtained from the wild-type and eight knockout strains. To this end, we have applied various recent methods from multivariate statistics and machine learning: graphical Gaussian models, sparse Bayesian regression, LASSO (least absolute shrinkage and selection operator), Bayesian networks, and nested effects models. We have investigated the degree of similarity between the predictions obtained with the different approaches, and we have assessed the consistency of the reconstructed networks in terms of global topological network properties, based on the node degree distribution. The chapter concludes with a biological evaluation of the predicted network structures.

  17. Effect of neem (Azardirachta indica A. Juss) seeds and leaves extract on some plant pathogenic fungi.

    PubMed

    Moslem, M A; El-Kholie, E M

    2009-07-15

    In this study plant pathogenic fungi Alternaria solani, Fusarium oxysporum, Rhizoctonia solani and Sclerotinia sclerotiorum were chosen to study the effect of ethanolic, hexane and methanolic extracts of neem seeds and leaves. Antifungal effects of neem leave and seed extracts obtained by ethanol, hexane and ptrolium ether were examined separately in vitro against Fusarium oxysporum, Rhizoctonia solani, Alternaria solani and Sclerotinia sclerotiorum. Results indicated that seeds and leaves extracts could cause growth inhibition of tested fungi, although the rate of inhibition of tested fungi varied with different extracts and concentrations. But all these extracts and concentrations of extract inhibited the growth of pathogenic fungi at a significant level. Azadirachtin, nimonol and expoxyazdirodione were detected from neem extract by using High Performance Liquid Chromatography (HPLC). We can conclude that neem leave and seed extracts were effective as antifungal against all tested fungi but F. oxysporum and R. solani were the most sensitive fungi.

  18. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  19. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  20. Dual metabolomics: a novel approach to understanding plant-pathogen interactions.

    PubMed

    Allwood, J William; Clarke, Andrew; Goodacre, Royston; Mur, Luis A J

    2010-04-01

    One of the most well-characterised plant pathogenic interactions involves Arabidopsis thaliana and the bacteria Pseudomonas syringae pathovar tomato (Pst). The standard Pst inoculation procedure involves infiltration of large populations of bacteria into plant leaves which means that metabolite changes cannot be readily assigned to the host or pathogen. A plant cell-pathogen co-culture based approach has been developed where the plant and pathogen cells are separated after 12h of co-culture via differential filtering and centrifugation. Fourier transform infrared (FT-IR) spectroscopy was employed to assess the intracellular metabolomes (metabolic fingerprints) of both host and pathogen and their extruded (extracellular) metabolites (metabolic footprints) under conditions relevant to disease and resistance. We propose that this system will enable the metabolomic profiling of the separated host and pathogen (i.e. 'dual metabolomics') and will facilitate the modelling of reciprocal responses.

  1. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae.

    PubMed

    Newman, Adam G; Townsend, Craig A

    2016-03-30

    Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporin-a product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae, little is known of the metabolite's biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct product-an observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.

  2. The promise and pitfalls of sequence-based identification of plant-pathogenic fungi and oomycetes.

    PubMed

    Kang, Seogchan; Mansfield, Michele A; Park, Bongsoo; Geiser, David M; Ivors, Kelly L; Coffey, Michael D; Grünwald, Niklaus J; Martin, Frank N; Lévesque, C André; Blair, Jaime E

    2010-08-01

    Sequences of selected marker loci have been widely used for the identification of specific pathogens and the development of sequence-based diagnostic methods. Although such approaches offer several advantages over traditional culture-based methods for pathogen diagnosis and identification, they have their own pitfalls. These include erroneous and incomplete data in reference databases, poor or oversimplified interpretation of search results, and problems associated with defining species boundaries. In this letter, we outline the potential benefits and drawbacks of using sequence data for identification and taxonomic deduction of plant-pathogenic fungi and oomycetes, using phytophthora as a primary example. We also discuss potential remedies for these pitfalls and address why coordinated community efforts are essential to make such remedies more efficient and robust.

  3. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    PubMed

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  4. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates.

    PubMed

    Badouin, H; Gladieux, P; Gouzy, J; Siguenza, S; Aguileta, G; Snirc, A; Le Prieur, S; Jeziorski, C; Branca, A; Giraud, T

    2017-04-01

    Identifying the genes underlying adaptation, their distribution in genomes and the evolutionary forces shaping genomic diversity are key challenges in evolutionary biology. Very few studies have investigated the abundance and distribution of selective sweeps in species with high-quality reference genomes, outside a handful of model species. Pathogenic fungi are tractable eukaryote models for investigating the genomics of adaptation. By sequencing 53 genomes of two species of anther-smut fungi and mapping them against a high-quality reference genome, we showed that selective sweeps were abundant and scattered throughout the genome in one species, affecting near 17% of the genome, but much less numerous and in different genomic regions in its sister species, where they left footprints in only 1% of the genome. Polymorphism was negatively correlated with linkage disequilibrium levels in the genomes, consistent with recurrent positive and/or background selection. Differential expression in planta and in vitro, and functional annotation, suggested that many of the selective sweeps were probably involved in adaptation to the host plant. Examples include glycoside hydrolases, pectin lyases and an extracellular membrane protein with CFEM domain. This study thus provides candidate genes for being involved in plant-pathogen interaction (effectors), which have remained elusive for long in this otherwise well-studied system. Their identification will foster future functional and evolutionary studies, in the plant and in the anther-smut pathogens, being model species of natural plant-pathogen associations. In addition, our results suggest that positive selection can have a pervasive impact in shaping genomic variability in pathogens and selfing species, broadening our knowledge of the occurrence and frequency of selective events in natural populations.

  5. A generic risk-based surveying method for invading plant pathogens.

    PubMed

    Parnell, S; Gottwald, T R; Riley, T; van den Bosch, F

    2014-06-01

    Invasive plant pathogens are increasing with international trade and travel, with damaging environmental and economic consequences. Recent examples include tree diseases such as sudden oak death in the Western United States and ash dieback in Europe. To control an invading pathogen it is crucial that newly infected sites are quickly detected so that measures can be implemented to control the epidemic. However, since sampling resources are often limited, not all locations can be inspected and locations must be prioritized for surveying. Existing approaches to achieve this are often species specific and rely on detailed data collection and parameterization, which is difficult, especially when new arrivals are unanticipated. Consequently regulatory sampling responses are often ad hoc and developed without due consideration of epidemiology, leading to the suboptimal deployment of expensive sampling resources. We introduce a flexible risk-based sampling method that is pathogen generic and enables available information to be utilized to develop epidemiologically informed sampling programs for virtually any biologically relevant plant pathogen. By targeting risk we aim to inform sampling schemes that identify high-impact locations that can be subsequently treated in order to reduce inoculum in the landscape. This "damage limitation" is often the initial management objective following the first discovery of a new invader. Risk at each location is determined by the product of the basic reproductive number (R0), as a measure of local epidemic size, and the probability of infection. We illustrate how the risk estimates can be used to prioritize a survey by weighting a random sample so that the highest-risk locations have the highest probability of selection. We demonstrate and test the method using a high-quality spatially and temporally resolved data set on Huanglongbing disease (HLB) in Florida, USA. We show that even when available epidemiological information is relatively

  6. O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa

    PubMed Central

    Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon

    2015-01-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  7. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    SciTech Connect

    Kingsley, Mark T

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, an d analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: (1) to assess the potential terrorist threat to U.S. agricultural crops, (2) to determine whether suitable assays exist to monitor that threat, and (3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  8. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    PubMed Central

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  9. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

    PubMed Central

    2010-01-01

    Background Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. Conclusions Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae. PMID:20626842

  10. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    SciTech Connect

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  11. Characterization of an Insertion Sequence Element Associated with Genetically Diverse Plant Pathogenic Streptomyces spp.

    PubMed Central

    Healy, Frank G.; Bukhalid, Raghida A.; Loria, Rosemary

    1999-01-01

    Streptomycetes are common soil inhabitants, yet few described species are plant pathogens. While the pathogenicity mechanisms remain unclear, previous work identified a gene, nec1, which encodes a putative pathogenicity or virulence factor. nec1 and a neighboring transposase pseudogene, ORFtnp, are conserved among unrelated plant pathogens and absent from nonpathogens. The atypical GC content of nec1 suggests that it was acquired through horizontal transfer events. Our investigation of the genetic organization of regions adjacent to the 3′ end of nec1 in Streptomyces scabies 84.34 identified a new insertion sequence (IS) element, IS1629, with homology to other IS elements from prokaryotic animal pathogens. IS1629 is 1,462 bp with 26-bp terminal inverted repeats and encodes a putative 431-amino-acid (aa) transposase. Transposition of IS1629 generates a 10-bp target site duplication. A 77-nucleotide (nt) sequence encompassing the start codon and upstream region of the transposase was identified which could function in the posttranscritpional regulation of transposase synthesis. A functional copy of IS1629 from S. turgidiscabies 94.09 (Hi-C-13) was selected in the transposon trap pCZA126, through its insertion into the λ cI857 repressor. IS1629 is present in multiple copies in some S. scabies strains and is present in all S. acidiscabies and S. turgidiscabies strains examined. A second copy of IS1629 was identified between ORFtnp and nec1 in S. acidiscabies strains. The diversity of IS1629 hybridization profiles was greatest within S. scabies. IS1629 was absent from the 27 nonpathogenic Streptomyces strains tested. The genetic organization and nucleotide sequence of the nec1-IS1629 region was conserved and identical among representatives of S. acidiscabies and S. turgidiscabies. These findings support our current model for the unidirectional transfer of the ORFtnp-nec1-IS1629 locus from IS1629-containing S. scabies (type II) to S. acidiscabies and S. turgidiscabies

  12. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen.

  13. DNA Barcoding for Efficient Species- and Pathovar-Level Identification of the Quarantine Plant Pathogen Xanthomonas

    PubMed Central

    Tian, Qian; Zhao, Wenjun; Lu, Songyu; Zhu, Shuifang; Li, Shidong

    2016-01-01

    Genus Xanthomonas comprises many economically important plant pathogens that affect a wide range of hosts. Indeed, fourteen Xanthomonas species/pathovars have been regarded as official quarantine bacteria for imports in China. To date, however, a rapid and accurate method capable of identifying all of the quarantine species/pathovars has yet to be developed. In this study, we therefore evaluated the capacity of DNA barcoding as a digital identification method for discriminating quarantine species/pathovars of Xanthomonas. For these analyses, 327 isolates, representing 45 Xanthomonas species/pathovars, as well as five additional species/pathovars from GenBank (50 species/pathovars total), were utilized to test the efficacy of four DNA barcode candidate genes (16S rRNA gene, cpn60, gyrB, and avrBs2). Of these candidate genes, cpn60 displayed the highest rate of PCR amplification and sequencing success. The tree-building (Neighbor-joining), ‘best close match’, and barcode gap methods were subsequently employed to assess the species- and pathovar-level resolution of each gene. Notably, all isolates of each quarantine species/pathovars formed a monophyletic group in the neighbor-joining tree constructed using the cpn60 sequences. Moreover, cpn60 also demonstrated the most satisfactory results in both barcoding gap analysis and the ‘best close match’ test. Thus, compared with the other markers tested, cpn60 proved to be a powerful DNA barcode, providing a reliable and effective means for the species- and pathovar-level identification of the quarantine plant pathogen Xanthomonas. PMID:27861494

  14. Mutational analysis of a predicted double β-propeller domain of the DspA/E effector of Erwinia amylovora.

    PubMed

    Siamer, Sabrina; Gaubert, Stéphane; Boureau, Tristan; Brisset, Marie-Noëlle; Barny, Marie-Anne

    2013-05-01

    The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein.

  15. Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze.

    PubMed

    Slack, Suzanne M; Zeng, Quan; Outwater, Cory A; Sundin, George W

    2017-04-01

    Fire blight, caused by the pathogen Erwinia amylovora, is the most devastating bacterial disease of pome fruit in North America and worldwide. The primary method of dispersal for E. amylovora is through ooze, a mass of exopolysaccharides and bacterial cells that is exuded as droplets from infected host tissue. During the 2013 and 2014 field seasons, 317 ooze droplets were collected from field-inoculated apple trees. Populations of E. amylovora in ooze droplets were 10(8) CFU/μl on average. Ooze droplets harboring larger (>10(8) CFU/μl) cell populations were typically smaller in total volume and had darker coloring, such as orange, red, or dark red hues. Examination of apple host tissue at the site of emergence of ooze droplets using scanning electron microscopy revealed that ooze was not exuding through natural openings; instead, it was found on erumpent mounds and small (10-μm) tears in tissue. These observations suggested that E. amylovora-induced wounds in tissue provided the exit holes for ooze extrusion from the host. Analyses of E. amylovora populations in ooze droplets and within the stems from which ooze droplets emerged indicated that approximately 9% of the total bacterial population from infected stems is diverted to ooze. Gene expression analyses indicated that E. amylovora cells in stem sections located above ooze droplets and in ooze droplets were actively expressing critical pathogenicity genes such as hrpL, dspE, and amsK. Thus, our study identified ooze as a source of large, concentrated populations of E. amylovora that emerged from the host by rupturing host tissue. Because the cells in ooze droplets are expressing genes required for pathogenesis, they are already primed for infection should they be dispersed from ooze to new infection courts.

  16. Virulence Factors of Erwinia amylovora: A Review.

    PubMed

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M

    2015-06-05

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3'-5')-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  17. Cloning, expression, purification, crystallization and preliminary X-ray analysis of EaLsc, a levansucrase from Erwinia amylovora.

    PubMed

    Caputi, Lorenzo; Cianci, Michele; Benini, Stefano

    2013-05-01

    The Gram-negative bacterium Erwinia amylovora is a destructive pathogen of Rosaceae. During infection, E. amylovora produces the exopolysaccharide levan, which contributes to the occlusion of plant vessels, causing the wilting of shoots. Levan is a fructose polymer that is synthesized by multifunctional enzymes called levansucrases. The levansucrase from E. amylovora (EaLsc) was heterologously expressed as a GST-fusion protein in Escherichia coli, purified and crystallized after tag removal. The protein crystallized in space group P21212. X-ray diffraction data were acquired to 2.77 Å resolution. The structure of the enzyme was solved by molecular replacement. The asymmetric unit contains eight enzyme molecules, giving a solvent content of 58.74% and a Matthews coefficient of 2.98 Å(3) Da(-1).

  18. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  19. Erwinia tracheiphila colonization of cantaloupe fruits through flower inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantaloupe (Cucumis melo var. cantalupensis) is a nutritious fresh fruit. Bacterial wilt, caused by Erwinia tracheiphila, is the most devastating cantaloupe disease globally. The pathogen is transmitted in nature by xylem-feeding spotted and striped cucumber beetles; other modes of infection have ...

  20. A Reliable and Inexpensive Method of Nucleic Acid Extraction for the PCR-Based Detection of Diverse Plant Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reliable extraction method is described for the preparation of total nucleic acids from several plant genera for subsequent detection of plant pathogens by PCR-based techniques. By the combined use of a modified CTAB (cetyltrimethylammonium bromide) extraction protocol and a semi-automatic homogen...

  1. Early-detection surveillance for an emerging plant pathogen: a rule of thumb to predict prevalence at first discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging plant pathogens are a significant problem in conservation, forestry and food security. Surveillance is often instigated in an attempt to detect an invading epidemic before it gets out of control. Yet in practice many epidemics are not discovered until already at a high incidence. This is ...

  2. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes.

    PubMed

    Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin

    2011-01-01

    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.

  3. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  4. A nylon membrane bag assay for determination of the effect of chemicals on soilborne plant pathogens in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new nylon membrane bag assay was developed that can rapidly and effectively determine the impact of chemicals added to soil on soilborne plant pathogens for which there are no selective media or for which a selective medium is expensive or difficult to prepare. This assay consists of placing patho...

  5. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi.

    PubMed

    Avrova, Anna O; Hyman, Lizbeth J; Toth, Rachel L; Toth, Ian K

    2002-04-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.

  6. Indirect effects of one plant pathogen on the transmission of a second pathogen and the behavior of its potato psyllid vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathogens can influence the behavior and performance of insect herbivore vectors. Studies of these associations typically focus on tripartite interactions between a plant host, a plant pathogen, and its insect vector. However, an unrelated herbivore or pathogen also could influence host-pathog...

  7. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum

    PubMed Central

    Amaradasa, B. Sajeewa

    2016-01-01

    Pathogen exposure to sublethal doses of fungicides may result in mutations that may represent an important and largely overlooked mechanism of introducing new genetic variation into strictly clonal populations, including acquisition of fungicide resistance. We tested this hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible isolates were exposed independently to five commercial fungicides with different modes of action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and sub-cultured from the 50–100% inhibition zone for 12 generations and experiment repeated. Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxystrobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold higher for mutated loci compared to that expected under neutral conditions. AFLP genotyping of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 polymorphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungicide sensitivity of isolates measured throughout both experiments did not show consistent trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end of the experiment

  8. The Production, Purification and Properties of the Biopolymer Levan Produced by the Bacterium Erwinia Herbicola

    DTIC Science & Technology

    1989-08-01

    with large-scale production in mind. In addition, films formed from the purified polymer were evaluated. Levan is an extracellular B- fructan ...Clarke, M. L., Jansson, P. E. and McNeil, K. E., Fructan from Erwlnla herblcola. J. Bact., 151(3)-.1595-1597 (1982). 23. Han, Y. W., Clarke, M. A

  9. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata Rafin.

    PubMed

    Rahman, Atiqur; Islam, Rafiquel; Al-Reza, Sharif M; Kang, Sun Chul

    2014-01-01

    The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 μg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 μg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 μg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms.

  10. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.

    PubMed

    Veresoglou, Stavros D; Rillig, Matthias C

    2012-04-23

    Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.

  11. Analysis of microsatellite markers in the genome of the plant pathogen Ceratocystis fimbriata.

    PubMed

    Simpson, Melissa C; Wilken, P Markus; Coetzee, Martin P A; Wingfield, Michael J; Wingfield, Brenda D

    2013-01-01

    Ceratocystis fimbriata sensu lato represents a complex of cryptic and commonly plant pathogenic species that are morphologically similar. Species in this complex have been described using morphological characteristics, intersterility tests and phylogenetics. Microsatellite markers have been useful to study the population structure and origin of some species in the complex. In this study we sequenced the genome of C. fimbriata. This provided an opportunity to mine the genome for microsatellites, to develop new microsatellite markers, and map previously developed markers onto the genome. Over 6000 microsatellites were identified in the genome and their abundance and distribution was determined. Ceratocystis fimbriata has a medium level of microsatellite density and slightly smaller genome when compared with other fungi for which similar microsatellite analyses have been performed. This is the first report of a microsatellite analysis conducted on a genome sequence of a fungal species in the order Microascales. Forty-seven microsatellite markers have been published for population genetic studies, of which 35 could be mapped onto the C. fimbriata genome sequence. We developed an additional ten microsatellite markers within putative genes to differentiate between species in the C. fimbriata s.l. complex. These markers were used to distinguish between 12 species in the complex.

  12. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    PubMed

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.

  13. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea.

    PubMed

    Cantu, Dario; Greve, L Carl; Labavitch, John M; Powell, Ann L T

    2009-12-01

    The ascomycete Botrytis cinerea is a destructive and ubiquitous plant pathogen and represents a model organism for the study of necrotrophic fungal pathogens. Higher fungi possess a complex and dynamic multilayer cell wall involved in crucial aspects of fungal development, growth and pathogenicity. Plant resistance to microbial pathogens is determined often by the capacity of the plant to recognize molecular patterns associated with the surface of an interacting microbe. Here we report the chemical characterization of cell walls from B. cinerea during axenic growth. Neutral sugars and proteins constituted most of the mass of the B. cinerea cell walls, although chitin and uronic acids were detected. Glucose was the most abundant neutral sugar, but arabinose, galactose, xylose and mannose also were present. Changes in cell wall composition during culture were observed. As the culture developed, protein levels declined, while chitin and neutral sugars increased. Growth of B. cinerea was associated with a remarkable decline in the fraction of its cell wall material that was soluble in hot alkali. These results suggest that the cell wall of B. cinerea undergoes significant modifications during growth, possibly becoming more extensively covalently cross-linked, as a result of aging of mycelia or in response to decreasing nutrient supply or as a consequence of increasing culture density.

  14. Activity of the novel fungicide SYP-Z048 against plant pathogens.

    PubMed

    Chen, Fengping; Han, Ping; Liu, Pengfei; Si, Naiguo; Liu, Junli; Liu, Xili

    2014-09-25

    In in vitro tests with 18 plant pathogens, the fungicide 3-[5-(4-chlorophenyl)-2,3-dimethyl-3-isoxazolidinyl] pyridine (SYP-Z048) was highly effective on inhibiting mycelial growth of various ascomycota and basidiomycota, with EC50 values ranging from 0.008 to 1.140 μg/ml. SYP-Z048 had much weaker activity against growth of oomycota with EC50 values > 100 μg/ml. In a second in vitro test with Monilinia fructicola isolates, SYP-Z048 inhibited mycelial growth (EC50 = 0.013 μg/ml), germ tube elongation (EC50 = 0.007 μg/ml), and sporulation but did not affect spore germination. In a detached pear fruit assay inoculated with M. fructicola isolates, SYP-Z048 showed protective and curative activity. Field tests indicated that SYP-Z048 was an efficacious fungicide for control of brown rot disease in two peach orchards. When applied to a single spot on a tomato leaflet in a compound leaf, SYP-Z048 suppressed the growth of Botrytis cinerea isolates on the rest 4 leaflets, indicating that the fungicide has systemic movement in plant tissues. These results indicate that SYP-Z048 has potential for management of brown rot causing by M. fructicola and other diseases caused by ascomycota and basidiomycota.

  15. Synthesis and antibacterial of carboxymethyl starch-grafted poly(vinyl imidazole) against some plant pathogens.

    PubMed

    El-Hamshary, Hany; Fouda, Moustafa M G; Moydeen, Meera; El-Newehy, Mohamed H; Al-Deyab, Salem S; Abdel-Megeed, Ahmed

    2015-01-01

    Poly(N-vinyl imidazole) (PVI) has been grafted onto carboxymethyl starch (CMS) in aqueous solution using potassium persulfate (KPS) as initiator. Reaction parameters that affect grafting efficiency and percentage grafting such as monomer and initiator concentration, the reaction temperature and time were investigated. The grafted products were characterized by FTIR, thermal analysis, SEM photograph and elemental analysis. The antibacterial effects of the carboxymethyl starch-grafted-poly(N-vinylimidazole) (CMS-g-PVI) was examined against two plant pathogens Gram negative bacteria: Xanthomonas perforanss and Xanthomonas oryzae. Generally, upon application of the CMS-g-PVI to the bacterial cells; the mortality rate increased from 45.71 to 59.37% for Xanthomonas perforans and X. oryzae, respectively. While the MIC for most of both bacterial strains were recorded at concentration of 60 μg/mL. The results indicate that CMS-g-PVI has bactericidal properties and can be used for seed treatment to control xanthomonads associated with bacterial leaf spot (BLS).

  16. The role of effectors in nonhost resistance to filamentous plant pathogens.

    PubMed

    Stam, Remco; Mantelin, Sophie; McLellan, Hazel; Thilliez, Gaëtan

    2014-01-01

    In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.

  17. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera.

    PubMed

    Chen, Chen; Verkley, Gerard J M; Sun, Guangyu; Groenewald, Johannes Z; Crous, Pedro W

    2016-11-01

    Species in Neofabraea, Pezicula, and related genera have been reported as saprobes, plant pathogens or endophytes from a wide range of hosts. The asexual morphs of Neofabraea and Pezicula had been placed in Cryptosporiopsis, now a synonym of Pezicula, while Neofabraea was also linked to Phlyctema. Based on morphology and molecular data of the partial large subunit nrDNA (LSU), the internal transcribed spacer region with intervening 5.8S nrDNA (ITS), partial β-tubulin region (tub2), and the partial RNA polymerase II second largest subunit region (rpb2), the taxonomy and phylogenetic relationships of these fungi were investigated. Five new species were described in Pezicula based on morphology, while a further eight unnamed phylogenetic lineages revealed further diversity in the genus. Based on these results, the generic concept of Neofabraea was also emended. Phlyctema, which was previously associated with Neofabraea, formed a distinct clade, separate from Neofabraea s. str. Two new neofabraea-like genera, Parafabraea and Pseudofabraea were proposed, along with one new combination in Neofabraea s. str. To stabilise the application of these names, an epitype was designated for Pe. carpinea, the type species of Pezicula, and for N. malicorticis, the type species of Neofabraea.

  18. Physiological and molecular characterization of compost bacteria antagonistic to soilborne plant pathogens.

    PubMed

    Mohamed, Rowida; Groulx, Emma; Defilippi, Stefanie; Erak, Tamara; Tambong, James T; Tweddell, Russell J; Tsopmo, Apollinaire; Avis, Tyler J

    2017-02-08

    Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. In order to gain insight into the determinants responsible for their suppressive effects, composts were assayed (i) to isolate and identify beneficial antagonistic bacteria, (ii) to quantify their antifungal and anti-oomycetal activities, (iii) to extract inhibitory compounds produced by the bacteria, and (iv) to identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus genera and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and/or Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and/or conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are, at least in part, responsible for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens.

  19. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum.

    PubMed

    Gerbore, J; Benhamou, N; Vallance, J; Le Floch, G; Grizard, D; Regnault-Roger, C; Rey, P

    2014-04-01

    The management of certain plant beneficial microorganisms [biological control agents (BCAs)] seems to be a promising and environmental friendly method to control plant pathogens. However, applications are still limited because of the lack of consistency of BCAs when they are applied in the field. In the present paper, the advantages and limitations of BCAs are seen through the example of Pythium oligandrum, an oomycete that has received much attention in the last decade. The biological control exerted by P. oligandrum is the result of a complex process, which includes direct effects through the control of pathogens and/or indirect effects mediated by P. oligandrum, i.e. induction of resistance and growth promotion. P. oligandrum antagonism is a multifaceted and target fungus-dependent process. Interestingly, it does not seem to disrupt microflora biodiversity on the roots. P. oligandrum has an atypical relationship with the plant because it rapidly penetrates into the root tissues but it cannot stay alive in planta. After root colonisation, because of the elicitation by P. oligandrum of the plant-defence system, plants are protected from a range of pathogens. The management of BCAs, here P. oligandrum, is discussed with regard to its interactions with the incredibly complex agrosystems.

  20. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.

    PubMed

    Qiu, Dan; Xu, Liangsheng; Vandemark, George; Chen, Weidong

    2016-03-01

    The fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum are morphologically similar, but differ considerably in host range. In an effort to elucidate mechanisms of the host range difference, transcriptomes of the 2 species at vegetative growth stage were compared to gain further insight into commonality and uniqueness in gene expression and pathogenic mechanisms of the 2 closely related pathogens. A total of 23133 and 21043 unique transcripts were obtained from S. sclerotiorum and S. trifoliorum, respectively. Approximately 43% of the transcripts were genes with known functions for both species. Among 1411 orthologous contigs, about 10% (147) were more highly (>3-fold) expressed in S. trifoliorum than in S. sclerotiorum, and about 12% (173) of the orthologs were more highly (>3-fold) expressed in S. sclerotiorum than in S. trifoliorum. The expression levels of genes on the supercontig 30 have the highest correlation coefficient value between the 2 species. Twenty-seven contigs were found to be new and unique for S. trifoliorum. Additionally, differences in expressed genes involved in pathogenesis like oxalate biosynthesis and endopolygalacturonases were detected between the 2 species. The analyses of the transcriptomes not only discovered similarities and uniqueness in gene expression between the 2 closely related species, providing additional information for annotation the S. sclerotiorum genome, but also provided foundation for comparing the transcriptomes with host-infecting transcriptomes.

  1. Sentinel trees as a tool to forecast invasions of alien plant pathogens.

    PubMed

    Vettraino, AnnaMaria; Roques, Alain; Yart, Annie; Fan, Jian-ting; Sun, Jiang-hua; Vannini, Andrea

    2015-01-01

    Recent disease outbreaks caused by alien invasive pathogens into European forests posed a serious threat to forest sustainability with relevant environmental and economic effects. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists, thus they were not subject to phytosanitary inspections. The identification and description of alien fungi potentially pathogenic to native European flora before their introduction in Europe, is a paramount need in order to limit the risk of invasion and the impact to forest ecosystems. To determine the potential invasive fungi, a sentinel trees plot was established in Fuyang, China, using healthy seedlings of European tree species including Quercus petreae, Q. suber, and Q. ilex. The fungal assemblage associated with symptomatic specimens was studied using the tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS 1). Taxa with probable Asiatic origin were identified and included plant pathogenic genera. These results indicate that sentinel plants may be a strategic tool to improve the prevention of bioinvasions.

  2. Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen Streptomyces scabies

    PubMed Central

    Jourdan, Samuel; Francis, Isolde M.; Deflandre, Benoit; Loria, Rosemary

    2017-01-01

    ABSTRACT The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to becoming a plant pathogen. More subtle mutations are also required for the perception of cues signifying the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not “taken lightly” and involves efficient systems monitoring environmental conditions. But how can a pathogen trigger the expression of virulence genes in a timely manner if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies, which is responsible for common scab disease on tuber and root crops. We propose here a series of hypotheses of how S. scabies could optimally distinguish whether cello-oligosaccharides originate from decomposing lignocellulose (nutrient sources, saprophyte) or, instead, emanate from living and expanding plant tissue (virulence signals, pathogen) and accordingly adapt its physiological response. PMID:28261670

  3. A gravity model for the spread of a pollinator-borne plant pathogen.

    PubMed

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  4. The first linkage map of the plant-pathogenic basidiomycete Typhula ishikariensis.

    PubMed

    Chang, S W; Jung, G

    2008-02-01

    Speckled snow mold, caused by the basidiomycete Typhula ishikariensis Imai, is one of the most prominent winter diseases on perennial grasses and cereal crops in the northern hemisphere. The first linkage map of T. ishikariensis was constructed using a population of 93 sibling monokaryons derived from a single dikaryotic hybrid isolate that was created by a hyphal fusion of two monokaryotic parental isolates. The parental isolates were produced from a pathogenic dikaryotic isolate collected from a golf course in Wisconsin. The two parents exhibit significant differences in the production of aerial mycelium and sclerotia, and in their aggressiveness on creeping bentgrass (Agrostis stolonifera L.). A total of 251 loci were mapped, comprising 89 inter-simple sequence repeat (ISSR) and 160 random amplified polymorphic DNA (RAPD) markers along with 2 phenotype-based mating-type (MAT) loci. The MAT loci were mapped on linkage groups (LGs) 1 and 7. The markers were evenly distributed over 7 LGs, covering 436 cM with an average marker interval of 2.2 cM. Seven chromosomes were cytologically observed using germ tube bursting methods with acetocarmine staining. This reference linkage map of T. ishikariensis should provide a framework for the mapping of quantitatively controlled traits such as fungal growth, survival, and virulence/avirulence under low temperatures. The map should also be utilized for studying the genome organization of the cold-loving plant-pathogenic Typhula spp. and for comparative genome analysis among fungal taxa.

  5. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    PubMed Central

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  6. Sentinel Trees as a Tool to Forecast Invasions of Alien Plant Pathogens

    PubMed Central

    Vettraino, AnnaMaria; Roques, Alain; Yart, Annie; Fan, Jian-ting; Sun, Jiang-hua; Vannini, Andrea

    2015-01-01

    Recent disease outbreaks caused by alien invasive pathogens into European forests posed a serious threat to forest sustainability with relevant environmental and economic effects. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists, thus they were not subject to phytosanitary inspections. The identification and description of alien fungi potentially pathogenic to native European flora before their introduction in Europe, is a paramount need in order to limit the risk of invasion and the impact to forest ecosystems. To determine the potential invasive fungi, a sentinel trees plot was established in Fuyang, China, using healthy seedlings of European tree species including Quercus petreae, Q. suber, and Q. ilex. The fungal assemblage associated with symptomatic specimens was studied using the tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS 1). Taxa with probable Asiatic origin were identified and included plant pathogenic genera. These results indicate that sentinel plants may be a strategic tool to improve the prevention of bioinvasions. PMID:25826684

  7. The need for culture collections to support plant pathogen diagnostic networks.

    PubMed

    Barba, Marina; Van den Bergh, Inge; Belisario, Alessandra; Beed, Fen

    2010-01-01

    Plant-pathogenic microorganisms, by virtue of their size, similarity in disease symptoms and closely related morphologies, are notoriously difficult to diagnose and detect. Diagnosis gives proof as to the causal agent of disease and is important for developing appropriate control measures. Detection shows the presence of a microorganism and is of importance for safeguarding national and international trade. Live reference collections are required to characterize the taxonomy and function of microorganisms as a prerequisite to development of tools for diagnosis and detection. Two case studies will be presented in this paper to demonstrate the importance of microorganism collections for facilitating knowledge sharing and the development of identification methods. Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense and sharka disease of stone fruits caused by plum pox virus (PPV) are considered. Both diseases consist of different races/strains with different host specificities, but Fusarium wilt poses a threat to food security, while PPV poses a threat to trade due to its classification as a quarantine pest, since there is no anti-virus treatment available to control sharka disease in orchards. It is only through comprehensive collections of correctly identified and well-maintained strains representing the genetic diversity of a target organism that robust, specific, reliable and efficient diagnostic and detection tools can be developed.

  8. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  9. The threat of plant pathogens as weapons against U.S. crops.

    PubMed

    Madden, L V; Wheelis, M

    2003-01-01

    The U.S. National Research Council (NRC) concluded in 2002 that U.S. agriculture is vulnerable to attack and that the country has inadequate plans for dealing with agricultural bioterrorism. This article addresses the vulnerability of U.S. crops to attack from biological weapons by reviewing the costs and impact of plant diseases on crops, pointing out the difficulty in preventing deliberate introduction of pathogens and discovering new disease outbreaks quickly, and discussing why a plant pathogen might be chosen as a biological weapon. To put the threat into context, a brief historical review of anti-crop biological weapons programs is given. The argument is made that the country can become much better prepared to counter bioterrorism by developing a list of likely anti-crop threat agents, or categories of agents, that is based on a formal risk analysis; making structural changes to the plant protection system, such as expanding diagnostic laboratories, networking the laboratories in a national system, and educating first responders; and by increasing our understanding of the molecular biology and epidemiology of threat agents, which could lead to improved disease control, faster and more sensitive diagnostic methods, and predictions of disease invasion, persistence, and spread following pathogen introduction.

  10. Hfq Influences Multiple Transport Systems and Virulence in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Wilms, Ina; Möller, Philip; Stock, Anna-Maria; Gurski, Rosemarie; Lai, Erh-Min

    2012-01-01

    The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens. PMID:22821981

  11. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides.

    PubMed

    Makovitzki, Arik; Viterbo, Ada; Brotman, Yariv; Chet, Ilan; Shai, Yechiel

    2007-10-01

    Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.

  12. In vitro control of plant pathogenic Xanthomonas spp. using Poncirus trifoliata Rafin

    PubMed Central

    Rahman, Atiqur; Islam, Rafiquel; Al-Reza, Sharif M.; Kang, Sun Chul

    2014-01-01

    The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 μg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 μg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 μg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms. PMID:26417325

  13. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    PubMed

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  14. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes

    USGS Publications Warehouse

    Rodriguez, R.J.; Redman, R.S.

    1997-01-01

    This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.

  15. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi.

    PubMed

    Xing, Ke; Shen, Xiaoqiang; Zhu, Xiao; Ju, Xiuyun; Miao, Xiangmin; Tian, Jun; Feng, Zhaozhong; Peng, Xue; Jiang, Jihong; Qin, Sheng

    2016-01-01

    An antifungal dispersion system was prepared by oleoyl-chitosan (O-chitosan) nanoparticles, and the antifungal activity against several plant pathogenic fungi was investigated. Under scanning electron microscopy, the nanoparticles formulation appeared to be uniform with almost spherical shape. The particle size of nanoparticles was around 296.962 nm. Transmission electron microscopy observation showed that nanoparticles could be well distributed in potato dextrose agar medium. Mycelium growth experiment demonstrated that Nigrospora sphaerica, Botryosphaeria dothidea, Nigrospora oryzae and Alternaria tenuissima were chitosan-sensitive, while Gibberella zeae and Fusarium culmorum were chitosan-resistant. The antifungal index was increased as the concentration of nanoparticles increased for chitosan-sensitive fungi. Fatty acid analyses revealed that plasma membranes of chitosan-sensitive fungi were shown to have lower levels of unsaturated fatty acid than chitosan-resistant fungi. Phylogenetic analysis based on ITS gene sequences indicated that two chitosan-resistant fungi had a near phylogenetic relationship. Results showed that O-chitosan nanoparticles could be a useful alternative for controlling pathogenic fungi in agriculture.

  16. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen

    PubMed Central

    Croll, Daniel; Lendenmann, Mark H.; Stewart, Ethan; McDonald, Bruce A.

    2015-01-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. PMID:26392286

  17. Measuring protein kinase and sugar kinase activity in plant pathogenic fusarium species.

    PubMed

    Bluhm, Burton H; Zhao, Xinhua

    2010-01-01

    As ubiquitous metabolic and signaling intermediaries, kinases regulate innumerable aspects of fungal growth and development. At its simplest, the enzymatic function of a kinase is to transfer a phosphate from a donor molecule (such as adenosine triphosphate) to an acceptor molecule, such as a protein, carbohydrate, or lipid. Kinase activity is intricately interwoven into signal transduction, and ultimately modulates gene expression, downstream phosphorylation events, and other mechanisms of posttranslational modification. Therefore, sensitive and reproducible techniques to measure kinase activity are crucial to elucidate cellular signaling and for fungal functional genomics.Protein and sugar kinases regulate multiple aspects of pathogenesis in the mycotoxigenic, plant pathogenic fungi Fusarium graminearum, and Fusarium verticillioides. Here, we present protocols to (1) quantify phosphorylation of mitogen-activated protein kinases in F. graminearum, and (2) determine glucokinase activity in F. verticillioides. The mitogen-activated protein kinase phosphorylation assay utilizes immunological methods to quantify substrate phosphorylation, whereas the glucokinase assay is a coupled enzyme assay, in which phosphorylation of glucose by glucokinase is measured indirectly through the subsequent reduction of NADP+ to NADPH, a substrate more amenable for spectrophotometric detection.

  18. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays.

    PubMed

    Wan, Jinrong; Dunning, F Mark; Bent, Andrew F

    2002-11-01

    The interaction between a plant and a pathogen activates a wide variety of defense responses. The recent development of microarray-based expression profiling methods, together with the availability of genomic and/or EST (expressed sequence tag) sequence data for some plant species, has allowed significant progress in the characterization of plant pathogenesis-related responses. The small number of expression profiling studies completed to date have already identified an amazing number of genes that had not previously been implicated in plant defense. Some of these genes can be associated with defense signal transduction or antimicrobial action, but the functional contribution of many others remains uncertain. Initial expression profiling work has also revealed similarities and distinctions between different defense signaling pathways, and cross-talk (both overlap and interference) between pathogenesis-related responses and plant responses to other stresses. Potential transcriptional cis-regulatory elements upstream of co-regulated genes can also be identified. Whole-genome arrays are only now becoming available, and many interactions remain to be studied (e.g. different pathogen species, plant genotypes, mutants, time-points after infection). Expression profiling technologies, in combination with other genomic tools, will have a substantial impact on our understanding of plant-pathogen interactions and defense signaling pathways.

  19. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies.

    PubMed

    Joshi, Madhumita V; Mann, Stefan G; Antelmann, Haike; Widdick, David A; Fyans, Joanna K; Chandra, Govind; Hutchings, Matthew I; Toth, Ian; Hecker, Michael; Loria, Rosemary; Palmer, Tracy

    2010-07-01

    Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.

  20. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis.

    PubMed

    Monteiro, Valdirene Neves; do Nascimento Silva, Roberto; Steindorff, Andrei Stecca; Costa, Fabio Teles; Noronha, Eliane Ferreira; Ricart, Carlos André Ornelas; de Sousa, Marcelo Valle; Vainstein, Marilene Henning; Ulhoa, Cirano José

    2010-10-01

    Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.

  1. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions.

    PubMed

    Goodin, Michael M; Zaitlin, David; Naidu, Rayapati A; Lommel, Steven A

    2015-01-01

    Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Addi- tionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus- induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, inter- action, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions cur- rently used by the research community. In addition to ad- dressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.

  2. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae

    PubMed Central

    Newman, Adam G.; Townsend, Craig A.

    2016-01-01

    Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporin—a product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae, little is known of the metabolite’s biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct product—an observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases. PMID:26938470

  3. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA

    PubMed Central

    Wicker, Emmanuel; Lefeuvre, Pierre; de Cambiaire, Jean-Charles; Lemaire, Christophe; Poussier, Stéphane; Prior, Philippe

    2012-01-01

    We used multilocus sequence analysis (MLSA) on a worldwide collection of the plant pathogenic Ralstonia solanacearum (Betaproteobacteria) to retrace its complex evolutionary history. Using genetic imprints left during R. solanacearum evolution, we were able to delineate distinct evolutionary complex displaying contrasting dynamics. Among the phylotypes already described (I, IIA, IIB, III, IV), eight groups of strains with distinct evolutionary patterns, named clades, were identified. From our recombination analysis, we identified 21 recombination events that occurred within and across these lineages. Although appearing the most divergent and ancestral phylotype, phylotype IV was inferred as a gene donor for the majority of the recombination events that we detected. Whereas this phylotype apparently fuelled the species diversity, ongoing diversification was mainly detected within phylotype I, IIA and III. These three groups presented a recent expanding population structure, a high level of homologous recombination and evidences of long-distance migrations. Factors such as adaptation to a specific host or intense trading of infected crops may have promoted this diversification. Whether R. solanacearum lineages will eventually evolve in distinct species remains an open question. The intensification of cropping and increase of geographical dispersion may favour situations of phylotype sympatry and promote higher exchange of key factors for host adaptation from their common genetic pool. PMID:22094345

  4. Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies, Bemisia argentifolii, and Erwinia rhapontici.

    PubMed

    Salvucci, Michael E

    2003-06-01

    Isomaltulose [alpha-D-glucopyranosyl-(1,6)-D-fructofuranose] and trehalulose [alpha-D-glucopyranosyl-(1,1)-D-fructofuranose] are commercially valuable sucrose-substitutes that are produced in several microorganisms by the palI gene product, a sucrose isomerase. Trehalulose also occurs in the silverleaf whitefly, Bemisia argentifoli, as the major carbohydrate in the insect's honeydew. To determine if the enzyme that synthesizes trehalulose in whiteflies was similar to the well-characterized sucrose isomerase from microbial sources, the properties of the enzymes from whiteflies and the bacterium, Erwinia rhapontici, were compared. Partial purification of both enzymes showed that the enzyme from whiteflies was a 116 kD membrane-associated polypeptide, in contrast to the enzyme from E. rhapontici, which was soluble and 66 kD. The enzyme from E. rhapontici converted sucrose to isomaltulose and trehalulose in a 5:1 ratio, whereas the enzyme from whiteflies produced only trehalulose. Unlike the E. rhapontici enzyme, the whitefly enzyme did not convert isomaltulose to trehalulose, but both enzymes catalyzed the transfer of fructose to trehalulose using sucrose as the glucosyl donor. The results indicate that trehalulose synthase from whiteflies is structurally and functionally distinct from the sucrose isomerases described in bacteria. The whitefly enzyme is the first reported case of an enzyme that converts sucrose to exclusively trehalulose.

  5. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies.

    PubMed

    Ordax, Mónica; Marco-Noales, Ester; López, María M; Biosca, Elena G

    2010-09-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants very difficult to control. We demonstrated that copper, employed to control plant diseases, induces the "viable-but-nonculturable" (VBNC) state in E. amylovora. Moreover, it was previously reported that copper increases production of its main exopolysaccharide (EPS), amylovoran. In this work, the copper-complexing ability of amylovoran and levan, other major EPS of E. amylovora, was demonstrated. Following this, EPS-deficient mutants were used to determine the role of these EPSs in survival of this bacterium in AB mineral medium with copper, compared to their wild type strain and AB without copper. Total, viable and culturable counts of all strains were monitored for six months. With copper, a larger fraction of the viable population of EPS mutants entered into the VBNC state, and earlier than their wild type strain, showing the contribution of both EPSs to long-term survival in a culturable state. Further, we demonstrated that both EPSs can be used as carbon source by E. amylovora under deprivation conditions. Overall, these previously unreported functions of amylovoran and levan provide survival advantages for E. amylovora, which could contribute to its enhanced persistence in nature.

  6. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  7. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites.

    PubMed

    Bühlmann, Andreas; Dreo, Tanja; Rezzonico, Fabio; Pothier, Joël F; Smits, Theo H M; Ravnikar, Maja; Frey, Jürg E; Duffy, Brion

    2014-07-01

    Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.

  8. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora.

    PubMed

    Mattinen, Laura; Tshuikina, Marina; Mäe, Andres; Pirhonen, Minna

    2004-12-01

    Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.

  9. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    PubMed

    Qhanya, Lehlohonolo Benedict; Matowane, Godfrey; Chen, Wanping; Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  10. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  11. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    PubMed Central

    Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina

    2007-01-01

    type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense responses and in pathogen-mediated cell death in this simple land plant. PMID:17922917

  12. Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ.

    PubMed

    Bortoli-German, I; Haiech, J; Chippaux, M; Barras, F

    1995-02-10

    The cellulase EGZ produced by the plant pathogen Erwinia chrysanthemi belongs to family 5 of the beta-glycohydrolases (also referred to as cellulase family A), which contains over 40 members from Gram-negative and Gram-positive bacteria and fungi. Amber mutations were introduced into 16 codons of the celZ gene encoding EGZ. Targeted residues included: (1) two Glu, two His and one Arg residue, strictly conserved throughout family 5; (2) one Arg and one His residue conserved in sub-family 5-2; and (3) one His and six Arg residues not conserved at all. Each amber allele was introduced into 13 Escherichia coli strains each carrying a different suppressor tRNA that inserts an amino acid at the mutated position. In vivo stability of the mutated forms of EGZ and their cellulase activity were analysed as well as suppression efficiency. For some positions of particular interest, missense mutations were introduced into the celZ gene either to confirm the effect of the suppressor-mediated amino acid substitution or to broaden the spectrum of mutations available. The substitution patterns of the two Glu positions were interpretable in the light of the stereospecificity of the reaction catalysed by EGZ: Glu133 and Glu220 are proposed to act as a proton donor and as a nucleophile, respectively, forming the glycosyl-enzyme intermediate. Substitution at His-occupied positions, including two non-conserved positions, yielded proteins affected in their catalytic activity but not their in vivo stability. In particular, evidence was obtained for His at position 98 to be involved in interactions with the substrate. The view that Arg residues are important in stabilizing proteins was supported by the identification of three Arg residues, whose substitution yielded thermosensitive forms of EGZ. In addition, Pro substitutions of any of the six Arg residues altered protein stability in vivo but the substitutions scored almost neutral for activity. Five positions, predicted to be within

  13. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.

    PubMed

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-03-06

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.

  14. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  15. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.

    PubMed

    Dong, Yanhan; Li, Ying; Qi, Zhongqiang; Zheng, Xiaobo; Zhang, Zhengguang

    2016-02-01

    Plant diseases cause extensive yield loss of crops worldwide, and secretory 'warfare' occurs between plants and pathogenic organisms all the time. Filamentous plant pathogens have evolved the ability to manipulate host processes and facilitate colonization through secreting effectors inside plant cells. The stresses from hosts and environment can drive the genome dynamics of plant pathogens. Remarkable advances in plant pathology have been made owing to these adaptable genome regions of several lineages of filamentous phytopathogens. Characterization new effectors and interaction analyses between pathogens and plants have provided molecular insights into the plant pathways perturbed during the infection process. In this mini-review, we highlight promising approaches of identifying novel effectors based on the genome plasticity. We also discuss the interaction mechanisms between plants and their filamentous pathogens and outline the possibilities of effector gene expression under epigenetic control that will be future directions for research.

  16. Computational techniques for elucidating plant-pathogen interactions from large-scale experiments on fungi and oomycetes.

    PubMed

    Soderlund, Carol

    2009-11-01

    Eukaryotic plant pathogens are responsible for the destruction of billions of dollars worth of crops each year. With large-scale genomics of both pathogens and hosts and the corresponding computational analysis, biologists are now able to gain knowledge about many pathogenic and defense genes concurrently. To study the interactions between these two organism groups, it is necessary to design experiments to elucidate the genes being expressed during the invasion of the pathogen into the host. For the most part, this does not require new software development, though it does require the use of existing software in novel ways. This article provides a broad overview of several key and illustrative experiments and the corresponding computational analyses, outlining the knowledge gained in each. It goes on to describe databases for plant-pathogen data and important initiatives such as Plant-Associated Microbe Gene Ontology. It discusses how various emerging approaches will increase the power of computers in host-pathogen interaction studies.

  17. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta

    PubMed Central

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-01-01

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application. PMID:24599183

  18. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  19. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    PubMed Central

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics. PMID:28094255

  20. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives.

    PubMed

    Puopolo, Gerardo; Masi, Marco; Raio, Aida; Andolfi, Anna; Zoina, Astolfo; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Pseudomonas chlororaphis subsp. aureofaciens strain M71 produced two phenazine compounds as main secondary metabolites. These metabolites were identified as phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH P). In this study, the spectrum of the activity of PCA and 2-OH P was evaluated against a group of crop and forestal plant pathogenic fungi by an agar plate bioassay. PCA was active against most of the tested plant pathogens, while 2-OH P slightly inhibited a few fungal species. Furthermore, four semisynthesised derivatives of PCA (phenazine-1-carboxymethyl, phenazine-1-carboxamide, phenazine-1-hydroxymethyl and phenazine-1-acetoxymethyl) were assayed for their antifungal activity against 11 phytopathogenic species. Results showed that the carboxyl group is a structural feature important for the antifungal activity of PCA. Since the activity of phenazine-1-carboxymethyl and phenazine-1-carboxamide, the two more lipophilic and reversible PCA derivatives remained substantially unaltered compared with PCA.

  1. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum.

    PubMed

    Li, Pengfei; Zhang, Hailong; Chen, Xiaoguang; Qiu, Dewen; Guo, Lihua

    2015-07-01

    A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR.

  2. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate.

    PubMed

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts.

  3. Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    PubMed

    Burgess, Treena I; Scott, John K; Mcdougall, Keith L; Stukely, Michael J C; Crane, Colin; Dunstan, William A; Brigg, Frances; Andjic, Vera; White, Diane; Rudman, Tim; Arentz, Frans; Ota, Noboru; Hardy, Giles E St J

    2017-04-01

    Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P. cinnamomi based on the pathogen's response to temperature and moisture and by incorporating extensive empirical evidence on the presence and absence of the pathogen. The climex model captured areas of climatic suitability where P. cinnamomi occurs that is congruent with all available records. The model was validated by the collection of soil samples from asymptomatic vegetation in areas projected to be suitable by the model for which there were few records. DNA was extracted, and the presence or absence of P. cinnamomi was determined by high-throughput sequencing (HTS). While not detected using traditional isolation methods, HTS detected P. cinnamomi at higher elevations in eastern Australia and central Tasmania as projected by the climex model. Further support for the climex model was obtained using the large data set from south-west Australia where the proportion of positive records in an area is related to the Ecoclimatic Index value for the same area. We provide for the first time a comprehensive global map of the current P. cinnamomi distribution, an improved climex model of the distribution, and a projection to 2080 of the distribution with predicted climate change. This information provides the basis for more detailed regional-scale modelling and supports risk assessment for governments to plan management of this important soil-borne plant pathogen.

  4. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea.

    PubMed

    Trantas, Emmanouil A; Licciardello, Grazia; Almeida, Nalvo F; Witek, Kamil; Strano, Cinzia P; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E; Jones, Jonathan D G; Guttman, David S; Catara, Vittoria; Sarris, Panagiotis F

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

  5. Invasiveness of plant pathogens depends on the spatial scale of host distribution.

    PubMed

    Mikaberidze, Alexey; Mundt, Christopher C; Bonhoeffer, Sebastian

    2016-06-01

    Plant diseases often cause serious yield losses in agriculture. A pathogen's invasiveness can be quantified by the basic reproductive number, R₀. Since pathogen transmission between host plants depends on the spatial separation between them, R₀ is strongly influenced by the spatial scale of the host distribution. We present a proof of principle of a novel approach to estimate the basic reproductivenumber, R₀, of plant pathogens as a function of the size of a field planted with crops and its aspect ratio. This general approach is based on a spatially explicit population dynamical model. The basic reproductive number was found to increase with the field size at small field sizes and to saturate to a constant value at large field sizes. It reaches amaximum in square fields and decreases as the field becomes elongated. This pattern appears to be quite general: it holds for dispersal kernels that decrease exponentially or faster, as well as for fat-tailed dispersal kernels that decrease slower than exponential (i.e., power-law kernels). We used this approach to estimate R₀ in wheat stripe rust(an important disease caused by Puccinia striiformis), where we inferred both the transmission rates and the dispersal kernels from the measurements of disease gradients. For the two largest datasets, we estimated R₀ of P. striiformis in the limit of large fields to be of the order of 30. We found that the spatial extent over which R₀ changes strongly is quite fine-scaled (about 30 m of the linear extension of the field). Our results indicate that in order to optimize the spatial scale of deployment of fungicides or host resistances, the adjustments should be made at a fine spatial scale. We also demonstrated how the knowledge of the spatial dependence of R₀ can improve recommendations with regard to fungicide treatment.

  6. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.

    PubMed

    Thaitrong, Numrin; Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Karoonuthaisiri, Nitsara

    2013-01-01

    Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac), watermelon silver mottle virus (WSMoV), and melon yellow spot virus (MYSV) screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.

  7. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum.

    PubMed

    Liu, Hui; Coulthurst, Sarah J; Pritchard, Leighton; Hedley, Peter E; Ravensdale, Michael; Humphris, Sonia; Burr, Tom; Takle, Gunnhild; Brurberg, May-Bente; Birch, Paul R J; Salmond, George P C; Toth, Ian K

    2008-06-20

    Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba-potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype.

  8. Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.

    PubMed

    Espinoza, Luis; Taborga, Lautaro; Díaz, Katy; Olea, Andrés F; Peña-Cortés, Hugo

    2014-01-27

    Natural geranyl compounds are known to exhibit important biological activities. In this work a series of geranylphenols were synthesized to evaluate their effect on the mycelial growth of Botrytis cinerea. Geranyl derivatives were synthesized by direct geranylation reactions between the corresponding phenol derivatives and geraniol, using BF3.OEt2 as catalyst and AgNO3 as secondary catalyst. Previously reported molecules [geranylhydroquinone (2), geranylhydroquinone diacetate (6) and geranylphloroglucinol (9)], and new substances [(E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,2,3-triol (geranyl-pyrogallol, 7), (E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,2,3-triyl triacetate (8), (E)-2-(3,7-dimethylocta-2,6-dienyl)benzene-1,3,5-triyl triacetate geranylphloroglucinol triacetate (10), 2,4-bis((E)-3,7-dimethylocta-2,6-dienyl)benzene-1,3,5-triyl triacetate (11), 2,6-bis((E)-3,7-dimethylocta-2,6-dienyl)-3,5-dihydroxyphenyl acetate (12)], were obtained. All compounds were characterized by IR, HRMS and NMR spectroscopic data. The inhibitory effect of the synthesized compounds on the mycelial growth of Botrytis cinerea was tested in vitro. Excepting compound 11, all substances constrained the mycelial growth of Botrytis cinerea. The antifungal activity depends on the chemical structure of geranylphenol derivatives. Compounds 2 and 9 were the more effective substances showing inhibition degrees higher than those obtained with the commercial fungicide Captan, even at lower concentrations. Monosubstitution on the aromatic nucleus by a geranyl chain seems to be more effective for the inhibition of mycelial growth than a double substitution. These results suggest that the new derivatives of geranylphenols have the ability to block the mycelial development of the plant pathogen B. cinerea and that this capacity depends strongly on the structural features and lipophilicity of the compounds.

  9. Abscisic acid has a key role in modulating diverse plant-pathogen interactions.

    PubMed

    Fan, Jun; Hill, Lionel; Crooks, Casey; Doerner, Peter; Lamb, Chris

    2009-08-01

    We isolated an activation-tagged Arabidopsis (Arabidopsis thaliana) line, constitutive disease susceptibility2-1D (cds2-1D), that showed enhanced bacterial growth when challenged with various Pseudomonas syringae strains. Systemic acquired resistance and systemic PATHOGENESIS-RELATED GENE1 induction were also compromised in cds2-1D. The T-DNA insertion adjacent to NINE-CIS-EPOXYCAROTENOID DIOXYGENASE5 (NCED5), one of six genes encoding the abscisic acid (ABA) biosynthetic enzyme NCED, caused a massive increase in transcript level and enhanced ABA levels >2-fold. Overexpression of NCED genes recreated the enhanced disease susceptibility phenotype. NCED2, NCED3, and NCED5 were induced, and ABA accumulated strongly following compatible P. syringae infection. The ABA biosynthetic mutant aba3-1 showed reduced susceptibility to virulent P. syringae, and ABA, whether through exogenous application or endogenous accumulation in response to mild water stress, resulted in increased bacterial growth following challenge with virulent P. syringae, indicating that ABA suppresses resistance to P. syringae. Likewise ABA accumulation also compromised resistance to the biotrophic oomycete Hyaloperonospora arabidopsis, whereas resistance to the fungus Alternaria brassicicola was enhanced in cds2-1D plants and compromised in aba3-1 plants, indicating that ABA promotes resistance to this necrotroph. Comparison of the accumulation of salicylic acid and jasmonic acid in the wild type, cds2-1D, and aba3-1 plants challenged with P. syringae showed that ABA promotes jasmonic acid accumulation and exhibits a complex antagonistic relationship with salicylic acid. Our findings provide genetic evidence that the abiotic stress signal ABA also has profound roles in modulating diverse plant-pathogen interactions mediated at least in part by cross talk with the jasmonic acid and salicylic acid biotic stress signal pathways.

  10. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations.

    PubMed

    Mohd-Assaad, Norfarhan; McDonald, Bruce A; Croll, Daniel

    2016-12-01

    Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.

  11. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System

    PubMed Central

    McArt, Scott H.; Miles, Timothy D.; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S.; Grieshop, Matthew J.

    2016-01-01

    Several fungal plant pathogens induce ‘pseudoflowers’ on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently. PMID:27851747

  12. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System.

    PubMed

    McArt, Scott H; Miles, Timothy D; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S; Grieshop, Matthew J

    2016-01-01

    Several fungal plant pathogens induce 'pseudoflowers' on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently.

  13. Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae

    PubMed Central

    Jelen, Vid; de Jonge, Ronnie; Van de Peer, Yves; Javornik, Branka; Jakše, Jernej

    2016-01-01

    Verticillium nonalfalfae is a fungal plant pathogen that causes wilt disease by colonizing the vascular tissues of host plants. The disease induced by hop isolates of V. nonalfalfae manifests in two different forms, ranging from mild symptoms to complete plant dieback, caused by mild and lethal pathotypes, respectively. Pathogenicity variations between the causal strains have been attributed to differences in genomic sequences and perhaps also to differences in their mitochondrial genomes. We used data from our recent Illumina NGS-based project of genome sequencing V. nonalfalfae to study the mitochondrial genomes of its different strains. The aim of the research was to prepare a V. nonalfalfae reference mitochondrial genome and to determine its phylogenetic placement in the fungal kingdom. The resulting 26,139 bp circular DNA molecule contains a full complement of the 14 "standard" fungal mitochondrial protein-coding genes of the electron transport chain and ATP synthase subunits, together with a small rRNA subunit, a large rRNA subunit, which contains ribosomal protein S3 encoded within a type IA-intron and 26 tRNAs. Phylogenetic analysis of this mitochondrial genome placed it in the Verticillium spp. lineage in the Glomerellales group, which is also supported by previous phylogenetic studies based on nuclear markers. The clustering with the closely related Verticillium dahliae mitochondrial genome showed a very conserved synteny and a high sequence similarity. Two distinguishing mitochondrial genome features were also found—a potential long non-coding RNA (orf414) contained only in the Verticillium spp. of the fungal kingdom, and a specific fragment length polymorphism observed only in V. dahliae and V. nubilum of all the Verticillium spp., thus showing potential as a species specific biomarker. PMID:26839950

  14. Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae.

    PubMed

    Jelen, Vid; de Jonge, Ronnie; Van de Peer, Yves; Javornik, Branka; Jakše, Jernej

    2016-01-01

    Verticillium nonalfalfae is a fungal plant pathogen that causes wilt disease by colonizing the vascular tissues of host plants. The disease induced by hop isolates of V. nonalfalfae manifests in two different forms, ranging from mild symptoms to complete plant dieback, caused by mild and lethal pathotypes, respectively. Pathogenicity variations between the causal strains have been attributed to differences in genomic sequences and perhaps also to differences in their mitochondrial genomes. We used data from our recent Illumina NGS-based project of genome sequencing V. nonalfalfae to study the mitochondrial genomes of its different strains. The aim of the research was to prepare a V. nonalfalfae reference mitochondrial genome and to determine its phylogenetic placement in the fungal kingdom. The resulting 26,139 bp circular DNA molecule contains a full complement of the 14 "standard" fungal mitochondrial protein-coding genes of the electron transport chain and ATP synthase subunits, together with a small rRNA subunit, a large rRNA subunit, which contains ribosomal protein S3 encoded within a type IA-intron and 26 tRNAs. Phylogenetic analysis of this mitochondrial genome placed it in the Verticillium spp. lineage in the Glomerellales group, which is also supported by previous phylogenetic studies based on nuclear markers. The clustering with the closely related Verticillium dahliae mitochondrial genome showed a very conserved synteny and a high sequence similarity. Two distinguishing mitochondrial genome features were also found-a potential long non-coding RNA (orf414) contained only in the Verticillium spp. of the fungal kingdom, and a specific fragment length polymorphism observed only in V. dahliae and V. nubilum of all the Verticillium spp., thus showing potential as a species specific biomarker.

  15. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate

    PubMed Central

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts. PMID:27917154

  16. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  17. flp-32 Ligand/Receptor Silencing Phenocopy Faster Plant Pathogenic Nematodes

    PubMed Central

    Atkinson, Louise E.; Stevenson, Michael; McCoy, Ciaran J.; Marks, Nikki J.; Fleming, Colin; Zamanian, Mostafa; Day, Tim A.; Kimber, Michael J.; Maule, Aaron G.; Mousley, Angela

    2013-01-01

    Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. PMID:23468621

  18. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces.

    PubMed

    Loria, Rosemary; Bignell, Dawn R D; Moll, Simon; Huguet-Tapia, José C; Joshi, Madhumita V; Johnson, Evan G; Seipke, Ryan F; Gibson, Donna M

    2008-06-01

    Streptomyces species are best known for their ability to produce a wide array of medically and agriculturally important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically important crops such as potato. All of these species produce the phytotoxin thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant tissue. The biosynthesis of thaxtomin involves conserved non-ribosomal peptide synthetases, P450 monooxygenases, and a nitric oxide synthase, the latter being required for nitration of the toxin. This nitric oxide synthase is also responsible for the production of diffusible nitric oxide by scab-causing streptomycetes at the host-pathogen interface, suggesting that nitric oxide production might play an additional role during the infection process. The thaxtomin biosynthetic genes are transcriptionally regulated by an AraC/XylS family regulator, TxtR, which is conserved in pathogenic streptomycetes and is encoded within the thaxtomin biosynthetic gene cluster. The TxtR protein specifically binds cellobiose, a known inducer of thaxtomin biosynthesis, and cellobiose is required for expression of the biosynthetic genes. A second virulence gene in pathogenic Streptomyces species, nec1, encodes a novel secreted protein that may suppress plant defence responses. The thaxtomin biosynthetic genes and nec1 are contained on a large mobilizable pathogenicity island; the transfer of this island to recipient streptomycetes likely explains the rapid emergence of new pathogenic species. The newly available genome sequence of S. scabies will provide further insight into the mechanisms utilized by pathogenic streptomycetes during plant-microbe interactions.

  19. Studies on the Use of Fungal Plant Pathogens for Control of Hydrilla verticillata (L.f.) Royle

    DTIC Science & Technology

    1991-06-01

    of identifying plant pathogens with potential biocontrol use. An isolate of the fungus identified as Macrophomina phaseolina (Tassi) Goid. was...with submersed aquatic plants (Cassani 1981). 7. In recent years, progress has been achieved in the use of insects for biocontrol of hydrilla (Bennett...fall of 1987 and 1988, fungal and bacterial isolates were collected from hydrilla plants obtained from natural populations growing in 15 lakes and

  20. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity.

    PubMed

    Clarke, Christopher R; Hayes, Byron W; Runde, Brendan J; Markel, Eric; Swingle, Bryan M; Vinatzer, Boris A

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.

  1. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    PubMed Central

    Hayes, Byron W.; Runde, Brendan J.; Markel, Eric; Swingle, Bryan M.; Vinatzer, Boris A.

    2016-01-01

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction. PMID:27812402

  2. Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria.

    PubMed

    Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu

    2011-06-01

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro.

  3. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape

    NASA Astrophysics Data System (ADS)

    Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D.

    2017-01-01

    We assessed whether the presence and abundance of plant pathogens and antagonists change in soil fungal communities along a land abandonment gradient. The study was carried out in the Cilento area (Southern Italy) at a site with three different habitats found along a land abandonment gradient: agricultural land, Mediterranean shrubland and woodland. For all microbiological substrates the colony forming units were about 3.1 × 106 g-1 soil for agricultural land and about 1.1 × 106 g-1 soil for Mediterranean shrubland and woodland. We found the following genera in all habitats: Cladosporium, Mortierella, Penicillium and Trichoderma. In agricultural land, the significantly most abundant fungus genera were Aspergillus, Fusarium, Cylindrocarpon and Nectria; in Mediterranean shrubland, Rhizopus and Trichoderma; and in woodland, Bionectria, Mortierella, Cladosporium, Diplodia, Paecilomyces, Penicillium and Trichoderma. We found a total of 8, 8 and 9 species of fungal antagonist, and 16, 6 and 6 species of fungal plant pathogens in agricultural land, Mediterranean shrubland and woodland respectively. Fungal plant pathogens decreased significantly over a land abandonment gradient, while we no found significant differences among fungal antagonists in the three habitats. We conclude that a decrease in the number of fungal pathogen species occurs when formerly cultivated areas are abandoned. On the other hand, fungal antagonists seem not to be affected by this process.

  4. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C.

    PubMed

    Marvasi, Massimiliano; Durie, Ian A; Henríquez, Tania; Satkute, Aiste; Matuszewska, Marta; Prado, Raphael Carvalho

    2016-12-01

    Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments.

  5. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes.

    PubMed

    Win, Joe; Morgan, William; Bos, Jorunn; Krasileva, Ksenia V; Cano, Liliana M; Chaparro-Garcia, Angela; Ammar, Randa; Staskawicz, Brian J; Kamoun, Sophien

    2007-08-01

    Oomycete plant pathogens deliver effector proteins inside host cells to modulate plant defense circuitry and to enable parasitic colonization. These effectors are defined by a conserved motif, termed RXLR (for Arg, any amino acid, Leu, Arg), that is located downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae, Phytophthora ramorum, and Hyaloperonospora parasitica, to generate genome-wide catalogs of RXLR effector genes and determine the extent to which these genes are under positive selection. These analyses revealed that the RXLR sequence is overrepresented and positionally constrained in the secretome of Phytophthora relative to other eukaryotes. The three examined plant pathogenic oomycetes carry complex and diverse sets of RXLR effector genes that have undergone relatively rapid birth and death evolution. We obtained robust evidence of positive selection in more than two-thirds of the examined paralog families of RXLR effectors. Positive selection has acted for the most part on the C-terminal region, consistent with the view that RXLR effectors are modular, with the N terminus involved in secretion and host translocation and the C-terminal domain dedicated to modulating host defenses inside plant cells.

  6. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens.

    PubMed

    Sha, Ruyi; Jiang, Lifang; Meng, Qin; Zhang, Guoliang; Song, Zhirong

    2012-08-01

    Biosurfactants of rhamnolipids have been enthusiastically investigated for substitutes of synthetic agrochemicals against plant pathogens. However, all such studies have been conducted on rhamnolipids with high purity which have limitations due to high costs. This paper focused on the applicability of rhamnolipid-containing cell-free culture broth. It was found that rhamnolipids in cell-free culture broth of Pseudomonas aeruginosa ZJU211 were largely composed of di-rhamnolipid and mono-rhamnolipid with the ratio varying with culture time. After 96 h of fermentation, the mass ratio of di-rhamnolipid over mono-rhamnolipid increased to 2.6:1. Crude rhamnolipids in a form of cell-free culture broth showed high antifungal activity against colony growth and biomass accumulation of seven plant pathogens comprising two Oomycetes, three Ascomycota and two Mucor spp. fungi, among which three plant pathogens were firstly reported in this paper showing inhibition to rhamnolipids. Particularly, rhamnolipids showed potent activity against two Oomycetes that acquire resistance to commercial compound of metalaxyal. Furthermore, di-rhamnolipid was elucidated to dominate the antifungal activity of crude rhamnolipids by in vitro studies. At last, the efficacy and safety of cell-free culture broth was preliminarily illustrated on plants in vivo. So cell-free culture broth as a crude rhamnolipid product could be served as a potential cost-effective and environmental-friendly fungicide in agriculture.

  7. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling.

    PubMed

    Fu, Shih-Feng; Tsai, Tsung-Mu; Chen, Ying-Ru; Liu, Ching-Pei; Haiso, Lin-June; Syue, Li-Hsin; Yeh, Hsin-Hung; Huang, Hao-Jen

    2012-07-01

    Erwinia chrysanthemi is a devastating bacterial pathogen in Phalaenopsis amabilis and causes soft-rotting disease by secretion of cell wall-degrading enzymes. However, the molecular mechanisms underlying the interaction of P. amabilis with E. chrysanthemi remain elusive. In this study, early molecular events of the plant in response to the pathogen attack were investigated. The alteration in reactive oxygen species accumulation and peroxidase activity occurred at the site of infection. Subsequently, a systematic sequencing of expressed sequence tags (ESTs) using suppression subtractive hybridization (SSH) was performed to obtain the first global picture of the assembly of genes involved in the pathogenesis. The majority of the SSH clones showed a high identity with genes coding for proteins that have known roles in redox homeostasis, responses to pathogens and metabolism. A notable number of the SSH clones were those encoding WRKY, MYB and basic leucine zipper transcription factors, indicating the stimulation of intracellular signal transduction. An orchid gene encoding trans-2-enoyl-CoA reductase (ECR) was the most abundant transcripts in the EST library. ECR is an enzyme catalyzing the very long chain fatty acids (VLCFAs) biosynthesis, and the full-length cDNA of the ECR gene (PaECR1) was obtained. Functional analysis of PaECR1 was conducted by virus-induced gene silencing to knock down the gene expression in P. amabilis. The PaECR1-silenced plants were more susceptible to E. chrysanthemi infection, implying potential roles for VLCFAs in the pathogenesis. In summary, the pathogen-responsive gene expression profiles facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.

  8. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells.

    PubMed

    Bocsanczy, Ana M; Nissinen, Riitta M; Oh, Chang-Sik; Beer, Steven V

    2008-07-01

    The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.

  9. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  10. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales.

    PubMed

    Naushad, Hafiz Sohail; Gupta, Radhey S

    2013-01-01

    The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1-3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets

  11. Phylogenomics and Molecular Signatures for Species from the Plant Pathogen-Containing Order Xanthomonadales

    PubMed Central

    Naushad, Hafiz Sohail; Gupta, Radhey S.

    2013-01-01

    The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1–3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential

  12. Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.

    PubMed

    Panjehkeh, N; Jahani Hossein-Abadi, Z

    2011-01-01

    Plant cells produce a vast amount of secondary metabolites. Production of some compounds is restricted to a single species. Some compounds are nearly always found only in certain specific plant organs and during a specific developmental period of the plant. Some secondary metabolites of plants serve as defensive compounds against invading microorganisms. Nowadays, it is attempted to substitute the biological and natural agents with chemically synthesized fungicides. In the present research, the antifungal activities of essential oils of seven medicinal plants on mycelial growth of three soilborne plant pathogenic fungi were investigated. The plants consisted of Zataria multiflora, Thymus carmanicus, Mentha pieperata, Satureja hortensis, Lavandual officinolis, Cuminum cyminum and Azadirachta indica. The first five plants are from the family Labiatae. Examined fungi, Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Rhizoctonia solani are the causal agents of tomato root rot. Essential oils of Z. multiflora, T. carmanicus, M. pieperata, S. hortensis and C. cyminum were extracted by hydro-distillation method. Essential oils of L. officinalis and A. indica were extracted by vapor-distillation method. A completely randomized design with five replicates was used to examine the inhibitory impact of each concentration (300, 600 and 900 ppm) of each essential oil. Poisoned food assay using potato dextrose agar (PDA) medium was employed. Results showed that essential oils of A. indica, Z. multiflora, T. carmanicus and S. hortensis in 900 ppm at 12 days post-inoculation, when the control fungi completely covered the plates, prevented about 90% from mycelial growth of each of the fungi. While, the essential oils of M. pieperata, C. cyminum and L. officinalis in the same concentration and time prevented 54.86, 52.77 and 48.84%, respectively, from F. solani growth. These substances did not prevent from F. oxysporum f.sp. lycopersici and R. solani growth. Minimum

  13. Development and application of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-pathogenic bacteria are the causative agents of diseases in important agricultural crops and ornamental plants. The severe economic burden of these diseases requires seeking new approaches, particularly because phytopathogenic bacteria are often resistant to currently available treatments. The...

  14. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host.

    PubMed

    Boccara, Martine; Mills, Catherine E; Zeier, Jürgen; Anzi, Chiara; Lamb, Chris; Poole, Robert K; Delledonne, Massimo

    2005-07-01

    Host cells respond to infection by generating nitric oxide (NO) as a cytotoxic weapon to facilitate killing of invading microbes. Bacterial flavohaemoglobins are well-known scavengers of NO and play a crucial role in protecting animal pathogens from nitrosative stress during infection. Erwinia chrysanthemi, which causes macerating diseases in a wide variety of plants, possesses a flavohaemoglobin (HmpX) whose function in plant pathogens has remained unclear. Here we show that HmpX consumes NO and prevents inhibition by NO of cell respiration, indicating a role in protection from nitrosative stress. Furthermore, infection of Saintpaulia ionantha plants with an HmpX-deficient mutant of E. chrysanthemi revealed that the lack of NO scavenging activity causes the accumulation of unusually high levels of NO in host tissue and triggers hypersensitive cell death. Introduction of the wild-type hmpX gene in an incompatible strain of Pseudomonas syringae had a dramatic effect on the hypersensitive cell death in soya bean cell suspensions, and markedly reduced the development of macroscopic symptoms in Arabidopsis thaliana plants. These observations indicate that HmpX not only protects against nitrosative stress but also attenuates host hypersensitive reaction during infection by intercepting NO produced by the plant for the execution of the hypersensitive cell death programme.

  15. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage.

    PubMed

    Born, Yannick; Fieseler, Lars; Klumpp, Jochen; Eugster, Marcel R; Zurfluh, Katrin; Duffy, Brion; Loessner, Martin J

    2014-07-01

    The depolymerase enzyme (DpoL1) encoded by the T7-like phage L1 efficiently degrades amylovoran, an important virulence factor and major component of the extracellular polysaccharide (EPS) of its host, the plant pathogen Erwinia amylovora. Mass spectrometry analysis of hydrolysed EPS revealed that DpoL1 cleaves the galactose-containing backbone of amylovoran. The enzyme is most active at pH 6 and 50°C, and features a modular architecture. Removal of 180 N-terminal amino acids was shown not to affect enzyme activity. The C-terminus harbours the hydrolase activity, while the N-terminal domain links the enzyme to the phage particle. Electron microscopy demonstrated that DpoL1-specific antibodies cross-link phage particles at their tails, either lateral or frontal, and immunogold staining confirmed that DpoL1 is located at the tail spikes. Exposure of high-level EPS-producing Er. amylovora strain CFBP1430 to recombinant DpoL1 dramatically increased sensitivity to the Dpo-negative phage Y2, which was not the case for EPS-negative mutants or low-level EPS-producing Er. amylovora. Our findings indicate that enhanced phage susceptibility is based on enzymatic removal of the EPS capsule, normally a physical barrier to Y2 infection, and that use of DpoL1 together with the broad host range, virulent phage Y2 represents an attractive combination for biocontrol of fire blight.

  16. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems.

    PubMed

    Nakka, Sridevi; Qi, Mingsheng; Zhao, Youfu

    2010-10-20

    The PhoPQ system is a pleiotropic two-component signal transduction system that controls many pathogenic properties in several mammalian and plant pathogens. Three different cues have been demonstrated to activate the PhoPQ system including a mild acidic pH, antimicrobial peptides, and low Mg(2+). In this study, our results showed that phoPQ mutants were more resistant to strong acidic conditions (pH 4.5 or 5) than that of the wild-type (WT) strain, suggesting that this system in Erwinia amylovora may negatively regulate acid resistance gene expression. Furthermore, the PhoPQ system negatively regulated gene expression of two novel type III secretion systems in E. amylovora. These results are in contrast to those reported for the PhoPQ system in Salmonella and Xanthomonas, where it positively regulates type III secretion system and acid resistance. In addition, survival of phoPQ mutants was about 10-fold lower than that of WT when treated with cecropin A at pH 5.5, suggesting that the PhoPQ system renders the pathogen more resistant to cecropin A.

  17. Identification of a pathogenicity locus, rpfA, in Erwinia carotovora subsp. carotovora subsp. carotovora that encodes a two-component sensor-regulator protein.

    PubMed

    Frederick, R D; Chiu, J; Bennetzen, J L; Handa, A K

    1997-04-01

    A mutant of Erwinia carotovora subsp. carotovora, AH2552, created by a Mud1 insertion was found to be reduced in plant pathogenicity and deficient in extracellular protease and cellulase activity, although it produced normal levels of pectate lyase and polygalacturonase. A cosmid clone, pEC462, was isolated from a wild-type E. carotovora subsp. carotovora DNA library that concomitantly restored pathogenicity and protease and cellulase activities of AH2552 to wild-type levels when present in trans. The genetic locus that was disrupted in AH2552 by insertion of Mud1 has been designated rpfA, for regulator of pathogenicity factors. Sequencing of the rpfA region identified an open reading frame of 2,787 bp, and the predicted 929-amino acid polypeptide shared high identity with several two-component sensor-regulator proteins: BarA from Escherichia coli, ApdA from Pseudomonas fluorescens, PheN from P. tolaasii, RepA from P. viridiflava, LemA from P. syringae pv. syringae, and RpfC from Xanthomonas campestris pv. campestris. The RpfA locus described in this study encodes a putative sensor kinase protein that is involved in both extracellular protease and cellulase production and the pathogenicity of E. carotovora subsp. carotovora on potato tubers.

  18. Characterization of Monoclonal Antibodies Specific for Erwinia carotovora subsp. atroseptica and Comparison of Serological Methods for Its Sensitive Detection on Potato Tubers

    PubMed Central

    Gorris, María Teresa; Alarcon, Benito; Lopez, María M.; Cambra, Mariano

    1994-01-01

    Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant pathogenic bacteria or 162 saprophytic bacteria from potato tubers. Only one strain of E. chrysanthemi from potato cross-reacted. A comparison of several serological techniques to detect E. carotovora subsp. atroseptica on potato tubers was performed with MAb 4G4 or polyclonal antibodies. The organism was extracted directly from potato peels of artificially inoculated tubers by soaking or selective enrichment under anaerobiosis in a medium with polypectate. MAb 4G4 was able to detect specifically 240 E. carotovora subsp. atroseptica cells per ml by indirect immunofluorescence and immunofluorescence colony staining and after soaking by ELISA-DAS (double-antibody sandwich enzyme-linked immunosorbent assay) after enrichment. The same amount of cells was detected by using immunolectrotransfer with polyclonal antibodies, and E. carotovora subsp. atroseptica and subsp. carotovora were distinguished by the latter technique. ELISA-DAS using MAb 4G4 with an enrichment step also efficiently detected E. carotovora subsp. atroseptica in naturally infected tubers and plants. PMID:16349293

  19. Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso.

    PubMed

    Leduc, A; Traoré, Y N; Boyer, K; Magne, M; Grygiel, P; Juhasz, C C; Boyer, C; Guerin, F; Wonni, I; Ouedraogo, L; Vernière, C; Ravigné, V; Pruvost, O

    2015-11-01

    Molecular epidemiology studies further our understanding of migrations of phytopathogenic bacteria, the major determining factor in their emergence. Asiatic citrus canker, caused by Xanthomonas citri pv. citri, was recently reported in Mali and Burkina Faso, a region remote from other contaminated areas. To identify the origin and pathways of these emergences, we used two sets of markers, minisatellites and microsatellites, for investigating different evolutionary scales. Minisatellite typing suggested the introduction of two groups of strains in Mali (DAPC 1 and DAPC 2), consistent with microsatellite typing. DAPC 2 was restricted to Bamako district, whereas DAPC 1 strains were found much more invasive. The latter strains formed a major clonal complex based on microsatellite data with the primary and secondary founders detected in commercial citrus nurseries and orchards. This suggests that human activities played a major role in the spread of DAPC 1 strains via the movement of contaminated propagative material, further supported by the frequent lack of differentiation between populations from geographically distant nurseries and orchards. Approximate Bayesian Computation analyses supported the hypothesis that strains from Burkina Faso resulted from a bridgehead invasion from Mali. Multi-locus variable number of tandem repeat analysis and Approximate Bayesian Computation are useful for understanding invasion routes and pathways of monomorphic bacterial pathogens.

  20. Olive “quick decline” in Italy is associated with Xylella fastidiosa, a plant pathogenic bacterium also associated with California olives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa, the causal agent of Pierce’s Disease on grapevine, has made its first documented entrance to continental Europe, possibly associated with a new disease on olive called “quick decline.” In October 2013, X. fastidiosa was reported in the Puglia region of southern Italy on declining...

  1. Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Tondo, María Laura; Hurtado-Guerrero, Ramon; Ceccarelli, Eduardo A; Medina, Milagros; Orellano, Elena G; Martínez-Júlvez, Marta

    2013-01-01

    We have solved the structure of ferredoxin-NADP(H) reductase, FPR, from the plant pathogen Xanthomonas axonopodis pv. citri, responsible for citrus canker, at a resolution of 1.5 Å. This structure reveals differences in the mobility of specific loops when compared to other FPRs, probably unrelated to the hydride transfer process, which contributes to explaining the structural and functional divergence between the subclass I FPRs. Interactions of the C-terminus of the enzyme with the phosphoadenosine of the cofactor FAD limit its mobility, thus affecting the entrance of nicotinamide into the active site. This structure opens the possibility of rationally designing drugs against the X. axonopodis pv. citri phytopathogen.

  2. The Legitimate Name of a Fungal Plant Pathogen and the Ethics of Publication in the Era of Traceability.

    PubMed

    Gonthier, Paolo; Visentin, Ivan; Valentino, Danila; Tamietti, Giacomo; Cardinale, Francesca

    2017-04-01

    When more scientists describe independently the same species under different valid Latin names, a case of synonymy occurs. In such a case, the international nomenclature rules stipulate that the first name to appear on a peer-reviewed publication has priority over the others. Based on a recent episode involving priority determination between two competing names of the same fungal plant pathogen, this letter wishes to open a discussion on the ethics of scientific publications and points out the necessity of a correct management of the information provided through personal communications, whose traceability would prevent their fraudulent or accidental manipulation.

  3. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Makowski, Łukasz; Donczew, Rafał; Weigel, Christoph; Zawilak-Pawlik, Anna; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5′-NN(A/T)TCCACA-3′]. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA–oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium. PMID:27965633

  4. Erwinia uzenensis sp. nov., a novel pathogen that affects European pear trees (Pyrus communis L.).

    PubMed

    Matsuura, Takayuki; Mizuno, Akifumi; Tsukamoto, Takanori; Shimizu, Yoshiaki; Saito, Norihiko; Sato, Shigeyoshi; Kikuchi, Shigemi; Uzuki, Tsuneyasu; Azegami, Koji; Sawada, Hiroyuki

    2012-08-01

    Bacteria were isolated from black lesions on shoots of European pear trees (Pyrus communis L.) in an orchard in Japan. Previous characterization of this novel pathogen by phenotypic and genotypic methods suggested that it should belong to the genus Erwinia but might not correspond to either Erwinia amylovora or Erwinia pyrifoliae. Here, phylogenetic analyses of the 16S rRNA gene, gyrB, and rpoD gene sequences indicated that it could not be assigned to any recognized species of the genus Erwinia. DNA-DNA hybridization confirmed that the bacterial strains represented a novel species. The DNA G+C contents, the fatty acid profile and phenotypic characteristics resembled those previously reported for members of the genus Erwinia. On the basis of these and previous results, the pathogen represents a novel species of the genus Erwinia, for which the name Erwinia uzenensis sp. nov. (type strain: YPPS 951(T) = LMG 25843(T) = NCPPB 4475(T)) is proposed.

  5. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    PubMed

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).

  6. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket

    PubMed Central

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T). PMID:26800121

  7. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana.

    PubMed

    Degrave, A; Fagard, M; Perino, C; Brisset, M N; Gaubert, S; Laroche, S; Patrit, O; Barny, M-A

    2008-08-01

    Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.

  8. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.

    PubMed

    Mithani, Aziz; Hein, Jotun; Preston, Gail M

    2011-01-01

    Plant pathogenic pseudomonads such as Pseudomonas syringae colonize plant surfaces and tissues and have been reported to be nutritionally specialized relative to nonpathogenic pseudomonads. We performed comparative analyses of metabolic networks reconstructed from genome sequence data in order to investigate the hypothesis that P. syringae has evolved to be metabolically specialized for a plant pathogenic lifestyle. We used the metabolic network comparison tool Rahnuma and complementary bioinformatic analyses to compare the distribution of 1,299 metabolic reactions across nine genome-sequenced strains of Pseudomonas, including three strains of P. syringae. The two pathogenic Pseudomonas species analyzed, P. syringae and the opportunistic human pathogen P. aeruginosa, each displayed a high level of intraspecies metabolic similarity compared with nonpathogenic Pseudomonas. The three P. syringae strains lacked a significant number of reactions predicted to be present in all other Pseudomonas strains analyzed, which is consistent with the hypothesis that P. syringae is adapted for growth in a nutritionally constrained environment. Pathway predictions demonstrated that some of the differences detected in metabolic network comparisons could account for differences in amino acid assimilation ability reported in experimental analyses. Parsimony analysis and reaction neighborhood approaches were used to model the evolution of metabolic networks and amino acid assimilation pathways in pseudomonads. Both methods supported a model of Pseudomonas evolution in which the common ancestor of P. syringae had experienced a significant number of deletion events relative to other nonpathogenic pseudomonads. We discuss how the characteristic metabolic features of P. syringae could reflect adaptation to a pathogenic lifestyle.

  9. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens.

    PubMed

    Otaka, Junnosuke; Seo, Shigemi; Nishimura, Marie

    2016-07-28

    α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota) extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection.

  10. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens.

    PubMed

    Yuan, Jun; Li, Bing; Zhang, Nan; Waseem, Raza; Shen, Qirong; Huang, Qiwei

    2012-03-28

    Bacillus amyloliquefaciens strains have been used as biocontrol agents for the suppression of several soilborne plant pathogens. A clearer understanding of the antagonistic mechanisms of action of these bacteria will facilitate their use in the control of plant diseases. Antagonistic substances were isolated from the fermentation broth of B. amyloliquefaciens strain NJN-6 cultures. These compounds were preconcentrated using an XAD-16 column and were purified using reversed-phase high-performance liquid chromatography (RP-HPLC). Fractions were collected from the column and were analyzed, and two homologues of bacillomycin D [molecular weights of 1030 Da (C14) and 1044 Da (C15)] and three homologues of members of the macrolactin family, macrolactin A, 7-O-malonyl macrolactin A, and 7-O-succinyl macrolactin A (molecular weights of 402, 487, and 502 Da, respectively) were identified using HPLC/electrospray ionization mass spectrometry (ESI-MS) analysis. An antagonistic assay showed that bacillomycin D and macrolactin exhibited significant antagonistic effects against Fusarium oxysporum and Ralstonia solanacearum , respectively. A reliable method for the isolation and purification of bacillomycin D and macrolactin from bacterial broth cultures was developed. These data will help elucidate the mechanisms that B. amyloliquefaciens NJN-6 uses for the biocontrol of soilborne plant pathogens.

  11. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12.

    PubMed

    Wise, Cody; Falardeau, Justin; Hagberg, Ingrid; Avis, Tyler J

    2014-10-01

    Fengycin is an antimicrobial cyclic lipopeptide produced by various Bacillus subtilis strains, including strain CU12. Direct effects of fengycin include membrane pore formation and efflux of cellular contents leading to cell death in sensitive microorganisms. In this study, four plant pathogens were studied in order to elucidate the role of membrane lipids in their relative sensitivity to fengycin. Inhibition of mycelial growth in these pathogens varied considerably. Analysis of membrane lipids in these microorganisms indicated that sensitivity correlated with low ergosterol content and shorter phospholipid fatty acyl chains. Sensitivity to fengycin also correlated with a lower anionic/zwitterionic phospholipid ratio. Our data suggest that decreased fluidity buffering capacity, as a result of low ergosterol content, and higher intrinsic fluidity afforded by short fatty acyl chain length may increase the sensitivity of microbial membranes to fengycin. Our results also suggest that lower content in anionic phospholipids may increase fengycin insertion into the membrane through reduced electrostatic repulsion with the negatively charged fengycin. The intrinsic membrane lipid composition may contribute, in part, to the observed level of antimicrobial activity of fengycin in various plant pathogens.

  12. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    PubMed

    Nakabachi, Atsushi; Nikoh, Naruo; Oshima, Kenshiro; Inoue, Hiromitsu; Ohkuma, Moriya; Hongoh, Yuichi; Miyagishima, Shin-ya; Hattori, Masahira; Fukatsu, Takema

    2013-01-01

    he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.

  13. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    PubMed

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  14. Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus.

    PubMed

    Rech, Gabriel E; Sanz-Martín, José M; Anisimova, Maria; Sukno, Serenella A; Thon, Michael R

    2014-09-04

    Natural selection leaves imprints on DNA, offering the opportunity to identify functionally important regions of the genome. Identifying the genomic regions affected by natural selection within pathogens can aid in the pursuit of effective strategies to control diseases. In this study, we analyzed genome-wide patterns of selection acting on different classes of sequences in a worldwide sample of eight strains of the model plant-pathogenic fungus Colletotrichum graminicola. We found evidence of selective sweeps, balancing selection, and positive selection affecting both protein-coding and noncoding DNA of pathogenicity-related sequences. Genes encoding putative effector proteins and secondary metabolite biosynthetic enzymes show evidence of positive selection acting on the coding sequence, consistent with an Arms Race model of evolution. The 5' untranslated regions (UTRs) of genes coding for effector proteins and genes upregulated during infection show an excess of high-frequency polymorphisms likely the consequence of balancing selection and consistent with the Red Queen hypothesis of evolution acting on these putative regulatory sequences. Based on the findings of this work, we propose that even though adaptive substitutions on coding sequences are important for proteins that interact directly with the host, polymorphisms in the regulatory sequences may confer flexibility of gene expression in the virulence processes of this important plant pathogen.

  15. Taxonomic similarity, more than contact opportunity, explains novel plant-pathogen associations between native and alien taxa.

    PubMed

    Bufford, Jennifer L; Hulme, Philip E; Sikes, Benjamin A; Cooper, Jerry A; Johnston, Peter R; Duncan, Richard P

    2016-11-01

    Novel associations between plants and pathogens can have serious impacts on managed and natural ecosystems world-wide. The introduction of alien plants increases the potential for biogeographically novel plant-pathogen associations to arise when pathogens are transmitted from native to alien plant species and vice versa. We quantified biogeographically novel associations recorded in New Zealand over the last 150 yr between plant pathogens (fungi, oomycetes and plasmodiophorids) and vascular plants. We examined the extent to which taxonomic similarity, pathogen traits, contact opportunity and sampling effort could explain the number of novel associates for host and pathogen species. Novel associations were common; approximately one-third of surveyed plants and pathogens were recorded with at least one biogeographically novel associate. Native plants had more alien pathogens than vice versa. Taxonomic similarity between the native and alien flora and the total number of recorded associations (a measure of sampling effort) best explained the number of novel associates among species. The frequency of novel associations and the importance of sampling effort as an explanatory variable emphasize the need for effective monitoring and risk assessment tools to mitigate the potential environmental and economic impact of novel pathogen associations.

  16. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi.

    PubMed

    Chang, Hui-Ting; Cheng, Ying-Hung; Wu, Chi-Lin; Chang, Shang-Tzen; Chang, Tun-Tschu; Su, Yu-Chang

    2008-09-01

    Resistance to conventional fungicides causes the poor disease control of agriculture. Natural products from plants have great potential as novel fungicide sources for controlling pathogenic fungi. In this study antipathogenic activity of the leaf essential oil and its constituents from Calocedrus macrolepis var. formosana Florin were evaluated in vitro against six plant pathogenic fungi. Chemical analysis of leaf oil by GC/MS allowed identification of alpha-pinene (44.2%), limonene (21.6%), beta-myrcene (8.9%), beta-caryophyllene (8.2%), caryophyllene oxide (2.4%), alpha-cadinol (1.6%), beta-pinene (1.2%), and T-muurolol (1.1%) as main components. Sesquiterpenoid components of the oil were more effective than monoterpenoid components of the oil. In particular, T-muurolol and alpha-cadinol strongly inhibited the growth of Rhizoctonia solani and Fusarium oxysporum, with the IC(50) values < 50 microg ml(-1). These compounds also efficiently inhibited the mycelial growths of Colletotrichum gloeosporioides, P. funerea, Ganoderma australe and F. solani. These results showed that T-muurolol and alpha-cadinol possess antifungal activities against a broad spectrum of tested plant pathogenic fungi and could be used as potential antifungal agents for the control of fungal diseases in plants.

  17. Activity in vitro and in vivo against plant pathogenic fungi of grifolin isolated from the basidiomycete Albatrellus dispansus.

    PubMed

    Luo, Du-Qiang; Shao, Hong-Jun; Zhu, Hua-Jie; Liu, Ji-Kai

    2005-01-01

    In the course of screening for novel naturally occurring fungicides from mushrooms in Yunnan province, China, the ethanol extract of the fruiting bodies of Albatrellus dispansus was found to show antifungal activity against plant pathogenic fungi. The active compound was isolated from the fruiting bodies of A. dispansus by bioassay-guided fractionation of the extract and identified as grifolin by IR, 1H and 13C NMR and mass spectral analysis. Its antifungal activities were evaluated in vitro against 9 plant pathogenic fungi and in vivo against the plant disease of Erysiphe graminis. In vitro, Sclerotinina sclerotiorum and Fusarium graminearum were the most sensitive fungi to grifolin, and their mycelial growth inhibition were 86.4 and 80.9% at 304.9 microM, respectively. Spore germination of F. graminearum, Gloeosporium fructigenum and Pyricularia oryzae was almost completely inhibited by 38.1microM grifolin. In vivo, the curative effect of grifolin against E. graminis was 65.5% at 304.9 microM after 8 days.

  18. Insights into the adaptive response of the plant-pathogenic oomycete Phytophthora capsici to the fungicide flumorph

    PubMed Central

    Pang, Zhili; Chen, Lei; Mu, Wenjun; Liu, Li; Liu, Xili

    2016-01-01

    Phytophthora capsici is an important oomycete plant pathogen that causes significant losses worldwide. The carboxylic acid amide fungicide flumorph has shown excellent activity against oomycete plant pathogens. Despite its potential, there remains concern that the sexual reproduction of oomycete pathogens, which results in genetic recombination, could result in the rapid development of resistance to flumorph. The current study utilized an iTRAQ (isobaric tags for relative and absolute quantitation) based method to compare differences between the proteome of the parental P. capsici isolate PCAS1 and its sexual progeny S2-838, which exhibits significant resistance to flumorph. A total of 2396 individual proteins were identified, of these, 181 were considered to be associated with the adaptive response of P. capsici to flumorph. The subsequent bioinformatic analysis revealed that the adaptive response of P. capsici to flumorph was complex and regulated by multiple mechanisms, including utilising carbohydrate from the host environment to compensate for the cell wall stress induced by flumorph, a shift in energy generation, decreased amino acids biosynthesis, and elevated levels of proteins associated with the pathogen’s response to stimulus and transmembrane transport. Moreover, the results of the study provided crucial data that could provide the basis for early monitoring of flumorph resistance in field populations of P. capsici. PMID:27050922

  19. Insights into the adaptive response of the plant-pathogenic oomycete Phytophthora capsici to the fungicide flumorph.

    PubMed

    Pang, Zhili; Chen, Lei; Mu, Wenjun; Liu, Li; Liu, Xili

    2016-04-06

    Phytophthora capsici is an important oomycete plant pathogen that causes significant losses worldwide. The carboxylic acid amide fungicide flumorph has shown excellent activity against oomycete plant pathogens. Despite its potential, there remains concern that the sexual reproduction of oomycete pathogens, which results in genetic recombination, could result in the rapid development of resistance to flumorph. The current study utilized an iTRAQ (isobaric tags for relative and absolute quantitation) based method to compare differences between the proteome of the parental P. capsici isolate PCAS1 and its sexual progeny S2-838, which exhibits significant resistance to flumorph. A total of 2396 individual proteins were identified, of these, 181 were considered to be associated with the adaptive response of P. capsici to flumorph. The subsequent bioinformatic analysis revealed that the adaptive response of P. capsici to flumorph was complex and regulated by multiple mechanisms, including utilising carbohydrate from the host environment to compensate for the cell wall stress induced by flumorph, a shift in energy generation, decreased amino acids biosynthesis, and elevated levels of proteins associated with the pathogen's response to stimulus and transmembrane transport. Moreover, the results of the study provided crucial data that could provide the basis for early monitoring of flumorph resistance in field populations of P. capsici.

  20. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis.

    PubMed

    Weber, Isabella; Assmann, Daniela; Thines, Eckhard; Steinberg, Gero

    2006-01-01

    Fungal chitin synthases (CHSs) form fibers of the cell wall and are crucial for substrate invasion and pathogenicity. Filamentous fungi contain up to 10 CHSs, which might reflect redundant functions or the complex biology of these fungi. Here, we investigate the complete repertoire of eight CHSs in the dimorphic plant pathogen Ustilago maydis. We demonstrate that all CHSs are expressed in yeast cells and hyphae. Green fluorescent protein (GFP) fusions to all CHSs localize to septa, whereas Chs5-GFP, Chs6-GFP, Chs7-yellow fluorescent protein (YFP), and Myosin chitin synthase1 (Mcs1)-YFP were found at growth regions of yeast-like cells and hyphae, indicating that they participate in tip growth. However, only the class IV CHS genes chs7 and chs5 are crucial for shaping yeast cells and hyphae ex planta. Although most CHS mutants were attenuated in plant pathogenicity, Deltachs6, Deltachs7, and Deltamcs1 mutants were drastically reduced in virulence. Deltamcs1 showed no morphological defects in hyphae, but Mcs1 became essential during invasion of the plant epidermis. Deltamcs1 hyphae entered the plant but immediately lost growth polarity and formed large aggregates of spherical cells. Our data show that the polar class IV CHSs are essential for morphogenesis ex planta, whereas the class V myosin-CHS is essential during plant infection.

  1. De Novo Transcriptome Analysis of Plant Pathogenic Fungus Myrothecium roridum and Identification of Genes Associated with Trichothecene Mycotoxin Biosynthesis

    PubMed Central

    Ye, Wei; Liu, Taomei; Zhu, Muzi; Zhang, Weimin; Li, Haohua; Huang, Zilei; Li, Saini

    2017-01-01

    Myrothecium roridum is a plant pathogenic fungus that infects different crops and decreases the yield of economical crops, including soybean, cotton, corn, pepper, and tomato. Until now, the pathogenic mechanism of M. roridum has remained unclear. Different types of trichothecene mycotoxins were isolated from M. roridum, and trichothecene was considered as a plant pathogenic factor of M. roridum. In this study, the transcriptome of M. roridum in different incubation durations was sequenced using an Illumina Hiseq 2000. A total of 35,485 transcripts and 25,996 unigenes for M. roridum were obtained from 8.0 Gb clean reads. The protein–protein network of the M. roridum transcriptome indicated that the mitogen-activated protein kinases signal pathway also played an important role in the pathogenicity of M. roridum. The genes related to trichothecene biosynthesis were annotated. The expression levels of these genes were also predicted and validated through quantitative real-time polymerase chain reaction. Tri5 gene encoding trichodiene synthase was cloned and expressed, and the purified trichodiene synthase was able to catalyze farnesyl pyrophosphate into different kinds of sesquiterpenoids.Tri4 and Tri11 genes were expressed in Escherichia coli, and their corresponding enzymatic properties were characterized. The phylogenetic tree of trichodiene synthase showed a great discrepancy between the trichodiene synthase from M. roridum and other species. Our study on the genes related to trichothecene biosynthesis establishes a foundation for the M. roridum hazard prevention, thus improving the yields of economical crops. PMID:28245611

  2. Isolation and Characterization of Plant-Pathogenic Streptomyces Species Associated with Common Scab-Infected Potato Tubers in Newfoundland.

    PubMed

    Fyans, Joanna K; Bown, Luke; Bignell, Dawn R D

    2016-02-01

    Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp.

  3. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000.

    PubMed

    D'Amico, Katherine; Filiatrault, Melanie J

    2017-01-10

    The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. To better manage disease in the field, it is important to have an understanding of the underlying genetic mechanisms that mediate virulence. There are a substantial number of genes in sequenced bacterial genomes, including P. syringae, that encode for conserved hypothetical proteins; some of these have been functionally characterized in other Pseudomonads and have been demonstrated to play important roles in disease. PSPTO_3957 encodes a conserved hypothetical protein of unknown function. To evaluate the role of PSPTO_3957 in P. syringae pv. tomato DC3000, a PSPTO_3957 deletion mutant was constructed. Here we show that PSPTO_3957 does not influence growth on rich media, motility, or biofilm formation but is necessary for nitrate assimilation and full virulence in P. syringae Our results have revealed an important role for PSPTO_3957 in the biology of P. syringae Given the conservation of this protein among many bacteria, this protein might serve as an attractive target for disease management of this and other bacterial plant pathogens.

  4. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    PubMed Central

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  5. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.

    PubMed

    Raaijmakers, Jos M; Mazzola, Mark

    2012-01-01

    Soil- and plant-associated environments harbor numerous bacteria that produce antibiotic metabolites with specific or broad-spectrum activities against coexisting microorganisms. The function and ecological importance of antibiotics have long been assumed to yield a survival advantage to the producing bacteria in the highly competitive but resource-limited soil environments through direct suppression. Although specific antibiotics may enhance producer persistence when challenged by competitors or predators in soil habitats, at subinhibitory concentrations antibiotics exhibit a diversity of other roles in the life history of the producing bacteria. Many processes modulated by antibiotics may be inherently critical to the producing bacterium, such as the acquisition of substrates or initiation of developmental changes that will ensure survival under stressful conditions. Antibiotics may also have roles in more complex interactions, including in virulence on host plants or in shaping the outcomes of multitrophic interactions. The innate functions of antibiotics to producing bacteria in their native ecosystem are just beginning to emerge, but current knowledge already reveals a breadth of activities well beyond the historical perspective of antibiotics as weaponry in microbial conflicts.

  6. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions.

    PubMed

    D'Alessandro, Marco; Erb, Matthias; Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C J

    2014-04-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.

  7. Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine.

    PubMed

    Gehring, I; Geider, K

    2012-07-01

    Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.

  8. Regulatory genes and environmental regulation of amylovoran biosynthesis in Erwinia amylovora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirement of the exopolysaccharide amylovoran for Erwinia amylovora pathogenesis is well documented. However, regulation of amylovoran biosynthesis has not been comprehensively studied. We have previously reported that amylovoran production is strain-dependent in E. amylovora isolates. We have...

  9. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection.

  10. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species.

    PubMed

    Johnson, Eric T; Evans, Kervin O; Dowd, Patrick F

    2015-09-01

    A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  11. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence.

    PubMed

    Darrasse, Armelle; Darsonval, Arnaud; Boureau, Tristan; Brisset, Marie-Noëlle; Durand, Karine; Jacques, Marie-Agnès

    2010-10-01

    An understanding of the mechanisms involved in the different steps of bacterial disease epidemiology is essential to develop new control strategies. Seeds are the passive carriers of a diversified microbial cohort likely to affect seedling physiology. Among seed-borne plant-pathogenic bacteria, seed carriage in compatible situations is well evidenced. The aims of our work are to determine the efficiency of pathogen transmission to seeds of a nonhost plant and to evaluate bacterial and plant behaviors at emergence. Bacterial transmission from flowers to seeds and from seeds to seedlings was measured for Xanthomonas campestris pv. campestris in incompatible interactions with bean. Transmissions from seeds to seedlings were compared for X. campestris pv. campestris, for Xanthomonas citri pv. phaseoli var. fuscans in compatible interactions with bean, and for Escherichia coli, a human pathogen, in null interactions with bean. The induction of defense responses was monitored by using reverse transcription and quantitative PCR (RT-qPCR) of genes representing the main signaling pathways and assaying defense-related enzymatic activities. Flower inoculations resulted in a high level of bean seed contamination by X. campestris pv. campestris, which transmitted efficiently to seedlings. Whatever the type of interaction tested, dynamics of bacterial population sizes were similar on seedlings, and no defense responses were induced evidencing bacterial colonization of seedlings without any associated defense response induction. Bacteria associated with the spermosphere multiply in this rich environment, suggesting that the colonization of seedlings relies mostly on commensalism. The transmission of plant-pathogenic bacteria to and by nonhost seeds suggests a probable role of seeds of nonhost plants as an inoculum source.

  12. Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput.

    PubMed

    Xu, Zhen; Jiang, Huawei; Sahu, Binod Bihari; Kambakam, Sekhar; Singh, Prashant; Wang, Xinran; Wang, Qiugu; Bhattacharyya, Madan K; Dong, Liang

    2016-05-01

    This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where

  13. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions.

    PubMed

    Bharadwaj, Dharam Parkash; Alström, Sadhna; Lundquist, Per-Olof

    2012-08-01

    Arbuscular mycorrhizal (AM) fungi interact with bacteria (AM fungi-associated bacteria, AMB) in the mycorrhizosphere. We previously identified a set of AMB that enhance AM fungal colonization, plant growth, and inhibit pathogens. Here, we used transformed carrot root cultures in a two-compartment plate system for further in vitro studies on interactions taking place among Glomus irregulare (syn.Glomus intraradices), AMB, and plant pathogens. We found that exudates of G. irregulare stimulated growth of all ten AMB isolates tested in multi-well plates. AMB growth stimulation was observed also during co-cultivation of three of these AMB with G. irregulare in the hyphal compartment. In addition, co-cultivation stimulated growth of G. irregulare hyphae and spore production, as well as G. irregulare root colonization. GC/MS analysis in a preliminary screening of metabolites revealed differences in concentrations of several identified but also unidentified compounds in G. irregulare hyphal exudates. Exudates in presence of three different AMB isolates co-cultivated with G. irregulare contained several additional compounds that differed in amount compared with G. irregulare alone. The results indicate that G. irregulare exudates contain carbohydrates, amino acids, and unidentified compounds that could serve as a substrate to stimulate AMB growth. With regard to effects on plant pathogens, growth inhibition of Rhizoctonia solani, Verticillium dahliae, and Pectobacterium carotovorum ssp. carotovorum was evident in the presence of the AMB isolates tested together with the G. irregulare exudates. These in vitro studies suggest that G. irregulare and AMB stimulate growth of each other and that they together seem to provide an additive effect against growth of both fungal and bacterial pathogens.

  14. Use of a passive bioreactor to reduce water-borne plant pathogens, nitrate, and sulfate in greenhouse effluent.

    PubMed

    Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

    2013-01-01

    The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts.

  15. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora.

    PubMed

    Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L

    2010-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard.

  16. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    PubMed Central

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; Van Leeuwen, Thomas; Vontas, John

    2017-01-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism. PMID:28225009

  17. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding.

    PubMed

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; Van Leeuwen, Thomas; Vontas, John

    2017-02-22

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.

  18. Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.

    PubMed

    Asselin, J E; Bonasera, J M; Kim, J F; Oh, C-S; Beer, S V

    2011-08-01

    Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.

  19. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells.

    PubMed

    Abdollahi, Hamid; Ghahremani, Zahra; Erfaninia, Kobra; Mehrabi, Rahim

    2015-05-01

    Erwinia amylovora is a necrogenic bacterium, causing the fire blight disease on many rosaceous plants. Triggering oxidative burst by E. amylovora is a key response by which host plants try to restrain pathogen spread. Electron transport chain (ETC) of chloroplasts is known as an inducible source of reactive oxygen species generation in various stresses. This research was performed to assess the role of this ETC in E. amylovora-host interaction using several inhibitors of this chain in susceptible and resistant apple and pear genotypes. All ETC inhibitors delayed appearance of disease necrosis, but the effects of methyl viologen, glutaraldehyde, and DCMU were more significant. In the absence of inhibitors, resistant genotypes showed an earlier and severe H2O2 generation and early suppression of redox dependent, psbA gene. The effects of inhibitors were corresponding to the redox potential of ETC inhibitory sites. In addition, delayed necrosis appearance was associated with the decreased disease severity and delayed H2O2 generation. These results provide evidences for the involvement of this ETC in host oxidative burst and suggest that chloroplast ETC has significant role in E. amylovora-host interaction.

  20. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora.

    PubMed

    Berry, Matthew C; McGhee, Gayle C; Zhao, Youfu; Sundin, George W

    2009-02-01

    Erwinia amylovora, the causal agent of fire blight, is an enterobacterial pathogen of Rosaceous plants including apple and pear. We have been studying the response of E. amylovora to oxidative stress because, during infection, the bacterium elicits an oxidative burst response in host plants. During the screening of a transposon mutant library for hydrogen peroxide sensitivity, we identified a mutant carrying an insertion in waaL, a gene involved in lipopolysaccharide biosynthesis, that was more sensitive to hydrogen peroxide than the parental wild-type strain. We also confirmed that a waaL mutant of Pseudomonas aeruginosa exhibited an increased sensitivity to hydrogen peroxide compared with the wild-type strain. The E. amylovora waaL mutant was also reduced in virulence, showed a decrease in twitching motility, and was more sensitive to polymyxin B than the wild type. Each of these phenotypes was complemented by the cloned waaL gene. Our results highlight the importance of the lipopolysaccharide layer to virulence in E. amylovora and the unexpected finding of an additional function of lipopolysaccharide in protection from oxidative stress in E. amylovora and P. aeruginosa.

  1. Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene.

    PubMed

    Águila-Clares, Begoña; Castiblanco, Luisa F; Quesada, José Miguel; Penyalver, Ramón; Carbonell, Juan; López, María M; Marco-Noales, Ester; Sundin, George W

    2016-11-14

    Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper-based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole-genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes revealed that tolerance to copper in E. amylovora can be achieved by complex physiological mechanisms, including: (i) the control of copper homeostasis through, at least, the extrusion of Cu(I) by a P-type ATPase efflux pump CopA; and (ii) the overcoming of copper toxicity caused by oxidative stress by the expression of several reactive oxygen species (ROS)-related genes, including the two major transcriptional factors SoxS and ArcB. Furthermore, complementation analyses demonstrated the important role of copA for copper tolerance in E. amylovora, not only in vitro, but also in inoculated pear shoots.

  2. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    NASA Astrophysics Data System (ADS)

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; van Leeuwen, Thomas; Vontas, John

    2017-02-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.

  3. Immobilization of glucosyltransferase from Erwinia sp. using two different techniques.

    PubMed

    Contesini, Fabiano Jares; Ibarguren, Carolina; Grosso, Carlos Raimundo Ferreira; Carvalho, Patrícia de Oliveira; Sato, Hélia Harumi

    2012-04-15

    Two different techniques of glucosyltransferase immobilization were studied for the conversion of sucrose into isomaltulose. The optimum conditions for immobilization of Erwinia sp. glucosyltransferase onto Celite 545, determined using response surface methodology, was pH 4.0 and 170 U of glucosyltransferase/g of Celite 545. Using this conditions more than 60% conversion of sucrose into isomaltulose can be obtained. The immobilization of glucosyltransferase was also studied by its entrapment in microcapsules of low-methoxyl pectin and fat (butter and oleic acid). The non-lyophilized microcapsules of pectin, containing the enzyme and fat, showed higher glucosyltransferase activity, compared with lyophilized microcapsules containing enzyme plus fat, and also lyophilized microcapsules containing enzyme without fat addition. The non-lyophilized microcapsules of pectin containing the glucosyltransferase and fat, converted 30% of sucrose into isomaltulose in the first batch. However the conversion decreased to 5% at the 10th batch, indicating inactivation of the enzyme.

  4. Purification and characterization of 5-ketofructose reductase from Erwinia citreus.

    PubMed Central

    Schrimsher, J L; Wingfield, P T; Bernard, A; Mattaliano, R; Payton, M A

    1988-01-01

    5-Ketofructose reductase [D(-)fructose:(NADP+) 5-oxidoreductase] was purified to homogeneity from Erwinia citreus and demonstrated to catalyse the reversible NADPH-dependent reduction of 5-ketofructose (D-threo-2,5-hexodiulose) to D-fructose. The enzyme appeared as a single species upon analyses by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing with an apparent relative molecular mass of 40,000 and an isoelectric point of 4.4. The amino acid composition of the enzyme and the N-terminal sequence of the first 39 residues are described. The steady-state kinetic mechanism was an ordered one with NADPH binding first to the enzyme and then to 5-ketofructose, and the order of product release was D-fructose followed by NADP+. The reversible nature of the reaction offers the possibility of using this enzyme for the determination of D-fructose. Images Fig. 1. Fig. 2. PMID:3178725

  5. Complete genome sequences of three Erwinia amylovora phages isolated in north america and a bacteriophage induced from an Erwinia tasmaniensis strain.

    PubMed

    Müller, I; Kube, M; Reinhardt, R; Jelkmann, W; Geider, K

    2011-02-01

    Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.

  6. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings.

    PubMed

    Rojas, Clemencia M; Ham, Jong Hyun; Deng, Wen-Ling; Doyle, Jeff J; Collmer, Alan

    2002-10-01

    Erwinia chrysanthemi is representative of a broad class of bacterial pathogens that are capable of inducing necrosis in plants. The E. chrysanthemi EC16 hecA gene predicts a 3,850-aa member of the Bordetella pertussis filamentous hemagglutinin family of adhesins. A hecATn7 mutant was reduced in virulence on Nicotiana clevelandii seedlings after inoculation without wounding. Epifluorescence and confocal laser-scanning microscopy observations of hecA and wild-type cells expressing the green fluorescent protein revealed that the mutant is reduced in its ability to attach and then form aggregates on leaves and to cause an aggregate-associated killing of epidermal cells. Cell killing also depended on production of the major pectate lyase isozymes and the type II, but not the type III, secretion pathway in E. chrysanthemi. HecA homologs were found in bacterial pathogens of plants and animals and appear to be unique to pathogens and universal in necrogenic plant pathogens. Phylogenetic comparison of the conserved two-partner secretion domains in the proteins and the 16S rRNA sequences in respective bacteria revealed the two datasets to be fundamentally incongruent, suggesting horizontal acquisition of these genes. Furthermore, hecA and its two homologs in Yersinia pestis had a G+C content that was 10% higher than that of their genomes and similar to that of plant pathogenic Ralstonia, Xylella, and Pseudomonas spp. Our data suggest that filamentous hemagglutinin-like adhesins are broadly important virulence factors in both plant and animal pathogens.

  7. Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria.

    PubMed

    Rodionov, Dmitry A; Gelfand, Mikhail S; Hugouvieux-Cotte-Pattat, Nicole

    2004-11-01

    In the plant-pathogenic enterobacterium Erwinia chrysanthemi, almost all known genes involved in pectin catabolism are controlled by the transcriptional regulator KdgR. In this study, the comparative genomics approach was used to analyse the KdgR regulon in completely sequenced genomes of eight enterobacteria, including Erw. chrysanthemi, and two Vibrio species. Application of a signal recognition procedure complemented by operon structure and protein sequence analysis allowed identification of new candidate genes of the KdgR regulon. Most of these genes were found to be controlled by the cAMP-receptor protein, a global regulator of catabolic genes. At the next step, regulation of these genes in Erw. chrysanthemi was experimentally verified using in vivo transcriptional fusions and an attempt was made to clarify the functional role of the predicted genes in pectin catabolism. Interestingly, it was found that the KdgR protein, previously known as a repressor, positively regulates expression of two new members of the regulon, phosphoenolpyruvate synthase gene ppsA and an adjacent gene, ydiA, of unknown function. Other predicted regulon members, namely chmX, dhfX, gntB, pykF, spiX, sotA, tpfX, yeeO and yjgK, were found to be subject to classical negative regulation by KdgR. Possible roles of newly identified members of the Erw. chrysanthemi KdgR regulon, chmX, dhfX, gntDBMNAC, spiX, tpfX, ydiA, yeeO, ygjV and yjgK, in pectin catabolism are discussed. Finally, complete reconstruction of the KdgR regulons in various gamma-proteobacteria yielded a metabolic map reflecting a globally conserved pathway for the catabolism of pectin and its derivatives with variability in transport and enzymic capabilities among species. In particular, possible non-orthologous substitutes of isomerase KduI and a new oligogalacturonide transporter in the Vibrio species were detected.

  8. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  9. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a consensus promoter sequence, often designated as the “hrp promoter.” Although...

  10. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced and compared the genomes of Dothideomycete fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum that are related phylogenetically, but have different lifestyles and infect different hosts. C. fulvum is a biotroph that infects tomato, while D. septosporum is a hemibiotr...

  11. Identification of genetic variation between obligate plant pathogens Psuedoperonospora cubensis and P. humuli using RNA sequencing and genotyping-by-sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA sequencing (RNA-seq) and genotyping-by-sequencing (GBS) were used for single nucleotide polymorphism (SNP) identification from two economically important obligate plant pathogens, Pseudoperonospora cubensis and P. humuli. Twenty isolates of P. cubensis and 19 isolates of P. humuli were genotyped...

  12. Practical benefits of knowing the enemy: Modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that often are not used by those who are diagn...

  13. Deep characterization of the microbiomes of Calophya spp. (Hemiptera: Calophyidae) gall-inducing psyllids reveals the absence of plant pathogenic bacteria and three dominant endosymbionts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria associated with sap-feeding insect herbivores include not only symbionts that may increase their hosts’ fitness, but also harmful plant pathogens. Calophya spp., gall-inducing psyllids (Hemiptera: Calophyidae), are being investigated for their potential as biological control agents of the n...

  14. Characterization of 22 highly polymorphic microsatellite loci in the cosmopolitan fungal plant pathogen Verticillium dahliae. Permanent Genetic Resources added to Molecular Ecology Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-two microsatellite loci were characterized in the soilborne plant pathogenic fungus Verticillium dahliae by analysis of the genome sequence. All loci were polymorphic in at least two of three populations of V. dahliae tested and collected from lettuce, spinach and tomato. These loci were us...

  15. Impact of anaerobic soil disinfestations combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field study was established in August 2008 at the USDA-ARS, U.S. Horticultural Research Laboratory in Fort Pierce, FL to examine the effectiveness of anaerobic soil disinfestation (ASD) as an alternative to methyl bromide (MeBr) fumigation for control of plant pathogens and parasitic nema...

  16. The new, third-generation, AC-DC Electrical Penetration Graph (EPG) monitor and its usefulness for IPM research on vectors of plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most rigorous method to identify feeding behaviors of hemipteran vectors of plant pathogens is electrical penetration graph (EPG) monitoring. The purpose of this talk was to review: 1) principals of EPG as a tool for developing novel integrated pest management tools against vectors, and 2) appli...

  17. Characterization of AcrD, a Resistance-Nodulation-Cell Division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background Multidrug efflux pumps are membrane translocases that have the ability to extrude a variety of structurally unrelated compounds from the cell. AcrD, a resistance-nodulation-cell division (RND) transporter, was shown to be involved in efflux of highly hydrophilic aminoglycosides and a limited number of amphiphilic compounds in E. coli. Here, a homologue of AcrD in the plant pathogen and causal agent of fire blight disease Erwinia amylovora was identified. Results The substrate specificity of AcrD was studied by overexpression of the corresponding gene from a high-copy plasmid in E. amylovora Ea1189-3, which is hypersensitive to many drugs due to a deficiency of the major multidrug pump AcrB. AcrD mediated resistance to several amphiphilic compounds including clotrimazole and luteolin, two compounds hitherto not described as substrates of AcrD in enterobacteria. However, AcrD was not able to expel aminoglycosides. An acrD mutant exhibited full virulence on apple rootstock and immature pear fruits. RT-PCR analysis revealed an induction of acrD expression in infected apple tissue but not on pear fruits. Moreover, a direct binding of BaeR, the response regulator of the two-component regulatory system BaeSR, to the acrD promoter was observed as has already been shown in other enterobacteria. Conclusions AcrD from E. amylovora is involved in resistance to a limited number of amphiphilic compounds, but in contrast to AcrD of E. coli, it is not involved in resistance to aminoglycosides. The expression of acrD was up-regulated by addition of the substrates deoxycholate, naringenin, tetracycline and zinc. AcrD appears to be regulated by the BaeSR two-component system, an envelope stress signal transduction pathway. PMID:24443882

  18. AraC/XylS family stress response regulators Rob, SoxS, PliA, and OpiA in the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Schweizer, Gabriel; Weingart, Helge

    2014-09-01

    Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses.

  19. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees.

    PubMed

    Rezzonico, Fabio; Smits, Theo H M; Born, Yannick; Blom, Jochen; Frey, Jürg E; Goesmann, Alexander; Cleenwerck, Ilse; de Vos, Paul; Bonaterra, Anna; Duffy, Brion; Montesinos, Emilio

    2016-01-26

    A survey to obtain potential antagonists of pome fruit tree diseases yielded two yellow epiphytic bacterial isolates morphologically similar to Pantoea agglomerans, but showing no biocontrol activity. Whole-Cell MALDI-TOF mass spectrometry and analysis of 16S rRNA and gyrB gene sequences suggested the possibility of a new species with a phylogenetic position in either Pantoea or Erwinia. Multilocus sequence analysis (MLSA) placed the two strains in the genus Erwinia and supported their classification as a novel species. The strains showed general phenotypic characteristics typical of this genus and results of DNA-DNA hybridizations confirmed that they represent a single novel species. Both strains showed a DNA G+C content, as determined by HPLC, of 54.5 mol% and could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, potassium 2-ketogluconate, D-maltose, D-melibiose and D-raffinose. Whole-genome sequencing of strain EM595T revealed the presence of a chromosomal carotenoid biosynthesis gene cluster similar to those found in Cronobacter and Pantoea spp. that explains the pigmentation of the strain, which is atypical for the genus Erwinia. Additional strains belonging to the same species were recovered from different plant hosts in three different continents, revealing the cosmopolitan nature of this epiphyte. The name Erwinia gerundensis sp. nov. is proposed, with EM595T (= LMG 28990T; = CCOS 903T) as the designated type strain.

  20. Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium

    PubMed Central

    Arif, Mohammad; Busot, Grethel Y.; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P.

    2016-01-01

    Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of isolation was determined for isolates collected over a forty-year period. Discriminant analyses of recently collected and archived isolates using Multi-Locus Sequence Typing (MLST) and Inter-Simple Sequence Repeats (ISSR) identified three populations of R. toxicus; RT-I and RT-II from South Australia and RT-III from Western Australia. Population RT-I, detected in 2013 and 2014 from the Yorke Peninsula in South Australia, is a newly emerged population of R. toxicus not previously reported. Commonly used housekeeping genes failed to discriminate among the R. toxicus isolates. However, strategically selected and genome-dispersed MLST genes representing an array of cellular functions from chromosome replication, antibiotic resistance and biosynthetic pathways to bacterial acquired immunity were discriminative. Genetic variation among isolates within the RT-I population was less than the within-population variation for the previously reported RT-II and RT-III populations. The lower relative genetic variation within the RT-I population and its absence from sampling over the past 40 years suggest its recent emergence. RT-I was the dominant population on the Yorke Peninsula during the 2013–2014 sampling period perhaps indicating a competitive advantage over the previously detected RT-II population. The potential for introduction of this bacterial plant pathogen into new geographic areas provide a rationale for understanding the ecological and evolutionary trajectories of R. toxicus

  1. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences.

    PubMed Central

    Lim, P O; Sears, B B

    1992-01-01

    The families within the class Mollicutes are distinguished by their morphologies, nutritional requirements, and abilities to metabolize certain compounds. Biosystematic classification of the plant-pathogenic mycoplasmalike organisms (MLOs) has been difficult because these organisms have not been cultured in vitro, and hence their nutritional requirements have not been determined nor have physiological characterizations been possible. To investigate the evolutionary relationship of the MLOs to other members of the class Mollicutes, a segment of a ribosomal protein operon was cloned and sequenced from an aster yellows-type MLO which is pathogenic for members of the genus Oenothera and from Acholeplasma laidlawii. The deduced amino acid sequence data from the rpl22 and rps3 genes indicate that the MLOs are more closely related to A. laidlawii than to animal mycoplasmas, confirming previous results from 16S rRNA sequence comparisons. This conclusion is also supported by the finding that the UGA codon is not read as a tryptophan codon in the MLO and A. laidlawii, in contrast to its usage in Mycoplasma capricolum. PMID:1556079

  2. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen

    PubMed Central

    Tack, Ayco JM; Laine, Anna-Liisa

    2014-01-01

    While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata in the Åland Islands. Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with c. 40% of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. We conclude that environmentally mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host–parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems. PMID:24372358

  3. An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen.

    PubMed

    Tollot, Marie; Wong Sak Hoi, Joanne; van Tuinen, Diederik; Arnould, Christine; Chatagnier, Odile; Dumas, Bernard; Gianinazzi-Pearson, Vivienne; Seddas, Pascale M A

    2009-01-01

    Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation of a yeast ste12Delta mutant and a Colletotrichum lindemuthianum clste12Delta mutant. * Sequence data indicate that GintSTE is similar to STE12 from hemibiotrophic plant pathogens, especially Colletotrichum spp. Introduction of GintSTE into a noninvasive mutant of C. lindemuthianum restored fungal infectivity of plant tissues. GintSTE expression was specifically localized in extraradicular fungal structures and was up-regulated when G. intraradices penetrated roots of wild-type Medicago truncatula as compared with an incompatible mutant. Results suggest a possible role for GintSTE in early steps of root penetration by AM fungi, and that pathogenic and symbiotic fungi may share common regulatory mechanisms for invasion of plant tissues.

  4. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field.

    PubMed

    Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk

    2013-09-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment.

  5. Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field

    PubMed Central

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.

    2013-01-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512

  6. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens.

    PubMed

    Falardeau, J; Wise, C; Novitsky, L; Avis, T J

    2013-07-01

    Members of the genus Bacillus produce a wide variety of antimicrobial compounds. Cyclic lipopeptides (CLP) produced by Bacillus subtilis strains have been shown to protect host plants from a numbers of pathogens. The representative families of these CLP (surfactins, fengycins, and iturins) share a polypeptide ring linked to a lipid tail of varying length. CLP provide plant protection through a variety of unique mechanisms. Members of the surfactin and fengycin families elicit induced systemic resistance in certain host plants, and they also function by directly affecting the biological membranes of bacterial and fungal pathogens, mainly resulting in membrane pore formation. Specific pore forming mechanisms differ between CLP families, causing differential activities. CLP also may aid in enhanced B. subtilis colonization of the plant environment in addition to potentially preventing the adhesion of competitive microorganisms. Several recent studies have highlighted the control of plant pathogens by CLP-producing B. subtilis strains. Strong ecological advantages through multifaceted activities of CLP provide these strains with immense promise in controlling pathogens in a variety of plant ecosystems.

  7. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens.

    PubMed

    Balashanmugam, P; Balakumaran, M D; Murugan, R; Dhanapal, K; Kalaichelvan, P T

    2016-11-01

    An attempt was made to synthesis of biocompatible silver nanoparticles from ten different Cassia spp. Among them, Cassia roxburghii aqueous leaf extract supported the synthesis of highly efficient and stable AgNPs. The synthesis of AgNPs was optimized at different physico-chemical condition and highly stable AgNPs were synthesized with 1.0mL of C. roxburghii leaf extract, pH 7.0, 1.0mM AgNO3 and at 37°C. The synthesized AgNPs were characterized by XPS, DLS and ZETA potential. DLS and ZETA potential analysis, the average AgNPs size was 35nm and the zeta potential was -18.3mV. The AgNPs exhibit higher antifungal activity when compared with the conventional antifungal drug amphotericin B against all the tested human fungal pathogens such as Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Penicillium sp., Candida albicans and the plant pathogens such as Rhizoctonia solani, Fusarium oxysporum and Curvularia sp. Scanning electron microscope (SEM) analysis showed distinct structural changes in the cell membranes of C. albicans upon AgNPs treatment. These results suggest that phytosynthesized AgNPs could be used as effective growth inhibitors in controlling various human and plant diseases caused by fungi.

  8. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant.

    PubMed

    Biere, Arjen; Elzinga, Jelmer A; Honders, Sonja C; Harvey, Jeffrey A

    2002-11-07

    An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions.

  9. Combining Inferential and Deductive Approaches to Estimate the Potential Geographical Range of the Invasive Plant Pathogen, Phytophthora ramorum

    PubMed Central

    Ireland, Kylie B.; Hardy, Giles E. St. J.; Kriticos, Darren J.

    2013-01-01

    Phytophthora ramorum, an invasive plant pathogen of unknown origin, causes considerable and widespread damage in plant industries and natural ecosystems of the USA and Europe. Estimating the potential geographical range of P. ramorum has been complicated by a lack of biological and geographical data with which to calibrate climatic models. Previous attempts to do so, using either invaded range data or surrogate species approaches, have delivered varying results. A simulation model was developed using CLIMEX to estimate the global climate suitability patterns for establishment of P. ramorum. Growth requirements and stress response parameters were derived from ecophysiological laboratory observations and site-level transmission and disease factors related to climate data in the field. Geographical distribution data from the USA (California and Oregon) and Norway were reserved from model-fitting and used to validate the models. The model suggests that the invasion of P. ramorum in both North America and Europe is still in its infancy and that it is presently occupying a small fraction of its potential range. Phytophthora ramorum appears to be climatically suited to large areas of Africa, Australasia and South America, where it could cause biodiversity and economic losses in plant industries and natural ecosystems with susceptible hosts if introduced. PMID:23667628

  10. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant.

    PubMed Central

    Biere, Arjen; Elzinga, Jelmer A; Honders, Sonja C; Harvey, Jeffrey A

    2002-01-01

    An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions. PMID:12427312

  11. Detection and assessment of chemical hormesis on the radial growth in vitro of oomycetes and fungal plant pathogens.

    PubMed

    Flores, Francisco J; Garzon, Carla D

    2012-01-01

    Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies, agricultural productivity relies heavily on the use of chemical pesticides and biocides for disease prevention and treatment and sanitation of tools and substrates. Despite the prominent use of fungi in early hormesis studies and the continuous use of yeast as a research model, the relevance of hormesis in agricultural systems has not been investigated by plant pathologists, until recently. A protocol was standardized for detection and assessment of chemical hormesis in fungi and oomycetes using radial growth as endpoint. Biphasic dose-responses were observed in Pythium aphanidermatum exposed to sub-inhibitory doses of ethanol, cyazofamid, and propamocarb, and in Rhizoctonia zeae exposed to ethanol. This report provides an update on chemical hormesis in fungal plant pathogens and a perspective on the potential risks it poses to crop productivity and global food supply.

  12. Identification of 18 genes encoding necrosis-inducing proteins from the plant pathogen Phytophthora capsici (Pythiaceae: Oomycetes).

    PubMed

    Feng, B Z; Li, P Q; Fu, L; Sun, B B; Zhang, X G

    2011-05-17

    Phytophthora capsici is an aggressive plant pathogen that affects solanaceous and cucurbitaceous hosts. Necrosis-inducing Phytophthora proteins (NPPs) are a group of secreted toxins found particularly in oomycetes. Several NPPs from Phytophthora species trigger plant cell death and activate host defense gene expression. We isolated 18 P. capsici NPP genes, of which 12 were active during hypha growth from a Phytophthora stain isolated from pepper (Capsicum annuum) plants in China. The 18 predicted proteins had a sequence homology of 46.26%. The 18 Pcnpp sequences had a conserved GHRHDWE motif and fell into two groups. Eleven sequences in group 1 had two conserved cysteine residues, whereas the other seven sequences in group 2 lacked these two cysteine residues. A phylogenetic tree was constructed on the basis of the alignment of the predicted protein sequences of 52 selected NPP genes from oomycetes, fungi and bacteria from Genbank. The tree did not rigorously follow the taxonomic classification of the species; all the NPPs from oomycetes formed their own clusters, while fungal sequences were grouped into two separate clades, indicating that based on NPPs, we can separate oomycetes from fungi and bacteria, and that expansion of the NPP family was a feature of Phytophthora evolution.

  13. The adaptive potential of a plant pathogenic fungus, Rhizoctonia solani AG-3, under heat and fungicide stress.

    PubMed

    Willi, Yvonne; Frank, Aline; Heinzelmann, Renate; Kälin, Andrea; Spalinger, Lena; Ceresini, Paulo C

    2011-07-01

    The ability to improve fitness via adaptive evolution may be affected by environmental change. We tested this hypothesis in an in vitro experiment with the plant pathogen Rhizoctonia solani Anastomosis Group 3 (AG-3), assessing genetic and environmental variances under two temperatures (optimal and higher than optimal) and three fungicide concentrations (no fungicide, low and high concentration of a copper-based fungicide). We measured the mean daily growth rate, the coefficient of variation for genotypic (I (G)) and environmental variance (I (E)) in growth, and broad-sense heritability in growth. Both higher temperature and increased fungicide concentration caused a decline in growth, confirming their potential as stressors for the pathogen. All types of standardized variances in growth-I (G), phenotypic variance, and I (E) as a trend-increased with elevated stress. However, heritability was not significantly higher under enhanced stress because the increase in I (G) was counterbalanced by somewhat increased I (E). The results illustrate that predictions for adaptation under environmental stress may depend on the type of short-term evolvability measure. Because mycelial growth is linked to fitness, I (G) reflects short-term evolvability better than heritability, and it indicates that the evolutionary potential of R. solani is positively affected by stress.

  14. Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis.

    PubMed

    Motaung, Thabiso E; Saitoh, Hiromasa; Tsilo, Toi J

    2016-10-12

    Plant-pathogenic fungi cause diseases to all major crop plants world-wide and threaten global food security. Underpinning fungal diseases are virulence genes facilitating plant host colonization that often marks pathogenesis and crop failures, as well as an increase in staple food prices. Fungal molecular genetics is therefore the cornerstone to the sustainable prevention of disease outbreaks. Pathogenicity studies using mutant collections provide immense function-based information regarding virulence genes of economically relevant fungi. These collections are rich in potential targets for existing and new biological control agents. They contribute to host resistance breeding against fungal pathogens and are instrumental in searching for novel resistance genes through the identification of fungal effectors. Therefore, functional analyses of mutant collections propel gene discovery and characterization, and may be incorporated into disease management strategies. In the light of these attributes, mutant collections enhance the development of practical solutions to confront modern agricultural constraints. Here, a critical review of mutant collections constructed by various laboratories during the past decade is provided. We used Magnaporthe oryzae and Fusarium graminearum studies to show how mutant screens contribute to bridge existing knowledge gaps in pathogenicity and fungal-host interactions.

  15. Plant-Pathogen Interaction, Circadian Rhythm, and Hormone-Related Gene Expression Provide Indicators of Phytoplasma Infection in Paulownia fortunei

    PubMed Central

    Fan, Guoqiang; Dong, Yanpeng; Deng, Minjie; Zhao, Zhenli; Niu, Suyan; Xu, Enkai

    2014-01-01

    Phytoplasmas are mycoplasma-like pathogens of witches’ broom disease, and are responsible for serious yield losses of Paulownia trees worldwide. The molecular mechanisms of disease development in Paulownia are of considerable interest, but still poorly understood. Here, we have applied transcriptome sequencing technology and a de novo assembly approach to analyze gene expression profiles in Paulownia fortunei infected by phytoplasmas. Our previous researches suggested that methyl methane sulfonated (MMS) could reverse the effects of the infection. In this study, leaf samples from healthy, infected, and both infected and methyl methane sulfonate treated plants were analyzed. The results showed that the gene expression profile of P. fortunei underwent dramatic changes after Paulownia witches’ broom (PaWB) phytoplasma infection. Genes that encoded key enzymes in plant-pathogen interaction processes were significantly up-regulated in the PaWB-infected Paulownia. Genes involved in circadian rhythm and hormone-related genes were also altered in Paulownia after PaWB infection. However, after the PaWB-infected plants were treated with MMS, the expression profiles of these genes returned to the levels in the healthy controls. The data will help identify potential PaWB disease-resistance genes that could be targeted to inhibit the growth and reproduction of the pathogen and to increase plant resistance. PMID:25514414

  16. Combinations of Biocontrol Agents for Management of Plant-Parasitic Nematodes and Soilborne Plant-Pathogenic Fungi

    PubMed Central

    Meyer, Susan L. F.; Roberts, Daniel P.

    2002-01-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents. PMID:19265899

  17. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa

    2014-04-01

    While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata in the Åland Islands. Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with c. 40% of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. We conclude that environmentally mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host-parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems.

  18. RNA-Seq facilitates a new perspective on signal transduction and gene regulation in important plant pathogens.

    PubMed

    Vorhölter, Frank-Jörg

    2013-06-01

    RNA-Seq is opening new doors for the functional understanding of microorganisms. Advances in RNA-Seq technology are allowing investigators to focus their studies on specific functional questions. An interesting example is presented by An et al. (2013) in this issue of Molecular Microbiology. New genes were identified for proteins and ncRNAs when the authors concentrated on the role of the rpf genes, which code for key components of a signal transduction hub in the plant pathogen Xanthomonas campestris pv. campestris. Although rpf gene products were already known to be involved in controlling transcription of many genes, including those encoding several important virulence factors, novel and unexpected properties of this signal transduction system emerged from the RNA-Seq analysis. In addition to identifying new target genes influenced by the rpf genes, the study found that the regulons of RpfC and RpfG, the sensor and response regulator of the master two-component regulatory system, only partially overlapped, indicating that the Rpf signalling system is even more complex than previously appreciated.

  19. Quantitative real-time PCR normalization for gene expression studies in the plant pathogenic fungi Lasiodiplodia theobromae.

    PubMed

    Paolinelli-Alfonso, Marcos; Galindo-Sánchez, Clara Elizabeth; Hernandez-Martinez, Rufina

    2016-08-01

    Lasiodiplodia theobromae is a highly virulent plant pathogen. It has been suggested that heat stress increases its virulence. The aim of this work was to evaluate, compare, and recommend normalization strategies for gene expression analysis of the fungus growing with grapevine wood under heat stress. Using RT-qPCR-derived data, reference gene stability was evaluated through geNorm, NormFinder and Bestkeeper applications. Based on the geometric mean using the ranking position obtained for each independent analysis, genes were ranked from least to most stable as follows: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin (TUB) and elongation factor-1α (EF1α). Using RNAseq-derived data based on the calculated tagwise dispersion these genes were ordered by increasing stability as follows: GAPDH, ACT, TUB, and EF1α. The correlation between RNAseq and RTqPCR results was used as criteria to identify the best RT-qPCR normalization approach. The gene TUB is recommended as the best option for normalization among the commonly used reference genes, but alternative fungal reference genes are also suggested.

  20. A Blue Light Inducible Two-Component Signal Transduction System in the Plant Pathogen Pseudomonas syringae pv. tomato☆

    PubMed Central

    Cao, Z.; Buttani, V.; Losi, A.; Gärtner, W.

    2008-01-01

    Abstract The open reading frame PSPTO2896 from the plant pathogen Pseudomonas syringae pv. tomato encodes a protein of 534 amino acids showing all salient features of a blue light-driven two-component system. The N-terminal LOV (light, oxygen, voltage) domain, potentially binding a flavin chromophore, is followed by a histidine kinase (HK) motif and a response regulator (RR). The full-length protein (PST-LOV) and, separately, the RR and the LOV+HK part (PST-LOVΔRR) were heterologously expressed and functionally characterized. The two LOV proteins showed typical LOV-like spectra and photochemical reactions, with the blue light-driven, reversible formation of a covalent flavin-cysteine bond. The fluorescence changes in the lit state of full-length PST-LOV, but not in PST-LOVΔRR, indicating a direct interaction between the LOV core and the RR module. Experiments performed with radioactive ATP uncover the light-driven kinase activity. For both PST-LOV and PST-LOVΔRR, much more radioactivity is incorporated when the protein is in the lit state. Furthermore, addition of the RR domain to the fully phosphorylated PST-LOVΔRR leads to a very fast transfer of radioactivity, indicating a highly efficient HK activity and a tight interaction between PST-LOVΔRR and RR, possibly facilitated by the LOV core itself. PMID:17905842

  1. Two-dimensional data binning for the analysis of genome architecture in filamentous plant pathogens and other eukaryotes.

    PubMed

    Saunders, Diane G O; Win, Joe; Kamoun, Sophien; Raffaele, Sylvain

    2014-01-01

    Genome architecture often reflects an organism's lifestyle and can therefore provide insights into gene function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, characteristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis and visualization of whole genome architecture. The method is flexible, combining whole genome architecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis of specific values associated with genes such as gene expression and sequence polymorphisms, according to genome architecture. This method enables the investigation of whole genome architecture and reveals local properties of genomic neighborhoods in a clear and concise manner.

  2. Interplay between Parasitism and Host Ontogenic Resistance in the Epidemiology of the Soil-Borne Plant Pathogen Rhizoctonia solani

    PubMed Central

    Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R.; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

  3. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

    PubMed

    Simon, Thomas E; Le Cointe, Ronan; Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed.

  4. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    PubMed

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers.

  5. Characterization of xylitol-utilizing mutants of Erwinia uredovora.

    PubMed Central

    Doten, R C; Mortlock, R P

    1985-01-01

    Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol dehydrogenase had a Km for xylitol of 48 mM and showed best activity with xylitol and D-threitol as substrates. However, D-threitol was not a growth substrate for E. uredovora, and its presence did not induce either dehydrogenase or kinase activity. Attempts to determine the origin of the xylitol catabolic enzymes were unsuccessful; neither enzyme was induced on any growth substrate or in the presence of any polyol tested. Analysis of xylitol-negative mutants isolated after Tn5 mutagenesis suggested that the xylitol dehydrogenase and the L-xylulokinase structural genes were components of two separate operons but were under common regulatory control. Images PMID:2981816

  6. Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis.

    PubMed

    Roach, Dwayne R; Sjaarda, David R; Castle, Alan J; Svircev, Antonet M

    2013-05-01

    Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.

  7. Atomic resolution structure of Erwinia chrysanthemi L-asparaginase.

    PubMed

    Lubkowski, Jacek; Dauter, Miroslawa; Aghaiypour, Khosrow; Wlodawer, Alexander; Dauter, Zbigniew

    2003-01-01

    An X-ray structure of L-asparaginase from Erwinia chrysanthemi (ErA) has been refined at 1 A resolution to an R factor of below 0.1, using data collected on a synchrotron source. With four molecules of the enzyme consisting of 327 amino acids each, this crystal contains one of the largest asymmetric units of a protein refined to date at atomic resolution. Previously, structures of ErA and of related enzymes from other bacterial sources have been refined at resolutions not exceeding 1.7 A; thus, the present structure represents a very significant improvement in the quality of the available models of these proteins and should provide a good basis for future studies of the conformational variability of proteins, identification of subtle conformational features and corroboration of the stereochemical libraries, amongst other things. L-Asparaginases, which are enzymes that catalyze the hydrolysis of L-asparagine to aspartic acid, have been used for over 30 y as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia, although the details of the enzymatic reaction and substrate specificity have not yet been completely elucidated. This atomic resolution structure is a step in that direction.

  8. A circular genetic map of Erwinia carotovora subsp. atroseptica 3-2

    SciTech Connect

    Nikolaichik, E.A.; Pesnyakevich, A.G.

    1995-08-01

    A circular genetic map of Erwinia carotovora subsp. atroseptica 3-2 was constructed on the basis of the R471a plasmid and Tn5 and Tn9 using Hfr-like donors. Forty-six genes, including phytopathogenicity genes, were located on the basis of interrupted mating experiment results and analysis of coinheritance of markers on a map of 183 min in length. The similarity and differences of chromosomal genetic maps of Erwinia genus bacteria are discussed. 23 refs., 2 figs., 4 tabs.

  9. Bound to Succeed: transcription factor binding-site prediction and its contribution to understanding virulence and environmental adaptation in bacterial plant pathogens.

    PubMed

    Saha, Surya; Lindeberg, Magdalen

    2013-10-01

    Bacterial plant pathogens rely on a battalion of transcription factors to fine-tune their response to changing environmental conditions and to marshal the genetic resources required for successful pathogenesis. Prediction of transcription factor binding sites (TFBS) represents an important tool for elucidating regulatory networks and has been conducted in multiple genera of plant-pathogenic bacteria for the purpose of better understanding mechanisms of survival and pathogenesis. The major categories of TFBS that have been characterized are reviewed here, with emphasis on in silico methods used for site identification and challenges therein, their applicability to different types of sequence datasets, and insights into mechanisms of virulence and survival that have been gained through binding-site mapping. An improved strategy for establishing E-value cutoffs when using existing models to screen uncharacterized genomes is also discussed.

  10. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  11. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  12. Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathogenic Fungal Genus Colletotrichum

    PubMed Central

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R.

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150–155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection. PMID:23554975

  13. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    PubMed

    Wang, Dong; Jones, Laura M; Urwin, Peter E; Atkinson, Howard J

    2011-03-07

    Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that

  14. The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    PubMed Central

    Yan, Shuangchun; Liu, Haijie; Clarke, Christopher R.; Campanile, Francesco; Almeida, Nalvo F.; Studholme, David J.; Lindeberg, Magdalen; Schneider, David; Zaccardelli, Massimo; Setubal, Joao C.; Morales-Lizcano, Nadia P.; Bernal, Adriana; Coaker, Gitta; Baker, Christy; Bender, Carol L.; Leman, Scotland; Vinatzer, Boris A.

    2011-01-01

    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain. PMID:21901088

  15. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    PubMed

    Cai, Rongman; Lewis, James; Yan, Shuangchun; Liu, Haijie; Clarke, Christopher R; Campanile, Francesco; Almeida, Nalvo F; Studholme, David J; Lindeberg, Magdalen; Schneider, David; Zaccardelli, Massimo; Setubal, Joao C; Morales-Lizcano, Nadia P; Bernal, Adriana; Coaker, Gitta; Baker, Christy; Bender, Carol L; Leman, Scotland; Vinatzer, Boris A

    2011-08-01

    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  16. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    PubMed

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  17. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    PubMed

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Ibeas, José I

    2011-09-01

    A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  18. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  19. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors.

    PubMed

    Lakshman, Dilip K; Alkharouf, Nadim; Roberts, Daniel P; Natarajan, Savithiry S; Mitra, Amitava

    2012-01-01

    Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia grown under high nitrogen-induced virulent and low nitrogen/methylglucose-induced hypovirulent conditions. A pilot-scale assessment of gene diversity was made from the sequence analyses of the two libraries. A total of 2280 cDNA clones was sequenced that corresponded to 220 unique sequence sets or clusters (contigs) and 805 singlets, making up a total of 1025 unique genes identified from the two virulence-differentiated cDNA libraries. From the total sequences, 295 genes (38.7%) exhibited strong similarities with genes in public databases and were categorized into 11 functional groups. Approximately 61.3% of the R. solani ESTs have no apparent homologs in publicly available fungal genome databases and are considered unique genes. We have identified several cDNAs with potential roles in fungal pathogenicity, virulence, signal transduction, vegetative incompatibility and mating, drug resistance, lignin degradation, bioremediation and morphological differentiation. A codon-usage table has been formulated based on 14694 R. solani EST codons. Further analysis of ESTs might provide insights into virulence mechanisms of R. solani AG 4 as well as roles of these genes in development, saprophytic colonization and ecological adaptation of this important fungal plant pathogen.

  20. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum

    PubMed Central

    Marmiesse, Lucas; Gouzy, Jérôme

    2016-01-01

    Bacterial pathogenicity relies on a proficient metabolism and there is increasing evidence that metabolic adaptation to exploit host resources is a key property of infectious organisms. In many cases, colonization by the pathogen also implies an intensive multiplication and the necessity to produce a large array of virulence factors, which may represent a significant cost for the pathogen. We describe here the existence of a resource allocation trade-off mechanism in the plant pathogen R. solanacearum. We generated a genome-scale reconstruction of the metabolic network of R. solanacearum, together with a macromolecule network module accounting for the production and secretion of hundreds of virulence determinants. By using a combination of constraint-based modeling and metabolic flux analyses, we quantified the metabolic cost for production of exopolysaccharides, which are critical for disease symptom production, and other virulence factors. We demonstrated that this trade-off between virulence factor production and bacterial proliferation is controlled by the quorum-sensing-dependent regulatory protein PhcA. A phcA mutant is avirulent but has a better growth rate than the wild-type strain. Moreover, a phcA mutant has an expanded metabolic versatility, being able to metabolize 17 substrates more than the wild-type. Model predictions indicate that metabolic pathways are optimally oriented towards proliferation in a phcA mutant and we show that this enhanced metabolic versatility in phcA mutants is to a large extent a consequence of not paying the cost for virulence. This analysis allowed identifying candidate metabolic substrates having a substantial impact on bacterial growth during infection. Interestingly, the substrates supporting well both production of virulence factors and growth are those found in higher amount within the plant host. These findings also provide an explanatory basis to the well-known emergence of avirulent variants in R. solanacearum

  1. Understanding the recent colonization history of a plant pathogenic fungus using population genetic tools and Approximate Bayesian Computation

    PubMed Central

    Barrès, B; Carlier, J; Seguin, M; Fenouillet, C; Cilas, C; Ravigné, V

    2012-01-01

    Understanding the processes by which new diseases are introduced in previously healthy areas is of major interest in elaborating prevention and management policies, as well as in understanding the dynamics of pathogen diversity at large spatial scale. In this study, we aimed to decipher the dispersal processes that have led to the emergence of the plant pathogenic fungus Microcyclus ulei, which is responsible for the South American Leaf Blight (SALB). This fungus has devastated rubber tree plantations across Latin America since the beginning of the twentieth century. As only imprecise historical information is available, the study of population evolutionary history based on population genetics appeared most appropriate. The distribution of genetic diversity in a continental sampling of four countries (Brazil, Ecuador, Guatemala and French Guiana) was studied using a set of 16 microsatellite markers developed specifically for this purpose. A very strong genetic structure was found (Fst=0.70), demonstrating that there has been no regular gene flow between Latin American M. ulei populations. Strong bottlenecks probably occurred at the foundation of each population. The most likely scenario of colonization identified by the Approximate Bayesian Computation (ABC) method implemented in 𝒟ℐ𝒴𝒜ℬ𝒞 suggested two independent sources from the Amazonian endemic area. The Brazilian, Ecuadorian and Guatemalan populations might stem from serial introductions through human-mediated movement of infected plant material from an unsampled source population, whereas the French Guiana population seems to have arisen from an independent colonization event through spore dispersal. PMID:22828899

  2. Two isocitrate dehydrogenases from a plant pathogen Xanthomonas campestris pv. campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence.

    PubMed

    Lv, Changqi; Wang, Peng; Wang, Wencai; Su, Ruirui; Ge, Yadong; Zhu, Youming; Zhu, Guoping

    2016-09-01

    Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylate (TCA) cycle, which may play an important role in the virulence of pathogenic bacteria. Here, two structurally different IDHs from a plant pathogen Xanthomonas campestris pv. campestris 8004 (XccIDH1 and XccIDH2) were characterized in detail. The recombinant XccIDH1 forms homodimer in solution, while the recombinant XccIDH2 is a typical monomer. Phylogenetic analysis showed that XccIDH1 belongs to the type I IDH subfamily and XccIDH2 groups into the monomeric IDH clade. Kinetic characterization demonstrated that XccIDH1's specificity towards NAD(+) was 110-fold greater than NADP(+) , while XccIDH2's specificity towards NADP(+) was 353-fold greater than NAD(+) . The putative coenzyme discriminating amino acids (Asp268, Ile269 and Ala275 for XccIDH1, and Lys589, His590 and Arg601 for XccIDH2) were studied by site-directed mutagenesis. The coenzyme specificities of the two mutants, mXccIDH1 and mXccIDH2, were completely reversed from NAD(+) to NADP(+) , and NADP(+) to NAD(+) , respectively. Furthermore, Ser80 of XccIDH1, and Lys256 and Tyr421 of XccIDH2, were the determinants for the substrate binding. The detailed biochemical properties, such as optimal pH and temperature, thermostability, and metal ion effects, of XccIDH1 and XccIDH2 were further investigated. The possibility of taking the two IDHs into consideration as the targets for drug development to control the plant diseases caused by Xcc 8004 were described and discussed thoroughly.

  3. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects.

  4. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts

    PubMed Central

    Zeng, Lizhang; Zhou, Jun; Li, Bo; Xing, Da

    2015-01-01

    Biotic stressors, especially pathogenic microorganisms, are rather difficult to detect. In plants, one of the earliest cellular responses following pathogen infection is the production of reactive oxygen species (ROS). In this study, a novel optical device for the early monitoring of Pseudomonas attack was developed; this device measures the ROS level via oxidation-sensitive 2′, 7′-dichlorodihydrofluorescein diacetate (H2DCFDA)-mediated fluorescence, which could provide early monitoring of attacks by a range of plant pathogen; ROS bursts were detected in vivo in Arabidopsis thaliana with higher sensitivity and accuracy than those of a commercial luminescence spectrophotometer. Additionally, the DCF fluorescence truly reflected early changes in the ROS level, as indicated by an evaluation of the H2O2 content and the tight association between the ROS and Pseudomonas concentration. Moreover, compared with traditional methods for detecting plant pathogen attacks based on physiological and biochemical measurements, our proposed technique also offers significant advantages, such as low cost, simplicity, convenient operation and quick turnaround. These results therefore suggest that the proposed optical device could be useful for the rapid monitoring of attacks by plant pathogen and yield results considerably earlier than the appearance of visual changes in plant morphology or growth. PMID:25767474

  5. Erwinia amylovora affects the phenylpropanoid-flavonoid pathway in mature leaves of Pyrus communis cv. Conférence.

    PubMed

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R

    2013-11-01

    Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora.

  6. Tomato pectin methylesterase: modeling, fluorescence, and inhibitor interaction studies-comparison with the bacterial (Erwinia chrysanthemi) enzyme.

    PubMed

    D'Avino, Rossana; Camardella, Laura; Christensen, Tove M I E; Giovane, Alfonso; Servillo, Luigi

    2003-12-01

    The molecular model of Lycopersicon esculentum (tomato) pectin methylesterase (PME) was built by using the X-ray crystal structure of PME from the phytopathogenic bacterium Erwinia chrysanthemi as a template. The overall structure and the position of catalytically important residues (Asp132, Asp 153, and Arg 221, located at the bottom of the active site cleft) are conserved. Instead, loop regions forming the walls of the catalytic site are much shorter and form a less deep cleft, as already revealed by the carrot PME crystal structure. The protein inhibitor of pectin methylesterase (PMEI) isolated from kiwi fruit binds tomato PME with high affinity. Conversely, no complex formation between the inhibitor and PME from E. chrysanthemi is observed, and the activity of this enzyme is unaffected by the presence of the inhibitor. Fluorescence quenching experiments on tomato PME and on PME-PMEI complex suggest that tryptophanyl residues present in the active site region are involved in the interaction and that the inhibitor interacts with plant PME at the level of the active site. We also suggest that the more open active site cleft of tomato PME allows the interaction with the inhibitor. Conversely, the narrow and deep cleft of the active site of E. chrysanthemi PME hinders this interaction. The pH-dependent changes in fluorescence emission intensity observed in tomato PME could arise as the result of protonation of an Asp residue with unusually high pKa, thus supporting the hypothesis that Asp132 acts as acid/base in the catalytic cycle.

  7. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937.

    PubMed

    Hugouvieux-Cotte-Pattat, N; Blot, N; Reverchon, S

    2001-09-01

    The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP-binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand-binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter-1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co-transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.

  8. Conventional and real-time PCRs for detection of Erwinia piriflorinigrans allow its distinction from the fire blight pathogen, Erwinia amylovora.

    PubMed

    Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo; López, María M

    2014-04-01

    Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 10(3) cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 10(2) cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.

  9. Conventional and Real-Time PCRs for Detection of Erwinia piriflorinigrans Allow Its Distinction from the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo

    2014-01-01

    Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora. PMID:24509928

  10. Examination of resistance of potato genotypes to Erwinia ssp.

    PubMed

    Kállai, Mónika; Csitári, Gábor; Sipos, Elvira; Polgár, Zsolt

    2007-01-01

    Potato can be attacked by several economically important pathogens. From the various diseases, in our experiment we dealt with the bacterial soft rot of potato caused by Erwinia species. In the experiments back cross progenies (BC1, BC2, BC3 and BC4) of Solanum brevidens + Solanum tuberosum somatic hybrids produced by the Potato Research Centre, Keszthely were tested to the infection of E carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Echr). All together 11 BC genotypes pre selected from several hundred breeding lines based on their preferred agronomical appearance and virus resistance characters as well as 4 Hungarian potato cultivar (Rioja, Desiree, White lady and Hópehely) as controls were involved into the experiments. Tuber slices from each genotype were artificially infected with bacteria suspension Ecc strain D3, and Echr strain CHR 1492, and Eca strain BN3) and incubated at 27 degrees C with 100% relative air humidity for 48 h before evaluation. Dry matter and starch content of tubers were determined right before the tests. Volume of rotted tuber tissue was determined in mm3 and used for comparison of the level of resistance or susceptibility of the genotypes. Relationship between the reaction to the bacteria strains and dry matter content was examined also. Tested genotypes showed the highest resistance to Eca, while the highest susceptibility to Echr. By the increase of BC level the susceptibility of the genotypes significantly increased as well regardless of the tested bacteria. No direct correlation was found between the dry matter content of tubers and their reaction to tested bacteria.

  11. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola.

    PubMed Central

    Kozloff, L M; Schofield, M A; Lute, M

    1983-01-01

    Chemical and biological properties of the ice nucleating sites of Pseudomonas syringae, strain C-9, and Erwinia herbicola have been characterized. The ice nucleating activity (INA) for both bacteria was unchanged in buffers ranging from pH 5.0 to 9.2, suggesting that there were no essential groups for which a change in charge in this range was critical. The INA of both bacteria was also unaffected by the addition of metal chelating compounds. Borate compounds and certain lectins markedly inhibited the INA of both types of bacterial cells. Butyl borate was not an inhibitor, but borate, phenyl borate, and m-nitrophenyl borate were, in order, increasingly potent inhibitors. These compounds have a similar order of affinity for cis hydroxyls, particularly for those found on sugars. Lentil lectin and fava bean lectin, which have binding sites for mannose or glucose, inhibited the INA of both bacteria. All other lectins examined had no effect. The inhibition of INA by these two types of reagents indicate that sugar-like groups are at or near the ice nucleating site. Sulfhydryl reagents were potent inhibitors of the INA of both bacteria. When treated with N-ethylmaleimide, p-hydroxymercuribenzoate, or iodoacetamide, the INA was irreversibly inhibited by 99%. The kinetics of inactivation with N-ethylmaleimide suggested that E. herbicola cells have at least two separate ice nucleating sites, whereas P. syringae cells have possibly four or more separate sites. The effect of infection with a virulent phage (Erh 1) on the INA of E. herbicola was examined. After multiple infection of a bacterial culture the INA was unchanged until 40 to 45 min, which was midway through the 95-min latent period. At that time, the INA activity began falling and 99% of the INA was lost by 55 min after infection, well before any cells had lysed. This decrease in INA before lysis is attributed to phage-induced changes in the cell wall. PMID:6848483

  12. Antibiosis and acidification by Panoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pantoea agglomerans strain E325, a commercially-available antagonist for fire blight of apple and pear, was originally selected through broad screening based on suppression of Erwinia amylovora on flower stigmas, but specific mechanisms were unknown. Bacterial modification of pH was evaluated as a p...

  13. Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain and a receiver domain. We have previously demonstrated that, while the Erwinia amylovora rcsC mutant produces more amylovoran than the wild type strain in vitro, the mutant remains avirulent on both immature pea...

  14. [Erwinia amylovora--the fire blight pathogen of trees in Ukraine].

    PubMed

    Iakovleva, L M; Moroz, S N; Shcherbina, T N; Ogorodnik, L E; Gvozdiak, R I; Patyka, V F

    2014-01-01

    Niduses of fire blight of fruit and ornamental trees have been found in the Kyiv and Vinnitsa regions of Ukraine. Pathogen Erwinia amylovora was isolated between April and October. The pathogen was often accompanied by bacteria Pseudomonas syringae pv. syringae. Artificial infection with a mixture of bacteria E. amylovora and P. syringae pv. syringae accelerates and enhances the disease process in the laboratory.

  15. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia tracheiphila is one of the most economically important pathogen of cucumbers, melons, squashes, pumpkins, and gourds, in the Northeastern and Midwestern United States, yet the molecular pathology remains uninvestigated. Here we report the first draft genome sequence of an E. tracheiphila str...

  16. Using functional genomics to identify molecular markers for fire blight resistance (Erwinia amylovora) in apple (Malus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by Erwinia amylovora (Ea), is a destructive disease of apple (Malus), pear (Pyrus) and some woody ornamentals in the rose family (Rosaceae). The goal of this project is to use a functional genomics approach to develop tools to breed fire blight resistant apples. Six hundred fifty...

  17. Erwinia amylovora effector protein Eop1 suppresses PAMP-triggered immunity in Malus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora (Ea) utilizes a type three secretion system (T3SS) to deliver effector proteins into plant host cells. Several Ea effectors have been identified based on their sequence similarity to plant and animal bacterial pathogen effectors; however, the function of the majority of Ea effecto...

  18. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported the characterization of an orphan gene ybjN from Escherichia coli. In this study, we attempted to understand the role of amyR in Erwinia amylovora, a functionally conserved homolog of E. coli ybjN. As reported earlier, amylovoran production in the amyR knockout mutant is ...

  19. Plasmid content of Erwinia amylovora in orchards in Washington and Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the plasmid content of a collection of 305 isolates of Erwinia amylovora from Washington and Oregon in the Pacific Northwest of the United States with PCR assays and RFLP. Nearly all isolates of E. amylovora carried plasmid pEA29, which is not found in other species of bacteria, but 4% ...

  20. Plasmid content of isolates of Erwinia amylovora from orchards in Washington and Oregon in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all strains of Erwinia amylovora carry plasmid pEA29, which has not been found in other species of bacteria. Additional plasmids have been reported in the pathogen isolates from Western states, such as a plasmid in strain CA11 that carries streptomycin-resistance genes and the plasmid pEU30,...

  1. Plasmid Content of Isolates of Erwinia amylovora from Orchards in Washington and Oregon in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Washington (WA) and Oregon (OR) represent a major pome fruit production region of the United States, and streptomycin-resistant isolates of the fire blight pathogen Erwinia amylovora are common in orchards in this region. We examined the plasmid content of a collection of more than 200 isolates of ...

  2. Antibiosis by Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple blossom stigmas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pantoea agglomerans E325, the active ingredient in a commercial product for fire blight control, was previously shown in vitro to produce a unique alkaline- and phosphate-sensitive antibiotic specific to Erwinia amylovora. Antibiosis was evaluated as a mode of antagonism on blossom stigmas using two...

  3. Genome-wide identification of genes regulated by the Rcs Phosphorelay system in Erwinia amylovora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exopolysaccharide amylovoran is one of the major pathgenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also fou...

  4. Diversity of bacterial communities that colonize the filter units used for controlling plant pathogens in soilless cultures.

    PubMed

    Renault, David; Vallance, Jessica; Déniel, Franck; Wery, Nathalie; Godon, Jean Jacques; Barbier, Georges; Rey, Patrice

    2012-01-01

    In recent years, increasing the level of suppressiveness by the addition of antagonistic bacteria in slow filters has become a promising strategy to control plant pathogens in the recycled solutions used in soilless cultures. However, knowledge about the microflora that colonize the filtering columns is still limited. In order to get information on this issue, the present study was carried out over a 4-year period and includes filters inoculated or not with suppressive bacteria at the start of the filtering process (two or three filters were used each year). After 9 months of filtration, polymerase chain reaction (PCR)-single strand conformation polymorphism analyses point out that, for the same year of experiment, the bacterial communities from control filters were relatively similar but that they were significantly different between the bacteria-amended and control filters. To characterize the changes in bacterial communities within the filters, this microflora was studied by quantitative PCR, community-level physiological profiles, and sequencing 16SrRNA clone libraries (filters used in year 1). Quantitative PCR evidenced a denser bacterial colonization of the P-filter (amended with Pseudomonas putida strains) than control and B-filter (amended with Bacillus cereus strains). Functional analysis focused on the cultivable bacterial communities pointed out that bacteria from the control filter metabolized more carbohydrates than those from the amended filters whose trophic behaviors were more targeted towards carboxylic acids and amino acids. The bacterial communities in P- and B-filters both exhibited significantly more phylotype diversity and markedly distinct phylogenetic compositions than those in the C-filter. Although there were far fewer Proteobacteria in B- and P-filters than in the C-filter (22% and 22% rather than 69% of sequences, respectively), the percentages of Firmicutes was much higher (44% and 55% against 9%, respectively). Many Pseudomonas

  5. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids

    PubMed Central

    Llop, Pablo

    2015-01-01

    New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them. PMID:26379649

  6. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids.

    PubMed

    Llop, Pablo

    2015-01-01

    New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  7. Atypical adaptive and cross-protective responses against peroxide killing in a bacterial plant pathogen, Agrobacterium tumefaciens.

    PubMed

    Vattanaviboon, Paiboon; Eiamphungporn, Warawan; Mongkolsuk, Skorn

    2003-10-01

    Physiological adaptive and cross-protection responses to oxidants were investigated in Agrobacterium tumefaciens. Exposure of A. tumefaciens to sublethal concentrations of H2O2 induced adaptive protection to lethal concentrations of H2O2. Similar treatments with organic peroxide and menadione did not produce adaptive protection to subsequent exposure to lethal concentrations of these oxidants. Pretreatment of A. tumefaciens with an inducing concentration of menadione conferred cross-protection against H2O2, but not to tert-butyl hydroperoxide (tBOOH), killing. The menadione induced cross-protection to H2O2 was due to the compound's ability to highly induce the peroxide scavenging enzyme, catalase. The levels of catalase directly correlated with the bacterium's ability to survive H2O2 treatment. Some aspects of the oxidative stress response of A. tumefaciens differ from other bacteria, and these differences may be important in plant/microbe interactions.

  8. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    PubMed

    Goss, Erica M; Cardenas, Martha E; Myers, Kevin; Forbes, Gregory A; Fry, William E; Restrepo, Silvia; Grünwald, Niklaus J

    2011-01-01

    Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans paren