Science.gov

Sample records for plantar flexion torque

  1. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility.

    PubMed

    Kawakami, Yasuo; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2008-05-01

    Experimental laboratory study. We tested the hypothesis that the muscle fibers and the connective tendinous structures, combined in series, provide the resistance to passive joint movement at the ankle. We also determined the relative association between passive joint torque and each of these 2 elements. The reason for individual variation in joint flexibility or tightness is not clearly understood, but the influence of musculotendinous stiffness has been inferred. Each of the subjects (6 women and 6 men) was seated with the right knee extended and right ankle positioned at a 30 degrees , 20 degrees , 10 degrees , 0 degrees , -10 degrees , -20 degrees , and -30 degrees (0, neutral position, positive values reflecting plantar flexion) angle while passive plantar flexion torque was measured. The distal muscle-tendon junction of the medial gastrocnemius was visualized by ultrasonography, and its positional change was defined as muscle belly length change. The whole muscle-tendon unit length change was estimated from joint angle changes, from which Achilles tendon length change was estimated. Both the muscle belly and tendon were significantly elongated as the ankle was dorsiflexed (at 0 degrees the mean +/- SD muscle belly elongation was 10.3% +/- 1.8 %, and the tendon elongation was 2.8% +/- 1.2 %, of the initial length at 30 degrees of ankle plantar flexion), from which stiffness indices were determined both for muscle belly and tendon. The passive torque at 0 degrees , -10 degrees , -20 degrees , and -30 degrees was significantly correlated with the stiffness indices of the Achilles tendon (at 0 degrees , r2 = 0.70 and 0.62 for overall and specific stiffness, respectively; P<.05). A tendon stiffness index, separately obtained from tendon lengthening during maximal isometric contraction, was also correlated with passive ankle plantar flexion torque at 0 degrees , -10 degrees , -20 degrees , and -30 degrees (at 0 degrees , r2 = 0.76; P<.05). The specific stiffness

  2. Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men.

    PubMed

    Baxter, Josh R; Piazza, Stephen J

    2014-03-01

    Muscle volume is known to correlate with maximal joint torque in humans, but the role of muscle moment arm in determining maximal torque is less clear. Moderate correlations have been reported between maximal isometric knee extensor torque and knee extensor moment arm, but no such observations have been made for the ankle joint. It has been suggested that smaller muscle moment arms may enhance force generation at high rates of joint rotation, but this has not yet been observed for ankle muscles in vivo. The purpose of the present study was to correlate plantar flexor moment arm and plantar flexor muscle volume with maximal plantar flexor torque measured at different rates of plantar flexion. Magnetic resonance imaging was used to quantify the plantar flexor moment arm and muscle volume of the posterior compartment in 20 healthy young men. Maximal plantar flexor torque was measured isometrically and at three plantar flexion speeds using an isokinetic dynamometer. Plantar flexor torque was significantly correlated with muscle volume (0.222 < R(2) < 0.322) and with muscle moment arm at each speed (0.323 < R(2) < 0.494). While muscle volume was strongly correlated with body mass and stature, moment arm was not. The slope of the torque-moment arm regression line decreased as the rate of joint rotation increased, indicating that subjects with small moment arms experienced smaller reductions in torque at high speeds. The findings of this study suggest that plantar flexor moment arm is a determinant of joint strength that is at least as important as muscle size.

  3. Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men

    PubMed Central

    Baxter, Josh R.

    2013-01-01

    Muscle volume is known to correlate with maximal joint torque in humans, but the role of muscle moment arm in determining maximal torque is less clear. Moderate correlations have been reported between maximal isometric knee extensor torque and knee extensor moment arm, but no such observations have been made for the ankle joint. It has been suggested that smaller muscle moment arms may enhance force generation at high rates of joint rotation, but this has not yet been observed for ankle muscles in vivo. The purpose of the present study was to correlate plantar flexor moment arm and plantar flexor muscle volume with maximal plantar flexor torque measured at different rates of plantar flexion. Magnetic resonance imaging was used to quantify the plantar flexor moment arm and muscle volume of the posterior compartment in 20 healthy young men. Maximal plantar flexor torque was measured isometrically and at three plantar flexion speeds using an isokinetic dynamometer. Plantar flexor torque was significantly correlated with muscle volume (0.222 < R2 < 0.322) and with muscle moment arm at each speed (0.323 < R2 < 0.494). While muscle volume was strongly correlated with body mass and stature, moment arm was not. The slope of the torque-moment arm regression line decreased as the rate of joint rotation increased, indicating that subjects with small moment arms experienced smaller reductions in torque at high speeds. The findings of this study suggest that plantar flexor moment arm is a determinant of joint strength that is at least as important as muscle size. PMID:24371016

  4. Effects of 4 Weeks of Explosive-type Strength Training for the Plantar Flexors on the Rate of Torque Development and Postural Stability in Elderly Individuals.

    PubMed

    Kobayashi, Y; Ueyasu, Y; Yamashita, Y; Akagi, R

    2016-06-01

    This study aimed to investigate the effect of a 4-week explosive-type strength training program for the plantar flexors on the rate of torque development and postural stability. The participants were 56 elderly men and women divided into training (17 men and 15 women) and control (14 men and 10 women) groups. The participants in the training group underwent explosive-type strength training of the plantar flexors 2 days per week for 4 weeks. Training consisted of 3 sets of 10 repetitions of explosive plantar flexion lasting less than 1 s. The following parameters were determined: muscle volume of the plantar flexors estimated by the muscle thickness and lower leg length, maximal voluntary contraction torque and rate of torque development of plantar flexion, and one-leg standing ability. The training increased the maximal voluntary contraction torque and rate of torque development, but corresponding increases in muscle volume and one-leg standing ability were not found. These results suggest that, for elderly individuals, the 4-week explosive-type strength training of the plantar flexors is effective for increasing the maximal voluntary contraction torque and rate of torque development of plantar flexion but is not effective for improving postural stability. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Effects of age and localized muscle fatigue on ankle plantar flexor torque development.

    PubMed

    King, Gregory W; Stylianou, Antonis P; Kluding, Patricia M; Jernigan, Stephen D; Luchies, Carl W

    2012-01-01

    Older adults often experience age-related declines in strength, which contribute to fall risk. Such age-related levels of fall risk may be compounded by further declines in strength caused by acute muscle fatigue. Both age- and fatigue-related strength reductions likely impact the ability to quickly develop joint torques needed to arrest falls. Therefore, the purpose of this study was to investigate the combined effects of age and localized muscle fatigue on lower extremity joint torque development. Young (mean age, 26 (2.5) years) and older (mean age, 71 (2.8) years) healthy male adults performed an isometric ankle plantar flexion force control task before and after an ankle plantar flexor fatiguing exercise. Force control performance was quantified using onset time, settling time, and rate of torque development. Age-related increases and decreases were observed for onset time and rate of torque development, respectively. A fatigue-related decrease in rate of torque development was observed in young, but not older adults. The results suggest performance declines that may relate to older adults' reduced ability to prevent falls. A fatigue-related performance decline was observed among young adults, but not older, suggesting the presence of age-related factors such as motor unit remodeling and alterations in perceived exertion. Older adults demonstrated an overall reduction in the ability to quickly produce ankle torque, which may have implications for balance recovery and fall risk among older adults.

  6. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  7. Effect of AFO design on walking after stroke: impact of ankle plantar flexion contracture.

    PubMed

    Mulroy, Sara J; Eberly, Valerie J; Gronely, Joanne K; Weiss, Walter; Newsam, Craig J

    2010-09-01

    This study was conducted to compare the effects of three ankle-foot orthosis (AFO) designs on walking after stroke and determine whether an ankle plantar flexion contracture impacts response to the AFOs. A total of 30 individuals, ranging from 6-215 months post-stroke, were tested in four conditions: shoes only (SH), dorsi-assist/dorsi-stop AFO (DA-DS), plantar stop/free dorsiflexion AFO (PS), and rigid AFO (Rigid). Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Gait parameters were compared between conditions and between participants with and without a moderate ankle plantar flexion contracture. All AFOs increased ankle dorsiflexion in swing and early stance. Anterior tibialis EMG was reduced only in the PS AFO. Both PS and Rigid AFOs restricted ankle plantar flexion and increased knee flexion in loading. Peak ankle dorsiflexion in stance and soleus EMG intensity were greatest in the PS AFO. The Rigid AFO tended to restrict dorsiflexion in stance and knee flexion in swing only in participants without a plantar flexion contracture. Individuals without a contracture benefit from an AFO that permits dorsiflexion mobility in stance and those with quadriceps weakness may more easily tolerate an AFO with plantar flexion mobility in loading.

  8. Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.

    PubMed

    Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo

    2015-10-01

    Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.

    PubMed

    Wang, Jing; Kannape, Oliver A; Herr, Hugh M

    2013-06-01

    The human calf muscle generates 80% of the mechanical work to walk throughout stance-phase, powered plantar flexion. Powered plantar flexion is not only important for walking energetics, but also to minimize the impact on the leading leg at heel-strike. For unilateral transtibial amputees, it has recently been shown that knee load on the leading, intact limb decreases as powered plantar flexion in the trailing prosthetic ankle increases. Not surprisingly, excessive loads on the leading, intact knee are believed to be causative of knee osteoarthritis, a leading secondary impairment in lower-extremity amputees. In this study, we hypothesize that a transtibial amputee can learn how to control a powered ankle-foot prosthesis using a volitional electromyographic (EMG) control to directly modulate ankle powered plantar flexion. We here present preliminary data, and find that an amputee participant is able to modulate toe-off angle, net ankle work and peak power across a broad range of walking speeds by volitionally modulating calf EMG activity. The modulation of these key gait parameters is shown to be comparable to the dynamical response of the same powered prosthesis controlled intrinsically (No EMG), suggesting that transtibial amputees can achieve an adequate level of powered plantar flexion controllability using direct volitional EMG control.

  10. Achilles tendon morphology, plantar flexors torque and passive ankle stiffness in spastic hemiparetic stroke survivors.

    PubMed

    Freire, Bruno; Dias, Caroline Pieta; Goulart, Natália Batista Albuquerque; de Castro, Camila Dias; Becker, Jefferson; Gomes, Irênio; Vaz, Marco Aurélio

    2017-01-01

    The present study compared the Achilles tendon morphological characteristics, plantar flexor toque and passive ankle stiffness between hemiparetic spastic stroke survivors and healthy subjects. The Achilles tendon length was measured at the affected and contralateral limbs of twelve hemiparetic stroke survivors with ankle spasticity and twelve healthy subjects. The ankle was held at three different angles (20° plantar flexion, 0° and maximum dorsiflexion) while an ultrasound system was used to capture images from the Achilles tendon. Active and passive plantar flexor torque production was measured using an isokinetic dynamometer. There was no significant difference in tendon length and Achilles tendon complacency between stroke survivors [affected limb: 20.8 (1.59) cm at 0° and 0.11 (0.09) cm/N; contralateral limb: 20.8 (1.7) cm at 0° and 0.12 (0.08) cm/N] and healthy subjects [20 (2.78) cm at 0° and 0.15 (0.1) cm/N]. The contralateral limb was stronger than the affected limb, while healthy participants presented larger active torque in relation to stroke survivors. There was no significant difference in passive ankle stiffness between the affected [0.43 (0.08) N/°] and the contralateral limb [0.40 (0.11) N/°], but affected limb was significantly stiffer than the healthy subjects [0.32 (0.07) N/°]. The larger passive torque and ankle joint stiffness from stroke survivors with similar Achilles tendon length compared to healthy subjects seem to be unrelated to tendon extensibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plantar-flexor Static Stretch Training Effect on Eccentric and Concentric Peak Torque – A comparative Study of Trained versus Untrained Subjects

    PubMed Central

    Abdel-aziem, Amr Almaz; Mohammad, Walaa Sayed

    2012-01-01

    The aim of this study was to examine the long-term effects of static stretching of the plantar-flexor muscles on eccentric and concentric torque and ankle dorsiflexion range of motion in healthy subjects. Seventy five healthy male volunteers, with no previous history of trauma to the calf that required surgery, absence of knee flexion contracture and no history of neurologic dysfunction or disease, systemic disease affecting the lower extremities were selected for this study. The participants were divided into three equal groups. The control group did not stretch the plantar-flexor muscles. Two Experimental groups (trained and untrained) were instructed to perform static stretching exercise of 30 second duration and 5 repetitions twice daily. The stretching sessions were carried out 5 days a week for 6 weeks. The dorsiflexion range of motion was measured in all subjects. Also measured was the eccentric and concentric torque of plantar-flexors at angular velocities of 30 and 120°/s pre and post stretching. Analysis of variance showed a significant increase in plantar-flexor eccentric and concentric torque (p < 0.05) of trained and untrained groups, and an increase in dorsiflexion range of motion (p < 0.05) at both angular velocities for the untrained group only. The static stretching program of plantar-flexors was effective in increasing the concentric and eccentric plantarflexion torque at angular velocities of 30 and 120°/s. Increases in plantar-flexors flexibility were observed in untrained subjects. PMID:23486840

  12. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease.

    PubMed

    Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D

    2017-07-01

    Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as

  13. Plantar flexion training primes peripheral arterial disease patients for improvements in cardiac function.

    PubMed

    Helgerud, Jan; Wang, Eivind; Mosti, Mats Peder; Wiggen, Øystein Nordrum; Hoff, Jan

    2009-05-01

    This study investigated if initial calf muscle training immediately followed by whole body training improved aerobic power and cardiovascular function in peripheral arterial disease (PAD) patients. The training group (n = 10) pursued 8 weeks of high aerobic intensity plantar flexion interval training continued by 8 weeks of high aerobic intensity treadmill training. The control group (n = 11) received advice according to exercise guidelines. Treadmill VO2peak and time to exhaustion increased significantly with 16.8 and 23.4% during the plantar flexion training period while no changes occurred in heart stroke volume (SV). Following treadmill training, SV increased with 25.1% while treadmill VO2peak and time to exhaustion increased 9.9 and 16.1%. Plantar flexion training was effective for increasing treadmill VO2peak and time to exhaustion in PAD patients and amplified the effects of the additional treadmill training, as SV increased and treadmill VO2peak and time to exhaustion improved further. This study suggests that calf muscle training prime PAD patients for cardiovascular adaptations when applying whole body exercise.

  14. Comparison of isokinetic trunk flexion and extension torques and powers between athletes and nonathletes

    PubMed Central

    Ben Moussa Zouita, Amira; Ben Salah, Fatma Zohra; Dziri, Catherine; Beardsley, Chris

    2018-01-01

    This study is aimed to perform and compare maximal concentric isokinetic trunk extension and flexion torques and powers between high-level athletes and a control population. In addition, the ratio of isokinetic trunk extension and flexion torques was measured, and compared between groups. Eighteen high-level male athletes and 15 male nonathletes without low back pain were recruited. Subjects performed isokinetic trunk extension and flexion at 60°/sec, 90°/sec, and 120°/sec through a maximal range of motion in a dynamometer. Trunk extension torque of athletes was significantly higher than in nonathletes at 60°/sec and 90°/sec but not at 120°/sec. Trunk extension power of athletes was significantly higher than the control group at 90°/sec and 120°/sec but not at 60°/sec. There was no difference between the athlete and nonathlete groups in respect of trunk flexion torque or power at any angular velocity. Consequently, the ratio of trunk flexion to extension strength was greater in nonathletes than in athletes. Trunk extension and flexion torques tended to decrease, and trunk extension and flexion powers tended to increase, with increasing angular velocity. High-level athletes seem to display preferentially greater trunk extension strength and power in comparison with trunk flexion strength, compared to nonathletes. This could be caused by the use of strength training exercises such as squats and deadlifts, or it may be associated with greater athletic performance. PMID:29511655

  15. The Effect of Ankle Taping to Restrict Plantar Flexion on Ball and Foot Velocity During an Instep Kick in Soccer.

    PubMed

    Sasadai, Junpei; Urabe, Yukio; Maeda, Noriaki; Shinohara, Hiroshi; Fujii, Eri

    2015-08-01

    Posterior ankle impingement syndrome is a common disorder in soccer players and ballet dancers. In soccer players, it is caused by the repetitive stress of ankle plantar flexion due to instep kicking. Protective ankle dorsiflexion taping is recommended with the belief that it prevents posterior ankle impingement. However, the relationship between ankle taping and ball-kicking performance remains unclear. To demonstrate the relationship between the restrictions of ankle taping and performance of an instep kick in soccer. Laboratory-based repeated-measures. University laboratory. 11 male university soccer players. The subjects' ankle plantar flexion was limited by taping. Four angles of planter flexion (0°, 15°, 30°, and without taping) were formed by gradation limitation. The subjects performed maximal instep kicks at each angle. The movements of the kicking legs and the ball were captured using 3 high-speed cameras at 200 Hz. The direct linear-transformation method was used to obtain 3-dimensional coordinates using a digitizing system. Passive ankle plantar-flexion angle, maximal plantar-flexion angle at ball impact, ball velocity, and foot velocity were measured. The data were compared among 4 conditions using repeated-measures ANOVA, and the correlations between ball velocity and foot velocity and between ball velocity and toe velocity were calculated. Ankle dorsiflexion taping could gradually limit both passive plantar flexion and plantar flexion at the impact. Furthermore, limitation of 0° and 15° reduced the ball velocity generated by instep kicks. Plantar-flexion-limiting taping at 30° has a potential to prevent posterior ankle impingement without decreasing the ball velocity generated by soccer instep kicks.

  16. Variation in the location of the shoe sole flexion point influences plantar loading patterns during gait

    PubMed Central

    2014-01-01

    Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which

  17. Inversion and eversion strengths in the weightbearing ankle of young women. Effects of plantar flexion and basketball shoe height.

    PubMed

    Ottaviani, R A; Ashton-Miller, J A; Wojtys, E M

    2001-01-01

    Maximum isometric ankle inversion and eversion muscle strengths were measured under full unipedal weightbearing in 20 healthy young adult women. When the women wore a low-top shoe, the mean (standard deviation) maximum external eversion moments resisted with the foot in 0 degrees and 32 degrees of ankle plantar flexion were 24.1 (7.6) and 24.1 (8.1) N x m, respectively, while the corresponding values for maximum inversion moments resisted were 14.7 (6.8) and 17.4 (6.4) N x m, respectively. Both shoe height and ankle plantar flexion affected the overall inversion moment resisted by 17% (P = 0.03) at 0 degrees of ankle plantar flexion to 11.9% (P = 0.003) at 32 degrees of ankle plantar flexion. However, neither shoe height nor ankle plantar flexion significantly affected the maximum eversion moment resisted. Although eversion muscle strength of the young women averaged 39% less than the corresponding value found in young men, the sex difference was not significant when ankle strengths were normalized by body size (body weight x height). Thus, when data from healthy young men and women were averaged, eversion and inversion strengths averaged 1.6% and 2.7%, respectively, of body weight x height.

  18. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke

    PubMed Central

    Drogos, Justin; Carmona, Carolina; Keller, Thierry; Dewald, Julius P. A.

    2012-01-01

    The effect of reticular formation excitability on maximum voluntary torque (MVT) generation and associated muscle activation at the shoulder and elbow was investigated through natural elicitation (active head rotation) of the asymmetric tonic neck reflex (ATNR) in 26 individuals with stroke and 9 age-range-matched controls. Isometric MVT generation at the shoulder and elbow was quantified with the head rotated (face pointing) contralateral and ipsilateral to the paretic (stroke) and dominant (control) arm. Given the dominance of abnormal torque coupling of elbow flexion with shoulder abduction (flexion synergy) in stroke and well-developed animal models demonstrating a linkage between reticular formation and ipsilateral elbow flexors and shoulder abductors, we hypothesized that constituent torques of flexion synergy, specifically elbow flexion and shoulder abduction, would increase with contralateral head rotation. The findings of this investigation support this hypothesis. Increases in MVT for three of four flexion synergy constituents (elbow flexion, shoulder abduction, and shoulder external rotation) were observed during contralateral head rotation only in individuals with stroke. Electromyographic data of the associated muscle coactivations were nonsignificant but are presented for consideration in light of a likely underpowered statistical design for this specific variable. This study not only provides evidence for the reemergence of ATNR following stroke but also indicates a common neuroanatomical link, namely, an increased reliance on ipsilateral reticulospinal pathways, as the likely mechanism underlying the expression of both ATNR and flexion synergy that results in the loss of independent joint control. PMID:22956793

  19. Dorsiflexion, Plantar-Flexion, and Neutral Ankle Positions During Passive Resistance Assessments of the Posterior Hip and Thigh Muscles

    PubMed Central

    Palmer, Ty B.; Akehi, Kazuma; Thiele, Ryan M.; Smith, Douglas B.; Warren, Aric J.; Thompson, Brennan J.

    2015-01-01

    Context: Passive straight-legged–raise (SLR) assessments have been performed with the ankle fixed in dorsiflexion (DF), plantar-flexion (PF), or neutral (NTRL) position. However, it is unclear whether ankle position contributes to differences in the passive resistance measured during an SLR assessment. Objective: To examine the influence of ankle position during an SLR on the passive torque, range of motion (ROM), and hamstrings electromyographic (EMG) responses to passive stretch of the posterior hip and thigh muscles. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: A total of 13 healthy volunteers (5 men: age = 24 ± 3 years, height = 178 ± 6 cm, mass = 85 ± 10 kg; 8 women: age = 21 ± 1 years, height = 163 ± 8 cm, mass = 60 ± 6 kg). Intervention(s): Participants performed 6 randomly ordered passive SLR assessments involving 2 assessments at each condition, which included the ankle positioned in DF, PF, and NTRL. All SLRs were performed using an isokinetic dynamometer programmed in passive mode to move the limb toward the head at 5°/s. Main Outcome Measure(s): During each SLR, maximal ROM was determined as the point of discomfort but not pain, as indicated by the participant. Passive torque and EMG amplitude were determined at 4 common joint angles (θ) separated by 5° during the final common 15° of ROM for each participant. Results: Passive torque was greater for the DF condition than the NTRL (P = .008) and PF (P = .03) conditions at θ3 and greater for the DF than NTRL condition (P = .02) at θ4. Maximal ROM was lower for the DF condition than the NTRL (P = .003) and PF (P < .001) conditions. However, we found no differences among conditions for EMG amplitude (P = .86). Conclusions: These findings suggest that performing SLRs with the ankle positioned in DF may elicit greater passive torque and lower ROM than SLRs with the ankle positioned in PF or NTRL. The greater passive torque and lower ROM induced by the DF

  20. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  1. Change in the Mechanical Energy of the Body Center of Mass in Hemiplegic Gait after Continuous Use of a Plantar Flexion Resistive Ankle-foot Orthosis

    PubMed Central

    Haruna, Hirokazu; Sugihara, Shunichi; Kon, Keisuke; Miyasaka, Tomoya; Hayakawa, Yasuyuki; Nosaka, Toshiya; Kimura, Kazuyuki

    2013-01-01

    [Purpose] The aim of this study was to investigate the changes in mechanical energy due to continuous use of a plantar flexion resistive ankle-foot orthosis (AFO) of subjects with chronic hemiplegia. [Subjects and Methods] The subjects were 5 hemiplegic patients using AFOs without a plantar flexion resistive function in their daily lives. We analyzed the gait of the subjects using a 3D motion capture system under three conditions: patients’ use of their own AFOs; after being fitted with a plantar flexion resistive AFO; and after continuous use of the device. The gait efficiency was determined by calculating the mutual exchange of kinetic and potential energy of the center of mass. [Results] An increased exchange rate of the kinetic and potential energy was found for all subjects. A larger increase of energy exchange was shown on the non-paralyzed side, and after continuous use of the plantar flexion resistive AFO. [Conclusion] We found that continuous use of a plantar flexion resistive AFO increased the rate of mutual exchange between kinetic energy and potential energy. The change in the rate was closely related to the role of the non-paretic side, showing that the subjects needed a certain amount of time to adapt to the plantar flexion resistive AFO. PMID:24396206

  2. Change in the Mechanical Energy of the Body Center of Mass in Hemiplegic Gait after Continuous Use of a Plantar Flexion Resistive Ankle-foot Orthosis.

    PubMed

    Haruna, Hirokazu; Sugihara, Shunichi; Kon, Keisuke; Miyasaka, Tomoya; Hayakawa, Yasuyuki; Nosaka, Toshiya; Kimura, Kazuyuki

    2013-11-01

    [Purpose] The aim of this study was to investigate the changes in mechanical energy due to continuous use of a plantar flexion resistive ankle-foot orthosis (AFO) of subjects with chronic hemiplegia. [Subjects and Methods] The subjects were 5 hemiplegic patients using AFOs without a plantar flexion resistive function in their daily lives. We analyzed the gait of the subjects using a 3D motion capture system under three conditions: patients' use of their own AFOs; after being fitted with a plantar flexion resistive AFO; and after continuous use of the device. The gait efficiency was determined by calculating the mutual exchange of kinetic and potential energy of the center of mass. [Results] An increased exchange rate of the kinetic and potential energy was found for all subjects. A larger increase of energy exchange was shown on the non-paralyzed side, and after continuous use of the plantar flexion resistive AFO. [Conclusion] We found that continuous use of a plantar flexion resistive AFO increased the rate of mutual exchange between kinetic energy and potential energy. The change in the rate was closely related to the role of the non-paretic side, showing that the subjects needed a certain amount of time to adapt to the plantar flexion resistive AFO.

  3. Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Moralez, Gilbert; Kouda, Ken; Jaffery, Manall F; Cramer, Matthew N; Crandall, Craig G

    2017-09-01

    Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds during conditions of increased metabolism (i.e., exercise). The purpose of this study was to test the hypothesis that folic acid ingestion improves skeletal muscle blood flow in aged adults performing graded handgrip and plantar flexion exercise via increased vascular conductance. Nine healthy, aged adults (two men and seven women; age: 68 ± 5 yr) performed graded handgrip and plantar flexion exercise before (control), 2 h after (acute, 5 mg), and after 6 wk (chronic, 5 mg/day) folic acid ingestion. Forearm (brachial artery) and leg (superficial femoral artery) blood velocity and diameter were measured via Duplex ultrasonography and used to calculate blood flow. Acute and chronic folic acid ingestion increased serum folate (both P < 0.05 vs. control). During handgrip exercise, acute and chronic folic acid ingestion increased forearm blood flow (both conditions P < 0.05 vs. control) and vascular conductance (both P < 0.05 vs. control). During plantar flexion exercise, acute and chronic folic acid ingestion increased leg blood flow (both P < 0.05 vs. control), but only acute folic acid ingestion increased vascular conductance ( P < 0.05 vs. control). Taken together, folic acid ingestion increases blood flow to active skeletal muscle primarily via improved local vasodilation in aged adults. NEW & NOTEWORTHY Our findings demonstrate that folic acid ingestion improves blood flow via enhanced vascular conductance in the exercising skeletal muscle of aged humans. These findings provide evidence for the therapeutic use of folic acid to improve skeletal muscle blood flow, and perhaps

  4. Evaluating foot kinematics using magnetic resonance imaging: from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation.

    PubMed

    Fassbind, Michael J; Rohr, Eric S; Hu, Yangqiu; Haynor, David R; Siegler, Sorin; Sangeorzan, Bruce J; Ledoux, William R

    2011-10-01

    The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject's foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject's foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time.

  5. Integrated EMG study of the medial and lateral heads of the gastrocnemius during isometric plantar flexion with varying cuff weight loads.

    PubMed

    Fiebert, I M; Spielholz, N I; Applegate, E B; Carbone, M; Gonzalez, G; Gorack, W M

    1998-01-01

    Both heads of the gastrocnemius muscle contribute to ankle plantar flexion. This study utilized integrated electromyography to investigate whether the percent electrical activity contributed by each head remained constant or changed during isometric contractions at five different resistance levels. Fifty healthy volunteers ranging in age from 19 to 34 years, with no history of musculoskeletal or neuromuscular disorders involving the right lower extremity, were studied. All tasks were performed in the prone position, knee in extension, with the leg and foot in neutral with respect to rotation. Motor points of the medial head and lateral head were identified and surface electrodes were placed just distal to them. The subjects maintained 20° of plantar flexion under five conditions: a maximal isometric plantar flexion contraction (one trial only), and with a 5-, 10-, 15- and 20-lb cuff weight attached to the right foot (three trials each). EMG recordings, 8 s in length, were taken during the isometric contractions. Integrated EMGs were averaged for each cuff weight and the resulting values used in the analysis. A repeated measures ANOVA was performed and a significance level of p≤0.05 was used to determine statistical significance. As weight increased, the absolute value of the integrated EMG recorded over both muscles increased, but the percent contributed by each head remained essentially equal (50%) within the four submaximal loads tested. However, for the maximal isometric contraction, the medial head contributed a significantly higher percentage of the total integrated EMG (58%). Therefore, in the open-chain activity described, the two heads of the gastrocnemius demonstrate similar neural drive at submaximal levels of contraction, but this changes as maximum isometric levels are reached.

  6. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery.

    PubMed

    Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D

    2018-02-01

    This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical

  7. Changes in angular kinematics of the paretic lower limb at different orthotic angles of plantar flexion limitation of an ankle-foot-orthosis for stroke patients

    PubMed Central

    Lee, Hye Young; Lee, Jeon Hyeong; Kim, Kyoung

    2015-01-01

    [Purpose] An ankle-foot-orthosis (AFO) is an assistive brace that allows stroke patients to achieve an independent gait. Therefore, we examined whether or not the orthotic angle for plantar flexion limitation affects the kinematic parameters of the hip and knee joints on the affected side of patients with stroke. [Subjects and Methods] Fifteen patients with chronic hemiplegia were recruited for this study. Kinematic three-dimensional data was acquired, while patients walked along a walkway wearing AFOs under five different conditions of 0°, 5°, 10°, 15°, and 20° of plantar stop limitation angle in the orthotic joint. Peak angles of the hip and knee joints on the affected side were analyzed. [Results] At the peak angle of the knee joint, statistically significant differences were found only at mid-stance in the sagittal plane and the horizontal plane. However, no significant differences were observed among any of the orthotic limitation angles in the frontal plane. [Conclusion] According to the results, an orthotic limitation angle of more than 10° elicits changes in the knee joint angle at mid-stance in the sagittal and horizontal planes. This study provided basic data on postural changes of patients with stroke. PMID:25931739

  8. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    PubMed

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These

  9. Assessment of flow-mediated dilatation in the superficial femoral artery using a sustained shear stress stimulus via calf plantar-flexion exercise.

    PubMed

    King, T J; Schmitter, S M; Pyke, K E

    2017-06-01

    What is the central question of this study? The aim was to establish the ability of a newly designed leg exercise technique to produce sustained elevations in shear rate that stimulate flow-mediated dilatation (FMD) in the superficial femoral artery and to determine the repeat trial stability of the FMD response. What is the main finding and its importance? Calf plantar-flexion exercise can be used to increase shear stress and stimulate FMD in the superficial femoral artery. However, the magnitude of FMD varied systematically when multiple trials were repeated in short succession. The superficial femoral artery (SFA) is susceptible to vascular disease, and a technique to assess flow-mediated dilatation (FMD) in this vessel in response to a sustained shear stress stimulus could provide important information about endothelial function. The aim of this study was to establish the ability of a newly designed SFA leg exercise-FMD (LEX-FMD) technique to produce sustained elevations in shear rate, which stimulate FMD, and to determine the repeat trial stability of the FMD response. The SFA FMD stimulated by reactive hyperaemia (RH) and calf plantar-flexion exercise (LEX) was assessed via ultrasound in 19 healthy men (n = 10) and women (n = 9). The two experimental visits included either four trials of LEX-FMD or four trials of RH-FMD. The shear stress stimulus was estimated as the shear rate (blood velocity/SFA diameter). Results are expressed as the means ± SD. The LEX steady-state shear rate was consistent between trials (P = 0.176), whereas the RH shear rate area under the curve was higher in trial 1 versus trials 2-4 (P < 0.05). The %RH-FMD (four-trial mean 4.9 ± 2.5%) and absolute RH-FMD were not significantly different between trials (P = 0.465 and P = 0.359, respectively). Both %LEX-FMD and absolute LEX-FMD were higher during trial 3 (4.8 ± 3.4%) than trial 1 (3.6 ± 2.7%; P = 0.026 and P = 0.026, respectively). The magnitude of RH

  10. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors

    PubMed Central

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. Methods The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, –50, –100 and –200 ms during brief (3–5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. Results The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0–200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. Conclusions In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF. PMID:24668381

  11. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity.

    PubMed

    Karakuzu, Agah; Pamuk, Uluç; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2017-05-24

    Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle's contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dynamic31P-MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T.

    PubMed

    Valkovič, Ladislav; Chmelík, Marek; Meyerspeer, Martin; Gagoski, Borjan; Rodgers, Christopher T; Krššák, Martin; Andronesi, Ovidiu C; Trattnig, Siegfried; Bogner, Wolfgang

    2016-12-01

    Phosphorus MRSI ( 31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scanner using an MR-compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral-encoded MRSI provided 16-25 times faster mapping with a better point spread function than elliptical phase-encoded MRSI with the same matrix size. The inevitable trade-off for the increased temporal resolution was a reduced signal-to-noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral-encoded 31 P-MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution. © 2016 The Authors. NMR in Biomedicine Published by John Wiley & Sons Ltd.

  13. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.

  14. Relationship of EMG/SMG features and muscle strength level: an exploratory study on tibialis anterior muscles during plantar-flexion among hemiplegia patients

    PubMed Central

    2014-01-01

    Background Improvement in muscle strength is an important aim for the rehabilitation of hemiplegia patients. Presently, the rehabilitation prescription depends on the evaluation results of muscle strength, which are routinely estimated by experienced physicians and therefore not finely quantitative. Widely-used quantification methods for disability, such as Barthel Index (BI) and motor component of Functional Independent Measure (M-FIM), yet have limitations in their application, since both of them differentiated disability better in lower than higher disability, and they are subjective and recorded in wide scales. In this paper, to explore finely quantitative measures for evaluation of muscle strength level (MSL), we start with the study on quantified electromyography (EMG) and sonomyography (SMG) features of tibialis anterior (TA) muscles among hemiplegia patients. Methods 12 hemiplegia subjects volunteered to perform several sets of plantar-flexion movements in the study, and their EMG signals and SMG signals were recorded on TA independently to avoid interference. EMG data were filtered and then the root-mean-square (RMS) was computed. SMG signals, specifically speaking, the muscle thickness of TA, were manually measured by two experienced operators using ultrasonography. Reproducibility of the SMG assessment on TA between operators was evaluated by non-parametric test (independent sample T test). Possible relationship between muscle thickness changes (TC) of TA and muscle strength level of hemiplegia patients was estimated. Results Mean of EMG RMS between subjects is found linearly correlated with MSL (R2 = 0.903). And mean of TA muscle TC amplitudes is also linearly correlated with MSL among dysfunctional legs (R2 = 0.949). Moreover, rectified TC amplitudes (dysfunctional leg/ healthy leg, DLHL) and rectified EMG signals (DLHL) are found in linear correlation with MSL, with R2 = 0.756 and R2 = 0.676 respectively. Meanwhile, the preliminary

  15. Lack of age-specific influence on leg blood flow during incremental calf plantar-flexion exercise in men and women.

    PubMed

    Reilly, Heather; Lane, Louise M; Egaña, Mikel

    2018-03-03

    Age-related exercising leg blood flow (LBF) responses during dynamic knee-extension exercise and forearm blood flow responses during handgrip exercise are preserved in normally active men but attenuated in activity-matched women. We explored whether these age- and sex-specific effects are also apparent during isometric calf plantar-flexion incremental exercise. Normally active young men (YM, n = 15, 24 ± 2 years), young women (YW, n = 8, 22 ± 1 years), older men (OM, n = 13, 70 ± 7 years) and older women (OW, n = 10, 64 ± 7 years) were tested. LBF was measured between contractions using venous occlusion plethysmography. Peak force obtained was higher (P < 0.05) in men compared with women and in young compared with older individuals. However, peak LBF (YM; 971 ± 328 ml min -1 , OM; 985 ± 504 ml min -1 , YW; 844 ± 366 ml min -1 , OW; 960 ± 244 ml min -1 ) and peak leg vascular conductance [LVC = LBF/(MAP + hydrostatic pressure)] responses (YM; 6.0 ± 1.8 ml min -1  mmHg -1 , OM; 5.5 ± 2.8 ml min -1  mmHg -1 , YW; 5.3 ± 2.1 ml min -1  mmHg -1 , OW; 5.5 ± 1.6 ml min -1 mmHg -1 ) were similar among the four groups. Furthermore, the hyperaemic (YM; 8.8 ± 3.7 ml min -1  %F peak -1 OM; 8.3 ± 5.4 ml min -1  %F peak -1 , YW; 8.2 ± 3.5 ml min -1  %F peak -1 , OW; 9.6 ± 2.2 ml min -1  %F peak -1 ) and vasodilatory responses (YM; 0.053 ± 0.020 ml min -1  mmHg -1  %F peak -1 , OM; 0.048 ± 0.028 ml min -1  mmHg -1  %F peak -1 , YW; 0.051 ± 0.019 ml min -1  mmHg -1  %F peak -1 , OW; 0.055 ± 0.014 ml min -1  mmHg -1  %F peak -1 ) were not different among the four groups. These results were accompanied by similar resting LBF responses among groups and were not affected when data were normalised to estimated leg muscle mass. Our results demonstrate that exercising LBF responses during isometric incremental

  16. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design.

    PubMed

    Šedivý, Petr; Kipfelsberger, Monika Christina; Dezortová, Monika; Krššák, Martin; Drobný, Miloslav; Chmelík, Marek; Rydlo, Jan; Trattnig, Siegfried; Hájek, Milan; Valkovič, Ladislav

    2015-04-01

    Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36  ±  13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at

  17. Effect of muscle length on voluntary activation of the plantar flexors in boys and men.

    PubMed

    Kluka, Virginie; Martin, Vincent; Vicencio, Sebastian Garcia; Giustiniani, Mathias; Morel, Claire; Morio, Cédric; Coudeyre, Emmanuel; Ratel, Sébastien

    2016-05-01

    The aim of the present study was to compare the effect of muscle length on the maximal voluntary activation level (VA) of the plantar-flexors between children and adults. Fourteen boys (10.0 ± 1.0 years) and fifteen men (24.6 ± 4.2 years) performed 5-s maximal isometric voluntary contractions (MVC) of the plantar-flexor muscles at seven ankle angles [from 10° in dorsi-flexion (DF) to 20° in plantar-flexion (PF); 0° = reference position; the angle between the plantar surface and leg is a right angle]. Single magnetic stimulations were delivered to the posterior tibial nerve during MVCs to determine VA. Results showed a higher absolute torque of the plantar-flexor muscles at long (10° DF) than at short muscle length (20° PF) in men (89.4 ± 19.4 vs. 46.8 ± 17.0 N m, P < 0.001) and boys (44.9 ± 18.5 vs. 26.6 ± 12.8 N m, P < 0.001). On average, VA was significantly higher in men than in boys (92.4 ± 1.7 vs. 87.6 ± 1.6 %, P < 0.05). However, no significant main effect of the ankle angle was observed on VA. The VA partly accounts for the plantar-flexors MVC torque difference between children and adults but is not affected by the muscle length changes in both groups. Therefore, VA cannot account for the shape of the torque-angle relationship on the plantar-flexor muscles.

  18. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    PubMed

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  19. Acute effects of 15min static or contract-relax stretching modalities on plantar flexors neuromuscular properties.

    PubMed

    Babault, Nicolas; Kouassi, Blah Y L; Desbrosses, Kevin

    2010-03-01

    The present study aimed to investigate the immediate effects of 15 min static or sub-maximal contract-relax stretching modalities on the neuromuscular properties of plantar flexor muscles. Ten male volunteers were tested before and immediately after 15 min static or contract-relax stretching programs of plantar flexor muscles (20 stretches). Static stretching consisted in 30s stretches to the point of discomfort. For the contract-relax stretching modality, subjects performed 6s sub-maximal isometric plantar flexion before 24s static stretches. Measurements included maximal voluntary isometric torque (MVT) and the corresponding electromyographic activity of soleus (SOL) and medial gastrocnemius (MG) muscles (RMS values), as well as maximal peak torque (Pt) elicited at rest by single supramaximal electrical stimulation of the tibial nerve. After 15 min stretching, significant MVT and SOL RMS decreases were obtained (-6.9+/-11.6% and -6.5+/-15.4%, respectively). No difference was obtained between stretching modalities. Pt remained unchanged after stretching. MG RMS changes were significantly different between stretching modalities (-9.4+/-18.3% and +3.5+/-11.6% after static and contract-relax stretching modalities, respectively). These findings indicated that performing 15 min static or contract-relax stretching had detrimental effects on the torque production capacity of plantar flexor muscles and should be precluded before competition. Mechanisms explaining this alteration seemed to be stretch modality dependent. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Plantar fasciitis

    MedlinePlus

    ... Wear shoes with poor arch support or soft soles Change your activities Plantar fasciitis is seen in both men and women. It is one of the most common orthopedic foot complaints. Plantar fasciitis was commonly thought to ...

  1. How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane?☆

    PubMed Central

    Vieira, Taian M.M.; Minetto, Marco A.; Hodson-Tole, Emma F.; Botter, Alberto

    2013-01-01

    Ankle movements in the frontal plane are less prominent though not less relevant than movements in the plantar or dorsal flexion direction. Walking on uneven terrains and standing on narrow stances are examples of circumstances likely imposing marked demands on the ankle medio-lateral stabilization. Following our previous evidence associating lateral bodily sways in quiet standing to activation of the medial gastrocnemius (MG) muscle, in this study we ask: how large is the MG contribution to ankle torque in the frontal plane? By arranging stimulation electrodes in a selective configuration, current pulses were applied primarily to the MG nerve branch of ten subjects. The contribution of populations of MG motor units of progressively smaller recruitment threshold to ankle torque was evaluated by increasing the stimulation amplitude by fixed amounts. From smallest intensities (12–32 mA) leading to the firstly observable MG twitches in force-plate recordings, current pulses reached intensities (56–90 mA) below which twitches in other muscles could not be observed from the skin. Key results showed a substantial MG torque contribution tending to rotate upward the foot medial aspect (ankle inversion). Nerve stimulation further revealed a linear relationship between the peak torque of ankle plantar flexion and inversion, across participants (Pearson R > .81, p < .01). Specifically, regardless of the current intensity applied, the peak torque of ankle inversion amounted to about 13% of plantar flexion peak torque. Physiologically, these results provide experimental evidence that MG activation may contribute to stabilize the body in the frontal plane, especially under situations of challenged stability. PMID:23992638

  2. Resistance exercise prevents plantar flexor deconditioning during bed rest

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Hunter, G. R.; Stevens, B. R.; Guilliams, M. E.; Greenisen, M. C.

    1997-01-01

    Because resistance exercise (REX) and unloading induce opposing neuromuscular adaptations, we tested the efficacy of REX against the effects of 14 d of bed rest unloading (BRU) on the plantar flexor muscle group. Sixteen men were randomly assigned to no exercise (NOE, N = 8) or REX (N = 8). REX performed 5 sets x 6-10 repetitions to failure of constant resistance concentric/eccentric plantar flexion every other day during BRU. One-repetition maximum (1RM) strength was tested on the training device. The angle-specific torque-velocity relationship across 5 velocities (0, 0.52, 1.05, 1.75, and 2.97 rad.s-1) and the full range-of-motion power-velocity relationship were assessed on a dynamometer. Torque-position analyses identified strength changes at shortened, neutral, and stretched muscle lengths. Concentric and eccentric contractile work were measured across ten repetitions at 1.05 rad.s-1. Maximal neural activation was measured by surface electromyography (EMG). 1RM decreased 9% in NOE and improved 11% in REX (P < 0.05). Concentric (0.52 and 1.05 rad.s-1), eccentric (0.52 and 2.97 rad.s-1), and isometric angle-specific torques decreased (P < 0.05) in NOE, averaging 18%, 17%, and 13%, respectively. Power dropped (P < 0.05) in NOE at three eccentric (21%) and two concentric (14%) velocities. REX protected angle-specific torque and average power at all velocities. Concentric and eccentric strength decreased at stretched (16%) and neutral (17%) muscle lengths (P < 0.05) in NOE while REX maintained or improved strength at all joint positions. Concentric (15%) and eccentric (11%) contractile work fell in NOE (P < 0.05) but not in REX. Maximal plantar flexor EMG did not change in either group. In summary, constant resistance concentric/eccentric REX completely prevented plantar flexor performance deconditioning induced by BRU. The reported benefits of REX should prove useful in prescribing exercise for astronauts in microgravity and for patients susceptible to functional

  3. Plantar Fibroma

    MedlinePlus

    ... you hurt? Interactive Foot Diagram Soft-Tissue Biopsy What Is a Soft-Tissue Biopsy? A soft-tissue biopsy is the removal ... sample of soft tissue for diagnostic purposes. Soft tissue includes... Plantar Wart (Verruca Plantaris) What Is a Plantar Wart? A wart is a ...

  4. Plantar fasciitis

    PubMed Central

    Cutts, S; Obi, N; Pasapula, C; Chan, W

    2012-01-01

    INTRODUCTION In this article we look at the aetiology of plantar fasciitis, the other common differentials for heel pain and the evidence available to support each of the major management options. We also review the literature and discuss the condition. METHODS A literature search was performed using PubMed and MEDLINE®. The following keywords were used, singly or in combination: ‘plantar fasciitis’, ‘plantar heel pain’, ‘heel spur’. To maximise the search, backward chaining of reference lists from retrieved papers was also undertaken. FINDINGS Plantar fasciitis is a common and often disabling condition. Because the natural history of plantar fasciitis is not understood, it is difficult to distinguish between those patients who recover spontaneously and those who respond to formal treatment. Surgical release of the plantar fascia is effective in the small proportion of patients who do not respond to conservative measures. New techniques such as endoscopic plantar release and extracorporeal shockwave therapy may have a role but the limited availability of equipment and skills means that most patients will continue to be treated by more traditional techniques. PMID:23131221

  5. Plantar Fibroma and Plantar Fibromatosis

    MedlinePlus

    ... also wrap around the local digital nerves and arteries. How is plantar fibroma diagnosed? There are a ... Society ® Orthopaedic Foot & Ankle Foundation 9400 W. Higgins Road, Suite 220, Rosemont, IL 60018 800-235-4855 ...

  6. The effects of passive stretching plus vibration on strength and activation of the plantar flexors.

    PubMed

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Mosier, Eric M

    2016-09-01

    This study examined the effects of passive stretching only (PS+CON) and passive stretching with the addition of continuous vibration (VIB) during post-passive stretching tests (PS+VIB) on peak torque (PT), percent voluntary inactivation (%VI), single stimulus twitch torque (TTSINGLE), and doublet stimuli twitch torque (TTDOUBLET) of the plantar flexors at a short (20° plantar flexion (PF)) and long muscle length (15° dorsiflexion (DF)). Fourteen healthy men (age = 22 ± 3 years) performed isometric maximal voluntary contractions at PF and DF, and passive range of motion (PROM) assessments before and after 8 × 30-s passive stretches without (PS+CON) or with VIB (PS+VIB) administered continuously throughout post-passive stretching tests. The passive properties of the muscle tendon unit were assessed pre- and post-passive stretching via PROM, passive torque (PASSTQ), and musculotendinous stiffness (MTS) measurements. PT, TTSINGLE, and TTDOUBLET decreased, whereas, %VI increased following passive stretching at PF and DF (P < 0.05) with no significant differences between PS+CON and PS+VIB. PASSTQ and MTS decreased while PROM increased post-passive stretching during both trials (P < 0.05). The stretching-induced force/torque deficit and increases in %VI were evident following passive stretching at short and long muscle lengths. Although not statistically significant, effect size calculations suggested large and moderate differences in the absolute changes in PT (Cohen's d = 1.14) and %VI (Cohen's d = 0.54) from pre- to post-passive stretching between treatments, with PS+VIB having greater decreases of PT and higher %VI than PS+CON. The decrement in PT following passive stretching may be primarily neural in origin.

  7. Development and evaluation of a new measure for muscle tone of ankle plantar flexors: the ankle plantar flexors tone scale.

    PubMed

    Takeuchi, Nobuyuki; Kuwabara, Takeya; Usuda, Shigeru

    2009-12-01

    Takeuchi N, Kuwabara T, Usuda S. Development and evaluation of a new measure for muscle tone of ankle plantar flexors: the Ankle Plantar Flexors Tone Scale. To develop and evaluate the reliability and concurrent validity of a clinically feasible measure for muscle tone of the ankle plantar flexors. Cross-sectional reliability and validity study of the Ankle Plantar Flexors Tone Scale. Department of rehabilitation in a general hospital. Patients (N=74) with cerebrovascular disease. Not applicable. Muscle tone of the ankle plantar flexors was measured using the Ankle Plantar Flexors Tone Scale, the Modified Ashworth Scale (MAS), quality of muscle reaction with the Modified Tardieu Scale, and passive resistive joint torque with a handheld dynamometer. Intrarater and interrater reliabilities were assessed using the Cohen kappa coefficient (kappa). Internal consistency was assessed using the Cronbach alpha (alpha). Concurrent validity was assessed with the Spearman rank correlation coefficient (rho). The Ankle Plantar Flexors Tone Scale included 3 items: stretch reflex, middle range resistance, and final range resistance. Intrarater and interrater reliabilities and internal consistency of the Ankle Plantar Flexors Tone Scale showed moderate to excellent agreement (kappa=.63-.94; alpha=.81). Concurrent validity of the Ankle Plantar Flexors Tone Scale was low to very high among the 3 items of the Ankle Plantar Flexors Tone Scale and existing measures. The Spearman rank correlation coefficient showed high to very high correlation between stretch reflex and quality of muscle reaction as indices of the central component (rho=.85-.94). Middle range resistance and final range resistance as indices of the peripheral component had low to moderate correlation with passive resistive joint torque using a handheld dynamometer and MAS (rho=.44-.68). The Ankle Plantar Flexors Tone Scale allows measurement of ankle plantar flexor tone in greater detail than existing subjective measures

  8. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.

    PubMed

    Zhang, Qin; Hayashibe, Mitsuhiro; Papaiordanidou, Maria; Fraisse, Philippe; Fattal, Charles; Guiraud, David

    2010-01-01

    Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model.

  9. Influence of ankle plantar flexor muscle architecture and strength on gait in boys with haemophilia in comparison to typically developing children.

    PubMed

    Stephensen, D; Drechsler, W I; Scott, O M

    2014-05-01

    Altered gait patterns, muscle weakness and atrophy have been reported in young boys with severe haemophilia when compared to unaffected peers. The aim of this study was to determine whether lateral gastrocnemius muscle size and architecture influenced biomechanical walking patterns of boys with haemophilia and if these relationships differed from age-matched typically developing boys. Biomechanical function of the knee and ankle during level walking, lateral gastrocnemius anatomical cross-sectional area, thickness, width, fascicle length and pennation angle and ankle plantar flexor muscle strength were recorded in 19 typically developing boys aged 7-12 years and 19 age-matched haemophilic boys with a history of ankle joint bleeding. Associations between gait, strength and architecture were compared using correlations of peak gait values. Haemophilic boys walked with significantly larger (P < 0.05) ankle dorsi flexion angles and knee flexion moments. The ankle plantar flexor muscles of haemophilic boys were significantly weaker and smaller when compared to typically developing peers. In the typically developing boys there was no apparent association between muscle architecture, strength and walking patterns. In haemophilic boys maximum muscle strength and ACSA normalized torque of the ankle plantar flexors together with the muscle width, thickness, fascicle length and angulation (P < 0.05) were associated with motion at the ankle and peak moments at the knee joint. Muscle strength deficits of the ankle plantar flexors and changes in muscle size and architecture may underpin the key biomechanical alterations in walking patterns of haemophilic boys with a history of ankle joint bleeding. © 2013 John Wiley & Sons Ltd.

  10. Plantar Wart (Verruca Plantaris)

    MedlinePlus

    ... you hurt? Interactive Foot Diagram Soft-Tissue Biopsy What Is a Soft-Tissue Biopsy? A soft-tissue biopsy is the removal ... sample of soft tissue for diagnostic purposes. Soft tissue includes... Plantar Fibroma What Is the Plantar Fibroma? A plantar fibroma is ...

  11. Impaired Foot Plantar Flexor Muscle Performance in Individuals With Plantar Heel Pain and Association With Foot Orthosis Use.

    PubMed

    McClinton, Shane; Collazo, Christopher; Vincent, Ebonie; Vardaxis, Vassilios

    2016-08-01

    Study Design Controlled laboratory study. Background Plantar heel pain is one of the most common foot and ankle conditions seen in clinical practice, and many individuals continue to have persisting or recurrent pain after treatment. Impaired foot plantar flexor muscle performance is a factor that may contribute to limited treatment success, but reliable methods to identify impairments in individuals with plantar heel pain are needed. In addition, foot orthoses are commonly used to treat this condition, but the implications of orthosis use on muscle performance have not been assessed. Objectives To assess ankle plantar flexor and toe flexor muscle performance in individuals with plantar heel pain using clinically feasible measures and to examine the relationship between muscle performance and duration of foot orthosis use. Methods The rocker-board plantar flexion test (RBPFT) and modified paper grip test for the great toe (mPGTGT) and lesser toes (mPGTLT) were used to assess foot plantar flexor muscle performance in 27 individuals with plantar heel pain and compared to 27 individuals without foot pain who were matched according to age, sex, and body mass. Pain ratings were obtained before and during testing, and self-reported duration of foot orthosis use was recorded. Results Compared to the control group, individuals with plantar heel pain demonstrated lower performance on the RBPFT (P = .001), the mPGTGT (P = .022), and the mPGTLT (P = .037). Longer duration of foot orthosis use was moderately correlated to lower performance on the RBPFT (r = -0.52, P = .02), the mPGTGT (r = -0.54, P = .01), and the mPGTLT (r = -0.43, P = .03). Conclusion Ankle plantar flexor and toe flexor muscle performance was impaired in individuals with plantar heel pain and associated with longer duration of self-reported foot orthosis use. J Orthop Sports Phys Ther 2016;46(8):681-688. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6482.

  12. Plantar heel pain.

    PubMed

    Rosenbaum, Andrew J; DiPreta, John A; Misener, David

    2014-03-01

    Plantar heel pain is a common complaint encountered by orthopedic surgeons, internists, and family practitioners. Although it is most often caused by plantar fasciitis, this is a diagnosis of exclusion. Other mechanical, rheumatologic, and neurologic causes must be considered first. The history and physical examination are typically all that is needed to make the proper diagnosis, but diagnostic adjuncts are available to assist the clinician. When plantar fasciitis is diagnosed, conservative modalities must be tried first. Corticosteroid injections and extracorporeal shock-wave therapy may also be used. After 6 months of failed conservative treatments, surgical intervention should be considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Plantar fascia (image)

    MedlinePlus

    The plantar fascia is a very thick band of tissue that covers the bones on the bottom of the foot. It ... band of tissue causes a high arch. This fascia can become inflamed and painful in some people, ...

  14. Influence of Hip-Flexion Angle on Hamstrings Isokinetic Activity in Sprinters

    PubMed Central

    Guex, Kenny; Gojanovic, Boris; Millet, Grégoire P.

    2012-01-01

    Context Hamstrings strains are common and debilitating injuries in many sports. Most hamstrings exercises are performed at an inadequately low hip-flexion angle because this angle surpasses 70° at the end of the sprinting leg's swing phase, when most injuries occur. Objective To evaluate the influence of various hip-flexion angles on peak torques of knee flexors in isometric, concentric, and eccentric contractions and on the hamstrings-to-quadriceps ratio. Design Descriptive laboratory study. Setting Research laboratory. Patients and Other Participants Ten national-level sprinters (5 men, 5 women; age = 21.2 ± 3.6 years, height = 175 ± 6 cm, mass = 63.8 ± 9.9 kg). Intervention(s) For each hip position (0°, 30°, 60°, and 90° of flexion), participants used the right leg to perform (1) 5 seconds of maximal isometric hamstrings contraction at 45° of knee flexion, (2) 5 maximal concentric knee flexion-extensions at 60° per second, (3) 5 maximal eccentric knee flexion-extensions at 60° per second, and (4) 5 maximal eccentric knee flexion-extensions at 150° per second. Main Outcome Measure(s) Hamstrings and quadriceps peak torque, hamstrings-to-quadriceps ratio, lateral and medial hamstrings root mean square. Results We found no difference in quadriceps peak torque for any condition across all hip-flexion angles, whereas hamstrings peak torque was lower at 0° of hip flexion than at any other angle (P < .001) and greater at 90° of hip flexion than at 30° and 60° (P < .05), especially in eccentric conditions. As hip flexion increased, the hamstrings-to-quadriceps ratio increased. No difference in lateral or medial hamstrings root mean square was found for any condition across all hip-flexion angles (P > .05). Conclusions Hip-flexion angle influenced hamstrings peak torque in all muscular contraction types; as hip flexion increased, hamstrings peak torque increased. Researchers should investigate further whether an eccentric resistance training program at

  15. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  16. Flexion in Abell 2744

    NASA Astrophysics Data System (ADS)

    Bird, J. P.; Goldberg, D. M.

    2018-05-01

    We present the first flexion-focused gravitational lensing analysis of the Hubble Frontier Field observations of Abell 2744 (z = 0.308). We apply a modified Analytic Image Model technique to measure source galaxy flexion and shear values at a final number density of 82 arcmin-2. By using flexion data alone, we are able to identify the primary mass structure aligned along the heart of the cluster in addition to two major substructure peaks, including an NE component that corresponds to previous lensing work and a new peak detection offset 1.43 arcmin from the cluster core towards the east. We generate two types of non-parametric reconstructions: flexion aperture mass maps, which identify central core, E, and NE substructure peaks with mass signal-to-noise contours peaking at 3.5σ, 2.7σ, and 2.3σ, respectively; and convergence maps derived directly from the smoothed flexion field. For the primary peak, we find a mass of (1.62 ± 0.12) × 1014 h-1 M⊙ within a 33 arcsec (105 h-1 kpc) aperture, a mass of (2.92 ± 0.26) × 1013 h-1 M⊙ within a 16 arcsec (50 h-1 kpc) aperture for the north-eastern substructure, and (8.81 ± 0.52) × 1013 h-1 M⊙ within a 25 arcsec (80 h-1 kpc) aperture for the novel eastern substructure.

  17. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord

    PubMed Central

    Knikou, M

    2006-01-01

    Study design Spinal reflex excitability study in sensory–motor incomplete spinal cord-injured (SCI) and spinal intact subjects. Objectives To investigate the effects of plantar cutaneous afferent excitation on the soleus H-reflex and flexion reflex in both subject groups while seated. Setting Rehabilitation Institute of Chicago and City University of New York, USA. Methods The flexion reflex in SCI subjects was elicited by non-nociceptive stimulation of the sural nerve. In normal subjects, it was also elicited via innocuous medial arch foot stimulation. In both cases, reflex responses were recorded from the ipsilateral tibialis anterior muscle. Soleus H-reflexes were elicited and recorded via conventional methods. Both reflexes were conditioned by plantar cutaneous afferent stimulation at conditioning test intervals ranging from 3 to 90 ms. Results Excitation of plantar cutaneous afferents resulted in facilitation of the soleus H-reflex and late flexion reflex in SCI subjects. In normal subjects, the soleus H-reflex was depressed while the late flexion reflex was absent. The early flexion reflex was irregularly observed in SCI patients, while in normal subjects a bimodal reflex modulation pattern was observed. Conclusion The effects of plantar cutaneous afferents change following a lesion to the spinal cord leading to exaggerated activity in both flexors and extensors. This suggests impaired modulation of the spinal inhibitory mechanisms involved in the reflex modulation. Our findings should be considered in programs aimed to restore sensorimotor function and promote recovery in these patients. PMID:16534501

  18. Influence of hip-flexion angle on hamstrings isokinetic activity in sprinters.

    PubMed

    Guex, Kenny; Gojanovic, Boris; Millet, Grégoire P

    2012-01-01

    Hamstrings strains are common and debilitating injuries in many sports. Most hamstrings exercises are performed at an inadequately low hip-flexion angle because this angle surpasses 70° at the end of the sprinting leg's swing phase, when most injuries occur. To evaluate the influence of various hip-flexion angles on peak torques of knee flexors in isometric, concentric, and eccentric contractions and on the hamstrings-to-quadriceps ratio. Descriptive laboratory study. Research laboratory. Ten national-level sprinters (5 men, 5 women; age = 21.2 ± 3.6 years, height = 175 ± 6 cm, mass = 63.8 ± 9.9 kg). For each hip position (0°, 30°, 60°, and 90° of flexion), participants used the right leg to perform (1) 5 seconds of maximal isometric hamstrings contraction at 45° of knee flexion, (2) 5 maximal concentric knee flexion-extensions at 60° per second, (3) 5 maximal eccentric knee flexion-extensions at 60° per second, and (4) 5 maximal eccentric knee flexionextensions at 150° per second. Hamstrings and quadriceps peak torque, hamstrings-to-quadriceps ratio, lateral and medial hamstrings root mean square. We found no difference in quadriceps peak torque for any condition across all hip-flexion angles, whereas hamstrings peak torque was lower at 0° of hip flexion than at any other angle (P < .001) and greater at 90° of hip flexion than at 30° and 60° (P < .05), especially in eccentric conditions. As hip flexion increased, the hamstrings-to-quadriceps ratio increased. No difference in lateral or medial hamstrings root mean square was found for any condition across all hip-flexion angles (P > .05). Hip-flexion angle influenced hamstrings peak torque in all muscular contraction types; as hip flexion increased, hamstrings peak torque increased. Researchers should investigate further whether an eccentric resistance training program at sprint-specific hip-flexion angles (70° to 80°) could help prevent hamstrings injuries in sprinters. Moreover, hamstrings

  19. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  20. Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons.

    PubMed

    Nakamura, Norimasa; Horibe, Shuji; Sasaki, Satoru; Kitaguchi, Takuya; Tagami, Mituo; Mitsuoka, Tomoki; Toritsuka, Yukiyoshi; Hamada, Masayuki; Shino, Konsei

    2002-01-01

    The purpose of this study was to evaluate active knee flexion range of motion and hamstring strength following hamstring anterior cruciate ligament (ACL) reconstruction. Case control study, consecutive sample. Seventy-four consecutive patients who had undergone hamstring ACL reconstruction underwent isokinetic muscle strength testing at 2 years post surgery. Measurements of the maximum standing active knee flexion angle with the hip extended were also taken. During isokinetic testing, we evaluated flexion torque at 90 degrees of knee flexion, in addition to the peak flexion torque. We further compared these parameters of muscle strength around the knee for the patients in whom only semitendinosus tendon was harvested as a graft source (ST group), and those from whom the semitendinosus tendon and the gracilis tendon were harvested (ST/G group). Isokinetic testing showed that, in both the ST and ST/G groups, the knee flexor strength of the involved leg was less effectively restored at 90 degrees of knee flexion than at the angle at which the peak torque was generated. Conversely, no significant difference was seen in the side-to-side ratio in either the peak flexion torque or the 90 degrees flexion torque between the groups. The side-to-side ratio in mean maximum standing knee flexion angle was significantly lower in the ST/G group than in the ST group. This study suggests that the loss of knee flexor strength following the harvest of the hamstring tendons may be more significant than has been previously estimated. Furthermore, multiple tendon harvest may affect the range of active knee flexion.

  1. Influence of professional dance training on peak torque and proprioception at the ankle.

    PubMed

    Schmitt, Holger; Kuni, Benita; Sabo, Desiderius

    2005-09-01

    To investigate the influence of professional dance training on the peak torque ratio of plantar flexion to dorsiflexion (PF/DF), angle replication ability, and balance in comparison to age-matched and gender-matched controls. The effects of injuries sustained before and during the study time period were also assessed. Prospective age-matched and gender-matched nonrandomized intervention study. Premises of the Orthopedic University Hospital, Heidelberg, where measuring apparatus belonging to the hospital was used for the tests. One group of 42 dancers (31 female, 11 male) in professional training (State Academy) and 40 age-matched and gender-matched controls with no prior dance or specific sport training. Isokinetic tests for peak torque at 30 degrees /s and 120 degrees /s, a passive angle-replication test (Biodex system 3), and a test of 1-legged standing were each carried out on 2 measurement dates (M1, M2): at the beginning of a season of professional dance training (M1) and after 5 months of such training (M2). Symptoms and/or injuries sustained during this period were ascertained continuously by means of questionnaires and interviews. A significant increase in peak torque in PF was observed in both dancer groups and male controls between M1 and M2. A significant increase in PF/DF peak torque ratio at 30 degrees /s was observed in both male groups between M1 and M2. At M2, no significant differences in PF/DF peak torque ratio could be found between male dancers and controls, but at 30 degrees /s between the female groups. However, in both female groups, the PF/DF ratio was not found to increase significantly between M1 and M2. In the angle-replication and 1-legged standing test, no consistent improvement was observed between M1 and M2 in either dancers or controls. In the angle-replication test, there were no significant differences between dancers and controls at M2. In the 1-legged standing test, the dancers did significantly better than controls. A total of 7

  2. Age-related reduction of trunk muscle torque and prevalence of trunk sarcopenia in community-dwelling elderly: Validity of a portable trunk muscle torque measurement instrument and its application to a large sample cohort study

    PubMed Central

    Sasaki, Shizuka; Chiba, Daisuke; Yamamoto, Yuji; Nawata, Atsushi; Tsuda, Eiichi; Nakaji, Shigeyuki; Ishibashi, Yasuyuki

    2018-01-01

    Trunk muscle weakness and imbalance are risk factors for postural instability, low back pain, and poor postoperative outcomes. The association between trunk muscle strength and aging is poorly understood, and establishing normal reference values is difficult. We aimed to establish the validity of a novel portable trunk muscle torque measurement instrument (PTMI). We then estimated reference data for healthy young adults and elucidated age-related weakness in trunk muscle strength. Twenty-four university students were enrolled to validate values for PTMI, and 816 volunteers from the general population who were recruited to the Iwaki Health Promotion Project were included to estimate reference data for trunk muscle strength. Trunk flexion and extension torque were measured with PTMI and KinCom, and interclass correlation coefficients (ICC) were estimated to evaluate the reliability of PTMI values. Furthermore, from the young adult reference, the age-related reduction in trunk muscle torque and the prevalence of sarcopenia among age-sex groups were estimated. The ICC in flexion and extension torque were 0.807 (p<0.001) and 0.789 (p<0.001), respectively. The prevalence of sarcopenia increased with age, and the prevalence due to flexion torque was double that of extension torque. Flexion torque decreased significantly after 60 years of age, and extension torque decreased after 70 years of age. In males over age 80, trunk muscle torque decreased to 49.1% in flexion and 63.5% in extension. In females over age 80, trunk muscle torque decreased to 60.7% in flexion and 68.4% in extension. The validity of PTMI was confirmed by correlation with KinCom. PTMI produced reference data for healthy young adults, and demonstrated age-related reduction in trunk muscle torque. Trunk sarcopenia progressed with aging, and the loss of flexion torque began earlier than extension torque. At age 80, trunk muscle torque had decreased 60% compared with healthy young adults. PMID:29471310

  3. Strength training for plantar fasciitis and the intrinsic foot musculature: A systematic review.

    PubMed

    Huffer, Dean; Hing, Wayne; Newton, Richard; Clair, Mike

    2017-03-01

    The aim was to critically evaluate the literature investigating strength training interventions in the treatment of plantar fasciitis and improving intrinsic foot musculature strength. A search of PubMed, CINHAL, Web of Science, SPORTSDiscus, EBSCO Academic Search Complete and PEDRO using the search terms plantar fasciitis, strength, strengthening, resistance training, intrinsic flexor foot, resistance training. Seven articles met the eligibility criteria. Methodological quality was assessed using the modified Downs and Black checklist. All articles showed moderate to high quality, however external validity was low. A comparison of the interventions highlights significant differences in strength training approaches to treating plantar fasciitis and improving intrinsic strength. It was not possible to identify the extent to which strengthening interventions for intrinsic musculature may benefit symptomatic or at risk populations to plantar fasciitis. There is limited external validity that foot exercises, toe flexion against resistance and minimalist running shoes may contribute to improved intrinsic foot musculature function. Despite no plantar fascia thickness changes being observed through high-load plantar fascia resistance training there are indications that it may aid in a reduction of pain and improvements in function. Further research should use standardised outcome measures to assess intrinsic foot musculature strength and plantar fasciitis symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Effect of anterior cruciate ligament rupture on hamstring: quadriceps ratio during isokinetic knee extension and flexion at 30 degrees of flexion].

    PubMed

    Huang, Hong-shi; Jiang, Yan-fang; Yang, Jie; Yu, Yuan-yuan; Wang, Yi; Xu, Yan; Ao, Ying-fang

    2015-10-18

    To evaluate the change in hamstring (H):quadriceps (Q) ratio following anterior cruciate ligament (ACL) rupture during isokinetic knee extension and flexion at 30 degrees of flexion which is important for knee dynamic function. A study was performed in 25 male complete unilateral ACL ruptures. Isokinetic concentric and eccentric quadriceps and hamstring muscle tests in both the deficient knees and intact knees were performed at 60°/s, respectively. At 30 degrees of flexion, the average torque of quadriceps and hamstring, Qe:Qc ratios (ratios of eccentric quadriceps to concentric quadriceps muscle torque), He:Hc ratios (eccentric hamstring to concentric hamstring), Hc:Qc ratios (concentric hamstring to concentric quadriceps), He:Qc ratios (eccentric hamstring to concentric quadriceps), and Hc:Qe ratios (concentric hamstring to eccentric quadriceps) were calculated. Wilcoxon matched-pairs signed-ranks test was used. At 30 degrees of knee flexion, a significant reduction (P<0.05) in the average torque of quadriceps was observed at concentric and eccentric 60°/s produced by the deficient-side compared with the intact side. In addition, Hc:Qc, He:Qc, and Qe:Qc significantly increased on the ACL-deficient side. The change in H :Q ratio in the mode of isokinetic 60°/s at 30 degrees of knee flexion might therefore be a new tool to objectively document muscle function in ACL-deficient knee.

  5. Measuring Gearbox Torque Loss

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1986-01-01

    Accuracy increased by measuring small torque differences directly. Input and output torques are balanced by mechanical linkage in transmission-testing apparatus. Force applied to load cell proportional to frictional torque loss in transmission. Apparatus measures portion of input torque lost to friction in automotive transmissions or other gearbox. Apparatus more sensitive than previous measuring systems.

  6. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions.

    PubMed

    Girard, O; Nybo, L; Mohr, M; Racinais, S

    2015-06-01

    We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20 °C and 55% rH) and hot (∼43 °C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, -50, -100, and -200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (-1.5% and -16.5%, respectively; P < 0.05) post-matches relative to baseline in both conditions, the latter persisting for at least 48 h, whereas strength losses (∼5%) were not significant. Absolute explosive force production declined (P < 0.05) 30 ms after contraction onset independently of condition, with no change at any other epochs. Globally, normalized rate of force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Muscle Twitch Torque During Two Different in Volume Isometric Exercise Protocols: Fatigue Effects on Postactivation Potentiation.

    PubMed

    Xenofondos, Anthi; Bassa, Eleni; Vrabas, Ioannis S; Kotzamanidis, Christos; Patikas, Dimitrios A

    2018-02-01

    Xenofondos, A, Bassa, E, Vrabas, IS, Kotzamanidis, C, and Patikas, D. Muscle twitch torque during two different in volume isometric exercise protocols: fatigue effects on postactivation potentiation. J Strength Cond Res 32(2): 578-586, 2018-The purpose of this study was to quantify the effect of the contraction duration of 2 isometric exercise protocols on the postactivation potentiation of 14 well-trained men (age: 22.6 ± 2.8 years, height: 180.3 ± 5.9 cm, and body mass: 72.3 ± 37.9 kg). The protocols consisted of 4 × 6 maximal plantar flexions, of 3-second (P3) or 6-second (P6) duration, performed in random order, with a 2-minute and 15-second intervals between the sets and repetitions, respectively. The torque during maximal isometric voluntary contraction (MIVC), the peak twitch torque (TT), and the rate of torque development (RTD) after each MIVC were analyzed for the first and the last trial of each set, the average of all trials of each set, and the trials within each set that had the highest peak TT. The MIVC had an overall greater reduction during P6 compared with P3 (P3: -4.6 ± 2.3 vs. P6: -16.0 ± 1.9%). P6 showed higher potentiation in TT during the initial repetitions of the first 2 sets (p < 0.05) in contrast to the P3, which revealed a lower potentiation but for a longer period along the exercise session. However, both protocols had on average the same potential for potentiation (P3: 81.6 ± 6.1 vs. P6: 79.8 ± 6.3%). The twitch RTD presented no systematic difference between the 2 protocols (p > 0.05). These data demonstrate the dependence of the TT potentiation on the conditioning stimulus and verify the cumulative effect of potentiation, suggesting the implementation of longer contractions to achieve maximal but temporal TT potentiation and shorter contractions for less variable but prolonged potentiation.

  8. Muscle Strength and Contractile Kinetics of Isometric Elbow Flexion in Girls and Women

    PubMed Central

    Falk, Bareket; Brunton, Laura; Dotan, Raffy; Usselman, Charlotte; Klentrou, Panagiota; Gabriel, Davie

    2013-01-01

    Ten prepubertal girls and 15 young women were tested for maximal torque, peak rate of torque development, electro-mechanical delay (EMD), and time to peak rate of torque development during isometric elbow flexion. Absolute peak torque (17.0 ± 7.7 vs. 40.5 ± 8.3 Nm) and peak rate of torque development (105.9 ± 58.6 vs. 297.2 ± 113.0 Nm·s−1) were lower in the girls (p < .05). Normalized to muscle cross sectional area, torque was similar (8.27 ± 2.74 vs. 8.44 ± 1.65 Nm·cm−2), as was peak rate of torque development, normalized to peak torque (6.21 ± 1.94 vs. 7.30 ± 2.26 Nm·s−1/Nm). Both, time to peak rate of torque development (123.8 ± 36.0 vs. 110.5 ± 52.6 ms) and EMD (73.2 ± 28.6 vs. 51.9 ± 25.6 ms), were longer in the girls, although EMD’s difference only approached statistical significance (p = .06). Age-related isometric strength differences in females appear to be mainly muscle-size dependent. However, the time to peak torque and EMD findings suggest differential motor-unit activation which may functionally manifest itself in fast dynamic contractions. PMID:19827458

  9. A flap based on the plantar digital artery arch branch to improve appearance of reconstructed fingers: Anatomical and clinical application.

    PubMed

    Tang, Lin-Feng; Ju, Ji-Hui; Liu, Yue-Fei; Lan, Bo; Hou, Rui-Xing

    2018-02-01

    To investigate blood supply features of the flap based on the plantar digital artery arch and arch branch artery, and the treatment of outcomes of reconstructed fingers by the plantar digital artery arch branch island flap. Eight fresh foot specimens were employed with red emulsion infusion and microdissection. The vascular organization was observed in the second toe, such as initiation site, the course, and the number of the plantar digital artery arch branch. There were 15 fingers of 13 patients (8 males and 5 females) with finger defects accompanied by toe transfer, using the plantar digital artery arch branch flap inserted in the neck of the second toe to correct the appearance defect caused by a narrow "neck" and a bulbous tip. The intact plantar digital arches were identified in all specimens. The plantar digital artery arch had 5 branches. The range of external diameter of the arch branch was 0.4-0.6 mm. All the plantar digital artery arch branch island flaps and the reconstructed fingers survived. These cases were conducted with a follow-up period for 3-18 months (average, 9 months). All the plantar digital artery arch branch island flaps and reconstructed fingers demonstrated a satisfactory appearance and favorable sense function. The reconstructed finger-tip characteristic was good, with no obvious scar hyperplasia. The range of flexion and extension of reconstructed fingers was favorable as well. The plantar digital artery arch and arch branch artery possess regular vasa vasorum and abundant vascularity. A flap based on the plantar digital artery arch branch is an ideal selection for plastic surgery of reconstructed fingers. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. The effect of accounting for biarticularity in hip flexor and hip extensor joint torque representations.

    PubMed

    Lewis, M G C; Yeadon, M R; King, M A

    2018-02-01

    Subject-specific torque-driven models have ignored biarticular effects at the hip. The aim of this study was to establish the contribution of monoarticular hip flexors and hip extensors to total hip flexor and total hip extensor joint torques for an individual and to investigate whether torque-driven simulation models should consider incorporating biarticular effects at the hip joint. Maximum voluntary isometric and isovelocity hip flexion and hip extension joint torques were measured for a single participant together with surface electromyography. Single-joint and two-joint representations were fitted to the collected torque data and used to determine the maximum voluntary joint torque capacity. When comparing two-joint and single-joint representations, the single-joint representation had the capacity to produce larger maximum voluntary hip flexion torque (larger by around 9% of maximum torque) and smaller maximum voluntary hip extension torque (smaller by around 33% of maximum torque) with the knee extended. Considering the range of kinematics found for jumping movements, the single-joint hip flexors had the capacity to produce around 10% additional torque, while the single joint hip extensors had about 70% of the capacity of the two-joint representation. Two-joint representations may overcome an over-simplification of single-joint representations by accounting for biarticular effects, while building on the strength of determining subject-specific parameters from measurements on the participant. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  12. Mechanisms underpinning the peak knee flexion moment increase over 2-years following arthroscopic partial meniscectomy.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Cicuttini, Flavia M; Dempsey, Alasdair R; Mills, Peter M; Lloyd, David G; Bennell, Kim L

    2015-12-01

    Knee osteoarthritis is common in people who have undergone partial meniscectomy, and a higher external knee flexion moment during gait may be a potential contributor. Although the peak external knee flexion moment has been shown to increase from 3 months to 2 years following partial meniscectomy, mechanisms underpinning the increase in the peak knee flexion moment are unknown. Sixty-six participants with partial meniscectomy completed three-dimensional gait (normal and fast pace) and quadriceps strength assessment at baseline (3 months following partial meniscectomy) and again 2 years later. Variables included external knee flexion moment, vertical ground reaction force, knee flexion kinematics, and quadriceps peak torque. For normal pace walking, the main significant predictors of change in peak knee flexion moment were an increase in peak vertical ground reaction force (R(2)=0.55), mostly due to an increase in walking speed, and increase in peak knee flexion angle (R(2)=0.19). For fast pace walking, the main significant predictors of change in peak knee flexion moment were an in increase in peak vertical ground reaction force (R(2)=0.51) and increase in knee flexion angle at initial contact (R(2)=0.17). Change in peak vertical force was mostly due to an increase in walking speed. Findings suggest that increases in vertical ground reaction force and peak knee flexion angle during stance are predominant contributors to the 2-year change in peak knee flexion moment. Future studies are necessary to refine our understanding of joint loading and its determinants following meniscectomy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Child–adult differences in muscle strength and activation pattern during isometric elbow flexion and extension

    PubMed Central

    Falk, Bareket; Usselman, Charlotte; Dotan, Raffy; Brunton, Laura; Klentrou, Panagiota; Shaw, Jay; Gabriel, David

    2013-01-01

    Muscle strength and activation were compared in boys and men during maximal voluntary elbow flexion and extension contractions. Peak torque, peak rate of torque development (dτ/dτmax), rate of muscle activation, and electromechanical delay (EMD) were measured in 15 boys (aged 9.7 ± 1.6 years) and 16 men (aged 22.1 ± 2.8 years). During flexion, peak torque was significantly lower in boys than in men (19.5 ± 5.8 vs. 68.5 ± 11.0 Nm, respectively; p < 0.05), even when controlling for upper-arm cross-sectional area (CSA), and peak electromyography activity. Boys also exhibited a lower normalized dτ/dτmax (7.2 ± 1.7 vs. 9.5 ± 1.6 (Nm·s−1)·(Nm−1), respectively; p < 0.05) and a significantly longer EMD (75.5 ± 28.4 vs. 47.6 ± 17.5 ms, respectively). The pattern was similar for extension, except that group differences in peak torque were no longer significant when normalized for CSA. These results suggest that children may be less able to recruit or fully utilize their higher-threshold motor units, resulting in lower dimensionally normalized maximal torque and rate of torque development. PMID:19767795

  14. Multilevel Models for the Analysis of Angle-Specific Torque Curves with Application to Master Athletes.

    PubMed

    Carvalho, Humberto M

    2015-12-22

    The aim of this paper was to outline a multilevel modeling approach to fit individual angle-specific torque curves describing concentric knee extension and flexion isokinetic muscular actions in Master athletes. The potential of the analytical approach to examine between individual differences across the angle-specific torque curves was illustrated including between-individuals variation due to gender differences at a higher level. Torques in concentric muscular actions of knee extension and knee extension at 60º·s(-1) were considered within a range of motion between 5º and 85º (only torques "truly" isokinetic). Multilevel time series models with autoregressive covariance structures with standard multilevel models were superior fits compared with standard multilevel models for repeated measures to fit angle-specific torque curves. Third and fourth order polynomial models were the best fits to describe angle-specific torque curves of isokinetic knee flexion and extension concentric actions, respectively. The fixed exponents allow interpretations for initial acceleration, the angle at peak torque and the decrement of torque after peak torque. Also, the multilevel models were flexible to illustrate the influence of gender differences on the shape of torque throughout the range of motion and in the shape of the curves. The presented multilevel regression models may afford a general framework to examine angle-specific moment curves by isokinetic dynamometry, and add to the understanding mechanisms of strength development, particularly the force-length relationship, both related to performance and injury prevention.

  15. Plantar verrucae and HIV infection.

    PubMed

    Barbosa, P

    1998-04-01

    No single treatment of plantar verrucae has proven to be effective in all situations, which represents a greater challenge when treating patients infected with HIV. In this patient population, plantar verrucae appear to be more aggressive, and recurrence is frequently observed. Mosaic-type plantar verrucae, which are usually more resistant to treatment, are common in this population. Factors including the patient's general health, number of warts, location of warts, effect of lesions on daily activities, and sensitivity should be carefully analyzed before deciding on a treatment option. Among the many treatment modalities available for plantar verrucae, three frequently are used by podiatrists for patients infected with HIV: Histofreezer cryotherapy, bleomycin sulfate intralesional injections, and surgical intervention by curettage. These three modalities are recommended; however, all approaches described in this article should be kept as viable options. The patient population infected with HIV represents a unique group of patients, and choices in treatments for these patients should be made by taking into account all ramifications of HIV infection.

  16. Plantar Fasciitis: Prescribing Effective Treatments.

    ERIC Educational Resources Information Center

    Shea, Michael; Fields, Karl B.

    2002-01-01

    Plantar fasciitis is an extremely common, painful injury seen among people in running and jumping sports. While prognosis for recovery with conservative care is excellent, prolonged duration of symptoms affects sports participation. Studies on treatment options show mixed results, so finding effective treatments can be challenging. A logical…

  17. Plantar fascia softening in plantar fasciitis with normal B-mode sonography.

    PubMed

    Wu, Chueh-Hung; Chen, Wen-Shiang; Wang, Tyng-Guey

    2015-11-01

    To investigate plantar fascia elasticity in patients with typical clinical manifestations of plantar fasciitis but normal plantar fascia morphology on B-mode sonography. Twenty patients with plantar fasciitis (10 unilateral and 10 bilateral) and 30 healthy volunteers, all with normal plantar fascia morphology on B-mode sonography, were included in the study. Plantar fascia elasticity was evaluated by sonoelastographic examination. All sonoelastograms were quantitatively analyzed, and less red pixel intensity was representative of softer tissue. Pixel intensity was compared among unilateral plantar fasciitis patients, bilateral plantar fasciitis patients, and healthy volunteers by one-way ANOVA. A post hoc Scheffé's test was used to identify where the differences occurred. Compared to healthy participants (red pixel intensity: 146.9 ± 9.1), there was significantly less red pixel intensity in the asymptomatic sides of unilateral plantar fasciitis (140.4 ± 7.3, p = 0.01), symptomatic sides of unilateral plantar fasciitis (127.1 ± 7.4, p < 0.001), and both sides of bilateral plantar fasciitis (129.4 ± 7.5, p < 0.001). There were no significant differences in plantar fascia thickness or green or blue pixel intensity among these groups. Sonoelastography revealed that the plantar fascia is softer in patients with typical clinical manifestations of plantar fasciitis, even if they exhibit no abnormalities on B-mode sonography.

  18. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  19. Getting to the heel of the problem: plantar fascia lesions.

    PubMed

    Jeswani, T; Morlese, J; McNally, E G

    2009-09-01

    Heel pain is a frequent disabling symptom. Clinical diagnosis is often difficult with a large range of possible diagnoses. Lesions of the plantar fascia form an important group. We present a review describing the common lesions of the plantar fascia, including plantar fasciitis, plantar fascia rupture, plantar fibromatosis, and plantar xanthoma, and illustrate them with appropriate magnetic resonance imaging (MRI) and ultrasound imaging. We also address foreign-body reactions, enthesopathy, and diabetic fascial disease.

  20. Plantar pressures in individuals with normal and pronated feet according to static squat depths

    PubMed Central

    Koh, Da Hyun; Lee, Jong Dae; Kim, Kyoung

    2015-01-01

    [Purpose] The purpose of the present study was to investigate differences in plantar pressure between individuals with normal and pronated feet according to 3 static squat depths. [Subjects and Methods] Study subjects were 10 young adults with normal and pronated feet. Plantar pressures were measured in the standing position and static squat positions at 45° (semi-squat) and 90° (half-squat) knee flexion using the F-Mat. Subjects’ plantar pressures were analyzed by dividing the foot into 4 areas: forefoot medial, forefoot lateral, midfoot, and heel. [Results] In the half-squat position, the pronated foot group showed a higher foot pressure in the forefoot medial than was seen in the normal group, whereas the normal group exhibited a higher foot pressure in the heel than was seen in the pronated foot group. [Conclusion] An increase in squat depth led to the transfer of plantar pressure to the heel in normal feet and to the forefoot medial in pronated feet. PMID:26504304

  1. Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors.

    PubMed

    Kennedy, Ashleigh; Hug, François; Sveistrup, Heidi; Guével, Arnaud

    2013-03-01

    Exercise-induced fatigue causes changes within the central nervous system that decrease force production capacity in fatigued muscles. The impact on unrelated, non-exercised muscle performance is still unclear. The primary aim of this study was to examine the impact of a bilateral forearm muscle contraction on the motor function of the distal and unrelated ankle plantar-flexor muscles. The secondary aim was to compare the impact of maximal and submaximal forearm contractions on the non-fatigued ankle plantar-flexor muscles. Maximal voluntary contractions (MVC) of the forearm and ankle plantar-flexor muscles as well as voluntary activation (VA) and twitch torque of the ankle plantar-flexor muscles were assessed pre-fatigue and throughout a 10-min recovery period. Maximal (100 % MVC) and submaximal (30 % MVC) sustained isometric handgrip contractions caused a decreased handgrip MVC (to 49.3 ± 15.4 and 45.4 ± 11.4 % of the initial MVC for maximal and submaximal contraction, respectively) that remained throughout the 10-min recovery period. The fatigue protocols also caused a decreased ankle plantar-flexor MVC (to 77 ± 8.3 and 92.4 ± 6.2 % of pre-fatigue MVC for maximal and submaximal contraction, respectively) and VA (to 84.3 ± 15.7 and 97.7 ± 16.1 % of pre-fatigue VA for maximal and submaximal contraction, respectively). These results suggest central fatigue created by the fatiguing handgrip contraction translated to the performance of the non-exercised ankle muscles. Our results also show that the maximal fatigue protocol affected ankle plantar-flexor MVC and VA more severely than the submaximal protocol, highlighting the task-specificity of neuromuscular fatigue.

  2. Association of Achilles tendinopathy and plantar spurs.

    PubMed

    Vulcano, Ettore; Mani, Sriniwasan B; Mani, Sriniwasan; Do, Huong; Bohne, Walter H; Ellis, Scott J

    2014-10-01

    Plantar spurs and Achilles tendinopathy are common causes of heel pain. In the authors' practice, it was anecdotally noted that patients with Achilles tendinopathy often presented with plantar spurs. Nonetheless, there is a shortage of studies investigating whether Achilles tendinopathy and plantar spurs exist concomitantly. A better understanding of the association between the 2 pathologies might help physicians recognize and treat both conditions, educate patients about Achilles tendinopathy and plantar spurs, and ultimately investigate possible underlying causes of both pathologies that could be addressed together. The authors examined the prevalence of plantar spurs in patients diagnosed with Achilles tendinopathy as well as demographic differences within the unilateral and bilateral Achilles tendinopathy populations. A total of 785 patient records were retrospectively reviewed. Mean patient age was 56.2±15.5 years (46.9% men and 53.1% women). Seventy-two (9.2%) patients were affected bilaterally by Achilles tendinopathy. Lateral radiographs were reviewed by an orthopedic surgeon to identify the presence of plantar spurs. A total of 329 (41.9%) patients with Achilles tendinopathy were found to have a concomitant plantar spur. Patients with unilateral Achilles tendinopathy and a plantar spur were more likely to be women (58.7% vs 49.8%, P=.020) and older (62.7 vs 51.7 years, P<.001). In the bilateral Achilles tendinopathy group, there were 46 (63.9%) patients with at least one foot presenting with a plantar spur. The study's findings suggest a significant association between Achilles tendinopathy and plantar spurs. Older women with Achilles tendinopathy are at greater risk of being affected by plantar spurs. Copyright 2014, SLACK Incorporated.

  3. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking

    PubMed Central

    Huang, Tzu-wei P.; Shorter, Kenneth A.; Adamczyk, Peter G.; Kuo, Arthur D.

    2015-01-01

    ABSTRACT The human ankle produces a large burst of ‘push-off’ mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s−1, using ankle–foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. PMID:26385330

  4. Differences in the electromyographic activity of the hamstring muscles during maximal eccentric knee flexion.

    PubMed

    Higashihara, Ayako; Ono, Takashi; Kubota, Jun; Fukubayashi, Toru

    2010-01-01

    This study investigated the effects of the knee joint angle and angular velocity on hamstring muscles' activation patterns during maximum eccentric knee flexion contractions. Ten healthy young males (23.4 +/- 1.3 years) performed eccentric knee flexion at constant velocities of 10, 60, 180, and 300 deg/s in random order. The eccentric knee flexion torque and the surface electromyographic (EMG) activity of the biceps femoris (BF), semitendinosus (ST), and semimembranosus (SM) muscles were measured. The results of torque during 10 deg/s were lower than the faster velocities. No significant change was found in eccentric torque output and the EMG amplitude with change in the faster test velocities, although those values showed a decreasing tendency as the knee approached extension. Furthermore, the EMG amplitude of the BF decreased significantly as the knee approached extension, although the EMG activity of the ST and SM remained constant. These results suggest that the neural inhibitory mechanism might be involved in decreasing in maximal voluntary force and hamstring muscles activation toward the knee extension during high-velocity eccentric movement and therefore subjects have difficulties to maintain high eccentric force level throughout the motion. Moreover, the possible mechanism reducing the BF muscle activation as the knee approaches extension was architectural differences in the hamstring muscles, which might reflect each muscle's function.

  5. Preswing Knee Flexion Assistance Is Coupled With Hip Abduction in People With Stiff-Knee Gait After Stroke

    PubMed Central

    Sulzer, James S.; Gordon, Keith E.; Dhaher, Yasin Y.; Peshkin, Michael A.; Patton, James L.

    2012-01-01

    Background and Purpose Stiff-knee gait is defined as reduced knee flexion during the swing phase. It is accompanied by frontal plane compensatory movements (eg, circumduction and hip hiking) typically thought to result from reduced toe clearance. As such, we examined if knee flexion assistance before foot-off would reduce exaggerated frontal plane movements in people with stiff-knee gait after stroke. Methods We used a robotic knee orthosis to assist knee flexion torque during the preswing phase in 9 chronic stroke subjects with stiff-knee gait on a treadmill and compared peak knee flexion, hip abduction, and pelvic obliquity angles with 5 nondisabled control subjects. Results Maximum knee flexion angle significantly increased in both groups, but instead of reducing gait compensations, hip abduction significantly increased during assistance in stroke subjects by 2.5°, whereas no change was observed in nondisabled control subjects. No change in pelvic obliquity was observed in either group. Conclusions Hip abduction increased when stroke subjects received assistive knee flexion torque at foot-off. These findings are in direct contrast to the traditional belief that pelvic obliquity combined with hip abduction is a compensatory mechanism to facilitate foot clearance during swing. Because no evidence suggested a voluntary mechanism for this behavior, we argue that these results were most likely a reflection of an altered motor template occurring after stroke. PMID:20576947

  6. Targeting the Plantar Fascia for Corticosteroid Injection.

    PubMed

    Salvi, Andrea Emilio

    2015-01-01

    Plantar fasciitis is often a difficult condition to treat. It is related to repetitive strain of the fascia at its attachment to the heel bone. This condition quite often appears with the concomitant presence of a plantar calcaneal heel spur. Corticosteroid injection is a popular treatment choice for plantar fasciitis, and accurate localization of the injected medication is essential for successful resolution of symptoms after the injection. In the present brief technical communication, a method for targeting the attachment of the plantar fascia to the medial tubercle of the tuberosity of the calcaneus is described. The targeting method uses the lateral radiograph of the foot to aid in localization of the proximal attachment of the plantar fascia to the calcaneus. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  8. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  9. Are Repeated Single-Limb Heel Raises and Manual Muscle Testing Associated With Peak Plantar-Flexor Force in People With Inclusion Body Myositis?

    PubMed Central

    Shrader, Joseph A.; Davenport, Todd E.; Joe, Galen; Rakocevic, Goran; McElroy, Beverly; Dalakas, Marinos

    2014-01-01

    Background Repeated heel raises have been proposed as a method of ankle plantar-flexor strength testing that circumvents the limitations of manual muscle testing (MMT). Objective The study objective was to examine the relationships among ankle plantar-flexion isometric maximum voluntary contraction (MVC), repeated single-limb heel raises (SLHRs), and MMT in people with myositis. Design This was a cross-sectional study with a between-group design. The ability to complete 1 SLHR determined group assignment (SLHR group, n=24; no-SLHR group, n=19). Methods Forty-three participants with myositis (13 women; median age=64.9 years) participated. Outcome measures included MVC, predicted MVC, Kendall MMT, and Daniels-Worthingham MMT. Results The Kendall MMT was unable to detect significant ankle plantar-flexor weakness established by quantitative methods and was unable to discriminate between participants who could and those who could not perform the SLHR task. Ankle plantar-flexion MVC was not associated with the number of heel-raise repetitions in the SLHR group (pseudo R2=.13). No significant relationship was observed between MVC values and MMT grades in the SLHR and no-SLHR groups. However, a moderate relationship between MVC values and MMT grades was evident in a combined-group analysis (ρ=.50–.67). Limitations The lower half of both MMT grading scales was not represented in the study despite the profound weakness of the participants. Conclusions Both Kendall MMT and Daniels-Worthingham MMT had limited utility in the assessment of ankle plantar-flexor strength. Repeated SLHRs should not be used as a proxy measure of ankle plantar-flexion MVC in people with myositis. PMID:24309617

  10. Plantar heel pain due to vascular leiomyoma (angioleiomyoma).

    PubMed

    Cheung, Man-hong Steve; Lui, Tun-hing

    2012-10-01

    The differential diagnosis of heel pain is extensive. The plantar heel pain is usually due to mechanical etiology, including plantar fasciitis, calcaneal spur, stress fracture, and nerve entrapment. Tumor is a rare cause of plantar heel pain. We present a case of chronic plantar heel pain with a vascular leiomyoma at the heel pad.

  11. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.

    PubMed

    Farris, Dominic James; Hicks, Jennifer L; Delp, Scott L; Sawicki, Gregory S

    2014-11-15

    Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle-tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle-tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40-50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance. © 2014. Published by The Company of Biologists Ltd.

  12. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping

    PubMed Central

    Farris, Dominic James; Hicks, Jennifer L.; Delp, Scott L.; Sawicki, Gregory S.

    2014-01-01

    Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle–tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle–tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40–50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance. PMID:25278469

  13. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  14. Plantar flaps based on perforators of the plantar metatarsal/common digital arteries.

    PubMed

    Valentin, Georgescu Alexandru; Rodica, Matei Ileana; Manuel, Llusa

    2014-09-01

    Because of the unique characteristics of its integument, the affirmation "replacing like with like" becomes more than evident in the reconstruction of defects of the ultraspecialized plantar skin. But, the paucity of local resources, and especially in the forefoot, transforms this attempt in a very challenging problem. Many techniques, including skin grafts and various types of flaps were used in the management of defects in the forefoot. We present a new useful flap in the reconstruction of skin defects in the forefoot, based on small perforator vessels originating either from the plantar metatarsal arteries or plantar common digital arteries. Starting with June 2011, this flap was performed, as plantar transposition perforator flap, plantar propeller flap, or plantar propeller perforator plus flap, in seven patients with ulcers over the plantar forefoot. During a follow-up of 7 to 17 months (mean, 9.8 months), the local evolution regarding flap integration, pain, relapse, sensitive recovery, donor site, and footwear quality was analyzed. We registered a 100% survival rate of the flaps, with delayed healing in only one case. The gait resumption was possible after 6 weeks in all cases. This new flap, based on small perforator vessels from the plantar metatarsal or common digital arteries, and which provides a good, stable, and sensory recovery, seems to be a promising method in the reconstruction of plantar skin defects over the metatarsal heads. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Medial and Lateral Plantar Nerve Entrapment

    MedlinePlus

    ... Foot Problems Overview of Foot Problems Achilles Tendon Bursitis Achilles Tendon Enthesopathy Bunion Corns and Calluses Damage ... the Foot Freiberg Disease Hammer Toe Inferior Calcaneal Bursitis Medial and Lateral Plantar Nerve Entrapment Metatarsal Joint ...

  16. Objective evaluation of plantar hyperhidrosis after sympathectomy.

    PubMed

    Wolosker, Nelson; Ishy, Augusto; Yazbek, Guilherme; Campos, Jose Ribas Milanez de; Kauffman, Paulo; Puech-Leão, Pedro; Jatene, Fabio Biscegli

    2013-01-01

    The aim of the present study was to prospectively, randomly, blindly, and objectively investigate how surgery affects plantar sudoresis in patients with palmar and plantar hyperhidrosis over a one-year period using a sudorometer (VapoMeter). From February 2007 to May 2009, 40 consecutive patients with combined palmar hyperhidrosis and plantar hyperhidrosis underwent video-assisted thoracic sympathectomy at the T3 or T4 ganglion level (15 women and 25 men, with a mean age of 25 years). Immediately after the operation and during the one-year follow-up, all of the patients were free from palmar hyperhidrosis episodes. Compensatory hyperhidrosis of varying degrees was observed in 35 (87.5%) patients after one year. Only two (2.5%) patients suffered from severe compensatory hyperhidrosis. There was a large initial improvement in plantar hyperhidrosis in 46.25% of the cases, followed by a progressive regression of that improvement, such that only 30% continued to show this improvement after one year. The proportion of patients whose condition worsened increased progressively (from 21.25% to 47.50%), and the proportion of stable patients decreased (32.5% to 22.50%). This was not related to resection level; however, a lower intensity of plantar hyperhidrosis prior to sympathectomy correlated with worse evolution. Patients with palmar hyperhidrosis and plantar hyperhidrosis who underwent video-assisted thoracic sympathectomy to treat their palmar hyperhidrosis exhibited good initial improvement in plantar hyperhidrosis, which then decreased to lesser degrees of improvement over a one-year period following the surgery. For this reason, video-assisted thoracic sympathectomy should not be performed when only plantar hyperhidrosis is present.

  17. Objective evaluation of plantar hyperhidrosis after sympathectomy

    PubMed Central

    Wolosker, Nelson; Ishy, Augusto; Yazbek, Guilherme; de Campos, José Ribas Milanez; Kauffman, Paulo; Puech-Leão, Pedro; Jatene, Fábio Biscegli

    2013-01-01

    OBJECTIVE: The aim of the present study was to prospectively, randomly, blindly, and objectively investigate how surgery affects plantar sudoresis in patients with palmar and plantar hyperhidrosis over a one-year period using a sudorometer (VapoMeter). METHODS: From February 2007 to May 2009, 40 consecutive patients with combined palmar hyperhidrosis and plantar hyperhidrosis underwent video-assisted thoracic sympathectomy at the T3 or T4 ganglion level (15 women and 25 men, with a mean age of 25 years). RESULTS: Immediately after the operation and during the one-year follow-up, all of the patients were free from palmar hyperhidrosis episodes. Compensatory hyperhidrosis of varying degrees was observed in 35 (87.5%) patients after one year. Only two (2.5%) patients suffered from severe compensatory hyperhidrosis. There was a large initial improvement in plantar hyperhidrosis in 46.25% of the cases, followed by a progressive regression of that improvement, such that only 30% continued to show this improvement after one year. The proportion of patients whose condition worsened increased progressively (from 21.25% to 47.50%), and the proportion of stable patients decreased (32.5% to 22.50%). This was not related to resection level; however, a lower intensity of plantar hyperhidrosis prior to sympathectomy correlated with worse evolution. CONCLUSION: Patients with palmar hyperhidrosis and plantar hyperhidrosis who underwent video-assisted thoracic sympathectomy to treat their palmar hyperhidrosis exhibited good initial improvement in plantar hyperhidrosis, which then decreased to lesser degrees of improvement over a one-year period following the surgery. For this reason, video-assisted thoracic sympathectomy should not be performed when only plantar hyperhidrosis is present. PMID:23644849

  18. Head flexion angle while using a smartphone.

    PubMed

    Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob

    2015-01-01

    Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p < 0.05) for text messaging than for the other tasks, and significantly larger while sitting than while standing. Study results suggest that text messaging, which is one of the most frequently used app categories of smartphone, could be a main contributing factor to the occurrence of neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.

  19. Human torque velocity adaptations to sprint, endurance, or combined modes of training

    NASA Technical Reports Server (NTRS)

    Shealy, M. J.; Callister, R.; Dudley, G. A.; Fleck, S. J.

    1992-01-01

    We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.

  20. Static and dynamic plantar pressure distribution in amateur marathon runners.

    PubMed

    Hawrylak, Arletta; Matner, Paweł; Demidaś, Aneta; Barczyk-Pawelec, Katarzyna; Demczuk-Włodarczyk, Ewa

    2018-03-27

    The aim of the study was to compare the static and dynamic plantar pressure profiles of amateur marathon runners with sedentary cohorts. Are there differences in the plantar pressures of these two populations? Is there a correlation between body mass and BMI with plantar loading? The study involved 43 runners involved in marathon training and 30 age-matched untrained individuals. Plantar pressure was measured using a baropodometric system. The marathon runners showed greater forefoot plantar pressure of the dominant extremity in the static condition and reduced medial plantar pressure of both extremities in the dynamic condition. A correlation was observed between body mass and BMI with mean plantar pressure only in the marathon group and only for the dominant extremity in the dynamic condition. Marathon training may modify the forefoot plantar loading characteristics of the dominant extremity during static conditions and increase lateral plantar pressure of both extremities in a dynamic (gait) condition.

  1. Biomechanics of the Flexion of Spine.

    ERIC Educational Resources Information Center

    Hobbs, Harry K.; Aurora, T. S.

    1991-01-01

    The forces and torques experienced by the spine are examined to understand, and possibly avoid, low back pain. The structure, degrees of freedom, forces and torques when lifting objects, an experimental study, and other factors affecting the back are discussed. (KR)

  2. Gait parameters of people with diabetes-related neuropathic plantar foot ulcers.

    PubMed

    Fernando, Malindu Eranga; Crowther, Robert G; Lazzarini, Peter A; Sangla, Kunwarjit S; Buttner, Petra; Golledge, Jonathan

    2016-08-01

    Foot ulceration associated with diabetic peripheral neuropathy is a global concern. Biomechanical investigation allows the identification of gait abnormalities that may adversely affect ulcer healing. The objective of this case-control study was to compare the gait parameters of cases with diabetes-related foot ulcers to controls. Three-dimensional movement analyses were performed on 21 people with diabetes-related neuropathic plantar foot ulcers (cases), 69 people with diabetes without a foot ulcer history (diabetes controls) and 56 healthy controls. Outcome data were reported as mean differences, 95% confidence intervals and Cohen's d effect sizes. Binary logistic regressions were used to adjust for age, sex and body mass index. People with foot ulcers had a smaller plantar flexion (Cohen's d=-0.6 vs. diabetes controls and d=-0.8 vs. healthy controls), knee flexion (d=-0.6 vs. diabetes controls and d=-1.0 vs. healthy controls) and pelvic obliquity (d=-0.9 vs. diabetes controls and d=-0.7 vs. healthy controls) (all P<0.05). They also had a significantly greater range of anterior-posterior ground reaction force (d=1.0 vs. diabetes controls and d=1.7 vs. healthy controls) and total vertical ground reaction force (d=0.9 vs. diabetes controls and d=1.1 vs. healthy controls) and significantly slower walking speed and smaller step length compared to controls (all P<0.05). People with plantar foot ulcers have considerably different gait parameters to controls. Whether the observed gait parameters contributed to the ulcer development or are a response to the ulcer is currently unclear and needs further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Relationship and Classification of Plantar Heel Spurs in Patients With Plantar Fasciitis.

    PubMed

    Ahmad, Jamal; Karim, Ammar; Daniel, Joseph N

    2016-09-01

    This study classified plantar heel spurs and their relationship to plantar fasciitis. Patients included those with plantar fasciitis who were treated from 2012 through 2013. Plantar heel spur shape and size were assessed radiographically and correlated to function and pain before and after treatment. Function and pain were scored with the Foot and Ankle Ability Measures and a visual analog scale, respectively. This study included 109 patients with plantar fasciitis. The plantar heel spur shape was classified as 0/absent in 26 patients, 1/horizontal in 66 patients, 2/vertical in 4 patients, and 3/hooked in 13 patients. The plantar heel spur size was less than 5 mm in 75 patients, 5-10 mm in 28 patients, and greater than 10 mm in 6 patients. Initially, patients with any shape or size to their spur had no difference in function and pain. With treatment, patients with horizontal and hooked spurs had the greatest improvement in function and pain (P < .05). With treatment, patients with larger spurs had the greatest improvement in function and pain (P < .05). Plantar heel spurs can be classified by shape and size in patients with plantar fasciitis. Before treatment, neither the spur shape nor size significantly correlated with symptoms. After treatment, patients with larger horizontal or hooked spurs had the greatest improvement in function and pain. These findings may be important when educating patients about the role of heel spurs with plantar fasciitis and the effect of nonsurgical treatment with certain spurs. Level III, comparative series. © The Author(s) 2016.

  4. Human papillomaviruses genotyping in plantar warts.

    PubMed

    de Planell-Mas, Elena; Martínez-Garriga, Blanca; Zalacain, Antonio Jesús; Vinuesa, Teresa; Viñas, Miguel

    2017-05-01

    Plantar warts are caused by human papillomaviruses (HPVs) and have been associated with several HPV genotypes. However, there are few studies focused exclusively on plantar warts. In this work, we aim to identify the HPV genotypes of plantar warts and explore their relation to demographic and clinical characteristics of patients. A total of 72 patients diagnosed with plantar warts were recruited at the Laser unit at Podiatric Hospital, University of Barcelona, Spain. Inner hyperkeratosis laminar sections of warts were collected and DNA of samples were extracted. Amplification of a conserved region of the HPV L1 gene was performed with the SK-Polymerase chain reaction method. DNA amplicons were sequenced and HPV types identified. The most prevalent genotypes detected among the 105 analyzed plantar warts were HPV-57 (37.1%), HPV-27 (23.8%), HPV-1a (20.9%), HPV-2 (15.2%), and HPV-65 (2.8%). The majority of patients (78%) presented one single plantar wart, whereas multiple warts were detected in 22.2% of patients. One patient with multiple warts presented HPV types from two different genera, suggesting the spread of warts by self-inoculation as well as by de novo infection. No significant differences between the number of warts in toes, midfoot and heel were found. The most prevalent HPV types detected in all areas belonged to the alpha genus. This work provides new insight on plantar warts and their associated HPV genotypes, and evidences the usefulness and reliability of both the sample collection procedure and the PCR method used for HPV detection and typing. J. Med. Virol. 89:902-907, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Ultrasound diagnosis and evaluation of plantar heel pain.

    PubMed

    Argerakis, Nicholas G; Positano, Rock G; Positano, Rock C J; Boccio, Ashley K; Adler, Ronald S; Saboeiro, Gregory R; Dines, Joshua S

    2015-03-01

    One of the most common causes of heel pain is plantar fasciitis; however, there are other pathologic disorders that can mimic the symptoms and clinical presentation of this disorder. The purpose of this study was to retrospectively review the prevalence of various pathologic disorders on ultrasound in patients with proximal plantar heel pain. The medical records and diagnostic ultrasound reports of patients presenting with plantar heel pain between March 1, 2006, and March 31, 2007, were reviewed retrospectively, and the prevalence of various etiologies was collected. The inclusion criteria were based on their clinical presentation of plantar fasciitis or previous diagnosis of plantar fasciitis from an unknown source. Ultrasound evaluation was then performed to confirm the clinical diagnosis. We examined 175 feet of 143 patients (62 males and 81 females; age range, 16-79 years). Plantar fibromas were present in 90 feet (51%). Plantar fasciitis was diagnosed in 128 feet (73%). Coexistent plantar fibroma and plantar fascial thickening was found in 63 feet (36%). Of the 47 feet that were negative for plantar fasciitis on ultrasound, 27 (57%) revealed the presence of plantar fibroma. Diagnostic ultrasound can effectively and safely identify the prevalence of various etiologies of heel pain. The high prevalence of plantar fibromas and plantar fascial tears cannot be determined by clinical examination alone, and, therefore, ultrasound evaluation should be performed for confirmation of diagnosis.

  6. Analysis of Isokinetic Knee Extension / Flexion in Male Elite Adolescent Wrestlers

    PubMed Central

    Kurdak, Sanli Sadi; Özgünen, Kerem; Adas, Ümüt; Zeren, Cigdem; Aslangiray, Banu; Yazıcı, Zübeyde; Korkmaz, Selcen

    2005-01-01

    Wrestling requires strength of the upper and lower body musculature which is critical for the athletic performance. Evaluation of the adolescent’s skeletal muscle is important to understand body movement, especially including those involved in sports. Strength, power and endurance capacity are defined as parameters of skeletal muscle biomechanical properties. The isokinetic dynamometer is an important toll for making this type of evaluation. However, load range phase of range of motion has to be considered to interpret the data correctly. With this in mind we aimed to investigate the lover body musculature contractile characteristics of adolescent wrestlers together with detailed analyses of load range phase of motion. Thirteen boys aged 12 - 14 years participated to this study. Concentric load range torque, work and power of knee extension and flexion were measured by a Cybex Norm dynamometer at angular velocities from 450°/sec to 30°/sec with 30°/sec decrements for each set. None of the wrestlers were able to attain load range for angular velocities above 390°/sec and 420°/sec for extension and flexion respectively. Detailed analyses of the load range resulted in statistically significant differences in the normalized load range peak torque for extension at 270°/sec (1.44 ± 0.28 Nm·kg-1 and 1.14 ± 0.28 Nm·kg-1 for total and load range peak torque respectively, p < 0.05), and for flexion at 300°/sec (1.26 ± 0.28 Nm·kg-1 and 1.03 ± 0.23 Nm·kg-1 for total and load range peak torque respectively, p < 0.05), compared to total peak torque data. Similarly, the significant difference was found for the work values at 90°/sec (1.91 ± 0.23 Nm·kg-1 and 1.59 ± 0.24 Nm·kg-1 for total and load range work respectively for extension and 1.73 ± 0.21 Nm·kg-1 and 1.49 ± 0.19 Nm·kg-1 for total and load range work respectively for flexion, p < 0.05), and was evident at higher angular velocities (p < 0.001) for both extension and flexion. At extension, load

  7. Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors.

    PubMed

    Klein, Cliff S; Brooks, Dina; Richardson, Denyse; McIlroy, William E; Bayley, Mark T

    2010-11-01

    The contributions of nervous system muscle activation and muscle atrophy to poststroke weakness have not been evaluated together in the same subject. Maximal voluntary contraction (MVC) torque, voluntary activation (twitch interpolation), and electromyographic (EMG) amplitude were determined bilaterally in the plantar flexors of seven chronic stroke survivors (40-63 yr, 24-51 mo poststroke). Volumes of the plantar flexor muscles were determined bilaterally with magnetic resonance imaging (MRI). The mean (±SD) contralesional (paretic) MVC torque was less than one-half of the ipsilesional leg: 56.7 ± 57.4 vs. 147 ± 35.7 Nm (P = 0.006). Contralesional voluntary activation was only 48 ± 36.9%, but was near complete in the ipsilesional leg, 97 ± 1.9% (P = 0.01). The contralesional MVC EMG amplitude (normalized to the maximum M-wave peak-to-peak amplitude) of the gastrocnemii and soleus were 36.0 ± 28.5 and 36.0 ± 31.0% of the ipsilesional leg. Tibialis anterior (TA) EMG coactivation was not different between the contralesional (23.2 ± 24.0% of TA MVC EMG) and ipsilesional side (12.3 ± 5.7%) (P = 0.24). However, TA EMG coactivation was excessive (71%) in one subject and accounted for ~8% of her weakness based on the estimated antagonist torque. Relative (%ipsilesional leg) plantar flexor and gastrocnemii volumes were 88 ± 6% (P = 0.004) and 76 ± 15% (P = 0.01), respectively. Interlimb volume differences of the soleus, deep plantar flexors, and peronei were not significant. Preferred walking speed (0.83 ± 0.33 m/s) was related to the contralesional MVC torque (r(2) = 0.57, P = 0.05, N = 7), but the two subjects with the greatest weakness walked faster than three others. Our findings suggest that plantar flexor weakness in mobile chronic stroke survivors reflects mostly voluntary activation failure, with smaller contributions from antagonist activity and atrophy.

  8. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    PubMed

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Lateral plantar nerve release with or without calcaneal drilling for resistant plantar fasciitis.

    PubMed

    Sadek, Ahmed Fathy; Fouly, Ezzat Hassan; Elian, Mostafa Mohammed

    2015-08-01

    To compare the outcome following lateral plantar nerve release with or without calcaneal drilling for resistant plantar fasciitis. 30 women and 3 men aged 30 to 60 (mean, 45) years with resistant plantar fasciitis were randomised to undergo release of the first branch of the lateral plantar nerve with (group 1, n=18) or without (group 2, n=15) calcaneal drilling. Patients were followed up for a mean of 27 months. According to the modified Mayo scoring system for plantar fasciotomy, group 1 was superior to group 2 in terms of score (93.9±6.97 vs. 83±8.2, p<0.001) and grading (15 excellent, 2 good, and one fair vs. 6 excellent, 4 good, and 5 fair; p=0.031). Three patients in group one and one patient in group 2 (16.7% vs. 6.6%, p=0.381) developed complications of heel numbness, foot oedema, and 2 cases of superficial wound infection, respectively. Adding calcaneal drilling to release of the first branch of the lateral plantar nerve achieves better outcome than release alone in patients with resistant plantar fasciitis.

  10. Biomechanics of the flexion of spine

    NASA Astrophysics Data System (ADS)

    Hobbs, H. K.; Aurora, T. S.

    1991-03-01

    Low back pain is a common problem and it involves different kinds of injury to the spine. In this article the forces and torques experienced by the spine are examined in order to understand, and possibly avoid, low back pain.

  11. Biomechanical consequences of adding plantar fascia release to metatarsal osteotomies: Changes in forefoot plantar pressures.

    PubMed

    Aydogan, Umur; Roush, Evan P; Moore, Blake E; Andrews, Seth H; Lewis, Gregory S

    2017-04-01

    Destruction of the normal metatarsal arch by a long metatarsal is often a cause for metatarsalgia. When surgery is warranted, distal oblique, or proximal dorsiflexion osteotomies of the long metatarsal bones are commonly used. The plantar fascia has anatomical connection to all metatarsal heads. There is controversial scientific evidence on the effect of plantar fascia release on forefoot biomechanics. In this cadaveric biomechanical study, we hypothesized that plantar fascia release would augment the plantar metatarsal pressure decreasing effects of two common second metatarsal osteotomy techniques. Six matched pairs of foot and ankle specimens were mounted on a pressure mat loading platform. Two randomly assigned surgery groups, which had received either distal oblique, or proximal dorsiflexion osteotomy of the second metatarsal, were evaluated before and after plantar fasciectomy. Specimens were loaded up to a ground reaction force of 400 N at varying Achilles tendon forces. Average pressures, peak pressures, and contact areas were analyzed. Supporting our hypothesis, average pressures under the second metatarsal during 600 N Achilles load were decreased by plantar fascia release following proximal osteotomy (p < 0.05). However contrary to our hypothesis, peak pressures under the second metatarsal were significantly increased by plantar fascia release following modified distal osteotomy, under multiple Achilles loading conditions (p < 0.05). Plantar fasciotomy should not be added to distal metatarsal osteotomy in the treatment of metatarsalgia. If proximal dorsiflexion osteotomy would be preferred, plantar fasciotomy should be approached cautiously not to disturb the forefoot biomechanics. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:800-804, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. The plantar reflex in young healthy adults.

    PubMed

    Oluwole, O S; Ogunbiyi, A O; George, A O

    1998-12-01

    The plantar reflex was empirically observed to be relatively absent in Africans about three decades ago. It was hypothesised that barefoot walking that was the custom of the patients studied at the time, might have made the soles of the feet insensitive to stimulation. In a sample of 193 young adults who do not walk barefoot and had no clinical evidence of hyperkeratosis or callosities on the soles, the plantar reflex was absent in 27%. This finding suggests that the absence of the reflex is not necessarily consequent on previous trauma to the soles in an African community. Lack of comparative data showing the pattern of the plantar reflex in different communities makes it difficult to judge whether the frequency found in this study is usual, high or relatively low.

  13. Improving lensing cluster mass estimate with flexion

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Vicinanza, M.; Er, X.; Maoli, R.; Scaramella, R.

    2016-11-01

    Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile, as inferred from the statistics of ellipticity of background galaxies, allows us to probe the cluster intermediate and outer regions, thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, I.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal-to- noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor of ˜2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but it extracting general trends is difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination.

  14. WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR

    SciTech Connect

    Pires, S.; Amara, A.

    2010-11-10

    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear andmore » flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.« less

  15. Compensation for interaction torques during single- and multijoint limb movement.

    PubMed

    Gribble, P L; Ostry, D J

    1999-11-01

    During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for

  16. Age and gender related neuromuscular pattern during trunk flexion-extension in chronic low back pain patients.

    PubMed

    Kienbacher, Thomas; Fehrmann, Elisabeth; Habenicht, Richard; Koller, Daniela; Oeffel, Christian; Kollmitzer, Josef; Mair, Patrick; Ebenbichler, Gerold

    2016-02-19

    The root mean square surface electromyographic activity of lumbar extensor muscles during dynamic trunk flexion and extension from standing has repeatedly been recommended to objectively assess muscle function in chronic low back pain patients. However, literature addressing older patients is sparse. This cross sectional study sought to examine differences in neuromuscular activation between age groups (>60 versus 40-60 versus <40 years) and sexes during a standardized trunk flexion-extension task. A total of 216 patients (62 older, 84 middle-aged, 70 younger) performed maximum trunk extensions followed by trunk flexion extension testing thereby holding static positions at standing, half, and full trunk flexion. The lumbar extensor muscle activity and 3d-accelerometric signals intended to monitor hip and trunk position angles were recorded from the L5 (multifidus) and T4 (semispinalis thoracis) levels. Permutation ANOVA with bootstrapped confidence intervals were performed to examine for age and gender related differences. Ridge-regressions investigated the impact of physical-functional and psychological variables to the half flexion relaxation ratio (i.e. muscle activity at the half divided by that in maximum flexion position). Maximum back extension torque was slightly but significantly higher in youngest compared to oldest patients if male and females were pooled. Normalized RMS-SEMG revealed highest lumbar extensor muscle activity at standing in the oldest and the female groups. Patients over 60 years showed lowest activity changes from standing to half (increments) and from half to the maximum flexion position (decrements) leading to a significantly lower half flexion relaxation ratio compared to the youngest patients. These oldest patients demonstrated the highest hip and lowest lumbothoracic changes of position angles. Females had higher regional hip and gross trunk ranges of movement compared to males. Lumbothoracic flexion and the muscle activity at

  17. High torque CMG rotary actuator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A high torque rotary actuator was designed, fabricated and tested. Exacting requirements were placed on performance and physical characteristics of the actuator, particularly in the area of stiffness, backlash, torque ripple, power and size and weight. A brushless dc motor was designed utilizing rare earth magnets to meet power and weight requirements. A 26-to-1 planetary roller gear transmission was selected to best meet overall requirements. The transmission utilizes parallel gear and roller paths to minimize backlash and breakaway torque.

  18. Flexion-relaxation response to gravity.

    PubMed

    Olson, Michael; Solomonow, Moshe; Li, Li

    2006-01-01

    The objective of this report was to study the influence of the orientation of gravitational loading on the behavior of anterior and posterior trunk muscles during anterior trunk flexion-extension. Participants (N=13) performed five (5) cycles of trunk flexion-extension while standing with gravity parallel to the body axis and five (5) cycles while in the supine condition (e.g. sit-ups) with gravity perpendicular to the body axis. Surface electromyographic (EMG) patterns from lumbar paraspinal, rectus abdominis, external oblique, rectus femoris, semimembranosis, and biceps femoris muscles were analyzed during each condition. EMG signals were synchronized with lumbar flexion and trunk inclination angles. Flexion-extension from the standing position resulted in a myoelectric silent period of the lumbar posterior muscles (e.g. flexion-relaxation phenomena (FRP)) as well as the hamstring muscles through deep angles during which activity was observed in abdominal muscles. Flexion-extension during sit-ups, however, resulted in a myoelectric silent period of the abdominal muscles and the quadriceps through deep angles during which the lumbar posterior muscles were active. In this condition, the FRP was not observed in posterior muscles. The new findings demonstrate the profound impact of the orientation of the gravity vector on the FRP, the abdominal muscles reaction to gravitational loads during sit-ups and its relationships with lumbar antagonists and thigh musculature. The new findings suggest that gravitational moments requirements dominate the FRP through the prevailing kinematics, load sharing and reflex activation-inhibition of muscles in various conditions. Lumbar kinematics or fixed sensory motor programs by themselves, however, are not the major contributor to the FRP. The new findings improve our insights into spinal biomechanics as well as understanding and evaluating low back disorders.

  19. Percutaneous release of the plantar fascia. New surgical procedure

    PubMed Central

    Oliva, Francesco; Piccirilli, Eleonora; Tarantino, Umberto; Maffulli, Nicola

    2017-01-01

    Summary Background Plantar fasciopathy presents with pain at the plantar and medial aspect of the heel. If chronic, it can negatively impact on quality of life. Plantar fasciopathy is not always self-limiting, and can be debilitating. Methods Surgical management involves different procedures. We describe a percutaneous plantar fascia release. A minimally invasive access to the plantar tuberosity of the calcaneus is performed, and a small scalpel blade is used to release the fascia. Conclusion With this procedure, skin healing problems, nerve injuries, infection and prolonged recovery time are minimised, allowing early return to normal activities. Level of Evidence V. PMID:29264346

  20. Restrained tibial rotation may prevent ACL injury during landing at different flexion angles.

    PubMed

    Mokhtarzadeh, Hossein; Ng, Andrew; Yeow, Chen Hua; Oetomo, Denny; Malekipour, Fatemeh; Lee, Peter Vee Sin

    2015-01-01

    Internal tibial rotation is a risk factor for anterior cruciate ligament (ACL) injury. The effect of restraining tibial rotation (RTR) to prevent ACL injury during single-leg landing is not well understood. We aimed to investigate the effect of impact load and RTR on ACL injury with respect to flexion angle. We hypothesized that RTR could protect the knee from ACL injury compared to free tibial rotation (FTR) regardless of flexion angle and create a safety zone to protect the ACL. Thirty porcine specimens were potted in a rig manufactured to replicate single-leg landing maneuvers. A mechanical testing machine was used to apply external forces in the direction of the tibial long axis. A 3D displacement sensor measured anterior tibial translation (ATT). The specimens were divided into 3 groups of 10 specimens and tested at flexion angles of 22 ± 1°, 37 ± 1° and 52 ± 1° (five RTR and five FTR) through a consecutive range of actuator displacements until ACL failure. After dissection, damage to the joint was visually recorded. Two-way ANOVA were utilized in order to compare compressive forces, torques and A/P displacements with respect to flexion angle. The largest difference between peak axial compressive forces (~3.4 kN) causing ACL injury between RTR and FTR was reported at a flexion angle of 22°. Tibial torques with RTR was in the same range and < 20 Nm at the instance and just before ACL failure, compared to a significant reduction when cartilage/bone damage (no ACL failure) was reported. Isolated ACL injuries were observed in ten of the 15 FTR specimens. Injuries to bone and cartilage were more common with RTR. RTR increases the threshold for ACL injury by elevating the compressive impact load required at lower flexion angles. These findings may contribute to neuromuscular training programs or brace designs used to avoid excessive internal/external tibial rotation. Caution must be exercised as bone/cartilage damage may result. Copyright © 2014 Elsevier B

  1. Plantar flexor muscle weakness and fatigue in spastic cerebral palsy patients.

    PubMed

    Neyroud, Daria; Armand, Stéphane; De Coulon, Geraldo; Sarah R Dias Da Silva; Maffiuletti, Nicola A; Kayser, Bengt; Place, Nicolas

    2017-02-01

    Patients with cerebral palsy develop an important muscle weakness which might affect the aetiology and extent of exercise-induced neuromuscular fatigue. This study evaluated the aetiology and extent of plantar flexor neuromuscular fatigue in patients with cerebral palsy. Ten patients with cerebral palsy and 10 age- and sex-matched healthy individuals (∼20 years old, 6 females) performed four 30-s maximal isometric plantar flexions interspaced by a resting period of 2-3s to elicit a resting twitch. Maximal voluntary contraction force, voluntary activation level and peak twitch were quantified before and immediately after the fatiguing task. Before fatigue, patients with cerebral palsy were weaker than healthy individuals (341±134N vs. 858±151N, p<0.05) and presented lower voluntary activation (73±19% vs. 90±9%, p<0.05) and peak twitch (100±28N vs. 199±33N, p<0.05). Maximal voluntary contraction force was not significantly reduced in patients with cerebral palsy following the fatiguing task (-10±23%, p>0.05), whereas it decreased by 30±12% (p<0.05) in healthy individuals. Plantar flexor muscles of patients with cerebral palsy were weaker than their healthy peers but showed greater fatigue resistance. Cerebral palsy is a widely defined pathology that is known to result in muscle weakness. The extent and origin of muscle weakness were the topic of several previous investigations; however some discrepant results were reported in the literature regarding how it might affect the development of exercise-induced neuromuscular fatigue. Importantly, most of the studies interested in the assessment of fatigue in patients with cerebral palsy did so with general questionnaires and reported increased levels of fatigue. Yet, exercise-induced neuromuscular fatigue was quantified in just a few studies and it was found that young patients with cerebral palsy might be more fatigue resistant that their peers. Thus, it appears that (i) conflicting results exist regarding

  2. Manual Torque Data Study

    SciTech Connect

    Mundt, Mark Osroe; Martinez, Matthew Ronald; Varela, Jeanette Judith

    2018-01-11

    At the Pantex Plant in Amarillo, TX, Production Technicians (PTs) build and disassemble nuclear weapon systems. The weapons are held in an integrated work stand for stability and to increase the safety environment for the workers and for the materials being processed. There are many occasions in which a knob must be turned to tighten an assembly part. This can help to secure or manipulate pieces of the system. As there are so many knobs to turn, the instructions given to the PTs are to twist the knob to a hand-tight setting, without the aid of a torque wrench. Theremore » are inherent risks in this procedure as the knobs can be tightened too loosely such that the apparatus falls apart or too tightly such that the force can crush or pinch components in the system that contain energetic materials. We want to study these operations at Pantex. Our goal is to collect torque data to assess the safety and reliability of humantooling interfaces.« less

  3. Risk factors affecting chronic rupture of the plantar fascia.

    PubMed

    Lee, Ho Seong; Choi, Young Rak; Kim, Sang Woo; Lee, Jin Yong; Seo, Jeong Ho; Jeong, Jae Jung

    2014-03-01

    Prior to 1994, plantar fascia ruptures were considered as an acute injury that occurred primarily in athletes. However, plantar fascia ruptures have recently been reported in the setting of preexisting plantar fasciitis. We analyzed risk factors causing plantar fascia rupture in the presence of preexisting plantar fasciitis. We retrospectively reviewed 286 patients with plantar fasciitis who were referred from private clinics between March 2004 and February 2008. Patients were divided into those with or without a plantar fascia rupture. There were 35 patients in the rupture group and 251 in the nonrupture group. The clinical characteristics and risk factors for plantar fascia rupture were compared between the 2 groups. We compared age, gender, the affected site, visual analog scale pain score, previous treatment regimen, body mass index, degree of ankle dorsiflexion, the use of steroid injections, the extent of activity, calcaneal pitch angle, the presence of a calcaneal spur, and heel alignment between the 2 groups. Of the assessed risk factors, only steroid injection was associated with the occurrence of a plantar fascia rupture. Among the 35 patients with a rupture, 33 had received steroid injections. The odds ratio of steroid injection was 33. Steroid injections for plantar fasciitis should be cautiously administered because of the higher risk for plantar fascia rupture. Level III, retrospective comparative study.

  4. Plantar fascia coronal length: a new parameter for plantar fascia assessment.

    PubMed

    Sari, Ahmet Sinan; Demircay, Emre; Cakmak, Gokhan; Sahin, M Sukru; Tuncay, I Cengiz; Altun, Suleyman

    2015-01-01

    The effects of gender and various anthropometric variables were previously reported as significant predictors of plantar fascia thickness. Although a strong correlation between either the body weight or body mass index (BMI) and plantar fascia thickness were not demonstrated, a moderate relation was stated. We retrospectively investigated the role of gender, height, weight, and body mass index on plantar fascia thickness at the calcaneal origin (PFCO) and 1 cm distal from the calcaneal origin (PF1cm) and the coronal length of the plantar fascia at the calcaneal origin (CLPF) in healthy subjects. The PFCO, PF1cm, and CLPF were retrospectively measured from magnetic resonance images of 100 healthy subjects. The gender, height, weight, and body mass index of the participants were also noted. Gender was a predictive factor for the length of the CLPF. The subjects with a BMI >25 kg/m(2) had a significantly greater PFCO, PF1cm, and CLPF. Height was mildly and BMI and weight were moderately related to the PFCO. However the CLPF showed a better correlation with height, BMI, and weight than that of plantar fascia thickness. CLPF better reflected the role of weight, BMI, and height than its thickness. It is a new parameter that could be valuable in the evaluation of plantar fascia disorders. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion

    PubMed Central

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune

    2016-01-01

    Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468

  6. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion.

    PubMed

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune; Kim, Tae Kyun

    2016-06-01

    Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA.

  7. A retrospective comparison of endoscopic plantar fasciotomy to open plantar fasciotomy with heel spur resection for chronic plantar fasciitis/heel spur syndrome.

    PubMed

    Tomczak, R L; Haverstock, B D

    1995-01-01

    The authors review the etiologies and treatments of plantar fasciitis or heel spur syndrome. They offer results of a retrospective study. Comparison of the return to work time after surgery for this condition, examinations of the effects of patient age at the time of surgery, gender, duration of pain prior to surgery, and type of surgical procedure, either endoscopic plantar fasciotomy or open plantar fasciotomy with heel spur resection, is provided.

  8. Influence of predominant patterns of coordination on the exploitation of interaction torques in a two-joint rhythmic arm movement.

    PubMed

    de Rugy, Aymar; Riek, Stephan; Carson, Richard G

    2006-11-01

    In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.

  9. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  10. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.

    PubMed

    Ameer, Mariam A; Muaidi, Qassim I

    2017-09-01

    The relationship between knee kinematics and knee-ankle kinetics during the landing phase of single leg jumping has been widely studied to identify proper strategies for preventing non-contact ACL injury. However, there is a lack of study on knee-ankle kinetics at peak knee flexion angle during jumping from running. Hence, the purpose of this study is to establish the relationship between peak knee flexion angle, knee extension moment, ankle plantar flexion moment and ground reaction force in handball players in order to protect ACL from excessive stress during single leg jumping. In addition, the study also clarifies the role of calf muscles in relieving part of ACL stresses with different knee flexion angles during landing. Fifteen active male elite handball players of Saudi Arabia have participated in this study (Age = 22.6 ± 3.5years, Height = 182 ± 3.7 cm, Weight = 87.5 ± 10.2 kg). The players performed three successful landings of single-leg jump following running a fixed distance of about 450cm. The data were collected using a 3D motion capture and analysis system (VICON). Pearson product moment correlation coefficients showed that greater peak knee flexion angle is related significantly to both lesser knee extension moment (r = -.623, P = .013) and vertical component of ground reaction force (VGRF) (r = -.688, P = .005) in landing phase. Moreover, increasing the peak knee flexion angle in landing phase tends to increase the ankle plantar flexion moment significantly (r = .832, P = .000). With an increase of the peak knee flexion angle during single leg jump landing from running, there would be less knee extension moment, low impact force and more plantar flexion moment. As such, the clinical implication of this study is that there may be a possible protective mechanism by increasing the knee flexion angle during landing phase, which tends to protect the ACL from vigorous strain and injuries.

  11. Shape, shear and flexion: an analytic flexion formalism for realistic mass profiles

    NASA Astrophysics Data System (ADS)

    Lasky, P. D.; Fluke, C. J.

    2009-07-01

    Flexion is a non-linear gravitational lensing effect that arises from gradients in the convergence and shear across an image. We derive a formalism that describes non-linear gravitational lensing by a circularly symmetric lens in the thin-lens approximation. This provides us with relatively simple expressions for first- and second-flexion in terms of only the surface density and projected mass distribution of the lens. We give details of exact lens models, in particular providing flexion calculations for a Sérsic-law profile, which has become increasingly popular over recent years. We further provide a single resource for the analytic forms of convergence, shear, first- and second-flexion for the following mass distributions: a point mass, singular isothermal sphere (SIS); Navarro-Frenk-White (NFW) profile; Sérsic-law profile. We quantitatively compare these mass distributions and show that the convergence and first-flexion are better indicators of the Sérsic shape parameter, while for the concentration of NFW profiles the shear and second-flexion terms are preferred. Research undertaken as part of the Commonwealth Cosmology Initiative (CCI:http://www.thecci.org), an international collaboration supported by the Australian Research Council. E-mail: plasky@astro.swin.edu.au (PDL); cfluke@astro.swin.edu.au (CJF)

  12. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    PubMed

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Non-invasive isometric force measurement of plantar flexors in rats.

    PubMed

    Chawla, Aditya; Spinner, Robert J; Torres Lizardi, Michael; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-11-01

    Isometric muscle force measurement is a sensitive marker for motor function recovery in rat nerve repair models. Current methods of eliciting maximal isometric force with nerve stimulation cannot provide longitudinal data. We developed a novel method for measuring isometric muscle force with a device designed to allow minimally invasive nerve stimulation and measurement of plantar flexion force. This indirectly elicited muscle force was compared with muscle force elicited by direct muscle stimulation in 3 surgical models. The force measured after sciatic nerve transection and repair followed a parabolic trend. There was a postinjury decrease in force that continued until postoperative day 42, after which the force increased with time, indicating muscle reinnervation. This approach can track longitudinal changes in force in the most common animal model for studies of clinically relevant problems in the peripheral nerve field. © 2014 Wiley Periodicals, Inc.

  14. The effects of joint aspiration and intra-articular corticosteroid injection on flexion reflex excitability, quadriceps strength and pain in individuals with knee synovitis: a prospective observational study.

    PubMed

    Rice, David Andrew; McNair, Peter John; Lewis, Gwyn Nancy; Dalbeth, Nicola

    2015-07-28

    Substantial weakness of the quadriceps muscles is typically observed in patients with arthritis. This is partly due to ongoing neural inhibition that prevents the quadriceps from being fully activated. Evidence from animal studies suggests enhanced flexion reflex excitability may contribute to this weakness. This prospective observational study examined the effects of joint aspiration and intra-articular corticosteroid injection on flexion reflex excitability, quadriceps muscle strength and knee pain in individuals with knee synovitis. Sixteen patients with chronic arthritis and clinically active synovitis of the knee participated in this study. Knee pain flexion reflex threshold, and quadriceps peak torque were measured at baseline, immediately after knee joint aspiration alone and 5 ± 2 and 15 ± 2 days after knee joint aspiration and the injection of 40 mg of methylprednisolone acetate. Compared to baseline, knee pain was significantly reduced 5 (p = 0.001) and 15 days (p = 0.009) post intervention. Flexion reflex threshold increased immediately after joint aspiration (p = 0.009) and 5 (p = 0.01) and 15 days (p = 0.002) post intervention. Quadriceps peak torque increased immediately after joint aspiration (p = 0.004) and 5 (p = 0.001) and 15 days (p <0.001) post intervention. The findings from this study suggest that altered sensory output from an inflamed joint may increase flexion reflex excitability in humans, as has previously been shown in animals. Joint aspiration and corticosteroid injection may be a clinically useful intervention to reverse quadriceps muscle weakness in individuals with knee synovitis.

  15. Trunk Muscle Activation at the Initiation and Braking of Bilateral Shoulder Flexion Movements of Different Amplitudes

    PubMed Central

    Eriksson Crommert, M.; Halvorsen, K.; Ekblom, M. M.

    2015-01-01

    The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement. PMID:26562017

  16. Trunk Muscle Activation at the Initiation and Braking of Bilateral Shoulder Flexion Movements of Different Amplitudes.

    PubMed

    Eriksson Crommert, M; Halvorsen, K; Ekblom, M M

    2015-01-01

    The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.

  17. [A woman with palmar and plantar hyperpigmentation].

    PubMed

    van Tienhoven, Geertjan; Wilmink, J W Hanneke

    2011-01-01

    A 60-year-old Ghanese woman was treated with radiotherapy and capecitabine for metastatic breast cancer. 6 weeks after starting capecitabine she developed palmar and plantar hyperpigmentation, which preceded symptoms of hand-foot syndrome, a known adverse effect of capecitabine. After a dose reduction, the hand-foot syndrome diminished but the hyperpigmentation remained. 8 months later the patient was well and stable.

  18. Mechanical Information of Plantar Fascia during Normal Gait

    NASA Astrophysics Data System (ADS)

    Gu, Yaodong; Li, Zhiyong

    The plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.

  19. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry.

    PubMed

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-09-30

    Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations.

  20. Do peak torque angles of muscles change following anterior cruciate ligament reconstruction using hamstring or patellar tendon graft?

    PubMed

    Yosmaoğlu, Hayri Baran; Baltacı, Gül; Sönmezer, Emel; Özer, Hamza; Doğan, Deha

    2017-12-01

    This study aims to compare the effects of anterior cruciate ligament (ACL) reconstruction using autogenous hamstring or patellar tendon graft on the peak torque angle. The study included 132 patients (103 males, 29 females; mean age 29±9 year) who were performed ACL reconstruction with autogenous hamstring or patellar tendon graft. The peak torque angles in the quadriceps and hamstring muscles were recorded using an isokinetic dynamometer. Angle of peak knee flexion torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the hamstring tendon group. Angle of peak knee extension torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the patellar tendon group. There were no statistically significant differences in the flexion and extension peak torque angles between the operated and nonoperated knees at 60°/second in both groups. The angle of peak torque at relatively high angular velocities is affected after ACL reconstruction in patients with hamstring or patellar tendon grafts. The graft donor site directly influences this parameter. This finding may be important for clinicians in terms of preventing re-injury.

  1. Quick torque coupling

    DOEpatents

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  2. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  3. Relationships between rapid isometric torque characteristics and vertical jump performance in division I collegiate American football players: influence of body mass normalization.

    PubMed

    Thompson, Brennan J; Ryan, Eric D; Sobolewski, Eric J; Smith, Doug B; Akehi, Kazuma; Conchola, Eric C; Buckminster, Tyler

    2013-10-01

    The purpose of the present study was to examine the relationships between absolute and body mass-normalized rapid isometric torque variables and vertical jump (VJ) performance of the leg extensors and flexors in elite National Collegiate Athletic Association Division I Football Bowl Subdivision collegiate American football players. Thirty-one players performed isometric maximal voluntary contractions of the leg extensor and flexor muscle groups and a countermovement VJ. Rate of torque development (RTD) and the contractile impulse (IMPULSE) were determined from 0 to 30, 0 to 50, 0 to 100, and 0 to 200 milliseconds from the onset of muscular contraction. The relationships between absolute and normalized rapid torque variables and VJ performance were assessed using correlation coefficients (r). There were no significant correlations (p > 0.05) observed between the absolute rapid torque variables and VJ performance, except for leg flexion RTD at 0-200 milliseconds (p = 0.024). All normalized rapid torque variables of the leg extensors and flexors were significantly correlated to VJ performance (p ≤ 0.001-0.026). These findings indicated that normalizing rapid torque variables to body mass improves the relationships between isometric rapid torque variables and VJ performance and normalized leg extension and flexion are both similarly related to VJ performance. Strength and conditioning professionals may use these findings in an attempt to identify and monitor dynamic sport performance. Furthermore, future studies examining the relationship between dynamic on the field performances and laboratory-based isometric strength testing may consider including normalized rapid torque variables.

  4. `Pugnatron'-like reaction in a patient with familial dystonia: torque induced motion analysis

    PubMed Central

    Walsh, E. Geoffrey

    1974-01-01

    A patient is described who suffered from an unusual extrapyramidal syndrome involving both legs and one arm. In the affected parts there was an extreme degree of rigidity. Measurements have been made of the motion that occurred as a result of applying force to the left foot. The torque was provided by a printed motor. The effect of a maintained plantar flexing force was anomalous for the foot moved to a dorsiflexed position. A model illustrating possible principles of feedback control—the Pugnatron—is described. Images PMID:4836750

  5. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players.

    PubMed

    Lord, C; Ma'ayah, F; Blazevich, A J

    2018-03-01

    Muscular fatigue and interlimb strength asymmetry are factors known to influence hamstring injury risk; however, limb-specific exacerbation of knee flexor (hamstrings) torque production after fatiguing exercise has previously been ignored. To investigate changes in muscular force production before and after sport-specific (repeated-sprint) and non-specific (knee extension-flexion) fatiguing exercise, and explore the sensitivity and specificity of isokinetic endurance (ie, muscle-specific) and single-leg vertical jump (ie, whole limb) tests to identify previous hamstring injury. Twenty Western Australia State League footballers with previous unilateral hamstring injury and 20 players without participated. Peak concentric knee extensor and flexor (180°∙s -1 ) torques were assessed throughout an isokinetic endurance test, which was then repeated alongside a single-leg vertical jump test before and after maximal repeated-sprint exercise. Greater reductions in isokinetic knee flexor torque (-16%) and the concentric hamstring:quadriceps peak torque ratio (-15%) were observed after repeated-sprint running only in the injured (kicking) leg and only in the previously injured subjects. Changes in (1) peak knee flexor torque after repeated-sprint exercise, and (2) the decline in knee flexor torque during the isokinetic endurance test measured after repeated-sprint exercise, correctly identified the injured legs (N = 20) within the cohort (N = 80) with 100% specificity and sensitivity. Decreases in peak knee flexor torque and the knee flexor torque during an isokinetic endurance test after repeated-sprint exercise identified previous hamstring injury with 100% accuracy. Changes in knee flexor torque, but not SLVJ, should be tested to determine its prospective ability to predict hamstring injury in competitive football players. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  6. Normal isometric and isokinetic peak torques of hamstring and quadriceps muscles in young adult Saudi males.

    PubMed

    Alangari, Abdulrahman S; Al-Hazzaa, Hazzaa M

    2004-07-01

    To provide reference data for peak isometric and isokinetic muscle strength of hamstring and quadriceps muscles in young adult Saudi males. The strength of left and right quadriceps and hamstrings leg muscles was assessed in 132 college-male students in the campus of King Saud University, Riyadh, Kingdom of Saudi Arabia in the year 2002 using a Cybex machine and a standardized protocol at the following velocities: 0, 60, 180, and 300 degrees/sec. Isometric strength (0 degrees/sec) was assessed at 65 degrees angle of knee flexion. Isometric flexion strength was 9.3% higher in the right leg compared to the left (p < 0.01), while there was no significant difference between the 2 legs in extension. In isokinetic strength, there was a decrease in both extension and flexion strength with increasing velocity. However, only in flexion strength a significant right-left difference was observed. Flexion/extension peak concentric torque ratio relative to angular velocity varied from 59.9-63.3% in the right leg and from 55.8-59.9% in the left leg, with significant difference (p < 0.02) between the 2 legs. In addition, the angle of peak torque decreased with increasing velocity at knee extension but increased at knee flexion. Young Saudi males appeared to have similar isometric peak strength in the knee extensors but not in the flexors when compared to previously published research. Isokinetic extension strength at 60 degrees/sec in the Saudi males is lower than values reported for untrained males elsewhere. Furthermore, the hamstrings/quadriceps ratio in Saudi males seems to be within the recommended range of appropriate muscle function.

  7. Zero torque gear head wrench

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  8. Clinical characteristics of the causes of plantar heel pain.

    PubMed

    Yi, Tae Im; Lee, Ga Eun; Seo, In Seok; Huh, Won Seok; Yoon, Tae Hee; Kim, Bo Ra

    2011-08-01

    The objectives of this study were to investigate the causes of plantar heel pain and find differences in the clinical features of plantar fasciitis (PF) and fat pad atrophy (FPA), which are common causes of plantar heel pain, for use in differential diagnosis. This retrospective study analyzed the medical records of 250 patients with plantar heel pain at the Foot Clinic of Rehabilitation Medicine at Bundang Jesaeng General Hospital from January to September, 2008. The subjects used in this study were 114 men and 136 women patients with a mean age of 43.8 years and mean heel pain duration of 13.3 months. Causes of plantar heel pain were PF (53.2%), FPA (14.8%), pes cavus (10.4%), PF with FPA (9.2%), pes planus (4.8%), plantar fibromatosis (4.4%), plantar fascia rupture (1.6%), neuropathy (0.8%), and small shoe syndrome (0.8%). PF and FPA were most frequently diagnosed. First-step pain in the morning, and tenderness on medial calcaneal tuberosity correlated with PF. FPA mainly involved bilateral pain, pain at night, and pain that was aggravated by standing. Heel cord tightness was the most common biomechanical abnormality of the foot. Heel spur was frequently seen in X-rays of patients with PF. Plantar heel pain can be provoked by PF, FPA, and other causes. Patients with PF or FPA typically show different characteristics in clinical features. Plantar heel pain requires differential diagnosis for appropriate treatment.

  9. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  10. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  11. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  12. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  13. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  14. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  15. Walking and running plantar pressure analysis before and after resection of tarsal coalition.

    PubMed

    Hetsroni, Iftach; Ayalon, Moshe; Mann, Gideon; Meyer, Ganit; Nyska, Meir

    2007-05-01

    Conservative treatment failure in symptomatic tarsal coalition usually mandates bar resection as a preferred operative alternative. The outcome of this procedure generally has been assessed by clinical measures. The purpose of our study was to evaluate whether plantar pressure distribution is normalized after bar resection. This study compared three groups: nine candidates for resection of tarsal coalition, nine patients between 2 and 4 years after bar resection (not the same patients who were candidates for resection), and nine control subjects. The ankle and hindfoot were evaluated according to the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale. Mean plantar pressure and mean normalized impulses were calculated during walking and running. Significantly higher AOFAS scores were demonstrated in the postoperative group compared with the preoperative group (p<0.01). Medial midfoot pressures demonstrated the most consistent differences between groups. Preoperative feet had significantly higher medial midfoot pressures compared with the control group both during walking and running. Feet that had resection did not demonstrate significantly higher medial midfoot pressures during walking compared with the control group. However, during running, this segment's pressures were significantly higher both in preoperative (p=0.000) and in postoperative (p=0.023) feet compared with the control group. Heel segments revealed decreased pressures laterally both in preoperative feet and in postoperative feet compared with the control group. Running demonstrates that normal plantar pressures are not recreated after resection of tarsal coalition. However, close to normal walking pressure distribution is consistent with the favorable clinical outcome observed in most patients after bar resection. Regaining full recreational activity after resection of a tarsal coalition, i.e. running, may have implications on abnormal foot loading and torque, thus promoting

  16. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age. PMID:26646385

  17. Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties.

    PubMed

    Mahieu, N N; Cools, A; De Wilde, B; Boon, M; Witvrouw, E

    2009-08-01

    Proprioceptive neuromuscular facilitation (PNF) stretching programs have been shown to be the most effective stretching technique to increase the range of motion (ROM). The objective of this study was to examine the mechanism of effect of PNF stretching on changes in the ROM. Sixty-two healthy subjects were randomized into two groups: a PNF stretching group and a control group. The PNF group performed a 6-week stretching program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion ROM, passive resistive torque (PRT) of the plantar flexors and stiffness of the Achilles tendon. The results of the study revealed that the dorsiflexion ROM was significantly increased in the PNF group (DeltaROMext: 5.97+/-0.671 degrees ; DeltaROMflex: 5.697+/-0.788 degrees ). The PRT of the plantar flexors and the stiffness of the Achilles tendon did not change significantly after 6 weeks of PNF stretching. These findings provide evidence that PNF stretching results in an increased ankle dorsiflexion. However, this increase in ROM could not be explained by a decrease of the PRT or by a change in stiffness of the Achilles tendon, and therefore can be explained by an increase in stretch tolerance.

  18. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  19. Upper-limb surface electro-myography at maximum supination and pronation torques: the effect of elbow and forearm angle.

    PubMed

    O'Sullivan, Leonard W; Gallwey, Timothy J

    2002-08-01

    Forearm pronation and supination, and increased muscular activity in the wrist extensors have been both linked separately to work-related injuries of the upper limb, especially humeral epicondylitis. However, there is a lack of information on forearm torque strength at ranges of elbow and forearm angles typical of industrial tasks. There is a need for strength data on forearm torques at different upper limb angles to be investigated. Such a study should also include the measurement of muscular activity for the prime torque muscles and also other muscles at possible risk of injury due to high exertion levels during tasks requiring forearm torques.Twenty-four male subjects participated in the study that involved maximum forearm torque exertions for the right arm, in the pronation and supination directions, and at four elbow and three forearm rotation angles. Surface EMG (SEMG) was used to evaluate the muscular activity of the pronator teres (PT), pronator quadratus (PQ), biceps brachi (BB), brachioradialis (BR), mid deltoid (DT) and the extensor carpi radialis brevis (ECRB) during maximum torque exertions. Repeated measures ANOVA indicated that both direction and forearm angle had a significant effect on the maximum torques (p<0.05) while elbow angle and the interactions were highly significant (p<0.001). The results revealed that supination torques were stronger overall with a mean maximum value of 16.2 Nm recorded for the forearm 75% prone. Mean maximum pronation torque was recorded as 13.1 Nm for a neutral forearm with the elbow flexed at 45 degrees. The data also indicated that forearm angle had a greater effect on supination torque than pronation torque. Supination torques were stronger for the mid-range of elbow flexion, but pronation torques increased with increasing elbow extension. The strength profiles for the maximum torque exertions were reflected in the EMG changes in the prime supinators and pronators. In addition, the EMG data expressed as the

  20. Evaluation of the isokinetic muscle function, postural control and plantar pressure distribution in capoeira players: a cross-sectional study.

    PubMed

    de Paula Lima, Pedro Olavo; Camelo, Paulo Ricardo Pinto; Ferreira, Victor Matheus Leite Mascarenhas; do Nascimento, Paulo Jorge Santiago; Bezerra, Márcio Almeida; Almeida, Gabriel Peixoto Leão; de Oliveira, Rodrigo Ribeiro

    2017-01-01

    Capoeira is a cultural practice with Brazilian roots that combines several elements including dance, fighting and body rhythm. Because of the diverse elements involved in its practice, capoeira is excellent at developing the physical and social abilities of its players. The aim of this study was to compare the biomechanical profile of muscle strength, plantar pressure distribution, and postural balance between players and non-players of capoeira. We evaluated 51 subjects who were allocated into two groups: capoeira group and control group. Subjects were evaluated using a baropodometer (Diasu ® ) and an isokinetic dynamometer (Biodex ® ). When comparing plantar pressure distribution between groups and limbs, there were significant differences in mean load of forefoot ( p =0.008) and total load ( p =0.001). There were no significant differences between groups and limbs in balance and muscle strength; however, a significant difference was found in quadriceps torque peak ( p =0.001) and agonist/antagonist ratio ( p =0.001) when comparing these variables between the groups. Capoeira players displayed a tendency to have an asymmetric profile in plantar pressure distribution. No difference was found in balance between groups. Despite the fact that capoeira players showed increased strength of the quadriceps muscle, their agonist/antagonist ratio was more asymmetrical than the control group. IV.

  1. Evaluation of the isokinetic muscle function, postural control and plantar pressure distribution in capoeira players: a cross-sectional study

    PubMed Central

    de Paula Lima, Pedro Olavo; Camelo, Paulo Ricardo Pinto; Ferreira, Victor Matheus Leite Mascarenhas; do Nascimento, Paulo Jorge Santiago; Bezerra, Márcio Almeida; Almeida, Gabriel Peixoto Leão; de Oliveira, Rodrigo Ribeiro

    2017-01-01

    Summary Background Capoeira is a cultural practice with Brazilian roots that combines several elements including dance, fighting and body rhythm. Because of the diverse elements involved in its practice, capoeira is excellent at developing the physical and social abilities of its players. The aim of this study was to compare the biomechanical profile of muscle strength, plantar pressure distribution, and postural balance between players and non-players of capoeira. Methods We evaluated 51 subjects who were allocated into two groups: capoeira group and control group. Subjects were evaluated using a baropodometer (Diasu®) and an isokinetic dynamometer (Biodex®). Results When comparing plantar pressure distribution between groups and limbs, there were significant differences in mean load of forefoot (p=0.008) and total load (p=0.001). There were no significant differences between groups and limbs in balance and muscle strength; however, a significant difference was found in quadriceps torque peak (p=0.001) and agonist/antagonist ratio (p=0.001) when comparing these variables between the groups. Conclusion Capoeira players displayed a tendency to have an asymmetric profile in plantar pressure distribution. No difference was found in balance between groups. Despite the fact that capoeira players showed increased strength of the quadriceps muscle, their agonist/antagonist ratio was more asymmetrical than the control group. Level of evidence IV. PMID:29387644

  2. Parametric and cadaveric models of lumbar flexion instability and flexion restricting dynamic stabilization system.

    PubMed

    Fielding, Louis C; Alamin, Todd F; Voronov, Leonard I; Carandang, Gerard; Havey, Robert M; Patwardhan, Avinash G

    2013-12-01

    Development of a dynamic stabilization system often involves costly and time-consuming design iterations, testing and computational modeling. The aims of this study were (1) develop a simple parametric model of lumbar flexion instability and use this model to identify the appropriate stiffness of a flexion restricting stabilization system (FRSS), and (2) in a cadaveric experiment, validate the predictive value of the parametric model. Literature was surveyed for typical parameters of intact and destabilized spines: stiffness in the high flexibility zone (HFZ) and high stiffness zone, and size of the HFZ. These values were used to construct a bilinear parametric model of flexion kinematics of intact and destabilized lumbar spines. FRSS implantation was modeled by iteratively superimposing constant flexion stiffnesses onto the parametric model. Five cadaveric lumbar spines were tested intact; after L4-L5 destabilization (nucleotomy, midline decompression); and after FRSS implantation. Specimens were loaded in flexion/extension (8 Nm/6 Nm) with 400 N follower load to characterize kinematics for comparison with the parametric model. To accomplish the goal of reducing ROM to intact levels and increasing stiffness to approximately 50 % greater than intact levels, flexion stiffness contributed by the FRSS was determined to be 0.5 Nm/deg using the parametric model. In biomechanical testing, the FRSS restored ROM of the destabilized segment from 146 ± 13 to 105 ± 21 % of intact, and stiffness in the HFZ from 41 ± 7 to 135 ± 38 % of intact. Testing demonstrated excellent predictive value of the parametric model, and that the FRSS attained the desired biomechanical performance developed with the model. A simple parametric model may allow efficient optimization of kinematic design parameters.

  3. Effect of socks structures on plantar dynamic pressure distribution.

    PubMed

    Soltanzadeh, Zeynab; Shaikhzadeh Najar, Saeed; Haghpanahi, M; Mohajeri-Tehrani, M R

    2016-11-01

    A major purpose of investigating the plantar pressure in patients with pain or those at risk for skin injury is to reduce the pressure below metatarsal heads, specially first and second metatarsal heads. The aim of this article is to evaluate the effects of the socks structures on the changes in plantar dynamic pressure. In this study, seven socks types with different structures for the sole area were produced. The Gaitview ® AFA-50 system, a force plate, was used to measure the plantar dynamic pressure of 10 participants. The barefoot plantar dynamic pressure distribution was compared with the plantar dynamic pressure distribution with socks by two independent samples test on various zones of the foot and on different genders using SPSS software. Mann-Whitney tests were used to determine specific significant differences. The obtained results showed that the main trend was to redistribute the plantar dynamic pressure from the higher plantar pressure zones (toe and first through forth metatarsal bone regions) were decreased and as a result the plantar pressure toward the relatively lower pressure zones (fifth metatarsal bone and midfoot regions). In comparison with the barefoot condition, the cross miss structure reduced the mean pressure in the critical region of the foot (first metatarsal) for male and female subjects ( p < 0.05) and also the mock rib structure reduced the mean pressure for female subjects ( p < 0.05). In general, the results suggested wearing the socks because the socks make the plantar pressure redistributed from high to low plantar pressure zones. The results of this research indicated that wearing socks with cross miss and mock rib structures will reduce the mean plantar pressure values in forefoot area in comparison with the barefoot condition.

  4. Effect of Transcutaneous Electrical Nerve Stimulation on Plantar Flexor Muscle Spasticity and Walking Speed in Stroke Patients.

    PubMed

    Laddha, Darshan; Ganesh, G Shankar; Pattnaik, Monalisa; Mohanty, Patitapaban; Mishra, Chittaranjan

    2016-12-01

    Spasticity is a major disabling symptom in patients post stroke. Although studies have demonstrated that transcutaneous electrical nerve stimulation (TENS) can reduce spasticity, the duration of single session TENS is a subject of debate. The purpose of this study was to determine the sustainability of the effects of TENS applied over common peroneal nerve in the reduction of ankle plantar-flexor spasticity and improving gait speed in patients post stroke. Thirty patients (11 women and 19 men) (mean age of 46.46 years) were randomly assigned to group 1 (task oriented exercises), group 2 (TENS for 30 min and task oriented exercises) and group 3 (TENS for 60 min and task oriented exercises) for a period of five sessions per week for 6 weeks. All patients were assessed for ankle plantar-flexor spasticity, passive ankle dorsi-flexion range of motion, clonus and timed up and go test at the time of recruitment to study, at 3 and 6 weeks of therapeutic intervention. The overall results of the study suggest that there was a decrease in ankle plantar flexor spasticity, ankle clonus and timed up and go score in all the groups. A greater reduction of spasticity was seen in TENS groups (groups 2 and 3) when compared to control. No significant improvement was found in timed up and go test (TUG) scores between groups. Both 30 min and 60 min of application of TENS are effective in reducing spasticity of ankle plantar flexors, improving walking ability and increase the effectiveness of task related training. Based on the effect size, we would recommend a longer duration application for the reduction of spasticity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Distal phalange necrosis: a severe manifestation of palmar plantar erythrodysesthesia.

    PubMed

    Palaia, Innocenza; Angioli, Roberto; Bellati, Filippo; Basile, Stefano; Rabitti, Carla; Panici, Pierluigi Benedetti

    2006-10-01

    Palmar plantar erythrodysesthesia is a cutaneous drug reaction induced by chemotherapy. We present a case of a patient with neurosensorial deficit affected by ovarian cancer who experienced a painless necrosis of a distal phalange of the hand during treatment with pegylated liposomal doxorubicin. Palmar plantar erythrodysesthesia may be underestimated by physicians in paucisymptomatic patients.

  6. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  7. Iontophoresis for palmar and plantar hyperhidrosis.

    PubMed

    Pariser, David M; Ballard, Angela

    2014-10-01

    Iontophoresis is a safe, efficacious, and cost-effective primary treatment of palmar and plantar hyperhidrosis. Decades of clinical experience and research show significant reduction in palmoplantar excessive sweating with minimal side effects. To get the best results from iontophoresis, health care professionals need to provide education on the mechanism of action and benefits, evidence of its use, and creation of a future patient-specific plan of care for continued treatments at home or in the physician's office. Iontophoresis may be combined with other hyperhidrosis treatments, such as topical antiperspirants and botulinum toxin injections. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Plantar pressure cartography reconstruction from 3 sensors.

    PubMed

    Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    Foot problem diagnosis is often made by using pressure mapping systems, unfortunately located and used in the laboratories. In the context of e-health and telemedicine for home monitoring of patients having foot problems, our focus is to present an acceptable system for daily use. We developed an ambulatory instrumented insole using 3 pressures sensors to visualize plantar pressure cartographies. We show that a standard insole with fixed sensor position could be used for different foot sizes. The results show an average error measured at each pixel of 0.01 daN, with a standard deviation of 0.005 daN.

  9. Spin-torque building blocks

    NASA Astrophysics Data System (ADS)

    Locatelli, N.; Cros, V.; Grollier, J.

    2014-01-01

    The discovery of the spin-torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate -- precisely, rapidly and at low energy cost -- the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architecture can be envisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks.

  10. The effect of a four-week proprioceptive neuromuscular facilitation stretching program on isokinetic torque production.

    PubMed

    Higgs, Fiona; Winter, Samantha L

    2009-08-01

    Flexibility is widely accepted as an important component of fitness, yet flexibility training can be detrimental to muscle performance particularly where a high number of stretch cycles are performed. The purpose of this study was to investigate whether chronic proprioceptive neuromuscular facilitation (PNF) stretch training could successfully improve the knee flexion range of motion without having a detrimental effect on the peak isokinetic torque of the quadriceps. The minimum knee angle in flexion and the peak isokinetic quadriceps torque were measured at 120 and 270 degrees xs. Subjects then participated in a 4-week quadriceps flexibility training program consisting of 3 cycles of PNF stretching performed 3 times a week. The range of motion was recorded before and after the first stretching session of each week. At the end of the 4-week period, the peak isokinetic quadriceps torque and flexibility were again measured. The mean (SE) improvement in the knee flexion range of motion over the whole program was 9.2 degrees (1.45 degrees ), and typical gains after a single stretching session were around 3 degrees . Post hoc analysis showed that the pretraining session range of motion was significantly improved in week 4 compared with the pretraining session range of motion in weeks 1 and 2 (p < 0.05). There was no change (p = 0.9635) in the peak isokinetic torque produced at 120 degrees xs (week 1: 121.9 (4.6) N x m; week 2: 121.9 (5.2) N x m) or at 270 degrees xs (week 1: 88.1 (3.4) N x m; week 2: 88.6 (4.9) N x m). These findings suggest that it is possible to improve flexibility using 3 PNF stretch cycles performed 3 times a week without altering muscle isokinetic strength characteristics.

  11. Identification of feigned ankle plantar and dorsiflexors weakness in normal subjects.

    PubMed

    Olmo, Jesús; Jato, Susana; Benito, Jaime; Martín, Ignacio; Dvir, Zeevi

    2009-10-01

    Based on the limited ability of the human being to voluntarily control submaximal eccentric exertions, previous studies have indicated that isokinetic testing with a combined concentric-eccentric exercise protocol could effectively identify submaximal (feigned) effort in various muscle groups by showing an abnormally high eccentric to concentric ratio (ECR). The objective of this study was to determine the validity and accuracy of an ECR-based isokinetic test in identifying feigned ankle weakness. Thirty-eight normal subjects performed maximal and feigned efforts in an isokinetic concentric and eccentric ankle plantar- and dorsiflexion protocol with two different velocities, 30 and 120 degrees s(-1). The isokinetic parameters ECR and the derivatives DEC (difference between ECR at high speed of motion and ECR at low speed of motion) and SEC (sum of ECR at high speed of motion plus the ratio between eccentric peak torque at high speed and concentric peak torque at low speed) were calculated. The ECR, DEC and SEC scores were significantly greater in feigned conditions for ankle plantarflexion, but not for dorsiflexion. Using optimal cutoff scores based on 99% tolerance intervals, it was disclosed that the most efficient parameter was the SEC, identifying 92% of the feigned efforts with 99% confidence, indicating that the ankle plantarflexors are less controllable in fast eccentric conditions than that in concentric conditions. The ECR-based parameters are valid for effectively identifying feigned plantarflexion effort with high accuracy, but do not allow the detection of feigned dorsiflexion weakness.

  12. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

    PubMed Central

    2016-01-01

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  13. Window of opportunity: flexion myelopathy after drug overdose.

    PubMed

    Nielsen, Allen S; Damek, Denise M

    2012-01-01

    Cervical and thoracic flexion myelopathy are uncommon causes of spinal cord injury that can lead to irreversible paralysis, autonomic dysfunction, and death. To the authors' knowledge, this report is the first to describe the natural history of flexion myelopathy and the simultaneous occurrence of cervical and thoracic flexion myelopathy in the setting of drug overdose. To report the association of cervical and thoracic flexion myelopathy and drug overdose; to describe the subacute natural history of flexion myelopathy in the setting of drug overdose; to emphasize the need for first responders to document positioning of unresponsive individuals; and to suggest careful neurological examination and early spinal cord imaging in appropriately identified patients at risk of flexion myelopathy. We describe the case of a 34-year-old woman who developed flexion myelopathy resulting in severe quadriparesis after overdose of quetiapine fumarate, oxycodone/acetaminophen, and chloral hydrate. Flexion myelopathy in the setting of drug overdose is a subacute injury. Early intervention may limit neurological disability. However, the clinical diagnosis of flexion myelopathy is inevitably delayed by the patient's altered level of consciousness or mental status at presentation, and concurrent multiple organ failure. Copyright © 2012. Published by Elsevier Inc.

  14. Subcalcaneal Bursitis With Plantar Fasciitis Treated by Arthroscopy

    PubMed Central

    Yamakado, Kotaro

    2013-01-01

    We report the successful arthroscopic treatment of a case of subcalcaneal bursitis with plantar fasciitis. To our knowledge, this is the first report on arthroscopic excision of a subcalcaneal bursa. Right heel pain developed in a 50-year-old woman, without any obvious cause. She reported that the heel pain occurred immediately after waking and that the heel ached when she walked. Magnetic resonance imaging showed an extra-articular, homogeneous, high-intensity lesion in the fat pad adjacent to the calcaneal tubercle on T2-weighted sagittal and coronal images and thickening of the plantar fascia on T2-weighted sagittal images. A diagnosis of a recalcitrant subcalcaneal bursitis with plantar fasciitis was made, and surgery was performed. The arthroscope was placed between the calcaneus and the plantar fascia. With the surgeon viewing from the lateral portal and working from the medial portal, the dorsal surface of the degenerative plantar fascia was debrided and the medial half of the plantar fascia was released, followed by debridement of the subcalcaneal bursal cavity through the incised plantar fascia. Full weight bearing and gait were allowed immediately after the operation. At the latest follow-up, the patient had achieved complete resolution of heel pain without a recurrence of the mass, confirmed by magnetic resonance imaging. PMID:23875139

  15. Identification of Foot Pathologies Based on Plantar Pressure Asymmetry

    PubMed Central

    Wafai, Linah; Zayegh, Aladin; Woulfe, John; Aziz, Syed Mahfuzul; Begg, Rezaul

    2015-01-01

    Foot pathologies can negatively influence foot function, consequently impairing gait during daily activity, and severely impacting an individual’s quality of life. These pathologies are often painful and correspond with high or abnormal plantar pressure, which can result in asymmetry in the pressure distribution between the two feet. There is currently no general consensus on the presence of asymmetry in able-bodied gait, and plantar pressure analysis during gait is in dire need of a standardized method to quantify asymmetry. This paper investigates the use of plantar pressure asymmetry for pathological gait diagnosis. The results of this study involving plantar pressure analysis in fifty one participants (31 healthy and 20 with foot pathologies) support the presence of plantar pressure asymmetry in normal gait. A higher level of asymmetry was detected at the majority of the regions in the feet of the pathological population, including statistically significant differences in the plantar pressure asymmetry in two regions of the foot, metatarsophalangeal joint 3 (MPJ3) and the lateral heel. Quantification of plantar pressure asymmetry may prove to be useful for the identification and diagnosis of various foot pathologies. PMID:26295239

  16. [Plantar fibromatosis and Dupuytren's contracture in an adolescent].

    PubMed

    Nikolić, Jelena; Janjić, Zlata; Momcilović, Dragan; Ninković, Srdjan; Harhai, Vladimir

    2011-10-01

    Fibromatosis represents a wide group of benign, locally proliferative disorders of fibroblasts. Dupuytren's disease is a benign proliferative disease of palmar aponeurosis which usually affects adults between 40 and 60 years of age. Ledderhose's disease or plantar fibromatosis is plantar equivalent of Dupuyten's disease most often affecting middle-aged and older men, usually bilateral, represented with painless nodule in the medial division of plantar fascia. We presented a 19-year old adolescent that turned to a plastic surgeon complaining to his small finger contracture. He noticed palmar thickening with nodule over the metacarpophalangeal joint of small finger of his right hand when he was 16 years old. A year later a finger started to band. During physical checkup we noticed plantar nodule that also had his father and grandmother. Magnetic resonance and tumor biopsy confirmed a suspicion on plantar fibromatosis - Ledderhose's disease. Clinical exam of the hand clearly led to a conclusion that the patient had Dupuytren's contracture with pretendinous cord over the small finger flexor tendons and lack of extension of proximal interphalangeal (PIP) joint. On the extensor side of the PIP joints there were Garrod's nodes. The patient refused surgical treatment of plantar tumor, but agreed to surgical correction of finger contracture. Despite the fact that Dupuytren's disease and plantar fibromatosis are diseases of adults, the possibility of conjoint appearance of these forms of fibromatosis in adolescent period of life should be kept in mind especially in patients with strong genetic predisposition.

  17. Plantar tendons of the foot: MR imaging and US.

    PubMed

    Donovan, Andrea; Rosenberg, Zehava Sadka; Bencardino, Jenny T; Velez, Zoraida Restrepo; Blonder, David B; Ciavarra, Gina A; Adler, Ronald Steven

    2013-01-01

    Tendon disorders along the plantar aspect of the foot may lead to significant symptoms but are often clinically misdiagnosed. Familiarity with the normal anatomy of the plantar tendons and its appearance at magnetic resonance (MR) imaging and ultrasonography (US) is essential for recognizing plantar tendon disorders. At MR imaging, the course of the plantar tendons is optimally visualized with dedicated imaging of the midfoot and forefoot. This imaging should include short-axis images obtained perpendicular to the long axis of the metatarsal shafts, which allows true cross-sectional evaluation of the plantar tendons. Normal plantar tendons appear as low-signal-intensity structures with all MR sequences. At US, accurate evaluation of the tendons requires that the ultrasound beam be perpendicular to the tendon. The normal tendon appears as a compact linear band of echogenic tissue that contains a fine, mixed hypoechoic and hyperechoic internal fibrillar pattern. Tendon injuries can be grouped into six major categories: tendinosis, peritendinosis, tenosynovitis, entrapment, rupture, and instability (subluxation or dislocation) and can be well assessed with both MR imaging and US. The radiologist plays an important role in the diagnosis of plantar tendon disorders, and recognizing their imaging appearances at MR imaging and US is essential.

  18. Installation Torque Tables for Noncritical Applications

    NASA Technical Reports Server (NTRS)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  19. Effect of Muscle Loads and Torque Applied to the Tibia on the Strain Behavior of the Anterior Cruciate Ligament: An In Vitro Investigation

    PubMed Central

    Fujiya, Hiroto; Kousa, Petteri; Fleming, Braden C; Churchill, David L; Beynnon, Bruce D

    2011-01-01

    Background Very little is known about the effects of applied torque about the long axis of the tibia in combination with muscle loads on anterior cruciate ligament biomechanics. The purpose of this study was to determine the effect of muscle contraction and tibial torques applied about the long axis of the tibia on anterior cruciate ligament strain behavior. Methods Six cadaver knee specimens were used to measure the strain behaviour of the anterior cruciate ligament. Internal and external axial torques were applied to the tibia when the knee was between 30° and 120° of flexion in combination with the conditions of no muscle load, isolated quadriceps load, and simultaneous quadriceps and hamstring loading. Findings The highest anterior cruciate ligament strain values were measured when the muscles were not loaded, when the knee was at 120° of flexion, and when internal tibial torques were applied to the knee. During muscle loading the highest anterior cruciate ligament strain values were measured at 30° of flexion and then the strain values gradually decreased with increase in knee flexion. During co-contraction of the quadriceps and hamstring muscles the anterior cruciate ligament was unstrained or minimally strained at 60°, 90° and 120° of knee flexion. Intepretation This study suggests that quadriceps and hamstring muscle co-contraction has a potential role in reducing the anterior cruciate ligament strain values when the knee is in deep flexion. These results can be used to gain insight into anterior cruciate ligament injury mechanisms and to design rehabilitation regimens. PMID:21816523

  20. Effect of muscle loads and torque applied to the tibia on the strain behavior of the anterior cruciate ligament: an in vitro investigation.

    PubMed

    Fujiya, Hiroto; Kousa, Petteri; Fleming, Braden C; Churchill, David L; Beynnon, Bruce D

    2011-12-01

    Very little is known about the effects of applied torque about the long axis of the tibia in combination with muscle loads on anterior cruciate ligament biomechanics. The purpose of this study was to determine the effect of muscle contraction and tibial torques applied about the long axis of the tibia on anterior cruciate ligament strain behavior. Six cadaver knee specimens were used to measure the strain behavior of the anterior cruciate ligament. Internal and external axial torques were applied to the tibia when the knee was between 30° and 120° of flexion in combination with the conditions of no muscle load, isolated quadriceps load, and simultaneous quadriceps and hamstring loading. The highest anterior cruciate ligament strain values were measured when the muscles were not loaded, when the knee was at 120° of flexion, and when internal tibial torques were applied to the knee. During muscle loading the highest anterior cruciate ligament strain values were measured at 30° of flexion and then the strain values gradually decreased with increase in knee flexion. During co-contraction of the quadriceps and hamstring muscles the anterior cruciate ligament was unstrained or minimally strained at 60°, 90° and 120° of knee flexion. This study suggests that quadriceps and hamstring muscle co-contraction has a potential role in reducing the anterior cruciate ligament strain values when the knee is in deep flexion. These results can be used to gain insight into anterior cruciate ligament injury mechanisms and to design rehabilitation regimens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    PubMed

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P < 0.05). There was no significant difference between treatment groups (P = 0.90), but a significant difference was found for both the PF (P = 0.04) and DF (P = 0.01) groups when compared with the control group. Our findings indicate that both stretching the hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  2. Classification of Calcaneal Spurs and Their Relationship With Plantar Fasciitis.

    PubMed

    Zhou, Binghua; Zhou, You; Tao, Xu; Yuan, Chengsong; Tang, Kanglai

    2015-01-01

    Calcaneal spurs, as a cause of plantar fasciitis, are currently debatable. A prospective study was performed to classify calcaneal spurs according to the findings from an investigation of the relationship between calcaneal spurs and plantar fasciitis. Thirty patients with calcaneal spurs and plantar heel pain underwent calcaneal spur removal and endoscopic plantar fasciotomy. The relationship between the classification of calcaneal spurs and plantar fasciitis was evaluated by endoscopic findings, clinical symptoms, radiographic images, and biopsy findings. The visual analog scale for pain and the American Orthopedic Foot and Ankle Society ankle-hindfoot scores for functional evaluation were used preoperatively and postoperatively, respectively. The mean follow-up period was 24 months. Two separate types of calcaneal spurs were recognized. Type A calcaneal spurs were located superior to the plantar fascia insertion, and type B calcaneal spurs were located within the plantar fascia. Magnetic resonance imaging results showed a more severe plantar fasciitis grade in type B calcaneal spurs preoperatively. Histologic examination showed that the numbers of granulocytes per image in type B spurs were significantly increased compared with those in type A spurs. Statistically significant improvements were found in the mean visual analog scale and American Orthopedic Foot and Ankle Society scores and magnetic resonance imaging results in both groups. The amount of change in the visual analog scale score and American Orthopedic Foot and Ankle Society score, the number of granulocytes per image, and calcaneal spur length showed a high association with the classification of the calcaneal spurs. Calcaneal spurs were completely removed and did not recur in any of the patients on radiographic assessment during the follow-up period. Calcaneal spurs can be classified into 2 distinct types that are indicative of the severity of plantar fasciitis. Copyright © 2015 American College of

  3. Clinical Characteristics of the Causes of Plantar Heel Pain

    PubMed Central

    Yi, Tae Im; Seo, In Seok; Huh, Won Seok; Yoon, Tae Hee; Kim, Bo Ra

    2011-01-01

    Objective The objectives of this study were to investigate the causes of plantar heel pain and find differences in the clinical features of plantar fasciitis (PF) and fat pad atrophy (FPA), which are common causes of plantar heel pain, for use in differential diagnosis. Method This retrospective study analyzed the medical records of 250 patients with plantar heel pain at the Foot Clinic of Rehabilitation Medicine at Bundang Jesaeng General Hospital from January to September, 2008. Results The subjects used in this study were 114 men and 136 women patients with a mean age of 43.8 years and mean heel pain duration of 13.3 months. Causes of plantar heel pain were PF (53.2%), FPA (14.8%), pes cavus (10.4%), PF with FPA (9.2%), pes planus (4.8%), plantar fibromatosis (4.4%), plantar fascia rupture (1.6%), neuropathy (0.8%), and small shoe syndrome (0.8%). PF and FPA were most frequently diagnosed. First-step pain in the morning, and tenderness on medial calcaneal tuberosity correlated with PF. FPA mainly involved bilateral pain, pain at night, and pain that was aggravated by standing. Heel cord tightness was the most common biomechanical abnormality of the foot. Heel spur was frequently seen in X-rays of patients with PF. Conclusion Plantar heel pain can be provoked by PF, FPA, and other causes. Patients with PF or FPA typically show different characteristics in clinical features. Plantar heel pain requires differential diagnosis for appropriate treatment. PMID:22506166

  4. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  5. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  6. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  7. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  8. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  9. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  10. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  11. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  12. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  13. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  14. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  15. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  16. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  17. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  18. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  19. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  20. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    PubMed

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  1. The influence of torsion on disc herniation when combined with flexion

    PubMed Central

    Robertson, Peter A.; Broom, Neil D.

    2010-01-01

    The role of torsion in the mechanical derangement of intervertebral discs remains largely undefined. The current study sought to investigate if torsion, when applied in combination with flexion, affects the internal failure mechanics of the disc wall when exposed to high nuclear pressure. Thirty ovine lumbar motion segments were each positioned in 2° axial rotation plus 7° flexion. Whilst maintained in this posture, the nucleus of each segment was gradually injected with a viscous radio-opaque gel, via an injection screw placed longitudinally within the inferior vertebra, until failure occurred. Segments were then inspected using micro-CT and optical microscopy in tandem. Five motion segments failed to pressurize correctly. Of the remaining 25 successfully tested motion segments, 17 suffered vertebral endplate rupture and 8 suffered disc failure. Disc failure occurred in mature motion segments significantly more often than immature segments. The most common mode of disc failure was a central posterior radial tear involving a systematic annulus–endplate–annulus failure pattern. The endplate portion of these radial tears often propagated contralateral to the direction of applied axial rotation, and, at the lateral margin, only those fibres inclined in the direction of the applied torque were affected. Apart from the 2° of applied axial rotation, the methods employed in this study replicated those used in a previously published study. Consequently, the different outcome obtained in this study can be directly attributed to the applied axial rotation. These inter-study differences show that when combined with flexion, torsion markedly reduces the nuclear pressure required to form clinically relevant radial tears that involve cartilaginous endplate failure. Conversely, torsion appears to increase the disc wall’s resistance to radial tears that do not involve cartilaginous endplate failure, effectively halving the disc wall’s overall risk of rupture. PMID

  2. Paroxetine useful for palmar-plantar hyperhidrosis.

    PubMed

    Praharaj, Samir Kumar; Arora, Manu

    2006-10-01

    To report a case of palmar-plantar hyperhidrosis (PPH) in which paroxetine was found to be helpful. A 32-year-old man with a history of excessive sweating of the palms and soles since childhood was diagnosed with PPH and was prescribed paroxetine 10 mg/day, which was increased to 20 mg/day. After one month, he experienced a marked reduction in sweating and improvement in socio-occupational functioning, which were sustained during follow-up at 6 months without any emergent adverse effects. Paroxetine's anticholinergic action may be responsible for its beneficial effect in PPH, as it may override the adrenergic mechanism, which has a minor effect on sweating from eccrine glands. Alternatively, paroxetine's beneficial effect in PPH may be secondary to its antianxiety effect, through central mechanisms. Paroxetine may be a useful option in the treatment of PPH.

  3. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players.

    PubMed

    Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced

  4. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players

    PubMed Central

    Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced

  5. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors

    PubMed Central

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2013-01-01

    During muscle fatigue, firing of small-diameter muscle afferents can decrease voluntary activation of the fatigued muscle. However, these afferents may have a more widespread effect on other muscles in the exercising limb. We examined if the firing of fatigue-sensitive afferents from elbow extensor muscles in the same arm reduces torque production and voluntary activation of elbow flexors. In nine subjects we examined voluntary activation of elbow flexors by measuring changes in superimposed twitches evoked by transcranial magnetic stimulation of the motor cortex during brief (2–3 s) maximal voluntary contractions (MVC). Inflation of a blood pressure cuff following a 2-min sustained MVC blocked blood flow to the fatigued muscle and maintained firing of small-diameter afferents. After a fatiguing elbow flexion contraction, maximal flexion torque was lower (26.0 ± 4.4%versus 67.9 ± 5.2% of initial maximal torque; means ±s.d.; P < 0.001) and superimposed twitches were larger (4.1 ± 1.1%versus 1.8 ± 0.2% ongoing MVC, P= 0.01) with than without ischaemia. After a fatiguing elbow extensor contraction, maximal flexion torque was also reduced (82.2 ± 4.9%versus 91.4 ± 2.3% of initial maximal torque; P= 0.007), superimposed twitches were larger (2.7 ± 0.7%versus 1.3 ± 0.2% ongoing MVC; P= 0.02) and voluntary activation lower (81.6 ± 8.2%versus 95.5 ± 6.9%; P= 0.04) with than without ischaemia. After a fatiguing contraction, voluntary drive to the fatigued muscles is reduced with continued input from small-diameter muscle afferents. Furthermore, fatigue of the elbow extensor muscles decreases voluntary drive to unfatigued elbow flexors of the same arm. Therefore, firing of small-diameter muscle afferents from one muscle can affect voluntary activation and hence torque generation of another muscle in the same limb. PMID:23652589

  6. Femoral neck radiography: effect of flexion on visualization.

    PubMed

    Garry, Steven C; Jhangri, Gian S; Lambert, Robert G W

    2005-06-01

    To determine whether flexion improves radiographic visualization of the femoral neck when the femur is externally rotated. Five human femora, with varying neck-shaft and anteversion angles, were measured and immobilized. Degree of flexion required to bring the femoral neck horizontal was measured, varying the rotation. Next, one bone was radiographed in 16 positions, varying rotation in 15 degrees and flexion in 10 degrees increments. Radiographs were presented in randomized blinded fashion to 15 staff radiologists for scoring of femoral neck visualization. Following this, all 5 bones were radiographed in 4 positions of rotation and at 0 degree and 20 degrees flexion, and blinded randomized review of radiographs was repeated. Comparisons between angles and rotations were made using the Mann-Whitney test. The flexion angle required to bring the long axis of the femoral neck horizontal correlated directly with the degree of external rotation (p < 0.05). Visualization of the femoral neck in the extended position progressively deteriorated from 15 degrees internal rotation to 30 degrees external rotation (p < 0.01). However, when 20 degrees flexion was applied to bones in external rotation, visualization significantly improved at 15 degrees (p < 0.05) and 30 degrees (p < 0.01). Flexion of the externally rotated femur can bring the femoral neck into horizontal alignment, and a relatively small amount (20 degrees) of flexion can significantly improve radiographic visualization. This manoeuvre could be useful for radiography of the femoral neck when initial radiographs are inadequate because of external rotation of the leg.

  7. In vivo metacarpophalanageal joint collateral ligament length changes during flexion.

    PubMed

    Sun, Y C; Sheng, X M; Chen, J; Qian, Z W

    2017-07-01

    We investigated the in vivo length changes of the collateral ligaments of metacarpophalangeal joint during flexion. We obtained computed tomography scans of index, middle, ring and little fingers at 0°, 30°, 60° and 90° of joint flexion from six hands of six healthy adult volunteers. Three of them had their dominant right hand studied, and the other three had their non-dominant left hand studied. We measured and analysed the radial and ulnar collateral ligaments of each metacarpophalangeal joint from the reconstructed images. We found that the dorsal and middle portions of the both radial and ulnar collateral ligament lengthened progressively during digital flexion and reached the maximum at 90° flexion. The length of the volar portion increased from 0° to 30° flexion and then decreased from 30° to 60° flexion, reaching the minimum at 90°. In conclusion, three portions of collateral ligaments on both sides of the metacarpophalangeal joint have variable length changes during flexion, which act to stabilize the joint through its flexion arc.

  8. [Evaluation of knee peak torque in athletic and sedentary children].

    PubMed

    Deighan, Martine A; Nevill, Alan M; Maffulli, Nicola; Cheng, Jack C Y; Gleeson, Nigel

    2009-01-01

    We examined the influence of sex, level of activity, and pubertal status on knee extension (Ext) and flexion (Fl) peak torque (PT) in children using an allometric modeling approach. A total of 140 students (67 males, 73 females) aged 12/13 years were enrolled from a Hong Kong junior high school, whose curricula were based on physical education (n=69) or arts (n=71). Isokinetic concentric Ext and Fl PT of the dominant leg was assessed at 1.04 rad/sec using a Cybex II+ dynamometer and body mass, stature, and pubertal stage were measured. A repeated-measures ANOVA test was performed on absolute PT data with muscle action (Ext and Fl) as a within-subject factor and between-subject factors including sex, group, and pubertal stage. To assess the effects on body size-adjusted PT, linear ANCOVA and log-linear ANCOVA techniques were used with body mass and stature taken as covariates. Peak torque was significantly greater in boys compared to girls, and in the physical education group compared to the arts group. When PT was adjusted for differences in body size, there was a greater difference in PT between girls in the two groups compared to boys, and there was a significant effect of pubertal stage. Allometric analysis showed that PT was influenced more by stature than body mass, and PT increased at a greater rate than body size (both p<0.01). There may be a need for a physical activity intervention in sedentary 12/13 year old girls. Peak torque appears to increase disproportionately to body size. This may result from a greater increase in leg muscle mass relative to body mass.

  9. Characterization of plantar verrucae among individuals with human immunodeficiency virus.

    PubMed

    Meberg, R; Kenyon, E; Bierman, R; Loveland, L; Barbosa, P

    1998-09-01

    Plantar verrucae, caused by human papillomavirus (HPV), are commonly found in patients who have tested positive for the antibodies to human immunodeficiency virus (HIV). A better understanding of the characteristics of plantar verrucae in HIV+ patients in needed. A pilot study was conducted concentrating on three characteristics--the size, the number, and the clinical type--of verrucae present in this population. These parameters were studied in HIV+ and HIV- populations, and they were evaluated in relation to the CD4 levels of HIV+ individuals. The HIV+ individuals presented with plantar verrucae that were larger and more numerous than those found in HIV- individuals. The HIV+ population presented with all three clinical types of plantar verrucae and had significantly more mosaic-type warts than did HIV- individuals. The three characteristics did not correlate with CD4 cell counts, suggesting that the severity and extent of HPV infection do not depend on the level of immunosuppression of the HIV+ patient.

  10. Weak lensing goes bananas: what flexion really measures

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Er, X.

    2008-07-01

    In weak gravitational lensing, the image distortion caused by shear measures the projected tidal gravitational field of the deflecting mass distribution. To lowest order, the shear is proportional to the mean image ellipticity. If the image sizes are not small compared to the scale over which the shear varies, higher-order distortions occur, called flexion. For ordinary weak lensing, the observable quantity is not the shear, but the reduced shear, owing to the mass-sheet degeneracy. Likewise, the flexion itself is unobservable. Instead, higher-order image distortions measure the reduced flexion, i.e., derivatives of the reduced shear. We derive the corresponding lens equation in terms of the reduced flexion and calculate the resulting relation between brightness moments of source and image. Assuming an isotropic distribution of source orientations, estimates for the reduced shear and flexion are obtained and then tested with simulations. In particular, the presence of flexion affects the determination of the reduced shear. The results of these simulations yield the amount of bias of the estimators as a function of the shear and flexion. We point out and quantify a fundamental limitation of the flexion formalism in terms of the product of reduced flexion and source size. If this product increases above the derived threshold, multiple images of the source are formed locally, and the formalism breaks down. Finally, we show how a general (reduced) flexion field can be decomposed into its four components. Two of them are due to a shear field, carrying an E- and B-mode in general. The other two components do not correspond to a shear field, and they can also be split up into corresponding E- and B-modes.

  11. Placement of Plantar Plates for Lapidus Arthrodesis: Anatomical Considerations.

    PubMed

    Plaass, Christian; Claassen, Leif; Daniilidis, Kiriakos; Fumy, Mariesol; Stukenborg-Colsman, Christina; Schmiedl, Andreas; Ettinger, Sarah

    2016-04-01

    The modified Lapidus procedure is an accepted treatment option for patients with moderate to severe hallux valgus. Placing a plate plantar on the tension side of the arthrodesis has been shown to be biomechanically superior and has provided good clinical results. There is some concern about interference of the plantar placed plates on the tendon insertions. The purpose of this study was to determine a "safe zone" for plantar plate placement without irritation of the tendons. Twenty-nine embalmed right feet were used for this study. The anatomy of the insertion of the peroneus longus (PL) tendon and tibialis anterior (TA) tendon on the medial cuneiform and first metatarsal were analyzed. Six different plate designs for plantar plating of the first tarsometatarsal fusion were included. The fit to the bone and contact to tendon insertion were analyzed. The PL showed a main insertion to the first metatarsal and a lesser insertion to the medial cuneiform. The TA inserted onto the medial cuneiform and first metatarsal in all cases in our series. There was a "safe zone" between the TA and PL insertion areas for plate placement. Straight, Y- and U-shaped plates could be placed without compromising the tendon insertion. Depending on the design, even preshaped plates may have to be bent to allow a good fit to the plantar side of the first tarsometatarsal joint. Plantar plating for modified Lapidus arthrodesis can be safely performed, without damaging the plantar tendon insertion area of the PL and TA. The exact knowledge of the anatomy of the plantar region of the tarsometatarsal joint can help to improve plate placement. © The Author(s) 2015.

  12. Sequential Extended Thoracoscopic Sympathicotomy for Palmo-Axillo-Plantar Hyperhidrosis.

    PubMed

    Elalfy, Khaled; Emile, Sameh; Elfeki, Hossam; Elmetwally, Ahmed; Farag, Mohamed; Gado, Waleed

    2017-10-01

    Palmo-axillo-plantar hyperhidrosis (HH) exists in approximately 70% to 100% of patients complaining of HH. Many studies have documented variable effects of thoracoscopic sympathicotomy (TS) on plantar sweating. The present trial evaluated sequential extended thoracoscopic sympathicotomy for the treatment of palmo-axillo-plantar HH regarding its feasibility and outcome on each domain of HH, particularly the plantar domain METHODS: Forty-two patients with severe palmo-axillo-plantar HH underwent sequential extended (T3 to T12) thoracoscopic sympathicotomy. Improvement in HH was assessed using visual analog scale and iodine-starch test, and quality of life was evaluated using the Keller quality of life questionnaire preoperatively and 2 years postoperatively. Included were 16 men and 26 women with a mean age of 24.3 ± 5.3 years. The average preoperative VAS for the palmar, axillary, and plantar HH was 9 ± 0.66, which declined significantly (p < 0.0001) at 24 months of follow-up to a mean of 0.74 ± 0.4 for the palmar and axillary domains and to 1.26 ± 0.7 for plantar HH. Improvement in quality of life was observed in all patients at 24 months of follow-up as the overall median score decreased from 120.5 to 3.5. Sequential extended thoracoscopic sympathicotomy proved to be an effective method for the treatment of combined HH because it achieved satisfactory and sustained improvement of palmar, axillary, and plantar sweating. Although the benefits of sequential extended thoracoscopic sympathicotomy outweigh its drawbacks and technical difficulties, further prospective studies are required to ascertain the effectiveness of this new technique. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Low-Torque Seal Development

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  14. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  15. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  16. Passive stiffness of the ankle and plantar flexor muscle performance after Achilles tendon repair: a cross-sectional study.

    PubMed

    Borges, Pollyana R T; Santos, Thiago R T; Procópio, Paula R S; Chelidonopoulos, Jessica H D; Zambelli, Roberto; Ocarino, Juliana M

    Deficits in ankle muscle strength and ankle stiffness may be present in those subjects who underwent surgical treatment for an Achilles tendon rupture. The presence of these long-term deficits may contribute to a lower performance during daily activities and may be linked to future injuries. To compare the ankle passive stiffness and the plantar flexor muscle performance in patients who underwent unilateral surgical treatment of Achilles tendon rupture with nonsurgical subjects. Twenty patients who underwent unilateral surgical treatment of Achilles tendon rupture [surgical (SU) group], and twenty nonsurgical subjects [non-surgical (NS) group] participated in this study. The ankle passive stiffness was evaluated using a clinical test. The concentric and eccentric plantar flexors performance (i.e. peak torque and work) was evaluated using an isokinetic dynamometer at 30°/s. The surgical ankle of the surgical group presented lower stiffness compared to the non-surgical ankle (mean difference=3.790; 95%CI=1.23-6.35) and to the non-dominant ankle of the non-surgical group (mean difference=-3.860; 95%CI=-7.38 to -0.33). The surgical group had greater absolute asymmetry of ankle stiffness (mean difference=-2.630; 95%CI=-4.61 to -0.65) and greater absolute asymmetry of concentric (mean difference=-8.3%; 95%CI=-13.79 to -2.81) and eccentric (mean difference=-6.9%; 95%CI=-12.1 to -1.7) plantar flexor work compared to non-surgical group. There was no other difference in stiffness and plantar flexor performance. Patients who underwent surgical repair of the Achilles tendon presented with long-term (1 year or more) deficits of ankle stiffness and asymmetries of ankle stiffness and plantar flexor work in the affected ankle compared to the uninjured side in the surgical group and both sides on the nonsurgical group. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Reducing the Impact of Shoulder Abduction Loading on the Classification of Hand Opening and Grasping in Individuals with Poststroke Flexion Synergy.

    PubMed

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2017-01-01

    Application of neural machine interface in individuals with chronic hemiparetic stroke is regarded as a great challenge, especially for classification of the hand opening and grasping during a functional upper extremity movement such as reach-to-grasp. The overall accuracy of classifying hand movements, while actively lifting the paretic arm, is subject to a significant reduction compared to the accuracy when the arm is fully supported. Such a reduction is believed to be due to the expression of flexion synergy, which couples shoulder abduction (SABD) with elbow/wrist and finger flexion, and is common in up to 60% of the stroke population. Little research has been done to develop methods to reduce the impact of flexion synergy on the classification of hand opening and grasping. In this study, we proposed a novel approach to classify hand opening and grasping in the context of the flexion synergy using a wavelet coherence-based filter. We first identified the frequency ranges where the coherence between the SABD muscle and wrist/finger flexion muscles is significant in each participant, and then removed the synergy-induced electromyogram (EMG) component with a subject-specific and muscle-specific coherence-based filter. The new approach was tested in 21 stroke individuals with moderate to severe motor impairments. Employing the filter, 14 participants gained improvement in classification accuracy with a range of 0.1 to 14%, while four showed 0.3 to 1.2% reduction. The remaining three participants were excluded from comparison due to the lack of significant coherence, thus no filters were applied. The improvement in classification accuracy is significant ( p  = 0.017) when the SABD loading equals 50% of the maximal torque. Our findings suggest that the coherence-based filters can reduce the impact of flexion synergy by removing the synergy-induced EMG component and have the potential to improve the overall classification accuracy of hand movements in individuals

  18. Plantar Pressure Detection with Fiber Bragg Gratings Sensing System

    PubMed Central

    Liang, Tsair-Chun; Lin, Jhe-Jhun; Guo, Lan-Yuen

    2016-01-01

    In this paper, a novel fiber-optic sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure is proposed. This study first explores the Pedar-X insole foot pressure types of the adult-size chart and then defines six measurement areas to effectively identify four foot types: neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure signals are detected by only six FBGs, which are embedded in silicone rubber. The performance of the fiber optic sensing is examined and compared with a digital pressure plate of i-Step P1000 with 1024 barometric sensors. In the experiment, there are 11 participants with different foot types to participate in the test. The Pearson correlation coefficient, which is determined from the measured results of the homemade fiber-optic plantar pressure system and i-Step P1000 plantar pressure plate, reaches up to 0.671 (p < 0.01). According to the measured results from the plantar pressure data, the proposed fiber optic sensing system can successfully identify the four different foot types. Measurements of this study have demonstrated the feasibility of the proposed system so that it can be an alternative for plantar pressure detection systems. PMID:27782089

  19. Can static foot posture measurements predict regional plantar surface area?

    PubMed

    McPoil, Thomas G; Haager, Mathew; Hilt, John; Klapheke, John; Martinez, Ray; VanSteenwyk, Cory; Weber, Nicholas; Cornwall, Mark W; Bade, Michael

    2014-12-01

    The intent of this study was to determine if the use of a single or combination of static foot posture measurements can be used to predict rearfoot, midfoot, and forefoot plantar surface area in individuals with pronated or normal foot types. Twelve foot measurements were collected on 52 individuals (mean age 25.8 years) with the change in midfoot width used to place subjects in a pronated or normal foot mobility group. Dynamic plantar contact area was collected during walking with a pressure sensor platform. The 12 measures were entered into a stepwise regression analysis to determine the optimal set of measures associated with regional plantar surface area. A two variable model was found to describe the relationship between the foot measurements and forefoot plantar contact area (r(2)=0.79, p<0.0001). A four variable model was found to describe the relationship between the foot measurements and midfoot plantar contact area (r(2)=0.85, p<0.0001) in those individuals with a 1.26cm or greater change in midfoot width. The results indicate that clinicians can use a combination of simple, reliable and time efficient foot measures to explain 79% and 85% of the plantar surface area in the forefoot and midfoot, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry

    PubMed Central

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-01-01

    Objective: Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Methods: Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Results: Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. Conclusion: The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations. PMID:27488038

  1. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    PubMed

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Task directionality impacts the ability of individuals with chronic hemiparetic stroke to match torques between arms: Preliminary findings.

    PubMed

    van der Helm, Nina A; Gurari, Netta; Drogos, Justin M; Dewald, Julius P A

    2017-07-01

    Post hemiparetic stroke an individual may face difficulty performing bimanual tasks due to an asymmetry in their arms' strengths. Here, we determined whether participants with a strength asymmetry were impaired bi-directionally when matching torques between arms (i.e., paretic arm matches non-paretic arm, non-paretic arm matches paretic arm). Six participants with chronic hemiparetic stroke and four participants without neurological impairments partook in this study. First, we identified the maximum voluntary torque that participants could generate about each elbow joint (τ mvt ). Then, we determined how accurately and precisely participants could match, bidirectionally, submaximal isometric flexion torques (0.25 · τ MVT:Reference ) between arms. Results demonstrate that task directionality impacted the ability of our participants with stroke who had a strength asymmetry to match torques between arms; specifically, participants were unimpaired matching to a referenced non-paretic arm yet impaired in the opposite direction. Additionally, results reveal that the degree to which participants overshot the target torque when matching with their non-paretic arm could be predicted based on their strength asymmetry (R 2 Adjusted = 0.67). We propose that individuals with stroke may avoid torque matching impairments during bimanual tasks by matching their paretic arm to their non-paretic arm.

  3. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  4. Exploration des temps de réflexion aux interfaces

    NASA Astrophysics Data System (ADS)

    Bonnet, C.; Loas, G.; Chauvat, D.; Emile, O.; Le Floch, A.

    2006-10-01

    Le temps à la réflexion, ou délai de Newton-Wigner, est un élément-clé pour caractériser l'interaction de la lumière avec une interface. Nous montrons que l'on peut avoir accès expérimentalement à ce temps pour plusieurs interfaces. Dans le cas de la réflexion sur un réseau métallique, on montre que ce temps n'est pas équivalent au décalage spatial de type Goos-Hänchen auquel il est associé. Dans le cas standard de la réflexion totale où ce temps était jusqu'alors caché, deux temps de réflexion absolus, tel celui qu'avait envisagé Newton, sont isolés et atteignent quelques dizaines de femtosecondes. Des temps de réflexion sont attendus dans d'autres domaines de la physique, pour la réflexion d'ondes, acoustiques ou sismiques par exemple, mais aussi pour la réflexion de particules comme les électrons, les neutrons ou les atomes.

  5. Relationship between magnitude of applied torque in pre-swing phase and gait change for prevention of trip in elderly people.

    PubMed

    Miyake, Tamon; Tsukune, Mariko; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G

    2016-08-01

    Elderly people are at risk of tripping because of their narrow range of articular motion. To avoid tripping, gait training that improves their range of articular motion would be beneficial. In this study we propose a gait-training robot that applies a torque during the pre-swing phase to achieve this goal. We investigated the relationship between magnitude of applied torque and change in the range of knee-articular motion while walking before and after the application of this torque. We developed a wearable robot and carried out an experiment on human participants in which a motor pulls a string embedded on the robotic frame, applying torque in the pre-swing phase for a period of 20 [s]. Before and after applying torque the participant walked normally for 15 [s] without interference from the robot. We found that knee flexion angle increased after applying the torque if the torque was within the range of approximately 6-8 [Nm]. Therefore, we were able to verify that a new range of knee articular motion can be learned through application of torque.

  6. Torque distribution algorithm for effective use of reaction wheel torques and angular momentums

    NASA Astrophysics Data System (ADS)

    Sugita, Mikihiro

    2017-10-01

    In attitude control of spacecraft using more than three reaction wheels, the distribution of the attitude control torque to the wheels is not unique because of the redundancy. There are several wheel torque distribution algorithms which optimize the wheel torques or other factors. In particular, the optimal torque distribution algorithm is acknowledged as algorithm which minimizes the maximum wheel torque. This algorithm is advantageous to make maximum use of the wheel torques, because each wheel torque must be lower than the wheel torque capability and torque is the primary driver in many cases. However, as a result of minimizing the maximum wheel torque, the distribution of the wheel angular momentums is not calculated by a similar formula for the wheel torques distribution. In other words, the wheel angular momentums cannot be derived from the current attitude angular momentum. When certain wheel reaches maximum angular momentum earlier than the other wheels, this prohibits maximum use of the other wheels' capability. Therefore, minimizing the maximum wheel torque is not always effective when other constraint such as angular momentum matters. Recently, it has become more important that both wheel torques and angular momentums are used more effectively in order to improve the performance of the spacecraft agility, such as the high angular acceleration and rate, by using minimum spacecraft resources (i.e. minimum number of wheels which satisfies certain agility requirements). In this paper, shown is the wheel torque distribution algorithm which is effective in terms of both the wheel torques and angular momentums as much as possible. In the proposed algorithm, the wheel torques/angular momentums distributed from the current attitude torque/angular momentum can be optimal for particular direction like the spacecraft X/Y/Z axis. In addition, it is shown by numerical simulation that the proposed algorithm improves the usage of attitude control angular momentum by up

  7. Effects of knee flexion angle and loading conditions on the end-to-end distance of the posterior cruciate ligament: a comparison of the roles of the anterolateral and posteromedial bundles.

    PubMed

    Wang, Joon Ho; Kato, Yuki; Ingham, Sheila J M; Maeyama, Akira; Linde-Rosen, Monica; Smolinski, Patrick; Fu, Freddie H; Harner, Christopher

    2014-12-01

    It is commonly accepted that the anterolateral (AL) bundle of the posterior cruciate ligament (PCL) is tight in flexion and that the posteromedial (PM) bundle is tight in extension. However, a recent in vivo study showed that both bundles were tight in extension. To investigate the effects of knee flexion angle, rotational torque, and anterior/posterior translational force on the end-to-end distance between the femoral and tibial insertion sites of each bundle of the PCL. Descriptive laboratory study. Cadaveric knees (10 specimens) were mounted on a robotic system, and the relative positional data between the femur and tibia were acquired during passive flexion/extension, with an applied 5-N·m rotational torque and an applied 89-N translational force. The bony surface and PCL insertion data were acquired with a 3-dimensional scanner after gross dissection and were superimposed onto the positional data. The end-to-end distance between the 2 PCL insertion sites of the femur and tibia was measured. The end-to-end distance increased from full extension to 90° for both the AL (9.2 ± 1.8 mm; from 30.0 to 39.2 mm) and PM bundles (5.8 ± 2.2 mm; from 32.0 to 37.7 mm). With an internal rotational torque, the end-to-end distance of the PM bundle increased significantly (P < .05) at 0°, 30°, and 60° of knee flexion. Under a posterior translational force at 90° of knee flexion, the length of both bundles increased to their longest measurements (AM bundle: 40.6 ± 4.2 mm; PM bundle: 38.4 ± 3.8 mm). The end-to-end distance of the AL and PM bundles of the PCL increased in flexion, and this pattern was maintained during tests with posterior translational force. The PM bundle was more affected by the rotational torque than was the AL bundle. Both bundles of the PCL may serve a greater functional role in flexion than in extension. The PM bundle might be more important for the control of rotation than the AL bundle. Posterior translation at 90° of knee flexion could be the

  8. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also

  9. The duration of the inhibitory effects with static stretching on quadriceps peak torque production.

    PubMed

    Siatras, Theophanis A; Mittas, Vasilios P; Mameletzi, Dimitra N; Vamvakoudis, Eystratios A

    2008-01-01

    Although several studies have investigated the acute effect of static stretching exercises, the duration of exercises that negatively affects performance has not been ascertained. This study was conducted to determine the acute effect of different static stretching durations on quadriceps isometric and isokinetic peak torque production. The 50 participants were randomly allocated into five equivalent sized groups and were asked to perform a stretching exercise of different duration (no stretch, 10-second stretch, 20-second stretch, 30-second stretch, and 60-second stretch). The knee flexion range of motion and the isometric and concentric isokinetic peak torques of the quadriceps were measured before and after a static stretching exercise in the four experimental groups. The same parameters were examined in the control group (no stretch) without stretching, before and after a 5-minute passive rest. There were no significant differences among groups before the experimentation regarding their physical characteristics and performances (P > 0.05). These results reflect the different groups' homogeneity. Significant knee joint flexibility increases (P < 0.001) and significant isometric and isokinetic peak torque reductions (P < 0.05-0.001) have been shown to occur only after 30 and 60 seconds of quadriceps static stretching. Stretching reduced isometric peak torque by 8.5% and 16.0%, respectively. Concerning isokinetic peak torque after 30 and 60 seconds of stretching, it was reduced by 5.5% vs. 11.6% at 60 degrees/s and by 5.8% vs. 10.0% at 180 degrees/s. We suggest that torque decrements are related to changes of muscle neuromechanical properties. It is recommended that static stretching exercises of a muscle group for more than 30 seconds of duration be avoided before performances requiring maximal strength.

  10. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    PubMed Central

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  11. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study

    PubMed Central

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-01-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  12. Analysis of Skeletal Muscle Torque Capacity and Circulating Ceramides in Patients with Advanced Heart Failure

    PubMed Central

    Brunjes, Danielle L.; Dunlop, Mark; Wu, Christina; Jones, Meaghan; Kato, Tomoko S.; Kennel, Peter J.; Armstrong, Hilary F.; Choo, Tse-Hwei; Bartels, Matthew N.; Forman, Daniel E.; Mancini, Donna M.; Schulze, P. Christian

    2016-01-01

    Background Heart failure (HF)-related exercise intolerance is thought to be perpetuated by peripheral skeletal muscle functional, structural, and metabolic abnormalities. We analyzed specific dynamics of muscle contraction in patients with HF compared with healthy, sedentary controls. Methods Isometric and isokinetic muscle parameters were measured in the dominant upper and lower limbs of 45 HF patients and 15 healthy age-matched controls. Measurements included peak torque normalized to body weight, work normalized to body weight, power, time to peak torque, and acceleration and deceleration to maximum strength times. Body morphometry (dual energy X-ray absorptiometry scan) and circulating fatty acids and ceramides (lipodomics) were analyzed in a subset of subjects (18 HF and 9 controls). Results Extension and flexion time-to-peak torque was longer in the lower limbs of HF patients. Furthermore, acceleration and deceleration times in the lower limbs were also prolonged in HF subjects. HF subjects had increased adiposity and decreased lean muscle mass compared with controls. Decreased circulating unsaturated fatty acids and increased ceramides were found in subjects with HF. Conclusions Delayed torque development suggests skeletal muscle impairments that may reflect abnormal neuromuscular functional coupling. These impairments may be further compounded by increased adiposity and inflammation associated with increased ceramides. PMID:26879888

  13. Lack of effect of moderate-duration static stretching on plantar flexor force production and series compliance.

    PubMed

    Cannavan, Dale; Coleman, David R; Blazevich, Anthony J

    2012-03-01

    The effects of an acute bout of moderate-duration static stretching on plantar flexor force production, series compliance of the muscle-tendon unit, and levels of neuromuscular activation were examined. Eighteen active individuals (9 men and 9 women) performed four 45-s static plantar flexor stretches and a time-matched control of no stretch (where subjects remained seated in the dynamometer for 4 min with no stretch being performed). Measures of peak isometric moment, rate of force development, neuromuscular activation (interpolated twitch technique and electromyography), twitch force characteristics, passive moment during stretch, and tendon elongation during maximal voluntary contractions were taken before and after the stretching. Despite a significant stress-relaxation response during stretch (9.3%, P<0.01) there were no significant differences in peak isometric moment (P=0.35; effect size 0.13), rate of force development (P=0.93; effect size 0.01), neuromuscular activation (interpolated twitch: P=0.86; electromyography: P=0.09; effect size 0.02), or tendon elongation (P=0.61; effect size 0.07) after stretching. Twitch characteristics were also unchanged after stretching, although there was a reduction in the rate of twitch torque relaxation (RR(t); P<0.01). The acute bout of moderate-duration static stretching did not impair the force generating capacity of the plantar flexors or negatively affect muscle-tendon mechanical properties. Static stretching may not always have detrimental consequences for force production. Thus, clinicians may be able to apply moderate-duration stretches to patients without risk of reducing muscular performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Contact sensitivities in palmar plantar pustulosis (acropustulosis).

    PubMed

    Yiannias, J A; Winkelmann, R K; Connolly, S M

    1998-09-01

    Acropustulosis, or chronic palmar plantar pustulosis (PPP), is a phenomenon of recurrent sterile pustules, erythema, and scaling affecting the palms and soles. Its pathogenesis is unclear, and it is difficult to treat. The purpose of this study was to elucidate further the factors involved in causing PPP, thereby enhancing the ability to manage this disease. All cases of PPP seen at Mayo Clinic Scottsdale from 1987 to 1993 were reviewed. 21 patients with PPP were identified, 15 of whom had been patch tested. 9 of the 15 patients (60%) showed positive patch test results. Fragrance was the most common sensitivity, but nickel, formaldehyde, para-phenylenediamine, thiuram, neomycin, mercury, balsam of Peru, and cinnamic aldehyde sensitivities were demonstrated. Less important factors included atopy, fungal and bacterial infections, and irritation. Although the mechanism of this sterile pustulosis response does not depend solely on delayed hypersensitivity mechanisms, we believe that we have demonstrated such a large number of positive patch tests in this chronic pustular dermatosis that patch testing should be considered in the routine work-up of these patients.

  15. Development of a Portable Torque Wrench Tester

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.; Gou, C.; Su, D.

    2018-03-01

    A portable torque wrench tester (PTWT) with calibration range from 0.5 Nm to 60 Nm has been developed and evaluated for periodic or on-site calibration of setting type torque wrenches, indicating type torque wrenches and hand torque screwdrivers. The PTWT is easy to carry with weight about 10 kg, simple and efficient operation and energy saving with an automatic loading and calibrating system. The relative expanded uncertainty of torque realized by the PTWT was estimated to be 0.8%, with the coverage factor k=2. A comparison experiment has been done between the PTWT and a reference torque standard at our laboratory. The consistency between these two devices under the claimed uncertainties was verified.

  16. Plantar Static Pressure Distribution in Normal Feet Using Cotton Socks with Different Structures.

    PubMed

    Soltanzadeh, Zeynab; Najar, Saeed Shaikhzadeh; Haghpanahi, Mohammad; Mohajeri-Tehrani, Mohammd Reza

    2017-01-01

    The major goal of investigating plantar pressure in patients with pain or those at risk for skin injury is to reduce pressure under prominent metatarsal heads, especially the first and second metatarsals. In research, the insole is used to reduce plantar pressure by increasing the contact area in the midfoot region, which, in turn, induces an uncomfortable feeling near the arch during walking. It is deduced that sock structure can redistribute plantar pressure distribution. Seven sock types with seven structures (plain, single cross tuck, mock rib inlay, cross miss, mock rib, double cross tuck, and double cross miss) for the sole area were produced. A plantar pressure measurement device was used to measure plantar static pressure in ten participants. The barefoot plantar pressure distribution was compared with the plantar pressure distribution with socks. In the seven sock samples, the mean plantar pressure of the cross miss and mock rib structures at high plantar pressure zones (toe and first through fourth metatarsal bone regions) were decreased, and, as a result, the pressure shifted to relatively low pressure zones (fifth metatarsal bone and midfoot regions). These results indicate that wearing socks with cross miss and mock rib structures will reduce mean plantar pressure values compared with the barefoot condition in high plantar pressure zones. In general, the results suggest that mean plantar pressure is redistributed from high to low plantar pressure zones.

  17. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  18. A retrospective comparison of percutaneous plantar fasciotomy and open plantar fasciotomy with heel spur resection.

    PubMed

    Fallat, Lawrence M; Cox, J Todd; Chahal, Ruby; Morrison, Pamela; Kish, John

    2013-01-01

    Minimally invasive surgery for the treatment of recalcitrant heel pain is a relatively new approach. To compare the 2 approaches, a retrospective chart review was conducted of 53 patients (55 feet) who had undergone surgical treatment of plantar fasciitis by either open fasciotomy with heel spur resection or percutaneous medial fascial release. The outcomes measures included perioperative pain and the interval to return to full activity. Pain was measured on a subjective 10-point visual analog scale. Of the 55 fasciotomies performed, 23 were percutaneous and 32 were open, with adjunctive heel spur resection. The percutaneous group experienced a mean pain reduction of 5.69 points at the first postoperative visit, whereas open fasciotomy group experienced a mean pain reduction of 3.53 points. At 12 months postoperatively, no statistically significant difference was found in the pain levels between the 2 groups. The results also showed that the percutaneous group returned to normal activity an average of 2.82 weeks (p < .001) faster than the open group. In the patient cohorts studied, percutaneous medial fascial release was as effective at resolving recalcitrant plantar fasciitis pain as the open procedure and involved less postoperative pain and a faster return to full activity. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  20. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure.

    PubMed

    Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-06-01

    Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.

  1. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-01-01

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  2. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-06-06

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  3. Micromechanics of the human vertebral body for forward flexion.

    PubMed

    Yang, Haisheng; Nawathe, Shashank; Fields, Aaron J; Keaveny, Tony M

    2012-08-09

    To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effect of torque direction and cylindrical handle diameter on the coupling between the hand and a cylindrical handle.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J; Ashton-Miller, James A; Chaffin, Don B

    2007-01-01

    Pheasant and O'Neill's torque model (1975) was modified to account for grip force distributions. The modified model suggests that skin friction produced by twisting an object in the direction of fingertips causes flexion of the distal phalanges and increases grip force and, thus, torque. Twelve subjects grasped a cylindrical object with diameters of 45.1, 57.8, and 83.2 mm in a power grip, and performed maximum torque exertions about the long axis of the handle in two directions: the direction the thumb points and the direction the fingertips point. Normal force on the fingertips increased with torque toward the fingertips, as predicted by the model. Consequently, torque toward the fingertips was 22% greater than torque toward the thumb. Measured torque and fingertip forces were compared with model predictions. Torque could be predicted well by the model. Measured fingertip force and thumb force were, on average, 27% less than the predicted values. Consistent with previous studies, grip force decreased as the handle diameter increased from 45.1 to 83.2 mm. This may be due not only to the muscle length-strength relationship, but also to major active force locations on the hand: grip force distributions suggest that a small handle allows fingertip force and thumb force to work together against the palm, resulting in a high reaction force on the palm, and, therefore, a high grip force. For a large handle, fingertip force and thumb force act against each other, resulting in little reaction force on the palm and, thus, a low grip force.

  5. Effectiveness of the Simultaneous Stretching of the Achilles Tendon and Plantar Fascia in Individuals With Plantar Fasciitis.

    PubMed

    Engkananuwat, Phoomchai; Kanlayanaphotporn, Rotsalai; Purepong, Nithima

    2018-01-01

    Since the plantar fascia and the Achilles tendon are anatomically connected, it is plausible that stretching of both structures simultaneously will result in a better outcome for plantar fasciitis. Fifty participants aged 40 to 60 years with a history of plantar fasciitis greater than 1 month were recruited. They were prospectively randomized into 2 groups. Group 1 was instructed to stretch the Achilles tendon while group 2 simultaneously stretched the Achilles tendon and plantar fascia. After 4 weeks of both stretching protocols, participants in group 2 demonstrated a significantly greater pressure pain threshold than participants in group 1 ( P = .040) with post hoc analysis. No significant differences between groups were demonstrated in other variables ( P > .05). Concerning within-group comparisons, both interventions resulted in significant reductions in pain at first step in the morning and average pain at the medial plantar calcaneal region over the past 24 hours, while there were increases in the pressure pain threshold, visual analog scale-foot and ankle score, and range of motion in ankle dorsiflexion ( P < .001). More participants in group 2 described their symptoms as being much improved to being completely improved than those in group 1. The simultaneous stretching of the Achilles tendon and plantar fascia for 4 weeks was a more effective intervention for plantar fasciitis. Patients who reported complete relief from symptoms at the end of the 4-week intervention in the simultaneous stretching group (n = 14; 56%) were double that of the stretching of the Achilles tendon-only group (n = 7; 28%). II, lesser quality RCT or prospective comparative study.

  6. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  7. Event-related differences in the cross-sectional areas and torque generation capabilities of quadriceps femoris and hamstrings in male high school athletes.

    PubMed

    Hoshikawa, Yoshihiro; Muramatsu, Masataka; Iida, Tomomi; Uchiyama, Akiko; Nakajima, Yoshiharu; Kanehisa, Hiroaki

    2010-01-01

    This study investigated the event-related differences in the cross-sectional areas (CSAs) and torque generation capabilities of the quadriceps femoris (QF) and hamstrings (HAM) in male high school athletes. Subjects were soccer players (n=32), volleyball players (21), rowers (29), karate athletes (18), sumo wrestlers (15), sprinters (22), throwers (16), and nonathletes (20). The CSAs of QF and HAM at the mid-thigh were determined using magnetic resonance imaging. In addition, isokinetic torques during knee extension and flexion were determined at a pre-set velocity of 1.05 rad/s. The CSAs of the two muscle groups and torques developed in the two motions were significantly related to the two-third power of lean body mass (LBM(2/3)) and the product of CSA and femur length (CSA*fl), calculated as an index of muscle volume, respectively. CSA relative to LBM(2/3) for QF did not differ among the groups, but that for HAM was higher in sprinters, soccer players, throwers, and karate athletes than in sumo wrestlers, rowers, volleyball players, and nonathletes. Knee extension torque relative to the CSA*fl of QF was higher in karate athletes, soccer players, and rowers than in nonathletes, but the corresponding value for knee flexion did not differ among groups. Thus, the present study indicated that, at least in male high school athletes, the event-related differences in LBM and the muscularity of QF and HAM produced the corresponding differences in the CSAs of the reciprocal muscle groups and knee extension and flexion torques, respectively. However, specific profiles related to competitive and/or training styles exist in HAM CSA and knee extension torque, which cannot be explained by the magnitude of LBM and QF CSA, respectively.

  8. Effects of a 5-h hilly running on ankle plantar and dorsal flexor force and fatigability.

    PubMed

    Fourchet, François; Millet, Grégoire P; Tomazin, Katja; Guex, Kenny; Nosaka, Ken; Edouard, Pascal; Degache, Francis; Millet, Guillaume Y

    2012-07-01

    This study aimed to examine the effects of a 5-h hilly run on ankle plantar (PF) and dorsal flexor (DF) force and fatigability. It was hypothesised that DF fatigue/fatigability would be greater than PF fatigue/fatigability. Eight male trail long distance runners (42.5 ± 5.9 years) were tested for ankle PF and DF maximal voluntary isokinetic contraction strength and fatigue resistance tests (percent decrement score), maximal voluntary and electrically evoked isometric contraction strength before and after the run. Maximal EMG root mean square (RMS(max)) and mean power frequency (MPF) values of the tibialis anterior (TA), gastrocnemius lateralis (GL) and soleus (SOL) EMG activity were calculated. The peak torque of the potentiated high- and low-frequency doublets and the ratio of paired stimulation peak torques at 10 Hz over 100 Hz (Db10:100) were analysed for PF. Maximal voluntary isometric contraction strength of PF decreased from pre- to post-run (-17.0 ± 6.2%; P < 0.05), but no significant decrease was evident for DF (-7.9 ± 6.2%). Maximal voluntary isokinetic contraction strength and fatigue resistance remained unchanged for both PF and DF. RMS(max) SOL during maximal voluntary isometric contraction and RMS(max) TA during maximal voluntary isokinetic contraction were decreased (P < 0.05) after the run. For MPF, a significant decrease for TA (P < 0.05) was found and the ratio Db10:100 decreased for PF (-6.5 ± 6.0%; P < 0.05). In conclusion, significant isometric strength loss was only detected for PF after a 5-h hilly run and was partly due to low-frequency fatigue. This study contradicted the hypothesis that neuromuscular alterations due to prolonged hilly running are predominant for DF.

  9. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    PubMed

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.

  10. Palmar and plantar hyperhidrosis: best practice recommendations and special considerations.

    PubMed

    Glaser, Dee Anna; Hebert, Adelaide A; Pariser, David M; Solish, Nowell

    2007-05-01

    When topical therapy and tap water iontophoresis (TWI) fail, are unavailable, or are deemed unsatisfactory by patients with palmar or plantar hyperhidrosis (HH), the next logical treatment option is botulinum toxin type A (BTX-A). Skill and precision are required to treat palmar and plantar HH because of the dense innervation in the palms and soles. This article describes best practice techniques for BTX-A (Botox), including suggested dilution and syringe selection, injection technique, dose and injection grids, and anesthesia recommendations. In addition, general BTX-A background and special considerations for treating palmar and plantar HH are provided. Insurance reimbursement for treating HH with BTX-A can be challenging; navigating the insurance reimbursement process will be discussed.

  11. Mechanisms of improved knee flexion after rectus femoris transfer surgery

    PubMed Central

    Fox, Melanie D.; Reinbolt, Jeffrey A.; Õunpuu, Sylvia; Delp, Scott L.

    2010-01-01

    Rectus femoris transfer is frequently performed to treat stiff-knee gait in subjects with cerebral palsy. In this surgery, the distal tendon is released from the patella and re-attached to one of several sites, such as the sartorius or the iliotibial band. Surgical outcomes vary, and the mechanisms by which the surgery improves knee motion are unclear. The purpose of this study was to clarify the mechanism by which the transferred muscle improves knee flexion by examining three types of transfers. Muscle-actuated dynamic simulations were created of ten children diagnosed with cerebral palsy and stiff-knee gait. These simulations were altered to represent surgical transfers of the rectus femoris to the sartorius and the iliotibial band. Rectus femoris transfers in which the muscle remained attached to the underlying vasti through scar tissue were also simulated by reducing but not eliminating the muscle’s knee extension moment. Simulated transfer to the sartorius, which converted the rectus femoris’ knee extension moment to a flexion moment, produced 32° ± 8° improvement in peak knee flexion on average. Simulated transfer to the iliotibial band, which completely eliminated the muscle’s knee extension moment, predicted only slightly less improvement in peak knee flexion (28° ± 8°). Scarred transfer simulations, which reduced the muscle’s knee extension moment, predicted significantly less (p < 0.001) improvement in peak knee flexion (14° ± 5°). Simulations revealed that improved knee flexion following rectus femoris transfer is achieved primarily by reduction of the muscle’s knee extension moment. Reduction of scarring of the rectus femoris to underlying muscles has the potential to enhance knee flexion. PMID:19217109

  12. Mechanisms of improved knee flexion after rectus femoris transfer surgery.

    PubMed

    Fox, Melanie D; Reinbolt, Jeffrey A; Ounpuu, Sylvia; Delp, Scott L

    2009-03-26

    Rectus femoris transfer is frequently performed to treat stiff-knee gait in subjects with cerebral palsy. In this surgery, the distal tendon is released from the patella and re-attached to one of several sites, such as the sartorius or the iliotibial band. Surgical outcomes vary, and the mechanisms by which the surgery improves knee motion are unclear. The purpose of this study was to clarify the mechanism by which the transferred muscle improves knee flexion by examining three types of transfers. Muscle-actuated dynamic simulations were created of ten children diagnosed with cerebral palsy and stiff-knee gait. These simulations were altered to represent surgical transfers of the rectus femoris to the sartorius and the iliotibial band. Rectus femoris transfers in which the muscle remained attached to the underlying vasti through scar tissue were also simulated by reducing but not eliminating the muscle's knee extension moment. Simulated transfer to the sartorius, which converted the rectus femoris' knee extension moment to a flexion moment, produced 32+/-8 degrees improvement in peak knee flexion on average. Simulated transfer to the iliotibial band, which completely eliminated the muscle's knee extension moment, predicted only slightly less improvement in peak knee flexion (28+/-8 degrees ). Scarred transfer simulations, which reduced the muscle's knee extension moment, predicted significantly less (p<0.001) improvement in peak knee flexion (14+/-5 degrees ). Simulations revealed that improved knee flexion following rectus femoris transfer is achieved primarily by reduction of the muscle's knee extension moment. Reduction of scarring of the rectus femoris to underlying muscles has the potential to enhance knee flexion.

  13. Abnormal attachments between a plantar aponeurosis and calcaneus

    PubMed Central

    KALNIEV, MANOL ANASTASOV; KRASTEV, DIMO; KRASTEV, NIKOLAY; VIDINOV, KALIN; VELTCHEV, LUDMIL; MILEVA, MILKA

    2013-01-01

    Background and aims The plantar aponeurosis or fascia is a thick fascial seal located on the lower surface of the sole. It consists of three parts central, lateral, and medial. The central portion is the thickest. It is narrow behind and wider in front. The central portion has two strong vertical intermuscular septa which are directed upward into the foot. The lateral and medial portions are thinner. The medial portion is thinnest. The lateral portion is thin in front and thick behind. The main function of the plantar fascia is to support the longitudinal arch of the foot. In May 2013 during a routine dissection in the section hall of the Department of Anatomy and Histology in Medical University – Sofia, Bulgaria we came across a very interesting variation of the plantar aponeurosis. Materials and methods For the present morphological study tissues from a human corpse material were used. This unusual anatomical variation was photographed using a Nikon Coolpix 995 camera with a 3.34 Megapixels. Results We found some fibrous strands which started from the proximal portion of the plantar aponeurosis on the left foot. The fibrous strands resembled the tentacles of an octopus and started from the proximal portion of the aponeurosis. Two of fibrous strands were directed laterally to adipose tissue and one was directed medially and backward. The first lateral fibrous strand was divided into several fascicles. We found very few data in literature about the varieties of the plantar fascia. Conclusion It is very important to consider the occurrence of above mentioned variations in the plantar aponeurosis when surgical procedures are performed on the sole. PMID:26527947

  14. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  15. Effect of knee angle on neuromuscular assessment of plantar flexor muscles: A reliability study

    PubMed Central

    Cornu, Christophe; Jubeau, Marc

    2018-01-01

    Introduction This study aimed to determine the intra- and inter-session reliability of neuromuscular assessment of plantar flexor (PF) muscles at three knee angles. Methods Twelve young adults were tested for three knee angles (90°, 30° and 0°) and at three time points separated by 1 hour (intra-session) and 7 days (inter-session). Electrical (H reflex, M wave) and mechanical (evoked and maximal voluntary torque, activation level) parameters were measured on the PF muscles. Intraclass correlation coefficients (ICC) and coefficients of variation were calculated to determine intra- and inter-session reliability. Results The mechanical measurements presented excellent (ICC>0.75) intra- and inter-session reliabilities regardless of the knee angle considered. The reliability of electrical measurements was better for the 90° knee angle compared to the 0° and 30° angles. Conclusions Changes in the knee angle may influence the reliability of neuromuscular assessments, which indicates the importance of considering the knee angle to collect consistent outcomes on the PF muscles. PMID:29596480

  16. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  17. Torque transducer based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Shu; Li, Jiang; Lin, Jiejun; Qi, Hongli

    2016-11-01

    In order to obtain the accurate torque measurements in harsh condition, such as marine environment, a torque transducer based on fiber Bragg grating is proposed in this paper. According to its optimized elastomer design and fiber Bragg grati ng patching tactics, the new proposed torque transducer realizes automatic compensations of temperature and bending moment which avoids influences from environment. The accuracy and stability of the torquetransducer, as well as its under water performance are tested by loading tests both in air and in underwater environment, which indicate the designed tor que transducer is not only able to realize highaccurate and robust measurements, but also can be applied in torque sensing in harsh environment. We believe the proposed design detailed illustrated in this paper provides important reference for studies and applications on torque measurements in marine environment.

  18. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  19. The effect of ankle position on plantar pressure in a short leg walking boot.

    PubMed

    Crenshaw, Stephanie J; Pollo, Fabian E; Brodsky, James W

    2004-02-01

    Short leg walking boots have been shown to be an effective alternative to total contact casting for the reduction of plantar pressure. Conventional theory indicates that placing the ankle in different positions may affect the plantar pressure and ultimately the healing time for a plantar ulcer. This study attempted to determine the changes in plantar pressures due to alterations in the position of the ankle angle in a walking boot. Thirteen healthy subjects were recruited and tested with an insole pressure measurement system. The result demonstrated that small changes in ankle position in dorsiflexion or plantarflexion have a significant impact on resulting forefoot and hindfoot plantar pressures while walking in a prefabricated boot.

  20. Unidirectional spin-torque driven magnetization dynamics

    SciTech Connect

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    2017-06-01

    The rich physics associated with magnetism often centers around directional effects. Here we demonstrate how spin-transfer torques in general result in unidirectional ferromagnetic resonance dynamics upon field reversal. The unidirectionality is a direct consequence of both field-like and damping-like dynamic torques simultaneously driving the motion. This directional effect arises from the field-like torque being odd and the damping-like torque being even under field reversal. The directional effect is observed when the magnetization has both an in-plane and out-of-plane component, since then the linear combination of the torques rotates with a different handedness around the magnetization as the magnetization is tippedmore » out-of-plane. The effect is experimentally investigated via spin-torque ferromagnetic resonance measurements with the field applied at arbitrary directions away from the interface normal. The measured asymmetry of the voltage spectra are well explained within a phenomenological torque model.« less

  1. Sonographic evaluation of the plantar fascia in asymptomatic subjects.

    PubMed

    Gadalla, N; Kichouh, M; Boulet, C; Machiels, F; De Mey, J; De Maeseneer, M

    2014-01-01

    To evaluate the appearance of the plantar fascia in asymptomatic subjects. Thirty-one asymptomatic subjects were examined by 2 musculoskeletal radiologists. The plantar fascia was evaluated for thickness, echogenicity, vascularity on power Doppler, rupture, fluid adjacent to the fascia, andcalcifications. The study included 14 men and 17 women (age, 17-79 years; mean, 45 years). The mean thickness of the plantar fascia in men was 3.7 mm (range 2.5-7 mm), and in women 3.5 mm (range, 1.7-5.1 mm). The thickness was greater than 4 mm in 4 men (bilateral in 2). The mean thickness of fascias thicker than 4 mm in men was 5.4 mm (range, 4.3-7 mm). The thickness was greater than 4 mm in 5 women ( bilateral in 4). The mean thickness of fascias thicker than 4 mm in women was 4.7 mm (range, 4.2-5.1 mm). There was no statistically significant difference between men and women and between both heels. Hypoechogenicity was observed in 3 men (bilateral in 2), and in 5 women (bilateral in 6). Hypervascularity, rupture, fluid adjacent to the fascia, and calcifications were not observed. A thickness greater than 4 mm and hypoechogenicity, are common in the plantar fascia of asymptomatic subjects. Findings that were not seen in asymptomatic subjects include a thickness greater than 7 mm, hypervascularity on power Doppler, rupture, fluid adjacent to the fascia, and calcifications.

  2. Comparison of plantar loads during running on different overground surfaces.

    PubMed

    Wang, Lin; Hong, Youlian; Li, Jing-Xian; Zhou, Ji-He

    2012-04-01

    The objective of this study is to compare plantar loads during running on different overground surfaces. Fifteen heel-to-toe runners participated in the study. Plantar load data were collected and analyzed using an insole sensor system during running on concrete, synthetic rubber, and grass surfaces at a running speed of 3.8 m/s. Compared with running on concrete surface, running on natural grass showed a lower magnitude of maximum plantar pressure at the total foot (451.8 kPa vs. 401.7 kPa, p = 0.016), lateral midfoot (175.3 kPa vs. 148.0 kPa, p = 0.004), central forefoot (366.3 kPa vs. 336.8 kPa, p = 0.003), and lateral forefoot (290.2 kPa vs. 257.9 kPa, p = 0.004). Moreover, running on natural grass showed a longer relative contact time compared with running on a concrete surface at the central forefoot (81.9% vs. 78.8%, p = 0.017) and lateral forefoot (75.2% vs. 73.1%, p = 0.007). No significant difference was observed in other multiple comparisons. Different surfaces affected the plantar loads while running. The differences may help us to understand potential injury mechanisms.

  3. Effects of body mass index on plantar pressure and balance.

    PubMed

    Yoon, Se-Won; Park, Woong-Sik; Lee, Jeong-Woo

    2016-11-01

    [Purpose] To suggest physiotherapy programs and to determine foot stability based on the results of plantar pressure and spontaneity balance in the normal group and in the obesity group according to the body mass index (BMI). [Subjects and Methods] The plantar pressure and balance of 20 females college students in their 20s were measured according to their BMI. BMI was measured by using BMS 330. The peak plantar pressure was measured in a static position in the forefoot and hind-foot areas. To study balance, the spontaneity balance of each foot was measured on both stable and unstable surfaces. [Results] In terms of plantar pressure, no significant change was observed in the forefoot and hind-foot peak pressure. In terms of spontaneity balance, no significant difference in foot position interaction was observed on both stable and unstable surfaces, while a significant difference was observed in the foot position between the groups. [Conclusion] The index of hind-foot spontaneity balance was low, particularly in the obesity group. This meant significant hind-foot swaying. The forefoot body weight support percentage increased to reinforce the reduced spontaneity balance index.

  4. Impact of transthoracic endoscopic sympathectomy on plantar hyperhidrosis.

    PubMed

    Paliogiannis, Panagiotis; Scognamillo, Fabrizio; Attene, Federico; Pala, Carlo; Marrosu, Antonio; Pulighe, Fabio; Trignano, Mario

    2014-01-01

    The aim of this study is to evaluate the impact of transthoracic endoscopic sympathectomy on plantar hyperhidrosis in patients operated on for upper limb hyperhidrosis. From 2003 to 2011, 41 consecutive patients underwent videothoracoscopic T3-T4 sympathicotomy or T3-T4 ganglion block at our Unit for upper limb hyperhidrosis. Twenty-one (51%) were affected by palmar hyperhidrosis and 20 (49%) by palmar and axillary hyperhidrosis combined. The patients affected by the plantar form were 26 (63%). Clinical follow-up was performed at 3, 6 and 12 months after surgery. Phone interviews and/or clinical assessment were made after a variable period of time (range 6 months to 8 years) to asses long term results. Plantar hyperhidrosis improved in 14 patients, which represents the 54% of the sufferers and the 34% of all patients. It was partially regressed in 11 patients (79%) and resolved in 3 cases (21%). There were not significant differences between patients treated with sympathicotomy and those treated with ganglion block. Transthoracic endoscopic sympathectomy performed through T3-T4 sympathicotomy or ganglion block improves plantar hyperhidrosis in approximately 54% of the affected patients, with a partial and complete resolution rate of 79% and 21% respectively.

  5. Calculation of plantar pressure time integral, an alternative approach.

    PubMed

    Melai, Tom; IJzerman, T Herman; Schaper, Nicolaas C; de Lange, Ton L H; Willems, Paul J B; Meijer, Kenneth; Lieverse, Aloysius G; Savelberg, Hans H C M

    2011-07-01

    In plantar pressure measurement, both peak pressure and pressure time integral are used as variables to assess plantar loading. However, pressure time integral shows a high concordance with peak pressure. Many researchers and clinicians use Novel software (Novel GmbH Inc., Munich, Germany) that calculates this variable as the summation of the products of peak pressure and duration per time sample, which is not a genuine integral of pressure over time. Therefore, an alternative calculation method was introduced. The aim of this study was to explore the relevance of this alternative method, in different populations. Plantar pressure variables were measured in 76 people with diabetic polyneuropathy, 33 diabetic controls without polyneuropathy and 19 healthy subjects. Peak pressure and pressure time integral were obtained using Novel software. The quotient of the genuine force time integral over contact area was obtained as the alternative pressure time integral calculation. This new alternative method correlated less with peak pressure than the pressure time integral as calculated by Novel. The two methods differed significantly and these differences varied between the foot sole areas and between groups. The largest differences were found under the metatarsal heads in the group with diabetic polyneuropathy. From a theoretical perspective, the alternative approach provides a more valid calculation of the pressure time integral. In addition, this study showed that the alternative calculation is of added value, along peak pressure calculation, to interpret adapted plantar pressures patterns in particular in patients at risk for foot ulceration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Sport related plantar fasciitis. Current diagnostic and therapeutic advances.

    PubMed

    Filippou, Dimitrios K; Kalliakmanis, Alkiviadis; Triga, Argiro; Rizos, Spiros; Grigoriadis, Emilios; Shipkov, Christo Dimitrov

    2004-01-01

    Plantar fasciitis is the most common diagnosis for pain in the inferior aspect of the heel among runners, accounting for 10% of injuries that occur in connection with running. The etiology of pain is multifactorial. The aim of the present study is to report our experience in the treatment of plantar fasciitis in athletes and compare our diagnostic strategy and treatment modalities with the current practice. We treated 32 athletes with plantar fasciitis from 1997-2002. The diagnostic procedure included detailed history, clinical examination and imaging techniques. Conservative treatment consisted of anti-inflammatory drugs, stretching exercises, suitable training routines and special orthotic insoles, which offer a good chance of complete resolution of symptoms. Surgical fasciotomy should be reserved for use in patients in whom conservative measures have failed. Conservative treatment consisting of rest, anti-inflammatory medications, stretching exercises and special orthotic insoles was efficient in 26 patients (81%), while only 6 (19%) had to be treated surgically. Plantar fasciitis is a common disorder among athletes. Patient's history, clinical examination and common imaging techniques help to make the correct diagnosis. The patient should be treated conservatively at first and only in severe cases surgically.

  7. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring.

    PubMed

    Vilarinho, Débora; Theodosiou, Antreas; Leitão, Cátia; Leal-Junior, Arnaldo G; Domingues, Maria de Fátima; Kalli, Kyriacos; André, Paulo; Antunes, Paulo; Marques, Carlos

    2017-12-16

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.

  8. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring

    PubMed Central

    Vilarinho, Débora; Theodosiou, Antreas; Domingues, Maria de Fátima; André, Paulo; Marques, Carlos

    2017-01-01

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient’s mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF’s high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems. PMID:29258166

  9. Nordic Walking Practice Might Improve Plantar Pressure Distribution

    ERIC Educational Resources Information Center

    Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto

    2011-01-01

    Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…

  10. Limited joint mobility and plantar fascia function in Charcot's neuroarthropathy.

    PubMed

    Chuter, V; Payne, C

    2001-07-01

    The aim of this study was to investigate the prevalence of limited joint mobility at the first metatarsophalangeal joint (MPJ) and dysfunction of the plantar fascia in people with diabetes mellitus and Charcot's neuroarthropathy and a control group. Fifteen subjects with a history of mid-foot Charcot's neuroarthropathy and 26 controls with sensory neuropathy but no Charcot's neuro arthropathy were recruited. Ranges of ankle and first MPJ dorsiflexion were measured for each participant. Plantar fascia function was assessed using Jack's test. The range of dorsiflexion at the first MPJ was significantly reduced in the subject group compared with the control group (51.2 vs. 64.8; P < 0.001). Jack's test demonstrated the plantar fascia to be ruptured or dysfunctional in all feet in the subject group and to be functioning in all feet in the control group. It is not possible to determine from this study if the limited joint mobility at the first MPJ and dysfunction of the plantar fascia preceded or followed the development of Charcot's neuroarthropathy; however, these results are a previously unreported finding in Charcot's neuroarthropathy. Diabet. Med. 18, 558-561 (2001)

  11. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  12. The relationship between plantar pressure and footprint shape.

    PubMed

    Hatala, Kevin G; Dingwall, Heather L; Wunderlich, Roshna E; Richmond, Brian G

    2013-07-01

    Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography. Thirty-eight habitually unshod and minimally shod Daasanach individuals (19 male, 19 female) walked across a pressure pad and produced footprints in sediment directly excavated from the geological layer that preserves 1.5 Ma fossil footprints at Ileret, Kenya. Calibrated pressure data were collected and three-dimensional models of all footprints were produced using photogrammetry. We found significant correlations (Spearman's rank, p < 0.0001) between measurements of plantar pressure distribution and relative footprint depths at ten anatomical regions across the foot. Furthermore, plantar pressure distributions followed a pattern similar to footprint topography, with areas of higher pressure tending to leave deeper impressions. This differs from the results of experimental studies performed in different types of sediment, supporting the hypothesis that sediment type influences the relationship between plantar pressure and footprint topography. Our results also lend support to previous interpretations that the shapes of the Ileret footprints preserve evidence of a medial transfer of plantar pressure during late stance phase, as seen in modern humans. However, the weakness of the correlations indicates that much of the variation in relative depths within footprints is not explained by pressure distributions under the foot when walking on firm ground, using the methods applied here. This warrants caution when interpreting the unique foot anatomies and foot functions of extinct hominins evidenced by their footprint structures. Further

  13. Plantar pressure distribution in patients with ankylosing spondylitis.

    PubMed

    Aydin, Elif; Turan, Yasemin; Tastaban, Engin; Kurt Omurlu, Imran; Sendur, Omer Faruk

    2015-03-01

    Ankylosing spondylitis is one of the most common inflammatory rheumatic diseases and is associated with alterations in posture. The aim of this study was to investigate the pedobarographic changes among ankylosing spondylitis patients, in an attempt to understand whether the alterations in the posture affect the plantar pressure distribution. The study population consisted of 38 patients with ankylosing spondylitis and 33 healthy volunteers. The static and dynamic pedobarographic measurements were performed to determine the plantar pressure distribution. Moreover, the Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Ankylosing Spondylitis Quality of Life Questionnaire and Bath Ankylosing Spondylitis Metrology Index were used to assess the clinical state of the patients. The static pedobarographic measurements did not reveal any intergroup difference. There were differences between the groups in the results of dynamic peak pressure measurements under the metatarsal areas and under the midfoot region. The percentage of the midfoot in the dynamic plantar contact area was higher in ankylosing spondylitis patients in comparison to the controls. No clinically significant correlation was found between the clinical scores and static pedobarographic measurements. The plantar pressures under the metatarsal heads, medial and lateral heel regions declined with increasing disease activity according to the Bath Ankylosing Spondylitis Disease Activity Index scores. The lower peak pressures on the forefoot and rearfoot, were associated with the higher Bath Ankylosing Spondylitis Metrology Index scores of the patients. The alterations in the posture may have effects on the plantar pressures in patients with ankylosing spondylitis, especially during dynamic activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The rectangular flexion gap is associated with an increased knee flexion angle in a cruciate-sacrificing rotating platform mobile-bearing total knee arthroplasty.

    PubMed

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke

    2017-03-01

    The knee flexion angle after a total knee arthroplasty is an important indicator of clinical outcome. However, there is little appropriate information about the correlation between the ligament balancing and knee flexion angle after total knee arthroplasty. The purpose of this study was to investigate the effect of the ligamentous balance in extension and flexion on knee flexion angle one year after posterior cruciate ligament sacrificing rotating platform total knee arthroplasty. Eighty-five total knee arthroplasties in 71 patients were investigated in this study. The postoperative knee flexion angle and the percentage of improvement in the balanced group in which the difference between varus and valgus was less than 2° and the unbalanced group in extension and the rectangular group in which the asymmetry of the flexion gap was within 2° and the trapezoidal group in flexion were compared. The factors affecting postoperative knee flexion angle were also investigated in a forced entry multiple regression analysis. The mean flexion angle improved significantly from 116.2° to 122.5° in the rectangular group. By contrast, in the trapezoidal group, no significant improvement was seen (from 115.5° to 117.4°). The statistically significant difference was found between the rectangular and trapezoidal group in flexion in terms of the improvement of the knee flexion angle while there was no difference between the balanced and unbalanced group in extension. The multiple regression analysis showed that the asymmetry of the flexion gap was a predictor of the postoperative knee flexion angle. Asymmetric flexion gap affected negatively the postoperative knee flexion angle after posterior cruciate ligament sacrificing rotating platform total knee arthroplasty. A gap balancing technique is recommended for this type of implant. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Improved computed torque control for industrial robots

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Minis, Ioannis; Cleary, Kevin

    1992-01-01

    The authors examine the computed torque control problem for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators due to the dynamics introduced by the joint drive systems. The proposed approach overcomes this problem by combining a novel computed torque algorithm with simple torque controllers at each joint of the robot. The control scheme is applied to a seven degree-of-freedom industrial manipulator, and the system performance in standard tasks is evaluated using both dynamic simulation and actual experiments. The results show that the proposed controller leads to improved tracking performance over a conventional PD (proportional plus derivative) controller.

  16. [A flexion loading system for knee biomechanics research].

    PubMed

    Song, Aijing; Liao, Qingfeng; Li, Xiaofang; Deng, Linhong

    2012-08-01

    It is important to design and build a kinetic loading system for flexing movement of knee joint to study knee biomechanics. The system reported here includes driving device, control device, and flexion angle determination imaging system. The driving device was constructed with a stepper motor and a mechanical transmission with a serried of clamps, shanks and so on, and the driving device was controlled by the control device with micro-control unit, a computer and the serial 232. While the knee joint was driven to move by the stepper motor, the flexion angle of the knee was determined using imaging-based techniques. The system achieved accurate loading and control of speed, extent and duration of knee flexion, as well as fast and non-contract determination of flexion angle during knee flexing movement. The system is simple to build, easy to operate, highly accurate and reliable and it provides an important tool for the study of knee biomechanics, and potentially provides a tool for helping patients of knee surgery during their post operation recovery training.

  17. MULTIPOLE FORMULAE FOR GRAVITATIONAL LENSING SHEAR AND FLEXION

    SciTech Connect

    Bernstein, Gary M.; Nakajima, Reiko

    2009-03-10

    The gravitational lensing equations for convergence, potential, shear, and flexion are simple in polar coordinates and separate under a multipole expansion once the shear and flexion spinors are rotated into a 'tangential' basis. We use this to investigate whether the useful monopole aperture-mass shear formulae generalize to all multipoles and to flexions. We re-derive the result of Schneider and Bartelmann that the shear multipole m at radius R is completely determined by the mass multipole at R, plus specific moments Q '('m') {sub in} and Q '('m') {sub out} of the mass multipoles internal and external, respectively, to R. Themore » m {>=} 0 multipoles are independent of Q {sub out}. But in contrast to the monopole, the m < 0 multipoles are independent of Q {sub in}. These internal and external mass moments can be determined by shear (and/or flexion) data on the complementary portion of the plane, which has practical implications for lens modeling. We find that the ease of E/B separation in the monopole aperture moments does not generalize to m {ne} 0: the internal monopole moment is the only nonlocal E/B discriminant available from lensing observations. We have also not found practical local E/B discriminants beyond the monopole, though they could exist. We show also that the use of weak-lensing data to constrain a constant shear term near a strong-lensing system is impractical without strong prior constraints on the neighboring mass distribution.« less

  18. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limit pilot forces and torques are as follows: Control Maximum forces or torques for design weight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit control forces and -torques. 23.397... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  19. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  20. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction ofmore » the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.« less

  1. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.

  2. Extraneous torque and compensation control on the electric load simulator

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  3. Reverse torque failure of screw-shaped implants in baboons: baseline data for abutment torque application.

    PubMed

    Carr, A B; Larsen, P E; Papazoglou, E; McGlumphy, E

    1995-01-01

    Torque failure for endosseous implants has been used as a biomechanical measure of anchorage, though the significance of such data is not known. A practical understanding of the resistance to torque failure of implant-tissue interfaces at stage 2 surgery would help in assigning torque levels for implant abutment-screw fastening. The purpose of this study was to measure torque failure levels of commercially pure (CP) titanium, Ti-6Al-4V, hydroxyapatite-coated (HA-coated) screw-shaped implants placed into the maxillae and mandibles of baboons. Implants identical in size were placed into the edentulous posterior maxillae and mandibles of six female baboons (n = 37 each group) using a standardized surgical protocol. Reverse-torque data were collected at postinsertion time intervals ranging from 3 to 4 months using a counterclockwise torque driver and the data were analyzed (repeated measures ANOVA) for torque differences related to time, biomaterial, and jaw. The HA-coated implants exhibited significantly greater torque-removal values compared to both metallic implants (HA: 186.0 Ncm [50.1]; Ti-6Al-4V: 78.6 Ncm [18.1]; CP Ti 74.0 Ncm [24.4]). Analysis of torque interactions with jaw showed no significant difference; however, the mandible was found to be greater than the maxilla in torque resistance for all groups tested. Understanding the risks in inferring animal data to human application, the clinical implications of these data suggest that the recommended torque level of 35 Ncm for abutment fastening may provide a margin of safety for most implants of similar design and material as used in this study.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    PubMed

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  5. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque.

    PubMed

    Rudolfsson, Thomas; Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats

    2017-01-01

    Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  6. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque

    PubMed Central

    Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats

    2017-01-01

    Background Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Methods Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Findings Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. Interpretation The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments. PMID:28099504

  7. Torque equilibrium attitudes for the Space Station

    NASA Technical Reports Server (NTRS)

    Thompson, Roger C.

    1993-01-01

    All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build

  8. Femoral component loosening in high-flexion total knee replacement: an in vitro comparison of high-flexion versus conventional designs.

    PubMed

    Bollars, P; Luyckx, J-P; Innocenti, B; Labey, L; Victor, J; Bellemans, J

    2011-10-01

    High-flexion total knee replacement (TKR) designs have been introduced to improve flexion after TKR. Although the early results of such designs were promising, recent literature has raised concerns about the incidence of early loosening of the femoral component. We compared the minimum force required to cause femoral component loosening for six high-flexion and six conventional TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed in a loading frame in 135° of flexion. Loosening of the femoral component was induced by moving the tibial component at a constant rate of displacement while maintaining the same angle of flexion. A stereophotogrammetric system registered the relative movement between the femoral component and the underlying bone until loosening occurred. Compared with high-flexion designs, conventional TKR designs required a significantly higher force before loosening occurred (p < 0.001). High-flexion designs with closed box geometry required significantly higher loosening forces than high-flexion designs with open box geometry (p = 0.0478). The presence of pegs further contributed to the fixation strength of components. We conclude that high-flexion designs have a greater risk for femoral component loosening than conventional TKR designs. We believe this is attributable to the absence of femoral load sharing between the prosthetic component and the condylar bone during flexion.

  9. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  10. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  11. Two emerging technologies for Achilles tendinopathy and plantar fasciopathy.

    PubMed

    Langer, Paul R

    2015-04-01

    Some common overuse injuries, such as Achilles tendinopathy and plantar fasciitis (or fasciopathy), can be refractory to treatment. When standard treatment options fail, operative intervention often becomes the treatment of last resort. Recently, newer technologies have been developed and refined, and can provide potential benefits for these conditions using noninvasive and minimally invasive approaches. Two technologies, extracorporeal shock wave therapy and ultrasound-guided percutaneous tenotomy/fasciotomy are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Endoscopic plantar fasciotomy in the treatment of chronic heel pain

    PubMed Central

    Urovitz, Edwin P.; Birk-Urovitz, Alexandra; Birk-Urovitz, Elizabeth

    2008-01-01

    Objective To evaluate endoscopic plantar fasciotomy for the treatment of recalcitrant heel pain. Method We undertook a retrospective study of the use of endoscopic plantar fasciotomy in the treatment of chronic heel pain that was unresponsive to conservative treatment. Over a 10-year period, we reviewed the charts of 55 patients with a minimum 12-month history of heel pain that failed to respond to standard nonoperative methods and had undergone the procedure described. All patients were clinically reviewed and completed a questionnaire based on the American Orthopaedic Foot and Ankle Society (AOFAS) score for ankle and hindfoot. Results The mean follow-up was 18 months. The mean preoperative AOFAS score was 66.5; the mean postoperative AOFAS score was 88.2. The mean preoperative pain score was 18.6; the mean postoperative pain score was 31.1. Complications were minimal (2 superficial wound infections). Overall, results were favourable in over 80% of patients. Conclusion We conclude that endoscopic plantar fasciotomy is a reasonable option in the treatment of chronic heel pain that fails to respond to a trial of conservative treatment. PMID:18815651

  13. Plantar fasciitis and the calcaneal spur: Fact or fiction?

    PubMed

    Johal, K S; Milner, S A

    2012-03-01

    Plantar fasciitis is a common diagnosis in patients presenting with heel pain. The presence of co-existing calcaneal spurs has often been reported but confusion exists as to whether it is a casual or significant association. The lateral heel radiographs of nineteen patients with a diagnosis of plantar fasciitis and nineteen comparison subjects with a lateral ankle ligament sprain matched for age and sex, were reviewed independently by two observers. Objective measurements of calcaneal spur length and a subjective grading of spur size were recorded. There was a significantly higher prevalence of calcaneal spurs in the cases than the comparison group (89% versus 32%; McNemar chi-square=9.09, df=2, p=0.00257). There was good inter- and intra-observer agreement. The current study has demonstrated a significant association between plantar fasciitis and calcaneal spur formation. Further research is warranted to assess whether the association is causal. Copyright © 2011 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  14. Changes in foot plantar pressure in pregnant women.

    PubMed

    Elsayed, Enas; Devreux, Isabelle; Embaby, Heba; Alsayed, Amani; Alshehri, Maram

    2017-01-01

    During pregnancy, the body undergoes many hormonal and anatomical changes causing several medical problems as the musculoskeletal system problems. To investigate the plantar pressure distribution during pregnancy. Twenty two pregnant and non-pregnant females were selected from the King Abdulaziz University in Jeddah. All females were evaluated by inspection regarding their deformities of the spine, pelvis, lower extremities and feet. Pain was assessed by the Visual Analog Scale (VAS), and the weight and height were recorded using a calibrated weighing scale. Finally, the plantar pressure distribution was examined by a Global Postural Analysis device (GPA). The results revealed significant asymmetry of weight bearing in the study group (pregnant) compared to the control group (non-pregnant) (p< 0.05). In addition, there was a significant increase in pain intensity in the study group (p= 0.02). On the other hand, the results showed a non-significant difference between study and control groups regarding the three points of pressure (calcaneus, 1st metatarasal and 5th metatarsal) (p> 0.05). Moreover, there was a significant direct relationship between the month of pregnancy and increased weight bearing on the 5th metatarsal in the study group (p= 0.04). There is an effect of pregnancy on plantar pressure distribution as well as weight symmetry which should be considered when designing an antenatal program.

  15. Novel and Conservative Approaches Towards Effective Management of Plantar Fasciitis.

    PubMed

    Assad, Salman; Ahmad, Awaiz; Kiani, Immad; Ghani, Usman; Wadhera, Vikram; Tom, Todd N

    2016-12-05

    We assessed the effectiveness of the different treatments for plantar fasciitis (PF) based on the changes in functional outcomes. A systematic literature search was carried out and studies from 2010 to 2016 were included in this review. The databases from Google Scholar, PubMed and Cochrane were used for the various treatment modalities of plantar fasciitis. The objectives measured included visual analog scale (VAS), Roles and Maudsley scale, foot function index (FFI), plantar fascia thickness and American Orthopedic Foot and Ankle Society (AOFAS) ankle-hind foot scale as the tools to predict the improvement in symptoms of pain and discomfort. Eight randomized controlled trails that met the selection criteria were included in this review. Extracorporeal shock wave lithotripsy (ESWL) with botulinum toxin type A, corticosteroid injections, autologous whole blood and plasma treatment, novel treatments like cryopreserved human amniotic membrane, effect of placebo, platelet rich plasma injections and corticosteroid injections, physiotherapy and high strength training were analyzed. All the treatment modalities applied did lead to the reduction in pain scores, but for long term management autologous condition plasma and platelet rich plasma are the preferred treatment options. Impact of physiotherapy and high strength training is equivalent to corticosteroid injections and hence is suited for patients avoiding invasive forms of treatment.

  16. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  17. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  18. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  19. Electrostatic sensor modeling for torque measurements

    NASA Astrophysics Data System (ADS)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  20. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  1. Evaluation of hip flexion strength following lateral lumbar interbody fusion.

    PubMed

    Lee, Yu-Po; Regev, Gilad J; Chan, Justin; Zhang, Bing; Taylor, William; Kim, Choll W; Garfin, Steven R

    2013-10-01

    Lateral interbody fusion (LIF) is a minimally invasive procedure that is designed to achieve a solid interbody fusion while minimizing the damage to the surrounding soft tissue. Although short-term results have been promising, few data have been published to date regarding its risks and complication rate. The aim was to evaluate the extent of injury to the psoas muscle after the LIF procedure by measuring hip flexion strength. A prospective case series was used in the study. Hip flexion strength was measured using a handheld digital dynamometer while the patient was seated on a chair; the examiner held the device against the patient's attempt to flex the hip. Both sides were measured to compare the operated and nonoperated psoas muscles. Each side was measured three times and the average amount (in pounds) was recorded. Measurements were done before and after surgery on Day 2-3, at 2 weeks, 6 weeks, and at 3 and 6 months. Thirty-three patients were recruited for this study. Mean preoperative hip flexion strength values were 20.7±3.47 lb and 21.3±4.31 lb for operated and nonoperated legs, respectively, with no significant difference (p=.85). With a mean of 11.2±2.24 lb postoperative measurements on Day 2, the operated side showed statistically significant reduction of strength (p=.0001). The nonoperated side was also weaker postoperatively, but not significantly (mean=19.12±1.74 lb; p=.097). From the first follow-up visit at 2 weeks, the values on the operated leg had returned to baseline values (20.6, p=.97) and were not significantly different from preoperative values on either side. Hip flexion was weakened immediately after the LIF procedure, which may be attributed to psoas muscle injury during the procedure. However, this damage was temporary, with almost complete return to baseline values by 2 weeks. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. In Vivo Kinematics of the Knee during Weight Bearing in High Flexion

    PubMed Central

    Qi, Wei; Hosseini, Ali; Tsai, Tsung-Yuan; Li, Jing-Sheng; Rubash, Harry E.; Li, Guoan

    2013-01-01

    Achieving high flexion is an objective of contemporary total knee arthoplasty, however little is known on the knee biomechanics at high flexion under weight-bearing conditions. This study is to investigate the 6DOF kinematics and tibiofemoral cartilage contact biomechanics of the knee during weight-bearing flexion from full extension to maximal flexion. Eight knees from seven healthy subjects with no history of injuries or chronic pain were recruited. The knees were MRI scanned to create 3D models of the tibia and femur, including their articular cartilage surfaces. The subjects were then imaged using a dual fluoroscopic image system while performing a weight-bearing quasi-static single-legged lunge from full extension to maximal flexion. The 6DOF kinematics and the articular cartilage contact locations were measured along the flexion path of the knee. The result indicated that the internal tibial rotation increased sharply at low flexion angles (full extension to 30°), maintained a small variation in the middle range of flexion (30° to 120°), and then sharply increased again at high flexion angles (120° to maximal flexion). The contact point moved similarly in the medial and lateral compartments before 120° of flexion, but less on the medial compartment at high flexion angles. The results indicated that the knee motion couldn’t be described using one character in the entire range of flexion, especially in high flexion. The knee kinematic data in the entire range of flexion of the knee could be instrumental for designing new knee prostheses to achieve physical high flexion and improving rehabilitation protocols after knee injuries. PMID:23591448

  3. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  4. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    PubMed

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Surgical Release of Severe Flexion Contracture for Oncologic Knee Arthroplasty

    PubMed Central

    Ng, Vincent Y.

    2017-01-01

    Background: Severe postoperative knee contractures after arthroplasty or megaprosthesis reconstruction occur rarely, but are devastating complications. Management of preoperative flexion contractures is well-described, but there is a paucity of literature for surgical treatment of postoperative contractures. A retrospective chart review was performed for a single surgeon of cases between 1996 and 2014. Results: Nine patients (5 of 66 for pediatrics; 4 of 95 for adults) underwent surgical release for severe stiffness after implantation of knee megaprosthesis. The total arc of motion was improved from a preoperative mean of 34° (range, 10° to 70°) to a postoperative mean 89° (63° to 125°). The amount of extension improved by a mean of 27° (range, -3° to +70°) and the amount of flexion improved by a mean of 28° (range, -10° to +75°). Conclusion: Surgical release of severe postoperative knee contracture is a challenging procedure, but in most cases, the amount of extension and flexion can be improved, yielding a greater total arc of motion. PMID:28400872

  6. Sonographically guided deep plantar fascia injections: where does the injectate go?

    PubMed

    Maida, Eugene; Presley, James C; Murthy, Naveen; Pawlina, Wojciech; Smith, Jay

    2013-08-01

    To determine the distribution of sonographically guided deep plantar fascia injections in an unembalmed cadaveric model. A single experienced operator completed 10 sonographically guided deep plantar fascia injections in 10 unembalmed cadaveric specimens (5 right and 5 left) obtained from 6 donors (2 male and 4 female) aged 49 to 95 years (mean, 77.5 years) with a mean body mass index of 23.2 kg/m(2) (range, 18.4-26.3 kg/m(2)). A 12-3-MHz linear array transducer was used to direct a 22-gauge, 38-mm stainless steel needle deep to the plantar fascia at the anterior aspect of the calcaneus using an in-plane, medial-to-lateral approach. In each case, 1.5 mL of 50% diluted colored latex was injected deep to the plantar fascia. After a minimum of 72 hours, study coinvestigators dissected each specimen to assess injectate placement. All 10 injections accurately placed latex adjacent to the deep side of the plantar fascia at the anterior calcaneus. However, the flexor digitorum brevis (FDB) origin from the plantar fascia variably limited direct latex contact with the plantar fascia, and small amounts of latex interdigitated with the FDB origin in 90% (9 of 10). In all 10 specimens, latex also covered the traversing first branch of the lateral plantar nerve (FBLPN, ie, Baxter nerve) between the FDB and quadratus plantae muscles. No latex was found in the plantar fat pad or plantar fascia in any specimen. Sonographically guided deep plantar fascia injections reliably deliver latex deep to the plantar fascia while avoiding intrafascial injection. However, the extent of direct plantar fascia contact is variable due to the intervening FDB. On the contrary, the traversing FBLPN is reliably covered by the injection. Deep plantar fascia injections may have a role in the management of refractory plantar fasciitis, particularly following failed superficial perifascial or intrafascial injections, in cases of preferential deep plantar fascia involvement, or when entrapment

  7. First Tarsometatarsal Arthrodesis: An Anatomic Evaluation of Dorsomedial Versus Plantar Plating.

    PubMed

    Simons, Paul; Fröber, Rosemarie; Loracher, Clemens; Knobe, Matthias; Gras, Florian; Hofmann, Gunther O; Klos, Kajetan

    2015-01-01

    Fusion of the first tarsometatarsal joint is a widely used procedure for the correction of hallux valgus deformity. Although dorsomedial H-shaped plating systems are being increasingly used, fusion can also be achieved by plantar plating. The goal of the present study was to compare these 2 operative techniques based on the anatomic considerations and show the potential pitfalls of both procedures. Six pairs of deep-frozen human lower legs were used in the present cadaveric study. In a randomized manner, either dorsomedial arthrodesis or plantar plating through a medial incision was performed. With regard to arterial injury, the plantar technique resulted in fewer lesions (plantar, 4 injuries [66.7%] to the terminal branches of the first digital branch of the medial plantar artery; dorsomedial, 3 injuries [50%] to the main trunks of the plantar metatarsal arteries and the first dorsal metatarsal artery). With respect to injury to the veins, the plantar procedure affected significantly fewer high-caliber subcutaneous trunk veins. The nerves coursing through the operative field, such as the saphenous and superficial fibular nerves, were compromised more often by the dorsal approach. Neither the plantar plating nor the dorsomedial plating technique was associated with injury to the insertion of the tibialis anterior muscle. Both studied techniques are safe, well-established procedures. Arthrodesis with plantar plating, however, offers additional advantages and is a reliable tool in the foot and ankle surgeon's repertoire. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Docetaxel-associated palmar-plantar erythrodysesthesia: a case report and review of the literature.

    PubMed

    Harris, Christy S; Wang, Dorothy; Carulli, Alison

    2014-02-01

    Docetaxel-associated palmar-plantar erythrodysesthesia is rarely reported in literature, particularly when used in the treatment of sarcomas. Here, we report a case of docetaxel-related palmar-plantar erythrodysesthesia in a 28-year-old male with recurrent Ewing sarcoma. Although palmar-plantar erythrodysesthesia has been seen in the literature for 30 years, there has still been little progress in understanding and appropriately addressing this adverse effect. This case report and literature review illustrates an infrequently documented adverse skin reaction and discusses the etiology, presentation, and available treatment options for palmar-plantar erythrodysesthesia.

  9. Plantar pressures increase with raising body weight: A standardised approach with paired sample using neutral shoes.

    PubMed

    Hotfiel, T; Carl, H D; Wendler, F; Jendrissek, A; Heiß, R; Swoboda, B

    2017-01-01

    Plantar pressure leads to stress on plantar tissue and can be seen as risk factor for metatarsal stress fractures or plantar ulcers and is associated with prolonged and complicated recurrence of existing tissue damages. A clear demarcation of a systematic raise of body load regarding its effect on plantar pressure has not been described. Assessing plantar pressure patterns in different conditions of body weight, comparing data to initial body weight. Seventeen healthy volunteers were asked to participate. Peak pressure values were assessed during walking with dynamic pedobarography and analysed from three foot sections. Body weight was loaded up gradually with 10%, 20% and 30% of the individual initial weight by using a weighted vest. We were able to detect a statistically significant increase of plantar pressure for all foot regions in case of loaded body weight of 20% and 30% comparing to initial weight (p< 0.05). The midfoot area displays a significant increase for peak pressure for the preferred foot even for 10% body load. Peak plantar pressure increases with loaded body weight. The midfoot area seems to be a sensitive area in case of adapting increasing foot load. Considering the clinical relevance, loaded body weight has to be seen as risk factor for increasing plantar pressure patterns and should be considered in recurrence of plantar ulcers or stress fractures.

  10. The effect of target strain error on plantar tissue stress.

    PubMed

    Pai, Shruti; Ledoux, William R

    2010-07-01

    Accurate quantification of soft tissue properties, specifically the stress relaxation behavior of viscoelastic tissues such as plantar tissue, requires precise testing under physiologically relevant loading. However, limitations of testing equipment often result in target strain errors that can contribute to large stress errors and confound comparative results to an unknown extent. Previous investigations have modeled this artifact, but they have been unable to obtain empirical data to validate their models. Moreover, there are no studies that address this issue for plantar tissue. The purpose of this research was to directly measure the difference in peak force for a series of small target strain errors within the range of our typical stress relaxation experiments for the subcutaneous plantar soft tissue. Five plantar tissue specimens were tested to seven incremental target strain error levels of -0.9%, -0.6%, -0.3%, 0.0%, 0.3%, 0.6%, and 0.9%, so as to undershoot and overshoot the target displacement in 0.3% increments. The imposed strain errors were accurately attained using a special compensation feature of our materials testing software that can drive the actuator to within 0% (1-2 microm) of the target level for cyclic tests. Since stress relaxation tests are not cyclic, we emulated the ramp portion of our stress relaxation tests with 5 Hz triangle waves. The average total stress variation for all specimens was 25+/-5%, with the highest and lowest stresses corresponding to the largest and smallest strain errors of 0.9% and -0.9%, respectively. A strain overshoot of 0.3%, the target strain error observed in our typical stress relaxation experiments, corresponded to an average stress overshoot of 3+/-1%. Plantar tissue in compression is sensitive to small target strain errors that can result in stress errors that are several fold larger. The extent to which the overshoot may affect the peak stress will likely differ in magnitude for other soft tissues and

  11. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.

    PubMed

    Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2016-06-01

    Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.

  12. RFID Torque Sensing Tag System for Fasteners

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  13. Cogging Torque Minimization in Transverse Flux Machines

    SciTech Connect

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less

  14. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  15. Helicopter Anti-Torque System Using Strakes

    NASA Technical Reports Server (NTRS)

    Kelley, H. L.; Wilson, J. C.; Phelps, A. E. (Inventor)

    1984-01-01

    A helicopter is disclosed with a system for controlling main-rotor torque which reduces the power and size requirements of conventional anti-torque means. The torque countering forces are generated by disrupting the main rotor downwash flowing around the fuselage. The downwash flow is separated from the fuselage surface by a strake positioned at a specified location on the fuselage. This location is determined by the particular helicopter wash pattern and fuselage configuration, generally being located between 20 deg before top dead center (TDC) and 80 deg from TDC on the fuselage side to which the main rotor blade approaches during rotation. The strake extends along the fuselage from the cabin section to the aft end and can be continuous or separated for aerodynamic surfaces such as a horizontal stabilizer.

  16. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  17. Dynamic mobilisations in cervical flexion: Effects on intervertebral angulations.

    PubMed

    Clayton, H M; Kaiser, L J; Lavagnino, M; Stubbs, N C

    2010-11-01

    Based upon human data, it is probable that many conditions associated with neck pain in horses may benefit from performing mobilisation exercises as part of the rehabilitation protocol. To compare sagittal plane intervertebral angulations in a neutral standing position with the angulations at end range of motion in 3 dynamic mobility exercises performed in cervical flexion. Sagittal plane motion of the head, neck and back were measured in 8 sound horses standing in a neutral position and in 3 end-of-range neck flexion positions: chin-to-chest, chin-between-carpi, and chin-between-fore fetlocks. Skin markers on the head, transverse processes of C1-C6, and dorsal spinous processes of T6, T8, T10, T16, L2, L6, S2 and S4 were tracked and adjacent markers connected to form rigid segments. Intersegmental angles, measured between segments on the ventral surface, in the 4 positions were compared using repeated measures ANOVA with Bonferroni post hoc tests (P<0.05). The largest angular differences involved the cranial and caudal cervical joints with smaller angular differences (<10°) in the mid-neck. The angle at C1 was significantly more extended for chin-between-carpi (98 ± 11°) and chin-between-fetlocks (132 ± 11°) than for the neutral position (86 ± 8°) or chin-to-chest (92 ± 8°) positions. The intersegmental angle at C6 indicated progressive lowering of the neck from neutral through chin-to-chest and chin-between-carpi to chin-between-fetlocks. The intersegmental angles from T6-L1 were more flexed by 3-7° in the cervical flexions compared with the neutral position with the differences being significant for at least one of the dynamic mobilisations at each vertebral level. The articulations at the extremities of the cervical vertebral column are primarily responsible for sagittal plane position and orientation of the head and neck. Dynamic cervical flexion also flexes the thoracic intervertebral joints. The results indicate that dynamic mobilisation exercises

  18. Altered flexion-relaxation responses exist during asymmetric trunk flexion movements among persons with unilateral lower-limb amputation.

    PubMed

    Hendershot, Brad D; Nussbaum, Maury A

    2014-02-01

    Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion-extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference ("DIFF") between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Maximal acceptable torques of six highly repetitive hand-wrist motions for male industrial workers.

    PubMed

    Ciriello, Vincent M; Maikala, Rammohan V; O'Brien, Niall V

    2013-04-01

    The purpose of the study was to quantify maximum acceptable torques (MATs) in 16 healthy male industrial workers while performing six motions: screw driving clockwise with a 40 mm handle and a 39 mm yoke handle, flexion and extension with a pinch grip,ulnar deviation with a power grip (similar to knife cutting), and a handgrip task (similar to a pliers task). Psychophysical studies on repetitive motions of the wrist and hand were previously reported on women; however, it is not clear how men will psychophysically respond to similar motions. A psychophysical methodology was used in which the participant adjusted the resistance on the handle. Repetition rates for these tasks were 15 and 25 per minute. Participants performed the tasks for 7 hours per day, 5 days per week, and for 12 days. Symptoms were recorded by the subjects at the end of each hour. The mean MATs ranged from 1.15 Nm to 1.88 Nm for screw driving, 2.26 Nm to 3.71 Nm for pinch flexion and extension, 3.88 Nm to 4.07 Nm for ulnar deviation, and 11.47 Nm to 13.98 Nm for the handgrip task. The higher the repetition rate, the lower the MAT. Depending on the type of task and repetition rate, these values represented 15% to 35% (median of 23%) of their maximum isometric torque. Based on aforementioned findings, a table of MATs and derived acceptable forces for six tasks at different percentage capabilities of the male industrial populations is formulated.

  20. Calcaneal attachment of the plantar fascia: MR findings in asymptomatic volunteers.

    PubMed

    Ehrmann, Christine; Maier, Matthias; Mengiardi, Bernard; Pfirrmann, Christian W A; Sutter, Reto

    2014-09-01

    To determine the spectrum of magnetic resonance (MR) imaging findings at the calcaneal attachment of the plantar fascia in asymptomatic volunteers. The study was approved by the institutional review board, and informed consent was obtained from all subjects. MR imaging was performed in 77 asymptomatic volunteers (mean age, 48.0 years; age range, 23-83 years) with use of a 1.5-T system. There were 40 women (mean age, 49.0 years; age range, 24-83 years) and 37 men (mean age, 48.0 years; age range, 23-83 years). Signal intensity characteristics and thickness of the medial, central, and lateral fascicles of the plantar fascia were assessed independently by two radiologists. The presence of soft-tissue edema, bone marrow edema, and bone spur formation at the attachment of the plantar fascia was noted. Datasets were analyzed with inferential statistic procedures. The mean thickness of the plantar fascia was 0.6 mm (medial fascicle), 4.0 mm (central fascicle), and 2.3 mm (lateral fascicle). Increased signal intensity in the plantar fascia was seen with the T1-weighted sequence in 16 of the 77 volunteers (21%), the T2-weighted sequence in six (7.8%), and the short inversion time inversion-recovery sequence in six (7.8%). Soft-tissue edema was seen deep to the plantar fascia in five of the 77 volunteers (6.5%) and superficial to the plantar fascia in 16 (21%). A calcaneal spur was detected in 15 of the 77 volunteers (19%). Calcaneal bone marrow edema was present in four volunteers (5.2%). T1-weighted signal intensity changes in the plantar fascia, soft-tissue edema superficial to the plantar fascia, and calcaneal spurs are common findings in asymptomatic volunteers and should be used with caution in the diagnosis of plantar fasciitis. Increased signal intensity within the plantar fascia with fluid-sensitive sequences is uncommon in asymptomatic volunteers.

  1. New Simple Torque-Sensorless Torque Control for Quasi-Perfect Compensation of 6th Harmonic Torque Ripple Due to Nonsinusoidal Distribution of Back EMF of PMSM

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Kishida, Hideo

    This paper proposes a new torque-sensorless torque control method for permanent-magnet synchronous motors (PMSMs). The proposed method can almost perfectly compensate the 6th harmonic torque ripple that is caused by the nonsinusoidal distributions of the back EMF and rotor magnetic flux of PMSMs. The torque control system is, in principle, constructed on the basis of the vector control, but has two new dedicated speed-varying devices—a harmonic torque observer and current controller. The speed-varying harmonic torque observer can estimate the harmonic component over a wide speed range, even in the case where the produced torque is constant, and generate a suitable compensating signal. The speed-varying current controller shows stable control performance over a wide speed range, it can fully track the compensated current command containing the dc and 6th harmonic components. The effectiveness of the proposed method is examined and verified through extensive numerical experiments.

  2. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  3. Muscle response to pneumatic hand tool torque reaction forces.

    PubMed

    Radwin, R G; VanBergeijk, E; Armstrong, T J

    1989-06-01

    Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47

  4. Factors to consider in identifying critical points in lumbar spine flexion relaxation.

    PubMed

    Zwambag, Derek P; Brown, Stephen H M

    2015-12-01

    Flexion relaxation (FR), a myoelectric silence of extensor muscles near end range of lumbar flexion, is commonly reported as the lumbar flexion angle at the instant the extensor muscles become silent. However, lumbar flexion angle alone is insufficient to characterize mechanisms that modulate FR. As FR requires the moment generated by passive lumbar extensor tissues to equilibrate the moment due to gravity, the inter-relationships between lumbar moment, flexion angle, and myoelectrical silence will provide added information in the understanding of FR. The purpose of this study was to examine the relationship between lumbar moment and flexion angle throughout various flexion manoeuvres. It was hypothesized that lumbar moment and flexion angle would not be linearly related and would be affected by lower limb position, range of motion, and the addition of mass to the torso. Eleven participants performed four different lumbar flexion trials. Results showed that lumbar flexion was correlated with the lumbar moment (r = 0.92); however an analysis of residuals found that these measures were not linearly related. The moment was, however, correlated (r = 0.99) and linearly related to the sine of trunk inclination (T12 rigid body with respect to global horizontal). Future studies of FR could use trunk inclination as a simple kinematic measure to predict relative changes in lumbar moment with flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Torque-while-turnaround scan mirror assembly

    NASA Technical Reports Server (NTRS)

    Starkus, C. J.

    1977-01-01

    A scan mirror assembly which is part of a thematic mapper system is described with emphasis on mechanical aspects of the design. Features of the oscillating scan mirror mechanism include: a low level of structural vibration for the impact energies involved in mirror oscillation and return of energy lost during impact to the mirror by applying torque during the instant of impact.

  6. Anatomy of a bearing torque problem

    NASA Technical Reports Server (NTRS)

    Phinney, Damon D.

    1987-01-01

    In the early 1970s, an antenna despin drive was developed for MBB solar science satellite HELIOS. A problem with high bearing drag torque that was encountered on the two flight models of this drive, after successful tests were completed on twelve bearings, an engineering model, and the qualification unit is discussed.

  7. Nonambipolar Transport and Torque in Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.

    2013-10-01

    A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.

  8. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... torque-measurement system with a reference force and a lever arm. (b) Recommended procedure to quantify lever-arm length. Quantify the lever-arm length, NIST-traceable within ±0.5% uncertainty. The lever arm... force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be...

  9. A New Twist on Torque Labs

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2014-01-01

    The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…

  10. Torque-balanced vibrationless rotary coupling

    DOEpatents

    Miller, Donald M.

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  11. Alignment of Irregular Grains by Mechanical Torques

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Cho, Jungyeon; Lazarian, A.

    2018-01-01

    We study the alignment of irregular dust grains by mechanical torques due to the drift of grains through the ambient gas. We first calculate mechanical alignment torques (MATs) resulting from specular reflection of gas atoms for seven irregular shapes: one shape of mirror symmetry, three highly irregular shapes (HIS), and three weakly irregular shapes (WIS). We find that the grain with mirror symmetry experiences negligible MATs due to its mirror-symmetry geometry. Three HIS can produce strong MATs, which exhibit some generic properties as radiative torques (RATs), while three WIS produce less efficient MATs. We then study grain alignment by MATs for the different angles between the drift velocity and the ambient magnetic field, for paramagnetic and superparamagnetic grains assuming efficient internal relaxation. We find that for HIS grains, MATs can align subsonically drifting grains in the same way as RATs, with low-J and high-J attractors. For supersonic drift, MATs can align grains with low-J and high-J attractors, analogous to RAT alignment by anisotropic radiation. We also show that the joint action of MATs and magnetic torques in grains with iron inclusions can lead to perfect MAT alignment. Our results point out the potential importance of MAT alignment for HIS grains predicted by the analytical model of Lazarian & Hoang, although more theoretical and observational studies are required due to uncertainty in the shape of interstellar grains. We outline astrophysical environments where MAT alignment is potentially important.

  12. Manufacturing techniques - Split torque path helicopter transmission

    NASA Technical Reports Server (NTRS)

    Mitchell, George D., Jr.

    1991-01-01

    A description of the manufacturing techniques, capital equipment, tooling plan, and assembly methods necessary to manufacture the split torque path gearbox is presented. This transmission was designed and built for the advanced rotorcraft transmission program of the U.S. Army and NASA. Consideration is given to the engineering technology advancements along with a description of the integrated product development team process.

  13. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  14. Planetary Torque in 3D Isentropic Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  15. Planetary Torque in 3D Isentropic Disks

    SciTech Connect

    Fung, Jeffrey; Masset, Frédéric; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r {sub s}), and that it hasmore » a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r {sub s} or γ , up to supersonic speeds for the smallest r {sub s} and γ in our study.« less

  16. Anterior Surgical Fixation for Cervical Spine Flexion-Distraction Injuries.

    PubMed

    Jack, Andrew; Hardy-St-Pierre, Godefroy; Wilson, Mitchell; Choy, Godwin; Fox, Richard; Nataraj, Andrew

    2017-05-01

    Optimal surgical management for flexion-distraction cervical spine injuries remains controversial with current guidelines recommending anterior, posterior, and circumferential approaches. Here, we determined the incidence of and examined risk factors for clinical and radiographic failure in patients with 1-segment cervical distraction injuries having undergone anterior surgical fixation. A retrospective review of 57 consecutive patients undergoing anterior fixation for subaxial flexion-distraction cervical injuries between 2008 and 2012 at our institution was performed. The primary outcome was the number of patients requiring additional surgical stabilization and/or radiographic failure. Data collected included age, gender, mechanism and level of injury, facet pattern injury, and vertebral end plate fracture. A total of 6 patients failed clinically and/or radiographically (11%). Four patients (7%) required additional posterior fixation. Although 2 other patients identified met radiographic failure criteria, at follow-up they had fused radiographically, were stable clinically, and no further treatment was pursued. Progressive kyphosis and translation were found to be significantly correlated with need for revision (P < 0.05 and P = 0.02, respectively). No differences were identified for all other clinical and radiologic factors assessed, including unilateral or bilateral facet injury, facet fracture, and end plate fracture. This study contributes to the growing body of evidence supporting anterior fixation alone for flexion-distraction injuries. Findings suggest that current measurements of radiographic failure including segmental translation and kyphosis may predict radiographic failure and need for further surgical stabilization in some patients. Future follow-up studies assessing for independent risk factors for anterior approach failure with a validated predictive scoring model should be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prediction of plantar shear stress distribution by artificial intelligence methods.

    PubMed

    Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

    2009-09-01

    Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.

  18. Superficial plantar cutaneous sensation does not trigger barefoot running adaptations.

    PubMed

    Thompson, M A; Hoffman, K M

    2017-09-01

    It has long been proposed that the gait alterations associated with barefoot running are mediated by alterations in sensory feedback, yet there has been no data to support this claim. Thus, the purpose of this study was to examine the role of superficial plantar cutaneous feedback in barefoot and shod running. 10 healthy active subjects (6 male, 4 female); mass: 65.2+9.7kg; age: 27+7.1years participated in this study. 10 over-ground running trials were completed in each of the following conditions: barefoot (BF), shod (SHOD), anesthetized barefoot (ANEST BF) and anesthetized shod (ANEST SHOD). For the anesthetized conditions 0.1-0.3mL of 1% lidocaine was injected into the dermal layer of the plantar foot below the metatarsal heads, lateral column and heel. 3-dimensional motion analysis and ground reaction force (GRF) data were captured as subjects ran over a 20m runway with a force plate at 12m. Kinematic and kinetic differences were analyzed via two-way repeated measure ANOVAs. The differences in gait between the BF and SHOD conditions were consistent with previous research, with subjects exhibiting a significant decrease in stride length and changing from rearfoot strike when SHOD to fore/midfoot strike when BF. Additionally, BF running was associated with decreased impact peak magnitudes and peak vertical GRFs. Despite anesthetizing the plantar surface, there was no difference between the BF and ANEST BF conditions in terms of stride length, foot strike or GRFs. Superficial cutaneous sensory receptors are not primarily responsible for the gait changes associated with barefoot running. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Soccer boots elevate plantar pressures in elite male soccer professionals.

    PubMed

    Carl, Hans-Dieter; Pauser, Johannes; Swoboda, Bernd; Jendrissek, Andreas; Brem, Matthias

    2014-01-01

    The present study measured the difference in peak plantar pressure between running shoes and soccer shoes in male soccer professionals [mean (SD): age, 23 (4) years; height, 184 (7) cm; weight, 81 (6) kg]. Case series. Institutional study. A total of 17 elite male soccer professionals [mean (SD): age, 23 (4) years; height, 184 (7) cm; weight 81 (6) kg]. Fifteen right and left steps with sensor-loaded insoles (99 sensors, 50 Hz) while running (3.3 m/s) in running shoes and then chosen soccer shoes (12-stud profile). The players were equipped with running shoes from the supplier without any medical supervision. Changes of peak plantar pressure for 9 defined foot portions between soccer boots and running shoes. A statistically significant increase of peak plantar pressure was found for the lateral midfoot (P < 0.001 for preferred and nonpreferred foot), the first metatarsal head (preferred foot: P < 0.001, nonpreferred foot: P = 0.002), the metatarsal heads 4/5 (preferred foot: P = 0.001, nonpreferred foot: P = 0.002), and the big toe (preferred foot: P = 0.001, nonpreferred foot: P < 0.001), but not for the lateral and medial hindfoot, the medial midfoot, and lesser toes. In running, soccer boots generate excessive foot loadings predominantly under the lateral midfoot, as compared with running shoes. Players should be trained with a thoughtfully designed workout regimen that allows performing as many straight running exercises as possible in running shoes instead of soccer boots. This may help to prevent fifth metatarsal stress fractures in elite male soccer players.

  20. Finite element modelling of Plantar Fascia response during running on different surface types

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  1. Comparison of plantar pressure between flat and normal feet when crossing an obstacle at different heights.

    PubMed

    Han, Jin-Tae; Lee, Jung-Hoon; Lee, Eun-Ju; Lim, Chang-Hun; Kim, Won-Bok

    2015-01-01

    The purpose of this study is to compare the plantar foot pressure and the center of pressure (COP) pathway of normal and flat feet while crossing an obstacle at different heights. Nineteen subjects (10 normal feet, 9 flat feet) participated in this study. The plantar foot surface was divided into the following seven regions for pressure measurement: two toe regions, three forefoot regions, one midfoot region, and one heel region. A one-way ANOVA with repeated measurements was used to compare the plantar foot pressure of normal and flat feet according to the obstacle height. The trend analysis showed a quadratic trend during level walking for the normal foot group, but a linear trend appeared as the obstacle height increased. In the flat foot group, the trend analysis showed a linear trend regardless of the obstacle height. In the 2nd-3rd metatarsal head region, the plantar pressure of the flat foot group increased more than the normal foot group as the obstacle height increased; however, in the 4th-5th metatarsal head region, the plantar pressure in flat feet was lower than in normal feet. In the heel region, the plantar pressure in both groups generally increased as the obstacle height increased, but the plantar pressure in the flat foot group was lower than in the normal foot group. We believe that, due to a loss of longitudinal arch, the COP path and plantar pressure of flat feet may be different from normal feet when crossing obstacles of different heights.

  2. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study.

    PubMed

    Yamamoto, Sumiko; Tomokiyo, Naoki; Yasui, Tadashi; Kawaguchi, Toshikazu

    2013-06-01

    An ankle-foot orthosis with an oil damper was previously developed to assist the first rocker function during gait, but the effects of the amount of resistive moment generated on gait have not been clarified. To measure the amount of resistive moment generated by the ankle-foot orthosis with an oil damper during gait and determine its effect on the gait of patients with stroke. Preliminary cross-sectional study. The gait of four patients with stroke in the chronic phase was measured in four conditions: without an ankle-foot orthosis and with the ankle-foot orthosis with an oil damper generating three different amounts of resistive moment. Measurements were taken with a three-dimensional motion analysis system and a specially designed device to determine the resistive moment. The resistive moment was observed in the former half in stance of the paretic limb, and its magnitude was less than 10 N m. Some gait parameters related to terminal stance and preswing were affected by the amount of resistive moment. The forward component of floor reaction force and the shank vertical angle showed peak values when the patients reported feeling most comfortable during gait. Although the resistive moment generated by the ankle-foot orthosis with an oil damper was small, it was sufficient to alter gait. To maximize the effectiveness of ankle-foot orthoses, it is necessary to know the effects of resistive moment on the gait of patients with stroke. The ankle-foot orthosis with an oil damper assists the first rocker function in gait and also affects the gait in a later phase in stance. The peak values of some gait parameters coincided with patients reporting gait to be most comfortable. It is important to know that ankle-foot orthosis with an oil damper assistance in the first rocker alters the weight acceptance on the paretic limb and affects the gait parameters related to propulsion ability in stance.

  3. Quantification of muscle oxygenation and flow of healthy volunteers during cuff occlusion of arm and leg flexor muscles and plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut; Yu, Guoqiang; Zhou, Chao; Lech, Gwen; Chance, Britton; Yodh, Arjun G.

    2003-07-01

    A hybrid instrument combining near infrared and diffuse correlation spectroscopies was used to measure muscle oxygenation and blood flow dynamics during cuff occlusion and ischemia. Measurements were done on six healthy subjects on their arm and leg flexor muscles. Hemodynamic response was characterized for blood oxygen saturation, total hemoglobin concenration and relative blood flow speed. The characterization allowed us to define the normal response range as well as showing the feasibility of using a hybrid instrument for dynamic measurements.

  4. Features of torque production of synchronous electric drive with direct torque control of mining machines

    NASA Astrophysics Data System (ADS)

    Shishkov, A. N.; Sychev, D. A.; Savosteenko, N. V.

    2017-10-01

    In article, the direct torque control method of the synchronous electric drive is considered. This control method is characterized by high performance, robustness and small frequency of switching of keys of the converter. The algorithms and structure of direct torque control of the synchronous electric drive allow creating its operation modes by impact on the form of a triangle with sides: flux linkage of the stator, a rotor, and resultant flux linkage.

  5. CIRCUMSCRIBED PALMAR OR PLANTAR HYPOKERATOSIS: REPORT OF AN ITALIAN CASE

    PubMed Central

    Tosi, D; Sala, F; Crosti, C

    2011-01-01

    Circumscribed palmar or plantar hypokeratosis is a rare benign epidermal malformation of the skin. Clinically it shows asymptomatic, well-circumscribed, and depressed erythema persisting for many years on the palms or soles. Its main histopathologic feature shows a characteristic epidermal depression with an abrupt decrement in the thickness of the stratum corneum, with a sharp stair between normal and involved skin. We describe a case of a 68-year-old woman who presented with an erythematous, asymptomatic, well-circumscribed, depressed patch, on the right thenar eminence which had been present for years. PMID:21716552

  6. Botulinum neurotoxin treatment of palmar and plantar hyperhidrosis.

    PubMed

    Weinberg, Tessa; Solish, Nowell; Murray, Christian

    2014-10-01

    Palmar and plantar hyperhidrosis is relatively common and can have severe psychological and medical consequences for those afflicted. A multitude of treatments exist but are often inadequate especially for those with significant disease. In these cases botulinum neurotoxin provides a reliable method for reducing the symptoms and improving quality of life. Although actual administration is relatively straightforward, pain management is a crucial component that requires a mastery of several techniques. Patients have a high degree of satisfaction with botulinum neurotoxin treatment and are motivated to come back for repeat treatments, usually every 6 months. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    PubMed

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Plantar Fibromatosis: Pathophysiology, Surgical and Nonsurgical Therapies: An Evidence-Based Review.

    PubMed

    Carroll, Paul; Henshaw, Robert M; Garwood, Caitlin; Raspovic, Katherine; Kumar, Dhruv

    2018-04-01

    Plantar fibromatosis (morbus Ledderhose), an extra-abdominal desmoid tumor of the plantar foot, is a rare benign hyperproliferative disorder of the plantar fascia with an unknown etiology. The main clinical characteristics include slow growing nodules on the medial and central bands of the plantar fascia, which may become painful and negatively affect ambulation. Most established conservative therapies today target symptomatic relief. As symptoms progress, therapies such as injections, shockwave ablation, radiation, and/or surgery may be required. This review aims to provide insight into the pathophysiology of this condition in addition to detailing current and investigational therapies for this disorder. Many therapies have been proven in similar conditions, which could lead to promising treatment options for plantar fibromatosis. Level V: Expert opinion.

  9. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  10. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  11. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  12. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  13. Injection therapies for plantar fasciopathy ('plantar fasciitis'): a systematic review and network meta-analysis of 22 randomised controlled trials.

    PubMed

    Tsikopoulos, Konstantinos; Vasiliadis, Haris S; Mavridis, Dimitris

    2016-11-01

    To compare the efficacy of different injection therapies for plantar fasciopathy (historically known as 'plantar fasciitis'). Systematic review and network meta-analysis. Electronic databases (MEDLINE, CENTRAL, Web of Science and Scopus) were searched up to 11 July 2015 for completed studies. We considered randomised trials comparing various injection therapies in adults with plantar fasciopathy. The primary outcome was pain relief. Secondary outcomes included functional disability, composite and health-related outcomes. All outcomes were assessed (1) in the short term (up to 2 months), (2) the intermediate term (2-6 months) and (3) the medium term (more than 6 months to 2 years). Quality assessment was performed using the Cochrane risk of bias tool. We included 22 trials comprising 1216 patients. Dehydrated amniotic membrane injections were significantly superior to corticosteroids in the short term in achieving the primary and composite outcomes (mean difference (MD) in visual analogue scale (VAS) was -7.32, 95% CIs -11.2 to -3.38; and MD in the foot health status questionnaire was 31.2, 95% CIs 13.9 to 48.6, respectively). For pain relief, botulinum toxin-A provided a significant short-term advantage over placebo, which was still present at 6 months (MD in VAS was -2.9, 95% CIs -4.44 to -1.39; and MD -4.34, 95% CIs -7.18 to -1.54, respectively). Although the dehydrated amniotic membrane provided significant clinical relief at 0-2 months, there were no data about this treatment at 2 months and beyond. Botulinum toxin-A injections significantly reduced pain intensity at 0-6 months. CRD42015017353. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Progressive Abduction Loading Therapy with Horizontal-Plane Viscous Resistance Targeting Weakness and Flexion Synergy to Treat Upper Limb Function in Chronic Hemiparetic Stroke: A Randomized Clinical Trial.

    PubMed

    Ellis, Michael D; Carmona, Carolina; Drogos, Justin; Dewald, Julius P A

    2018-01-01

    Progressive abduction loading therapy has emerged as a promising exercise therapy in stroke rehabilitation to systematically target the loss of independent joint control (flexion synergy) in individuals with chronic moderate/severe upper-extremity impairment. Preclinical investigations have identified abduction loading during reaching exercise as a key therapeutic factor to improve reaching function. An augmentative approach may be to additionally target weakness by incorporating resistance training to increase constitutive joint torques of reaching with the goal of improving reaching function by "overpowering" flexion synergy. The objective was, therefore, to determine the therapeutic effects of horizontal-plane viscous resistance in combination with progressive abduction loading therapy. 32 individuals with chronic hemiparetic stroke were randomly allocated to two groups. The two groups had equivalent baseline characteristics on all demographic and outcome metrics including age (59 ± 11 years), time poststroke (10.1 ± 7.6 years), and motor impairment (Fugl-Meyer, 26.7 ± 6.5 out of 66). Both groups received therapy three times/week for 8 weeks while the experimental group included additional horizontal-plane viscous resistance. Quantitative standardized progression of the intervention was achieved using a robotic device. The primary outcomes of reaching distance and velocity under maximum abduction loading and secondary outcomes of isometric strength and a clinical battery were measured at pre-, post-, and 3 months following therapy. There was no difference between groups on any outcome measure. However, for combined groups, there was a significant increase in reaching distance (13.2%, effect size; d  = 0.56) and velocity (13.6%, effect size; d  = 0.27) at posttesting that persisted for 3 months and also a significant increase in abduction, elbow extension, and external rotation strength at posttesting that did not persist 3

  15. Muscle recruitment variations during wrist flexion exercise: MR evaluation

    NASA Technical Reports Server (NTRS)

    Fleckenstein, J. L.; Watumull, D.; Bertocci, L. A.; Nurenberg, P.; Peshock, R. M.; Payne, J. A.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    OBJECTIVE: Many exercise protocols used in physiological studies assume homogeneous and diffuse muscle recruitment. To test this assumption during a "standard" wrist flexion protocol, variations in muscle recruitment were assessed using MRI in eight healthy subjects. MATERIALS AND METHODS: Variations were assessed by comparing the right to the left forearms and the effect of slight (15 degrees) pronation or supination at the wrist. RESULTS: Postexercise imaging showed focal regions of increased signal intensity (SI), indicating relatively strong recruitment, most often in entire muscles, although occasionally only in subvolumes of muscles. In 15 of 26 studies, flexor carpi radialis (FCR) showed more SI than flexor carpi ulnaris, while in 11 studies SI in these muscles increased equivalently. Relatively greater FCR recruitment was seen during pronation and/or use of the nondominant side. Palmaris longus, a wrist flexor, did not appear recruited in 4 of 11 forearms in which it was present. A portion of the superficial finger flexor became hyperintense in 89% of studies, while recruitment of the deep finger flexor was seen only in 43%. CONCLUSION: Inter- and intraindividual variations in forearm muscle recruitment should be anticipated in physiological studies of standard wrist flexion exercise protocols.

  16. Functional radiographic diagnosis of the cervical spine: flexion/extension.

    PubMed

    Dvorak, J; Froehlich, D; Penning, L; Baumgartner, H; Panjabi, M M

    1988-07-01

    The cervical spines of 59 adults were examined by means of functional roentgenograms. They were divided into two groups consisting of 28 healthy adults and 31 patients who had sustained soft tissue injury to the cervical spine and who were complaining of neck pain. Roentgenographic lateral views were taken in active flexion and extension as well as in passive maximal flexion and extension. Measurements using the techniques of Penning and Buetti-Bauml were made by three observers independently. There was a highly significant difference between the active and passive segmental ranges of motion in healthy adults. Based on the normal values obtained in this study, 19 hypermobile segments could be diagnosed during the active examination, while 31 hypermobile segments were found during the passive examination. In addition, the active examination found 60 hypomobile segments, while the passive examination showed only 43 hypomobile segments. The Penning Method of measurement was found to be more reliable than that of Buetti-Bauml. If possible, the functional roentgenogram examination of the cervical spine in the sagittal plane should be performed by including passive movement and the range of motion should be compared with the normal values obtained by passive examination.

  17. Decoding flexion of individual fingers using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Kubánek, J.; Miller, K. J.; Ojemann, J. G.; Wolpaw, J. R.; Schalk, G.

    2009-12-01

    Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.

  18. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury.

    PubMed

    Song, Hongsun; Ochi, Eisuke; Lee, Kihyuk; Hiranuma, Kenji; Nakazato, Koichi

    2012-10-30

    Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC)-induced injury in the rat hindlimb. We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24). Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%). The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°). Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  19. [Influence of slot size on torque control].

    PubMed

    Tian, Jun; Liu, Zhong-Hao; Zhang, Ding; Wu, Chuan-Jun

    2009-12-01

    To study the influence of two slot size brackets on torque control when teeth interacted in the same arch. After the upper arch was aligned and leveled in Typodont study, the inclinations of upper teeth 5 +/- 5 were measured when 0.457 2 mm x 0.635 0 mm OPA-K brackets and 0.558 8 mmx0.711 2 mm OPA-K brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire. This experiment was duplicated 10 times. The inclin of each tooth were transformed to the absolute values of the torque play angle psi by computing program, and paired-t test was used. The two kinds of slot size brackets were different with statistical significance on torque control. When the brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire, the absolute values of the angle psi in 0.558 8 mm x 0.711 2 mm and 0.457 2 mm x 0.635 0 mm slot size brackets were 6.140 degrees +/- 3.758 degrees and 2.608 degrees +/- 1.479 degrees respectively, and the average difference of that between the two slot size brackets was 3.532 degrees. The absolute values of the angle psi in the upper left and right canine brackets were 2.560 degrees +/- 2.605 degrees, 4.230 degrees +/- 2.817 degrees, 1.260 degrees +/- 0.747 degrees and 2.070 degrees +/- 0.663 degrees respectively, and average differences between them were smaller than that in the other teeth. There was difference between the two kinds of slot size brackets on torque control, and 0.457 2 mm x 0.635 0 mm slot size bracket controls torque better when filled with the same size wire. In this study, the teeth interaction in the same arch probably caused the result that the difference of two slot size brackets on torque control was less than the study results of the theory calculations and material studys before.

  20. Plantar fasciitis/calcaneal spur among security forces personnel.

    PubMed

    Sadat-Ali, M

    1998-01-01

    A prospective single survey was conducted among Security Forces personnel at the Mobile Hospital, Ministry of Interior, Makkah Al-Mukarramah, Saudi Arabia. One hundred three patients presented to the orthopedic clinic with painful heel. A control group of patients from the other clinics without painful heel was also screened. The average age was 38.81 years and 38.1 years in the patient and the control group, respectively. The mean Quetelet index of body mass in the patient group was 30.36 kg/m2 and in the control group it was 26.71 kg/m2. There was a statistically significant difference of p < 0.05 between the two groups for Quetelet index of body mass. The right side was affected in 37 patients, the left side was involved in 45 patients, and 21 patients had pain bilaterally. Seventy-one patients had spur on the calcaneum. The prevalence of painful heel attributable to plantar fasciitis/calcaneum spur was 1.18%. This study suggests that obesity is a cause and initiator of heel pain and plantar fasciitis/calcaneal spur and that improper footwear aggravates the condition.

  1. [Percutaneous surgery for plantar fasciitis due to a calcaneal spur].

    PubMed

    Apóstol-González, Saúl; Herrera, Jesús

    2009-01-01

    Determine the efficacy of percutaneous surgical treatment for talalgia due to a calcaneal spur. This is an observational, descriptive, clinical series analyzing the outcomes of 10 patients with a diagnosis of talalgia due to plantar fasciitis with a calcaneal spur treated with percutaneous foot surgery. The end result was assessed with a visual analog scale (VAS) to measure pain, the patients' opinion and their return to activities of daily living. Central tendency and scatter measurements were calculated. The inferential analysis was done with the non-parametric chi square (chi2) test. Most patients were females (90%) and mean age was 40.5 years. Follow-up was 12 months. One patient had bleeding of the approached area. Pain was reduced from 8 to 1.5 in the VAS. Nine patients returned to their activities. Two patients had occasional mild pain upon prolonged bipedestation. Ninety percent of results were satisfactory. Percutaneous foot surgery in talalgias caused by plantar fasciitis due to a calcaneal spur is a simple and effective method. It reduces the operative time and allows for an early return of patients to their activities of daily living.

  2. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    PubMed

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  3. Six component robotic force-torque sensor

    NASA Technical Reports Server (NTRS)

    Grahn, Allen R.; Hutchings, Brad L.; Johnston, David R.; Parsons, David C.; Wyatt, Roland F.

    1987-01-01

    The results of a two-phase contract studying the feasibility of a miniaturized six component force-torque sensor and development of a working laboratory system were described. The principle of operation is based upon using ultrasonic pulse-echo ranging to determine the position of ultrasonic reflectors attached to a metal or ceramic cover plate. Because of the small size of the sensor, this technology may have application in robotics, to sense forces and torques at the finger tip of a robotic end effector. Descriptions are included of laboratory experiments evaluating materials and techniques for sensor fabrication and of the development of support electronics for data acquisition, computer interface, and operator display.

  4. Mode coupling in spin torque oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Zhou, Yan; Li, Dong; ...

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less

  5. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  6. Displaceable spur gear torque controlled driver and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  7. Displaceable Spur Gear Torque Controlled Driver and Method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1996-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  8. An ironless armature brushless torque motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  9. Anomalous Spin Precession under a Geometrical Torque

    NASA Astrophysics Data System (ADS)

    Stahl, Christopher; Potthoff, Michael

    2017-12-01

    Precession and relaxation predominantly characterize the real-time dynamics of a spin driven by a magnetic field and coupled to a large Fermi sea of conduction electrons. We demonstrate an anomalous precession with frequency higher than the Larmor frequency or with inverted orientation in the limit where the electronic motion adiabatically follows the spin dynamics. For a classical spin, the effect is traced back to a geometrical torque resulting from a finite spin Berry curvature.

  10. Measurements of Inertial Torques on Sedimenting Fibers

    NASA Astrophysics Data System (ADS)

    Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg

    2017-11-01

    Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.

  11. Insulating nanomagnets driven by spin torque

    DOE PAGES

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...

    2016-11-29

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  12. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  13. Dynamics of a split torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    Rashidi, Majid; Krantz, Timothy

    1992-01-01

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  14. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern

    PubMed Central

    Neckel, Nathan D; Blonien, Natalie; Nichols, Diane; Hidler, Joseph

    2008-01-01

    Background It is well documented that individuals with chronic stroke often exhibit considerable gait impairments that significantly impact their quality of life. While stroke subjects often walk asymmetrically, we sought to investigate whether prescribing near normal physiological gait patterns with the use of the Lokomat robotic gait-orthosis could help ameliorate asymmetries in gait, specifically, promote similar ankle, knee, and hip joint torques in both lower extremities. We hypothesized that hemiparetic stroke subjects would demonstrate significant differences in total joint torques in both the frontal and sagittal planes compared to non-disabled subjects despite walking under normal gait kinematic trajectories. Methods A motion analysis system was used to track the kinematic patterns of the pelvis and legs of 10 chronic hemiparetic stroke subjects and 5 age matched controls as they walked in the Lokomat. The subject's legs were attached to the Lokomat using instrumented shank and thigh cuffs while instrumented footlifters were applied to the impaired foot of stroke subjects to aid with foot clearance during swing. With minimal body-weight support, subjects walked at 2.5 km/hr on an instrumented treadmill capable of measuring ground reaction forces. Through a custom inverse dynamics model, the ankle, knee, and hip joint torques were calculated in both the frontal and sagittal planes. A single factor ANOVA was used to investigate differences in joint torques between control, unimpaired, and impaired legs at various points in the gait cycle. Results While the kinematic patterns of the stroke subjects were quite similar to those of the control subjects, the kinetic patterns were very different. During stance phase, the unimpaired limb of stroke subjects produced greater hip extension and knee flexion torques than the control group. At pre-swing, stroke subjects inappropriately extended their impaired knee, while during swing they tended to abduct their impaired

  15. Quantification of the lumbar flexion-relaxation phenomenon: comparing outcomes of lumbar erector spinae and superficial lumbar multifidus in standing full trunk flexion and slumped sitting postures.

    PubMed

    Schinkel-Ivy, Alison; Nairn, Brian C; Drake, Janessa D M

    2014-09-01

    The purpose of this study was to identify differences in flexion-relaxation outcomes in asymptomatic participants, with respect to both flexion-relaxation phenomenon (FRP) occurrence and spinal onset angles, as a function of posture and choice of muscle being examined. This was a cross-sectional study in a laboratory setting. Thirty asymptomatic participants performed standing full trunk flexion and slumped sitting postures while activation levels of the lumbar erector spinae and superficial lumbar multifidus were monitored. Two thresholds were used to define whether FRP was present in each muscle and, if present, at what trunk flexion angle it occurred. These outcomes were compared descriptively between muscles and between postures. Most participants displayed FRP in both muscles during standing full flexion; occurrences were more variable in slumped sitting. On average, FRP during standing full flexion and slumped sitting occurred at approximately 80% and 52% of participants' maximum flexion value, respectively. Variability in the slumped sitting onset angles was greater than that in standing full flexion. Outcomes for FRP during standing full flexion in asymptomatic participants appeared to be more robust and were not affected by the choice of either lumbar erector spinae or superficial lumbar multifidus. Conversely, during slumped sitting, FRP occurrence varied substantially depending on choice of muscle, although onset angles were relatively consistent between muscles. Although the choice of one muscle over the other may be warranted, it may be prudent to examine both muscles during FRP investigations in sitting postures, in order to fully characterize the behavior and activation patterns of the lumbar musculature. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  16. Plantar Fasciitis and the Windlass Mechanism: A Biomechanical Link to Clinical Practice

    PubMed Central

    Malone, Terry R.

    2004-01-01

    Objective: Plantar fasciitis is a prevalent problem, with limited consensus among clinicians regarding the most effective treatment. The purpose of this literature review is to provide a systematic approach to the treatment of plantar fasciitis based on the windlass mechanism model. Data Sources: We searched MEDLINE, SPORT Discus, and CINAHL from 1966 to 2003 using the key words plantar fasciitis, windlass mechanism, pronation, heel pain, and heel spur. Data Synthesis: We offer a biomechanical application for the evaluation and treatment of plantar fasciitis based on a review of the literature for the windlass mechanism model. This model provides a means for describing plantar fasciitis conditions such that clinicians can formulate a potential causal relationship between the conditions and their treatments. Conclusions/Recommendations: Clinicians' understanding of the biomechanical causes of plantar fasciitis should guide the decision-making process concerning the evaluation and treatment of heel pain. Use of this approach may improve clinical outcomes because intervention does not merely treat physical symptoms but actively addresses the influences that resulted in the condition. Principles from this approach might also provide a basis for future research investigating the efficacy of plantar fascia treatment. PMID:16558682

  17. Endoscopic plantar fascia release, calcaneal drilling and calcaneal spur removal for management of painful heel syndrome.

    PubMed

    El Shazly, Ossama; El Beltagy, Atef

    2010-12-01

    The pathogenesis of painful heel syndrome is multifactorial including plantar fasciitis, increased intra-osseous pressure of the os calcis, calcaneal periostitis and presence of calcaneal spur. The currently used endoscopic treatment of painful heel syndromes involves endoscopic plantar fascia release alone without addressing other pathological changes. To evaluate the clinical outcome of endoscopic plantar fascia release, calcaneal drilling and calcaneal spur removal. The study was conducted on 22 cases/24 feet with idiopathic painful heel syndrome resistant to conservative treatment. All cases were treated by plantar fasciotomy; calcaneal drilling and calcaneal spur removal using a modified cannula trocar system. Evaluation of pain was done using VAS and functional evaluation was done using the Modified Mayo Scoring System for Plantar Fasciotomy. Also patient's satisfaction was evaluated by direct questionnaire. There was statistically significant improvement in the mean VAS from 82.81 (±7.8 std) preoperative to 6.63 (±2.75 std) and the Mayo score form 7.05 (±3.67 std) preoperative to 87.5 (±4.81 std) at 2 years follow up (P<0.05). The satisfaction rate was 85% with no major complications. Endoscopic plantar fascia release with calcaneal drilling and calcaneal spur removal has high success rate and patient's satisfaction rate when compared to published reports on isolated endoscopic plantar release. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. High-energy focussed extracorporeal shockwave therapy reduces pain in plantar fibromatosis (Ledderhose's disease).

    PubMed

    Knobloch, Karsten; Vogt, Peter M

    2012-10-02

    Plantar fibromatosis is a benign disease creating nodules on the medial plantar side of affected patients. While surgical removal is regarded as the therapeutic mainstay, recurrence rates and impairment of daily activities remains substantial. High-energy focussed extracorporeal shockwave therapy has been suggested to be potentially effective in plantar fibromatosis in terms of pain reduction. High-energy focussed extracorporeal shockwave therapy reduces pain in plantar fibromatosis. A total number of six patients (5 males, 58±4 years) were included with plantar fibromatosis (Ledderhose's disease) associated with pain. Three patients were operated on previously, one had concomitant Dupuytren's contracture. High-energy focussed ESWT was applied using a Storz Duolith SD1 (2000 impulses, 3 Hz, 1.24 mJ/mm²) in two sessions with 7 days between. Pain was 6±2 at baseline, 2±1 after 14 days and 1±1 after 3 months. Softening of the nodules was noted by all patients. No adverse effects were noted. High-energy focussed extracorporeal shockwave energy reduces pain in painful plantar fibromatosis (Morbus Ledderhose). Further large-scale prospective trials are warranted to elucidate the value of high-energy focussed extracorporeal shockwave therapy (ESWT) in plantar fibromatosis in terms of recurrence and efficacy.

  19. Role of magnetic resonance imaging versus ultrasound for detection of plantar plate tear.

    PubMed

    Duan, Xin; Li, Lang; Wei, Dai-Qing; Liu, Ming; Yu, Xi; Xu, Zhao; Long, Ye; Xiang, Zhou

    2017-01-21

    Plantar plate tears could be the reason of forefoot pain, affecting foot function. Magnetic resonance imaging (MRI) and ultrasound (US) were commonly used for the diagnosis of plantar plate tears. The decision of whether to use MRI or US carried some controversy. Our study aimed to find out the diagnostic accuracy of MRI versus US for plantar plate tears. The database of the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, and relative orthopedic meetings until May 2016 were searched. Studies involved in the diagnostic detection of MRI or ultrasound for plantar plate tears with surgical criteria as the reference test were included. Data was analyzed by meta-analysis. We compared sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and summary receiver operating characteristic (sROC) plot of both MRI and US. Seven studies involving 246 plantar plate tears were included. The MRI showed more diagnostic accuracy than US for the detection of plantar plate tears. The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of MRI were 95%, 54%, 2.08, and 0.08, respectively, while the same values for US were 93%, 33%, 1.20, and 0.35, respectively. And the sROC showed more superior diagnostic accuracy than the US. The current result suggests that MRI has better accuracy than US for detection of plantar plate tears.

  20. Finite element analysis of plantar fascia during walking: a quasi-static simulation.

    PubMed

    Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng

    2015-01-01

    The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.

  1. Reduction of plantar pressures in leprosy patients by using custom made shoes and total contact insoles.

    PubMed

    Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping

    2015-02-01

    The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.

  2. Neck injury after repeated flexions due to parachuting.

    PubMed

    Mäkelä, J P; Hietaniemi, K

    1997-03-01

    A 37-yr-old, previously healthy officer developed a severe pain in the right shoulder and parethesia in the right I-III fingers during a high-altitude low-opening parachute jump. The pain started after a sudden neck flexion while he was checking the developing canopy, well before landing. Electroneuromyography revealed damage to the right C7 nerve root. Cervical radiography showed severe spondylosis and discus degeneration in the CV-VII region; magnetic resonance image demonstrated posterior disk protrusions in this area. Military aviators flying high-performance aircraft often have similar problems in the cervical spine; they have been attributed to effects of high + Gz forces in association with twisted head positions. Parachutists appear to face similar risks. Selection of the optimal head position during the parachute opening and use of light helmets should be emphasized.

  3. The Arterial Folding Point During Flexion of the Hip Joint

    SciTech Connect

    Park, Sung Il; Won, Je Hwan, E-mail: wonkwak@madang.ajou.ac.kr; Kim, Byung Moon

    2005-04-15

    Purpose: Endovascular stents placed in periarticular vessels may be at a greater risk of neointimal hyperplasia and eventual occlusion than those placed in non-periarticular vessels. The purpose of this study was to investigate the location of maximal conformational change along the iliac and femoral artery, the folding point, during flexion of the hip joint and its location relative to the hip joint and the inguinal ligament. Methods: Seventy patients undergoing femoral artery catheterization were evaluated. The patients were 47 men and 23 women and ranged in age from 26 to 75 years (mean 54 years). The arteries (right:left = 34:36)more » were measured using a marked catheter for sizing vessels. Fluoroscopic images were obtained in anteroposterior and lateral projections in neutral position, and in the lateral projection in flexed position of the hip joint. The folding point was determined by comparing the lateral projection images in the neutral and flexed positions. The distance from the acetabular roof to the folding point and the distance from the inguinal ligament to the folding point was evaluated. Results: : The folding point was located 42.8 {+-} 28.6 mm cranial to the acetabular roof and 35.1 {+-} 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially (p < 0.001). Conclusions: The folding point during flexion of the hip joint was located 42.8 {+-} 28.6 mm cranial to the acetabular roof and 35.1 {+-} 30.1 mm cranial to the inguinal ligament. As the patient's age increased, the folding point was located more cranially. When a stent is inserted over this region, more attention may be needed during follow-up to monitor possible occlusion and stent failure.« less

  4. Biomechanics of stabilization after cervicothoracic compression-flexion injury.

    PubMed

    Ames, Christopher P; Bozkus, M Hakan; Chamberlain, Robert H; Acosta, Frank L; Papadopoulos, Stephen M; Sonntag, Volker K H; Crawford, Neil R

    2005-07-01

    Biomechanical laboratory research. To determine whether anterior, posterior, or combined instrumentation provides the best stability for treating a cervicothoracic compression-flexion injury. As the junction between the mobile cervical spine and rigid thoracic spine, the cervicothoracic junction poses unique challenges to the success of any fixation system spanning this region. Although posterior instrumentation is the preferred method of fixation in the unstable cervical spine, it is unknown whether this is the case across the unstable cervicothoracic junction. Flexion, extension, lateral bending, and axial rotation of cadaveric specimens were studied during application of nondestructive pure moments in a sequence of conditions: (1) intact, (2) after destabilization, (3) with posterior instrumentation from C6-T1 or T2, and (4) with corpectomy/graft and anterior alone or combined anterior/posterior instrumentation. Compared to anterior instrumentation, posterior instrumentation allowed an 89% smaller range of motion (ROM) during lateral bending (P = 0.01) and 64% smaller ROM during axial rotation (P = 0.04). In most loading modes, combined instrumentation outperformed either anterior or posterior instrumentation alone. Most biomechanical measurements of stability improved when posterior instrumentation was extended from T1 to T2. Small and usually insignificant reductions in ROM averaging 15% were observed with C7 included in the posterior construct versus C7 excluded. Combined instrumentation provides a significant improvement in stability over either anterior or posterior instrumentation alone. Extension of the posterior instrumentation to include T2 improves stability at T1-T2 as well as rostral levels. Inclusion of C7 in the construct is largely inconsequential biomechanically.

  5. The plantar transverse incisional approach for heel spur syndrome. A retrospective study.

    PubMed

    Thornton, D; Ruelle, A L

    1999-01-01

    The efficacy of the transverse plantar incisional approach for the treatment of recalcitrant heel spur syndrome or plantar fasciitis was investigated by evaluating cases of this procedure performed by the authors from 1991 to 1998. Patient records were reviewed for conservative treatment rendered prior to surgical intervention as well as for the perioperative course of the patient. All patients were asked to complete questionnaires regarding their heel spur syndrome or plantar fasciitis and their opinion of both the conservative and the surgical treatments received.

  6. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    PubMed Central

    Hewitt, Catherine; Hicks, Kate; Jayakody, Shalmini; Kang’ombe, Arthur Ricky; Stamuli, Eugena; Turner, Gwen; Thomas, Kim; Curran, Mike; Denby, Gary; Hashmi, Farina; McIntosh, Caroline; McLarnon, Nichola; Torgerson, David; Watt, Ian

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar

  7. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings

  8. Fieldlike and Dampinglike Spin-Transfer Torque in Magnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Sepehri-Amin, Hossein; Bruckner, Florian; Vogler, Christoph; Hayashi, Masamitsu; Suess, Dieter

    2017-05-01

    We investigate the spin-transfer torque in a magnetic multilayer structure by means of a spin-diffusion model. The torque in the considered system, consisting of two magnetic layers separated by a conducting layer, is caused by a perpendicular-to-plane current. We compute the strength of the fieldlike and the dampinglike torque for different material parameters and geometries. Our studies suggest that the fieldlike torque highly depends on the exchange-coupling strength of the itinerant electrons with the magnetization both in the pinned and the free layer. While a low coupling leads to very high fieldlike torques, a high coupling leads to low or even negative fieldlike torques. Furthermore, we demonstrate the significant impact of the fieldlike torque on the critical switching current of a magnetic multilayer. Thus, the dependence of the fieldlike torque on material parameters is considered very important for the development of applications such as spin-transfer-torque magnetic random-access memories and spin-torque oscillators.

  9. Bevel gear driver and method having torque limit selection

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  10. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  11. Liquid Silicone to Mitigate Plantar Pedal Pressure: A Literature Review

    PubMed Central

    Bowling, Frank L.; Metcalfe, Stuart A.; Wu, Stephanie; Boulton, Andrew J. M.; Armstrong, David G.

    2010-01-01

    Disruption of the body’s plantar fat pad can occur as a result of one of three mechanisms: simple fat pad atrophy associated with age-related degeneration, steroid use, or collagen vascular disease. Actual or relative displacement in to the underlying osseous prominences may be seen in association with structural deformity of the foot. Disease states such as diabetes may alter the normal structural integrity of soft tissues through nonenzymatic glycation leading to increased stiffness and thus reduced attenuating capacity. Fat pad atrophy, regardless of the cause, is often associated with substantial emotional, physical, productivity, and financial losses. In situations where the patient is sensate, the resultant skin on bone situation is extremely painful, especially when walking. PMID:20663447

  12. Mycobacterial pseudotumor of the plantar fascia: how common is it?

    PubMed

    Sideras, Panagiotis A; Heiba, Sherif; Machac, Josef; Hechtman, Jaclyn; Vatti, Sridhar

    2013-01-01

    Mycobacterial spindle cell pseudotumor (MSCP) is an extremely rare complication of mycobacterial infections. It has been reported to occur in various sites such as skin, lymph nodes, bone marrow, lungs, and spleen. This tumor-like lesion can be confused clinically as well as radiographically with dermatofibroma, nodular fasciitis, xanthogranuloma, and Kaposi's sarcoma. While this lesion is rare and has been previously reported to occur only in superficial skin, we emphasize its consideration and inclusion in the differential diagnoses when a deep soft tissue mass is complicated by symptoms of deep tissue infection secondary to abscess formation in immunocompromised hosts. Here, we present the clinical and radiologic findings of a case of MSCP involving the deep plantar sheaths. Published by Elsevier Inc.

  13. [Palmar and plantar keloid in a black African male].

    PubMed

    Kossoko, H; Allah, K C; Assi Djè Bi Djè, V; Yéo, S; Koffi, K E; Richard Kadio, M

    2012-09-01

    The keloid scar is a fibrous skin tumor, intradermal, and exuberant. It is commonly found on the glabrous skin. The keloid of the palms and soles are rare. Small series are reported in English literature. The authors report a case of large keloids located on both palms and soles, within a context of keloid disease, in a man of 37 years. On the left hand, the keloid scar caused a partial syndactyly IV-V. Large keloid tumors occupied the inner edge and, weight-bearing areas of both feet. These tumors rendered wearing of shoes impossible and interfered with walking. The treatment consisted of total excision of palmar and plantar keloid tumors. The residual defects were covered by a total skin graft taken from the suprapubic region. The results were satisfactory aesthetically, functionally and psychosocially. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Injected corticosteroids for treating plantar heel pain in adults.

    PubMed

    David, Judy A; Sankarapandian, Venkatesan; Christopher, Prince Rh; Chatterjee, Ahana; Macaden, Ashish S

    2017-06-11

    Plantar heel pain, commonly resulting from plantar fasciitis, often results in significant morbidity. Treatment options include nonsteroidal anti-inflammatory drugs (NSAIDs), orthoses, physical therapy, physical agents (e.g. extracorporeal shock wave therapy (ESWT), laser) and invasive procedures including steroid injections. To assess the effects (benefits and harms) of injected corticosteroids for treating plantar heel pain in adults. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (the Cochrane Library), MEDLINE, Embase, CINAHL, clinical trials registries and conference proceedings. Latest search: 27 March 2017. Randomised and quasi-randomised trials of corticosteroid injections in the treatment of plantar heel pain in adults were eligible for inclusion. At least two review authors independently selected studies, assessed risk of bias and extracted data. We calculated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcome measures. We used a fixed-effect model unless heterogeneity was significant, when a random-effects model was considered. We assessed the overall quality of evidence for individual outcomes using the GRADE approach. We included a total of 39 studies (36 randomised controlled trials (RCTs) and 3 quasi-RCTs) that involved a total of 2492 adults. Most studies were small (median = 59 participants). Participants' mean ages ranged from 34 years to 59 years. When reported, most participants had heel pain for several months. The trials were usually conducted in outpatient specialty clinics of tertiary care hospitals in 17 countries. Steroid injection was given with a local anaesthetic agent in 34 trials. Follow-up was from one month to over two years. With one exception, trials were assessed at high risk of bias in one or more domains, mostly relating to lack of blinding, including lack of confirmation of allocation concealment

  15. Upper limb discomfort profile due to intermittent isometric pronation torque at different postural combinations of the shoulder-arm system.

    PubMed

    Mukhopadhyay, Prabir; O'Sullivan, Leonard W; Gallwey, Timothy J

    2009-05-01

    Twenty-seven right-handed male university students participated in this study, which comprised a full factorial model consisting of three forearm rotation angles (60% prone and supine and neutral range of motion), three elbow angles (45 degrees , 90 degrees and 135 degrees ), three upper arm angles (45 degrees flexion/extension and neutral), one exertion frequency (15 per min) and one level of pronation torque (20% maximum voluntary contraction (MVC) relative to MVC at each articulation). Discomfort rating after the end of each 5 min treatment was recorded on a visual analogue scale. Results of a repeated measures analysis of covariance on discomfort score, with torque endurance time as covariate, indicated that none of the factors was significant including torque endurance time (p = 0.153). An initial data collection phase preceded the main experiment in order to ensure that participants exerted exactly 20% MVC of the particular articulation. In this phase MVC pronation torque was measured at each articulation. The data revealed a significant forearm rotation angle effect (p = 0.001) and participant effect (p = 0.001). Of the two-way interactions, elbow*participant (p = 0.004), forearm*participant (p = 0.001) and upper arm*participant (p = 0.005) were the significant factors. Electromyographic activity of the pronator teres and biceps brachii muscles revealed no significant change in muscle activity in most of the articulations. Industrial jobs involving deviated upper arm postures are typical in industry but have a strong association with injury. Data from this study will enable better understanding of the effects of deviated upper arm postures on musculoskeletal disorders and can also be used to identify and control high-risk tasks in industry.

  16. Targeted brain activation using an MR-compatible wrist torque measurement device and isometric motor tasks during functional magnetic resonance imaging.

    PubMed

    Vlaar, Martijn P; Mugge, Winfred; Groot, Paul F C; Sharifi, Sarvi; Bour, Lo J; van der Helm, Frans C T; van Rootselaar, Anne-Fleur; Schouten, Alfred C

    2016-07-01

    Dedicated pairs of isometric wrist flexion tasks, with and without visual feedback of the exerted torque, were designed to target activation of the CBL and BG in healthy subjects during functional magnetic resonance imaging (fMRI). Selective activation of the cerebellum (CBL) and basal ganglia (BG), often implicated in movement disorders such as tremor and dystonia, may help identify pathological changes and expedite diagnosis. A prototyped MR-compatible wrist torque measurement device, free of magnetic and conductive materials, allowed safe execution of tasks during fMRI without causing artifacts. A significant increase of activity in CBL and BG was found in healthy volunteers during a constant torque task with visual feedback compared to a constant torque task without visual feedback. This study shows that specific pairs of motor tasks using MR-compatible equipment at the wrist allow for targeted activation of CBL and BG, paving a new way for research into the pathophysiology of movement disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Factor Analysis on Cogging Torques in Segment Core Motors

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro

    The segment core method is a popular method employed in motor core manufacturing; however, this method does not allow the stator core precision to be enhanced because the stator is assembled from many cores. The axial eccentricity of rotor and stator and the internal roundness of the stator core are regarded as the main factors which affect cogging torque. In the present study, the way in which a motor with a split-type stator generates a cogging torque is investigated to determine whether high- precision assembly of stator cores can reduce cogging torque. Here, DC brushless motors were used to verify the influence of stator-rotor eccentricity and roundness of the stator bore on cogging torque. The evaluation results prove the feasibility of reducing cogging torque by improving the stator core precision. Therefore, improving the eccentricity and roundness will enable stable production of well controlled motors with few torque ripples.

  18. Robust spin transfer torque in antiferromagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurélien

    2017-04-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ˜n ×p , while the torque competing with the antiferromagnetic exchange is in plane, ˜n ×(p ×n ) . Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  19. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  20. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  1. The relationship of pes planus and calcaneal spur to plantar heel pain.

    PubMed

    Prichasuk, S; Subhadrabandhu, T

    1994-09-01

    A prospective study of pes planus by using calcaneal pitch and calcaneal spur was carried out in 82 patients with plantar heel pain and in 400 normal subjects. The mean normal calcaneal pitch was 20.54 degrees. The mean calcaneal pitch in patients with plantar heel pain was 15.99 degrees, which was significantly lower than in normal subjects. The incidence of calcaneal spur in normal subjects and in patients with plantar heel pain was 15.5% percent (62 of 400) and 65.9% (54 of 82), respectively. Again, this was a highly significant difference. Excessive weight gain, aging, and gender may be important factors effecting the lowering of the pitch and the increasing of spur formation. These factors could lead to the development of plantar heel pain.

  2. Plantar fascia release and calcaneal spur excision for sub-calcaneal heel pain.

    PubMed

    Torudom, Yingyong

    2009-06-01

    Aim of this study was to evaluate the results of open plantar fascia release and calcaneal spur excision in patients with plantar fasciitis. The author studied retrospectively the results in 16 patients who had been treated with open plantar fascia release and calcaneal spur excision from 2002 to 2008. Two patients were men and fourteen were women. Their mean age was 43.3 years (39 to 52). Based on visual analog scale the results were pain free in 12 feet and some pain in four. There are two patients with superficial skin infection which can be manage with local wound care and oral antibiotic. We conclude that open plantar fascia release and calcaneal spur excision can relieve pain in patients who resist conservative treatment.

  3. High-torque open-end wrench

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.; Dame, J. M.; Behimer, H. (Inventor)

    1978-01-01

    A wrench is described that is usable where limited access normally requires an open-end wrench, but which has substantially the high-torque capacity and small radial clearance characteristics of a closed-end wrench. The wrench includes a sleeve forming a nut-engageable socket with a gap in its side, and an adaptor forming a socket with a gap in its side, the adaptor closely surrounding the sleeve and extending across the gap in the sleeve. The sleeve and adaptor have surfaces that become fully engaged when a wrench handle is applied to the adaptor to turn it so as to tighten a nut engaged by the sleeve.

  4. 3D multilevel spin transfer torque devices

    NASA Astrophysics Data System (ADS)

    Hong, J.; Stone, M.; Navarrete, B.; Luongo, K.; Zheng, Q.; Yuan, Z.; Xia, K.; Xu, N.; Bokor, J.; You, L.; Khizroev, S.

    2018-03-01

    Spin-transfer torque magnetic tunneling junction devices capable of a multilevel three-dimensional (3D) information processing are studied in the sub-20-nm size range. The devices are built using He+ and Ne+ focused ion beam etching. It has been demonstrated that due to their extreme scalability and energy efficiency, these devices can significantly reduce the device footprint compared to the modern CMOS approaches and add advanced features in a 3D stack with a sub-20-nm size using a spin polarized current.

  5. [5-years lithotripsy of plantar of plantar heel spur: experiences and results--a follow-up study after 36.9 months].

    PubMed

    Sistermann, R; Katthagen, B D

    1998-01-01

    Effectivity and application as well as possible complications and side effects of extracorporeal shock wave lithotripsy of plantar heel spurs should be evaluated. We applied extracorporeal shock wave lithotripsy (ECSL) to treat plantar fasciitis in 54 patients (period from: 3/1/1993 to 3/1/1996). 20 persons were treated with Lithostar plus (group 1) and ultrasound focussing and 34 patients (group 2) were treated by a Lithostar and X-ray focussing. After 6 weeks 14 (70%) of group 1 and 27 (79.4%) of group 2 were free of pain. After 36.9 months 8 (40%) of group 1 and 23 (67.6%) of group 2 were still painfree. We could not recognize any severe complications after 36.9 months. ECSL is an effective and noninvasive method of treatment. It is not the method of choice for the first treatment of plantar fasciitis but is an alternative option for operation.

  6. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  7. Magnetoelastic torque transducer nondestructive to the measured shaft

    NASA Astrophysics Data System (ADS)

    Yang, Shoucheng; Yu, Xiaoyang; Guo, Hua; Wang, Yan

    1998-03-01

    This paper describes a magnetoelastic torque transducer nondestructive to the measured shaft. A sensing sleeve added to the measured shaft can not only measure the torque of the rotating shaft, but also be nondestructive to the shaft. Moreover, the grid areas are cut on the sleeve, which enables the common coil structure to replace the classic multipolar structure, so that the dynamic error reduces by a factor of 10. Our prototype has been sued to detect the torque of oil rig.

  8. Electronic measurement of variable torques in precision work technology

    NASA Technical Reports Server (NTRS)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  9. The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance

    ERIC Educational Resources Information Center

    Copaver, Karine; Hertogh, Claude; Hue, Olivier

    2012-01-01

    In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…

  10. Decreasing the required lumbar extensor moment induces earlier onset of flexion relaxation.

    PubMed

    Zwambag, Derek P; De Carvalho, Diana E; Brown, Stephen H M

    2016-10-01

    Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p<0.0001 and p=0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p=0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Study of nociceptive flexion reflex in healthy subjects and patients with chronic neuropathic pain syndrome.

    PubMed

    Gordeev, S A; Turbina, L G; Zus'man, A A; Posokhov, S I

    2012-12-01

    Nociceptive flexion reflex was measured in healthy subjects and patients with chronic neuropathic pain (diabetic distal symmetric sensorimotor polyneuropathy). The study of nociceptive flexion reflex revealed reduction of subjective pain threshold and reflex threshold in patients compared with healthy persons reflecting deficit of descending antinociceptive influences in the CNS.

  12. 49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... assemblies and torso flexion test procedure. (a) The test objective is to determine the resistance of the... 210-8020). (ii) Remove all externally applied flexion forces and support the upper torso half in a vertical orientation for 30 minutes to prevent it from drooping. (4) Remove the external support and after...

  13. [Calcaneus fractures as a complication of the percutaneous treatment of plantar fasciitis. Case report].

    PubMed

    Apóstol-González, S; Herrera, J; Herrera, I

    2014-01-01

    Plantar fasciitis, a self-limiting pathologic entity, is a common cause of heel pain in adult patients. Surgical treatment is indicated when the patient does not improve after receiving conservative treatment for 4-6 months with proper surveillance. The complications of percutaneous techniques include: infection, persistent pain, and neurologic injuries, among others. We report the case of a patient with calcaneus fracture following percutaneous plantar fasciotomy and resection of a calcaneal spur. We conducted a review and discussion of the literature.

  14. Flat Feet and a Diagnosis of Plantar Fasciitis in a Marine Corps Recruit.

    PubMed

    Lurati, Ann R

    2015-04-01

    A 22-year-old man sought care at an orthopedic clinic for acute plantar fasciitis. He reported that he had begun an intensive exercise program to prepare himself for Marine Corps Officer Candidate School. Pes Planus, or flat feet, was noted on physical examination. This article reviews the diagnoses of pes planus and plantar fasciitis as well as current intervention strategies. © 2015 The Author(s).

  15. Correction of hypercromic palmar graft with split-thickness instep plantar graft: case report.

    PubMed

    Teles, Guilherme; Bastos, Veloso; Mello, Gustavo

    2008-01-01

    The plantar skin is the best donor site for grafting third-degree burn wounds onto volar aspect of hands and digits. In children, however, it is difficult to harvest the instep for a split-thickness graft. Most of these cases are treated with full-thickness or split-thickness skin grafts and dyspigmentation of the grafted area becomes a reality. We present a case of full-thickness graft hyperpigmentation that was treated with instep plantar graft.

  16. "Hand-foot" syndrome-an unusual case of plantar pathology presenting to a burns unit.

    PubMed

    Goutos, Ioannis; Kaniorou-Larai, Magdalini; Dziewulski, Peter

    2009-01-01

    Hand-foot or palmar-plantar erythrodysesthesia syndrome is an infrequent complication of chemotherapy treatment. Patients present to a variety of disciplines, including burns specialists for treatment. The majority of patients respond to a combination of appropriate adjustments to their chemotherapy regimen and topical supportive therapy to the affected areas. We report a case of the syndrome referred for assessment and treatment to our burns unit and overview the differential diagnoses of palmar/plantar epidermal loss.

  17. Positive effects of plantar vibration training for the treatment of diabetic peripheral neuropathy: A pilot study.

    PubMed

    Stambolieva, Katerina; Petrova, Dorina; Irikeva, Mariya

    2017-06-01

    To evaluate the effectiveness of 8-week low-frequency plantar vibration training on patients with sensorimotor diabetic peripheral neuropathy (DPN). Twelve patients took part in the investigation. An increase of the nerve conductive velocity of soral and peroneal nerves of feet, increased postural stability, and disappearance of the pain and tingling were observed. The obtained results provide evidence for beneficial effects of 8-week plantar vibration training in patients with DPN.

  18. Intrinsic foot muscle and plantar tissue changes in type 2 diabetes mellitus.

    PubMed

    Kumar, C G Shashi; Rajagopal, K V; Hande, H Manjunath; Maiya, Arun G; Mayya, Shreemathi S

    2015-11-01

    Diabetes mellitus is a metabolic disorder with involvement of the neurovascular and muscular system. Peripheral neuropathy (PN) is thought to be the principal cause of foot complications in type 2 diabetes mellitus (T2DM). However, foot evaluation using ultrasonography early in the course of diabetes has not gained due importance. The aim of the present study was to evaluate the thickness of intrinsic foot muscles, plantar skin, plantar fascia, and plantar fat pad in T2DM subjects with and without PN using musculoskeletal ultrasonography. This study was conducted in 30 T2DM subjects with and without PN and 30 age-matched non-diabetes mellitus (NDM) subjects. After detailed clinical evaluation, high-frequency musculoskeletal ultrasonography was used to measure the thickness of the intrinsic foot muscles and plantar tissue thickness under the metatarsals. Data were analyzed using independent t-tests to compare T2DM groups with NDM subjects, and one-way ANOVA followed by Tukey's honestly significant difference test for between- and within-group analyses. There was a significant reduction in the thickness of the intrinsic foot muscles and plantar tissue in T2DM compared with NDM subjects (P < 0.05). However, there were differences in intrinsic foot muscle and plantar tissue thickness between T2DM subjects with and without PN. There was a substantial decrease in intrinsic foot muscle and plantar tissue thickness in T2DM compared with NDM subjects, indicating that structural changes appear in the foot before PN develops. The techniques used in this study cannot exclude the possibility that neuropathic changes that are clinically undetectable may develop in parallel with changes in plantar tissues. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  19. Injury Reduction Effectiveness of Assigning Running Shoes Based on Plantar Shape in Marine Corps Basic Training

    DTIC Science & Technology

    2010-06-24

    AJSM PreView, publIshed on June 24, 2010 as doi:10.1177/0363546510369548 Injury Reduction Effectiveness of Assigning Running Shoes Based on Plantar...34Marine Corps Recruit Depot, Eastern Recruiting Region, Parris Island, South Carolina Background: Shoe manufacturers market motion control. stability...and cushioned shoes for plantar shapes defined as ,low, nor- mal, and high, respectively. This assignment procedure is presumed to reduce injuries by

  20. Methodology for Determining Limit Torques for Threaded Fasteners

    NASA Technical Reports Server (NTRS)

    Hissam, Andy

    2011-01-01

    In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.

  1. [A robot measurement system for spacesuit joint torque].

    PubMed

    Du, Li-Bin; Gao, Xiao-Hui; Liu, Hong; Li, Tan-qiu

    2003-06-01

    To measure the joint torque of spacesuit so as to evaluate its dynamic force/torque performance. A method for measuring the spacesuit joint torque by use of robot technology was proposed in this paper. The design of the measuring strategy and measuring robot was put forward and a mathematical model of the system was given. Then the working space of the robot was analyzed. The robot designed is light, compact, easy to operate, and has a large working space. Experimental results demonstrated the effectiveness of the measuring principle and the reliability of the measuring system. The system can satisfy the requirements of the spacesuit joint torque measurement.

  2. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study.

    PubMed

    Kanchanasamut, Wararom; Pensri, Praneet

    2017-01-01

    Objective : Foot and ankle exercise has been advocated as a preventative approach in reducing the risk of foot ulceration. However, knowledge about the appropriate types and intensity of exercise program for diabetic foot ulcer prevention is still limited. The current study aimed to examine the effects of an eight-week mini-trampoline exercise on improving foot mobility, plantar pressure and sensation of diabetic neuropathic feet. Methods : Twenty-one people with diabetic peripheral neuropathy who had impaired sensation perception were divided into two groups. The exercise group received a foot-care education program plus an eight-week home exercise program using the mini-trampoline ( n  = 11); whereas a control group received a foot-care education only ( n  = 10). Measurements were undertaken at the beginning, at the completion of the eight-week program and at a 20-week follow-up. Results : Both groups were similar prior to the study. Subjects in the exercise group significantly increased the range of the first metatarsophalangeal joint in flexion (left: p  = 0.040, right: p  = 0.012) and extension (left: p  = 0.013) of both feet more than controlled subjects. There was a trend for peak plantar pressure at the medial forefoot to decrease in the exercise group ( p  = 0.016), but not in the control group. At week 20, the number of subjects in the exercise group who improved their vibration perception in their feet notably increased when compared to the control group (left: p  = 0.043; right: p  = 0.004). Conclusions : This is a preliminary study to document the improvements in foot mobility, plantar pressure and sensation following weight-bearing exercise on a flexible surface in people with diabetic neuropathic feet. Mini-trampoline exercise may be used as an adjunct to other interventions to reduce risk of foot ulceration. A larger sample size is needed to verify these findings. This trial is registered with COA No. 097.2/55.

  3. Heel spur formation and the subcalcaneal enthesis of the plantar fascia.

    PubMed

    Kumai, Tsukasa; Benjamin, Mike

    2002-09-01

    To describe the structure and significance of subcalcaneal heel spurs associated with the plantar fascia. The enthesis of the plantar fascia was removed from 17 elderly cadavers by sagittal saw cuts either side of the medial tuberosity, radiographs were taken, and the tissue was processed for routine histology. Sagittal sections were stained with toluidine blue, Masson's trichrome, or alcian blue, and sections were matched with the corresponding radiographs. Spurs develop on the deep surface of the plantar fascia but their formation is heralded by degenerative changes that occur within it. According to differences between small and large spurs, we propose that there are 3 stages in their development: (1) an initial formation of cartilage cell clusters and fissures at the plantar fascia enthesis; (2) thickening of the subchondral bone plate at the enthesis as small spurs form; (3) development of vertically oriented trabeculae buttressing the proximal end of larger spurs. The spurs grow by a combination of intramembranous and chondroidal ossification. Contrary to popular belief, subcalcaneal heel spurs cannot be traction spurs as they do not develop within the plantar fascia itself. They are thus fundamentally different from heel spurs in the Achilles tendon. We suggest instead that they develop as a consequence of degenerative changes that occur in the plantar fascia enthesis.

  4. [The design of plantar pressure distribution monitoring system and preliminary clinical application].

    PubMed

    Zhu, Xianfeng; Zhao, Zilei; Xu, Donghao; Xu, Dongming

    2014-04-01

    Plantar pressure distribution can reflect the force of several key points on foot while standing and walking. A comprehensive understanding of the plantar pressure distribution makes great sense in the following aspects: the understanding of the normal foot biomechanics and function, clinical diagnosis, measurement of disease extent, postoperative efficacy evaluation, and rehabilitation research. A simple plantar pressure measurement device was designed in this study. This paper uses FlexiForce flexible sensor to pickup plantar pressure signal and USB A/D board to do data acquisition. The data are transferred into a laptop and processed by a VB-based software which can display, remember and replay the data. We chose patients with hallux valgus and normal people to measure the pressure distribution and make contrast analysis of plantar pressure with this device. It can be concluded that people with hallux valgus have higher pressure on the second metatarsophalangeal joint and the distribution move outward. The plantar pressure of patients postoperative could be greatly improved compared to the preoperative. The function of this device has been confirmed.

  5. How effective is acupuncture for reducing pain due to plantar fasciitis?

    PubMed

    Thiagarajah, Anandan Gerard

    2017-02-01

    Plantar fasciitis is a commonly seen outpatient condition that has numerous treatment modalities of varying degrees of efficacy. This systematic review aimed to determine the effectiveness of acupuncture in reducing pain caused by plantar fasciitis. Online literature searches were performed on the PubMed and Cochrane Library databases for studies on the use of acupuncture for pain caused by plantar fasciitis. Studies designed as randomised controlled trials and that compared acupuncture with standard treatments or had real versus sham acupuncture arms were selected. The Delphi list was used to assess the methodological quality of the studies retrieved. Three studies that compared acupuncture with standard treatment and one study on real versus sham acupuncture were found. These showed that acupuncture significantly reduced pain levels in patients with plantar fasciitis, as measured on the visual analogue scale and the Plantar Fasciitis Pain/Disability Scale. These benefits were noted between four and eight weeks of treatment, with no further significant reduction in pain beyond this duration. Side effects were found to be minimal. Although acupuncture may reduce plantar fasciitis pain in the short term, there is insufficient evidence for a definitive conclusion regarding its effectiveness in the longer term. Further research is required to strengthen the acceptance of acupuncture among healthcare providers. Copyright: © Singapore Medical Association

  6. Integrated kinematics-kinetics-plantar pressure data analysis: a useful tool for characterizing diabetic foot biomechanics.

    PubMed

    Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Guiotto, Annamaria; Avogaro, Angelo; Cobelli, Claudio

    2012-05-01

    The fundamental cause of lower-extremity complications in diabetes is chronic hyperglycemia leading to diabetic foot ulcer pathology. While the relationship between abnormal plantar pressure distribution and plantar ulcers has been widely investigated, little is known about the role of shear stress. Moreover, the mutual relationship among plantar pressure, shear stress, and abnormal kinematics in the etiology of diabetic foot has not been established. This lack of knowledge is determined by the lack of commercially available instruments which allow such a complex analysis. This study aims to develop a method for the simultaneous assessment of kinematics, kinetics, and plantar pressure on foot subareas of diabetic subjects by means of combining three commercial systems. Data were collected during gait on 24 patients (12 controls and 12 diabetic neuropathics) with a motion capture system synchronized with two force plates and two baropodometric systems. A four segment three-dimensional foot kinematics model was adopted for the subsegment angles estimation together with a three segment model for the plantar sub-area definition during gait. The neuropathic group exhibited significantly excessive plantar pressure, ground reaction forces on each direction, and a reduced loading surface on the midfoot subsegment (p<0.04). Furthermore the same subsegment displayed excessive dorsiflexion, external rotation, and eversion (p<0.05). Initial results showed that this methodology may enable a more appropriate characterization of patients at risk of foot ulcerations, and help planning prevention programs. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Variability and repeatability analysis of plantar pressure during gait in older people.

    PubMed

    Franco, Pedro S; Silva, Caio Borella P da; Rocha, Emmanuel S da; Carpes, Felipe P

    2015-01-01

    Repeatability and variability of the plantar pressure during walking are important components in the clinical assessment of the elderly. However, there is a lack of information on the uniformity of plantar pressure patterns in the elderly. To analyze the repeatability and variability in plantar pressure considering mean, peak and asymmetries during aged gait. Plantar pressure was monitored in four different days for ten elderly subjects (5 female), with mean±standard-deviation age of 73±6 years, walking barefoot at preferred speed. Data were compared between steps for each day and between different days. Mean and peak plantar pressure values were similar between the different days of evaluation. Asymmetry indexes were similar between the different days evaluated. Plantar pressure presented a consistent pattern in the elderly. However, the asymmetry indexes observed suggest that the elderly are exposed to repetitive asymmetric loading during locomotion. Such result requires further investigation, especially concerning the role of these asymmetries for development of articular injuries. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  8. Efficacy of plantar loading parameters during gait in terms of reliability, variability, effect of gender and relationship between contact area and plantar pressure.

    PubMed

    Murphy, Darlene F; Beynnon, Bruce D; Michelson, James D; Vacek, Pamela M

    2005-02-01

    The purpose of this study was to determine plantar pressure and contact areas of the foot inside the athletic shoe during activity. The objectives were to determine if plantar pressure and contact area measurements collected on multiple trials from the same subject were reliable, to determine the variability of measurements between subjects as compared to that found between steps within a single subject, to determine the relationship between contact area and plantar pressure, and to ascertain whether there were any systematic gender differences in these measurements. Sixteen healthy adults volunteered for participation in the first part of the study that was designed to determine reliability and variability of the testing methodology. A separate group of fifty healthy high school and collegiate athletes participating in soccer, field hockey, basketball, and lacrosse comprised the second part of the study that was designed to investigate gender differences in terms of normalized midfoot plantar pressure and contact area, and the interrelationship between the two measurements. Data were collected during the midstance phase of gait, using the Pedar in-shoe measurement system (Novel GMBH, St. Paul, MN). Athletes wore their own athletic shoes and performed walking trials on a surface similar to that used in their sport. The foot was divided into four regions based on radiographic measurements. The midfoot region demonstrated excellent reliability across multiple trials of the same subject in contact area and plantar pressure, and the variability between steps within a single subject was small when compared to that between subjects. Normalized midfoot contact area and plantar pressure values were highly correlated with r values of 0.862 on the left foot and .912 on the right foot. No significant differences were found in normalized midfoot contact area or plantar pressure values between males and females. The Pedar in-shoe pressure measurement system can be used reliably

  9. Spin-orbit torques in magnetic bilayers

    NASA Astrophysics Data System (ADS)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  10. Smartphone Assessment of Knee Flexion Compared to Radiographic Standards

    PubMed Central

    Dietz, Matthew J.; Sprando, Daniel; Hanselman, Andrew E.; Regier, Michael D.; Frye, Benjamin M.

    2017-01-01

    Purpose Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Methods Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. Results The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC = 0.94; 95% CI: 0.91–0.96). Visual estimation was found to be the least reliable method of measurement. Conclusions The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremity. PMID:28179062

  11. Smartphone assessment of knee flexion compared to radiographic standards.

    PubMed

    Dietz, Matthew J; Sprando, Daniel; Hanselman, Andrew E; Regier, Michael D; Frye, Benjamin M

    2017-03-01

    Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC=0.94; 95% CI: 0.91-0.96). Visual estimation was found to be the least reliable method of measurement. The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Flexion-Type Supracondylar Humeral Fractures: Ulnar Nerve Injury Increases Risk of Open Reduction.

    PubMed

    Flynn, Kelly; Shah, Apurva S; Brusalis, Christopher M; Leddy, Kelly; Flynn, John M

    2017-09-06

    The vast majority of displaced pediatric supracondylar humeral fractures can be treated successfully with closed reduction and percutaneous pinning. The need for open reduction is difficult to determine a priori and is typically due to the failure of closed reduction attempts or persistent limb ischemia. The aims of this study were to determine the prevalence of flexion-type supracondylar humeral fractures, the rate of open reduction for flexion-type fractures, and the predictive impact of ulnar nerve injury on the need for open reduction for flexion-type supracondylar humeral fractures. We developed a database of consecutive pediatric supracondylar humeral fractures treated operatively at a tertiary care pediatric trauma center from 2000 to 2015. Data recorded included age, mechanism of injury, fracture type (open or closed), fracture pattern (flexion-type or extension-type), concomitant skeletal injury, neurovascular injury, treatment, and surgeon. Radiographs of all flexion-type supracondylar humeral fractures were reviewed in order to confirm the classification of the injury pattern. The rate of open reduction for fractures with a flexion-type injury pattern and for such fractures with and without ulnar nerve injury at presentation was assessed. Of 2,783 consecutive pediatric supracondylar humeral fractures treated by surgeons at our center, 95 (3.4%) were flexion-type fractures. Ulnar nerve injury was noted for 10 (10.5%) of the 95 flexion-type fractures. Open injuries were identified at presentation in 3 (3.2%) of the 95 cases. Among closed fractures, 21 (22.8%) of 92 flexion-type fractures required open reduction compared with 50 (1.9%) of 2,647 extension-type fractures (odds ratio [OR] = 15.4; 95% confidence interval [CI] = 8.8 to 27.0; p < 0.001). Among closed flexion-type fractures, open reduction was performed in 6 (60%) of 10 fractures with associated ulnar nerve injury and in 15 (18.3%) of 82 fractures without ulnar nerve injury (OR = 6.7; 95% CI = 1

  13. [Concept of plantarization for toe correction in diabetic foot syndrome].

    PubMed

    Engels, G; Stinus, H; Hochlenert, D; Klein, A

    2016-10-01

    Elimination of plantarization of the tip of the toe and torsion of digit 1 (D1) or D5 using percutaneous tenotomy of the flexor hallucis longus (FHL) - or the flexor digitorum longus (FDL) muscle. Flexible, in some cases also fixated hyperflexion misalignment and torsion misalignment of the distal phalanx of the toe with plantarization of physiologically non-loaded bearing parts of the toes in patients with diabetic foot syndrome (neuropathy). Critical limb ischemia. Percutaneous tenotomy of the FHL or FDL tendons using the minimally invasive lancet technique without the use of a tourniquet while the tendon is flexed by causing hyperextension of the distal phalanx and simultaneous extension of the distal interphalangeal (DIP) or interphalangeal (IP) joints. Immediate full weight-bearing mobilization in sufficiently wide protective footwear with customized cushioning or a diabetes-adapted foot bed, follow-up in initially frequent intervals (2-4 per week) in order to track the development of the transfer lesions. In the case of existing wounds, more frequent visits and relief of the wounds using a post-operative shoe are required. No thrombosis prevention with full weight-bearing is necessary. In 138 patients with diabetic foot syndrome with polyneuropathy, of which 90 were men (65.2 %) and 48 were women (34.8 %) with a median age of 65.1 years, a total of 291 toe operations with tenotomy of the FHL- or FDL-tendon were performed. Patients were either acutely affected by apical toe lesions (92.1 %) or showed an increased risk of ulcer formation (7.9 %). The median time to closing of the wound was 13 days. It was longer with higher Wagner stages. Of the surgically treated toes 3.1 % were affected by nosocomial infections. At the 1‑year follow-up 92.4 % of the patients did not show pathological results of the operated toe. Recurrence of the DFS occurred mostly during the first 6 months postoperatively. In the first year postoperatively 68.1 % of

  14. Incidence of palmar-plantar erythrodysesthesia in pretreated and unpretreated patients receiving pegylated liposomal doxorubicin.

    PubMed

    Miolo, GianMaria; Baldo, Paolo; Bidoli, Ettore; Lombardi, Davide; Scalone, Simona; Sorio, Roberto; Veronesi, Andrea

    2009-01-01

    Association between pegylated liposomal doxorubicin-based regimens and palmar-plantar erythrodysesthesia have just been emphasized, whereas the relationship between previous treatment and palmar-plantar erythrodysesthesia is still a matter of discussion. We evaluate the relationship between previous chemotherapy treatments and the development of palmar-plantar erythrodysesthesia in patients receiving pegylated liposomal doxorubicin-based regimens. Between January 2005 and November 2006, 92 patients received regimens including pegylated liposomal doxorubicin. Patients were divided into three groups based on pegylated liposomal doxorubicin dosing interval length, different dose chosen, and previous chemotherapy. Among pretreated patients receiving regimens including 30 mg/m2 of pegylated liposomal doxorubicin repeated every three weeks, the incidence of palmar-plantar erythrodysesthesia was not significantly higher than in unpretreated patients receiving the same weekly schedule (P = 0.4). There was no difference in the incidence of palmar-plantar erythrodysesthesia between pretreated patients with regimens including 30 mg/m2 of pegylated liposomal doxorubicin every three weeks and pretreated patients receiving 20 mg/m2 of pegylated liposomal doxorubicin every two weeks (P = 0.8). The prevalence of palmar-plantar erythrodysesthesia observed in the unpretreated group exposed to 30 mg/m2 every three weeks was comparable to that of the pretreated group receiving 20 mg/m2 biweekly (P = 0.3). However, excluding all the patients who developed grade 1 palmar-plantar erythrodysesthesia, the incidence of grade 2 and 3 palmar-plantar erythrodysesthesia observed in pretreated patients receiving regimens including 20 mg/m2 of pegylated liposomal doxorubicin biweekly was significantly higher than in unpretreated patients receiving 30 mg/m2 of pegylated liposomal doxorubicin every three weeks (P = 0.001). Our findings indicate that the pretreatment is not involved in the increased

  15. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A 3-Month Study with Proprioceptive Neuromuscular Facilitation

    PubMed Central

    Zhou, Zhihao; Sun, Yao; Wang, Ninghua; Gao, Fan; Wei, Kunlin; Wang, Qining

    2016-01-01

    In this paper, we aim to investigate the effect of proprioceptive neuromuscular facilitation (PNF)-based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle–foot Rehabilitation System (RARS). A modified robot-assisted system was proposed, and seven poststroke patients with hemiplegic spastic ankles participated in a 3-month robotic PNF training. Their impaired sides were used as the experimental group, while their unimpaired sides as the control group. A robotic intervention for the experimental group started from a 2-min passive stretching to warming-up or relaxing the soleus and gastrocnemius muscles and also ended with the same one. Then a PNF training session including 30 trials was activated between them. The rehabilitation trainings were carried out three times a week as an addition to their regular rehabilitation exercise. Passive range of motion, resistance torque, and stiffness were measured in both ankles before and after the interventions. The changes in Achilles tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the 3 months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased (p < 0.01), resistance torque under different dorsiflexion angle levels (0°, 10°, and 20°) decreased (p < 0.05, p < 0.001, and p < 0.001, respectively), and quasi-static stiffness under different dorsiflexion angle levels (0°, 10°, and 20°) also decreased (p < 0.01, p < 0.001, and p < 0.001, respectively). Achilles’s tendon length shortened (p < 0.01), while its thickness showed no significant change (p > 0.05). The robotic rehabilitation also improved the

  16. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A 3-Month Study with Proprioceptive Neuromuscular Facilitation.

    PubMed

    Zhou, Zhihao; Sun, Yao; Wang, Ninghua; Gao, Fan; Wei, Kunlin; Wang, Qining

    2016-01-01

    In this paper, we aim to investigate the effect of proprioceptive neuromuscular facilitation (PNF)-based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle-foot Rehabilitation System (RARS). A modified robot-assisted system was proposed, and seven poststroke patients with hemiplegic spastic ankles participated in a 3-month robotic PNF training. Their impaired sides were used as the experimental group, while their unimpaired sides as the control group. A robotic intervention for the experimental group started from a 2-min passive stretching to warming-up or relaxing the soleus and gastrocnemius muscles and also ended with the same one. Then a PNF training session including 30 trials was activated between them. The rehabilitation trainings were carried out three times a week as an addition to their regular rehabilitation exercise. Passive range of motion, resistance torque, and stiffness were measured in both ankles before and after the interventions. The changes in Achilles tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the 3 months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased ( p  < 0.01), resistance torque under different dorsiflexion angle levels (0°, 10°, and 20°) decreased ( p  < 0.05, p  < 0.001, and p  < 0.001, respectively), and quasi-static stiffness under different dorsiflexion angle levels (0°, 10°, and 20°) also decreased ( p  < 0.01, p  < 0.001, and p  < 0.001, respectively). Achilles's tendon length shortened ( p  < 0.01), while its thickness showed no significant change ( p  > 0.05). The robotic rehabilitation also

  17. Influence of dorsiflexion shoes on neuromuscular fatigue of the plantar flexors after combined tapping-jumping exercises in volleyball players.

    PubMed

    Lapole, Thomas; Ahmaidi, Said; Gaillien, Benjamin; Leprêtre, Pierre-Marie

    2013-07-01

    Dorsiflexion shoes could be useful to increase jumping performance. The aim of the present study was to investigate the impact of wearing shoes inducing moderate dorsiflexion (2°) on neuromuscular fatigue induced by volleyball exercises involving multiple stretch-shortening cycles. Squat jump (SJ) and countermovement jump (CMJ) performance, and plantar flexors isometric voluntary and evoked contractile properties were assessed in 10 unfamiliarized trained volleyball players before and after a 10-minute intensive combined tapping-jumping volleyball exercise performed, in blinded randomized conditions, with neutral (0°) or moderate dorsiflexion (2°). No significant difference was observed on SJ performance in neutral and moderate dorsiflexion conditions. However, CMJ height was initially lower with 2° dorsiflexion compared with 0° (p < 0.05). Height in CMJ was increased after exercise with 2° dorsiflexion shoes and remained unchanged in neutral 0° condition. Combined tapping-jumping volleyball exercise also induced a significant decrease in maximal voluntary contraction (p < 0.001), peak-twitch torque (p = 0.009), contraction time (p < 0.001) and twitch relaxation rate (p = 0.001) values without any significant difference between neutral and dorsiflexion conditions. Voluntary activation level (p = 0.014) and rate of force development (p = 0.05) were also decreased in both conditions. In conclusion, acute moderate dorsiflexion had no effect on jumping performance and neuromuscular fatigue in unfamiliarized trained subjects and altered the elastic energy store in plyometric condition (CMJ). Future studies are necessary to investigate the chronic effect of moderate dorsiflexion on jumping performance and neuromuscular fatigue in trained volleyball players.

  18. [THE EFFECTS OF THE PILATES METHOD ON HAMSTRING EXTENSIBILITY, PELVIC TILT AND TRUNK FLEXION].

    PubMed

    Vaquero-Cristóbal, Raquel; López-Miñarro, Pedro A; Alacid Cárceles, Fernando; Esparza-Ros, Francisco

    2015-11-01

    Pilates includes a high volume of hamstring stretching and maximal trunk flexion with knees extended exercises. to perform a systematic review about Pilates practice effects and a detraining period on hamstring extensibility, pelvic tilt and trunk flexion in maximal trunk flexion with knees extended. it was analysed all the experimental or quasi-experimental designs written in English, Spanish or Portuguese and included in the following databases: Pubmed, Sports Discus, ISI Web of Knowledge, Dialnet and Research Gate. twenty-one papers were analysed. Most of them used a pre-test-post-test design with control group. The intervention programs applied were heterogeneous. Samples were composed mainly of women, both young and old. It was found that the Pilates practice, with different volume, significantly increased hamstring muscle extensibility and pelvic tilt in maximal trunk flexion. At least three training sessions peer week during six weeks were necessary in order to obtain a high trunk inclination. Studies which involved athletes showed contradictory results. By inducing a detraining period it was noticed a decrease in hamstring extensibility and trunk flexion from the second week. there is a moderate evidence that Pilates is an effective method to increase hamstring extensibility, pelvic tilt and the degree of trunk flexion in maximal flexion positions in sedentary and recreational active people and also to increase hamstring extensibility in athletes. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. MEASURING GRAVITATIONAL LENSING FLEXION IN A1689 USING AN ANALYTIC IMAGE MODEL

    SciTech Connect

    Cain, Benjamin; Schechter, Paul L.; Bautz, M.W., E-mail: bmcain@ucdavis.edu, E-mail: schech@mit.edu, E-mail: mwb@space.mit.edu

    2011-07-20

    Measuring dark matter substructure within galaxy cluster halos is a fundamental probe of the {Lambda}CDM model of structure formation. Gravitational lensing is a technique for measuring the total mass distribution which is independent of the nature of the gravitating matter, making it a vital tool for studying these dark-matter-dominated objects. We present a new method for measuring weak gravitational lensing flexion fields, the gradients of the lensing shear field, to measure mass distributions on small angular scales. While previously published methods for measuring flexion focus on measuring derived properties of the lensed images, such as shapelet coefficients or surface brightnessmore » moments, our method instead fits a mass-sheet transformation invariant Analytic Image Model (AIM) to each galaxy image. This simple parametric model traces the distortion of lensed image isophotes and constrains the flexion fields. We test the AIM method using simulated data images with realistic noise and a variety of unlensed image properties, and show that it successfully reproduces the input flexion fields. We also apply the AIM method for flexion measurement to Hubble Space Telescope observations of A1689 and detect mass structure in the cluster using flexion measured with this method. We also estimate the scatter in the measured flexion fields due to the unlensed shape of the background galaxies and find values consistent with previous estimates.« less

  20. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit pilot forces and torques. 29.397... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  1. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  2. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit control forces and -torques. 23.397... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface... exceed those that would result in flight from the application of any pilot force within the ranges...

  3. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit pilot forces and torques. 29.397... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  4. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit control forces and -torques. 23.397... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface... exceed those that would result in flight from the application of any pilot force within the ranges...

  5. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit control forces and -torques. 23.397... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface... exceed those that would result in flight from the application of any pilot force within the ranges...

  6. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit pilot forces and torques. 29.397... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  7. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  8. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  9. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit control forces and -torques. 23.397... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface... exceed those that would result in flight from the application of any pilot force within the ranges...

  10. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  11. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit pilot forces and torques. 27.397... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this section, the limit pilot forces are as follows: (1) For foot controls, 130 pounds. (2) For stick controls...

  12. Coorbital thermal torques on low-mass protoplanets

    NASA Astrophysics Data System (ADS)

    Masset, Frédéric S.

    2017-12-01

    Using linear perturbation theory, we investigate the torque exerted on a low-mass planet embedded in a gaseous protoplanetary disc with finite thermal diffusivity. When the planet does not release energy into the ambient disc, the main effect of thermal diffusion is the softening of the enthalpy peak near the planet, which results in the appearance of two cold and dense lobes on either side of the orbit, of size smaller than the thickness of the disc. The lobes exert torques of opposite sign on the planet, each comparable in magnitude to the one-sided Lindblad torque. When the planet is offset from corotation, the lobes are asymmetric and the planet experiences a net torque, the 'cold' thermal torque, which has a magnitude that depends on the relative value of the distance to corotation to the size of the lobes ˜√{χ /Ω _p}, χ being the thermal diffusivity and Ωp the orbital frequency. We believe that this effect corresponds to the phenomenon named 'cold finger' recently reported in numerical simulations, and we argue that it constitutes the dominant mode of migration of sub-Earth-mass objects. When the planet is luminous, the heat released into the ambient disc results in an additional disturbance that takes the form of hot, low-density lobes. They give a torque, named heating torque in previous work, that has an expression similar, but of opposite sign, to the cold thermal torque.

  13. Harmonic Torque Calculation of Induction Motors Using Electromagnetic Field Analysis

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Haruishi, Yoshihisa; Ara, Takahiro

    In this paper, we investigate effects of harmonic electromagnetic field to torque characteristics of induction motors from both side of experiment and electromagnetic field analysis. The characteristics of two kinds of the aluminum cage three-phase induction motors are measured and calculated. One is with the closed rotor slots. The other is semi-closed. In the experiment, the negative torque at synchronous speed is measured by driving the induction motor by the synchronous permanent magnet motor. The total torque at load condition is also measured by the torque detector. In the analysis, the harmonic magnetic fields, the harmonic losses and the harmonic torques at each time and space harmonic order are calculated using the nonlinear time-stepping finite element method to clarify the mechanism of the harmonic torque generation. The measured and the calculated results agree well. It is clarified that the negative torque caused by the slot harmonics at the rated load condition is not negligible and that the negative torque is mainly generated by the harmonic core losses.

  14. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  15. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  16. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  17. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  18. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 91....306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  19. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 90... Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a... (a)(6) of this section with the adjusted or repaired system. (b) Option. A master load-cell or...

  20. "Popeye muscle" morphology in OBPI elbow flexion contracture.

    PubMed

    Coroneos, Christopher J; Maizlin, Zeev V; DeMatteo, Carol; Gjertsen, Deborah; Bain, James R

    2015-01-01

    The pathophysiology of elbow flexion contracture (EFC) in obstetrical brachial plexus injury (OBPI) is not established. In basic science models, neonatal denervation leads to impaired muscle growth. In clinical studies, diminished growth is correlated with extent of denervation, and improved with surgical repair. In EFC, the biceps are clinically short and round vs the contralateral size, termed the "Popeye muscle". The objective of this study was to determine if the biceps morphology (muscle belly and tendon length) in arms with EFC secondary to OBPI is different vs the contralateral. This is a retrospective matched-cohort study. Patients with unilateral EFC (>20°) secondary to OBPI were identified (median = 6.6 years, range = 4.7-16.8). A blinded radiologist used computed tomography to measure length of the biceps short head muscle belly, and tendon bilaterally using standardised anatomical landmarks. Twelve patients were analyzed. The biceps muscle belly in the injured arm was shorter in all patients vs contralateral, mean difference = 3.6 cm (80%), p < 0.001. The biceps tendon in the injured arm was longer in all patients vs contralateral, mean difference = 1.13 cm (127%), p < 0.001. The total biceps length in the injured arm was shorter in all patients vs contralateral, mean difference = 2.5 cm (89%), p < 0.001. This is the first human study confirming growth discrepancy of an elbow flexor in EFC. Distinct biceps morphology is demonstrated, with a significantly shorter muscle belly and overall length, but longer tendon vs normal. This is termed the "Popeye muscle" for its irregular morphology. Findings are consistent with impaired limb growth in denervation.

  1. Comparative study of phrenic and intercostal nerve transfers for elbow flexion after global brachial plexus injury.

    PubMed

    Liu, Yuzhou; Lao, Jie; Zhao, Xin

    2015-04-01

    Global brachial plexus injuries (BPIs) are devastating events frequently resulting in severe functional impairment. The widely used nerve transfer sources for elbow flexion in patients with global BPIs include intercostal and phrenic nerves. The aim of this study was to compare phrenic and intercostal nerve transfers for elbow flexion after global BPI. A retrospective review of 33 patients treated with phrenic and intercostal nerve transfer for elbow flexion in posttraumatic global root avulsion BPI was carried out. In the phrenic nerve transfer group, the phrenic nerve was transferred to the anterolateral bundle of the anterior division of the upper trunk (23 patients); in the intercostal nerve transfer group, three intercostal nerves were coapted to the anterolateral bundles of the musculocutaneous nerve. The British Medical Research Council (MRC) grading system, angle of elbow flexion, and electromyography (EMG) were used to evaluate the recovery of elbow flexion at least 3 years postoperatively. The efficiency of motor function in the phrenic nerve transfer group was 83%, while it was 70% in the intercostal nerve transfer group. The two groups were not statistically different in terms of the MRC grade (p=0.646) and EMG results (p=0.646). The outstanding rates of angle of elbow flexion were 48% and 40% in the phrenic and intercostal nerve transfer groups, respectively. There was no significant difference of outstanding rates in the angle of elbow flexion between the two groups. Phrenic nerve transfer had a higher proportion of good prognosis for elbow flexion than intercostal nerve transfer, but the effective and outstanding rate had no significant difference for biceps reinnervation between the two groups according to MRC grading, angle of elbow flexion, and EMG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Does lesser trochanter implication affect hip flexion strength in proximal femur fracture?

    PubMed

    Aprato, A; Lo Baido, R; Crosio, A; Matteotti, R; Grosso, E; Massè, A

    2015-10-01

    In pertrochanteric and intertrochanteric femoral fractures, the avulsion of the lesser trochanter by the pull of the iliopsoas muscle is not uncommon. This fragment is not commonly fixed because the avulsion of the lesser is tough to not influence the clinical outcome but up to date there is no evidence to support this statement. The aim of this study is to evaluate if lesser trochanter implication affects psoas muscle strength in proximal femur fracture. Patients with a consolidated intertrochanteric or pertrochanteric fracture associated or not with lesser trochanter fracture were enrolled, respectively, in group A and group B. Criteria of inclusion were the achievement of an anatomic reduction with gamma nail and a complete consolidation of the fracture. Criteria of exclusion were a follow-up shorter than 6 months and age over 65 years old at surgery. Patients were retrospectively reviewed for the purpose of this study. Range of motion, modified Harris Hip Score (mHHS), flexion strength with hip in neutral position, at 90° of flexion and in "figure four" position were evaluated on injured and healthy side. On the pre-operative X-rays, the vertical displacement of the lesser trochanter was calculated. Groups A and B showed no significant difference in age and follow-up. No statistical difference between the two groups was found in range of motion, mean mHHS, hip flexion strength at 90° of hip flexion. Lesser trochanter fracture group showed a significantly reduced strength in flexion with hip in neutral flexion (mean difference between two groups was 18.5 kgf). Lesser trochanter displacement showed a significant correlation with strength at 90° of flexion. Our results showed that lesser trochanter implication may result in decreased hip flexion strength. Lesser trochanter displacement is directly correlated with flexion strength. Further studies will be necessary to understand if lesser trochanter fixation may be a good solution for those patients.

  3. Synchronization of spin torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Turtle, James; Buono, Pietro-Luciano; Palacios, Antonio; Dabrowski, Christine; In, Visarath; Longhini, Patrick

    2017-04-01

    Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

  4. Forces and Torques on Rotating Spirochete Flagella

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W.

    2011-12-01

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  5. Alternating bending-steady torque fatigue reliability

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Chester, L. B.; Dodge, T. M.

    1974-01-01

    Results generated by three unique fatigue reliability research machines which can apply alternating-bending loads combined with steady torque are presented. Six-inch long, AISI steel, grooved specimens with a stress concentration factor of 1.42 and Rockwell C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and staircase-testing data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one best represents the data. The effect of the groove and of the various combined bending-torsion loads on the finite and endurance life strength of such components, as well as on the Goodman diagram, are determined. Design applications are presented.

  6. High Detent Torque Rotary Actuator Development

    NASA Astrophysics Data System (ADS)

    Santos, I.; Sainz, I.; Allegranza, C.

    2015-09-01

    In the frame of an ESA ARTES 5 Contract, SENER has performed the design, manufacturing and testing at component and mechanism levels of a High Detent Torque Rotary Actuator (DTA in short), i.e. with high capability to hold a payload when unpowered.Two configurations were developed to allow the use on specific application flight opportunity; both are identical in terms of architecture, lubrication, structural and thermal design. The exception is the angular position sensor type: the DTA 100 with contactless sensors and the DTA 120 with potentiometers.The DTA is a fully european technology. This paper provides a synthesis of the obtained parameters in front of the requirements, the evolution from the initial concept to the final configuration and the results of the extensive test campaign (DTA 120). Lessons learned and the readiness for use at upper level are also highlighted.

  7. Plantar calcaneal spurs in older people: longitudinal traction or vertical compression?

    PubMed

    Menz, Hylton B; Zammit, Gerard V; Landorf, Karl B; Munteanu, Shannon E

    2008-08-11

    Plantar calcaneal spurs are common, however their pathophysiology is poorly understood. This study aimed to evaluate the prevalence and correlates of plantar calcaneal spurs in a large sample of older people. Weightbearing lateral foot radiographs of 216 people (140 women and 76 men) aged 62 to 94 years (mean age 75.9, SD 6.6) were examined for plantar calcaneal and Achilles tendon spurs. Associations between the presence of spurs and sex, body mass index, radiographic measures of foot posture, self-reported co-morbidities and current or previous heel pain were then explored. Of the 216 participants, 119 (55%) had at least one plantar calcaneal spur and 103 (48%) had at least one Achilles tendon spur. Those with plantar calcaneal spurs were more likely to have Achilles tendon spurs (odds ratio [OR] = 2.0, 95% confidence interval [CI] 1.2 to 3.5). Prevalence of spurs did not differ according to sex. Participants with plantar calcaneal spurs were more likely to be obese (OR = 7.9, 95% CI 3.6 to 17.0), report osteoarthritis (OR = 2.6, 95% CI 1.6 to 4.8) and have current or previous heel pain (OR = 4.6, 95% CI 2.3 to 9.4). No relationship was found between the presence of calcaneal spurs and radiographic measures of foot posture. Calcaneal spurs are common in older men and women and are related to obesity, osteoarthritis and current or previous heel pain, but are unrelated to radiographic measurements of foot posture. These findings support the theory that plantar calcaneal spurs may be an adaptive response to vertical compression of the heel rather than longitudinal traction at the calcaneal enthesis.

  8. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running

    PubMed Central

    McDonald, Kirsty A.; Stearne, Sarah M.; Alderson, Jacqueline A.; North, Ian; Pires, Neville J.; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running. PMID:27054319

  9. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    PubMed

    McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  10. Saccadic Eye Movement Improves Plantar Sensation and Postural Balance in Elderly Women.

    PubMed

    Bae, Youngsook

    2016-06-01

    Vision, proprioception and plantar sensation contribute to the control of postural balance (PB). Reduced plantar sensation alters postural response and is at an increased risk of fall, and eye movements reduce the postural sway. Therefore, the aim of this study was to study the improvement of plantar sensation and PB after saccadic eye movement (SEM) and pursuit eye movement (PEM) in community-dwelling elderly women. Participants (104 females; 75.11 ± 6.25 years) were randomly allocated into the SEM group (n = 52) and PEM groups (n = 52). The SEM group performed eye fixation and SEM for 5 minutes, and the PEM group performed eye fixation and PEM for 5 minutes. The plantar sensation was measured according to the plantar surface area of the feet in contact with the floor surface before and after the intervention. Before and after SEM and PEM with the eyes open and closed, PB was measured as the area (mm(2)), length (cm), and velocity (cm/s) of the fluctuation of the center of pressure (COP). The plantar sensation of both feet improved in both groups (p < 0.01). Significant decreases in the area, length, and velocity of the COP were observed in the eye open and close in both groups (p < 0.01). The length and velocity of the COP significantly decreased in the SEM group compared to the PEM group (p < 0.05). In conclusion, SEM and PEM are effective interventions for improving plantar sensation and PB in elderly women, with greater PB improvement after SEM.

  11. Musculoskeletal and activity-related factors associated with plantar heel pain.

    PubMed

    Sullivan, Justin; Burns, Joshua; Adams, Roger; Pappas, Evangelos; Crosbie, Jack

    2015-01-01

    Despite the prevalence and impact of plantar heel pain, its etiology remains poorly understood, and there is no consensus regarding optimum management. The identification of musculoskeletal factors related to the presence of plantar heel pain could lead to the development of better targeted intervention strategies and potentially improve clinical outcomes. The aim of this study was to investigate relationships between a number of musculoskeletal and activity-related measures and plantar heel pain. In total, 202 people with plantar heel pain and 70 asymptomatic control participants were compared on a variety of musculoskeletal and activity-related measures, including body mass index (BMI), foot and ankle muscle strength, calf endurance, ankle and first metatarsophalangeal (MTP) joint range of motion, foot alignment, occupational standing time, exercise level, and generalized hypermobility. Following a comparison of groups for parity of age, analyses of covariance were performed to detect differences between the 2 groups for any of the variables measured. The plantar heel pain group displayed a higher BMI, reduced ankle dorsiflexion range of motion, reduced ankle evertor and toe flexor strength, and an altered inversion/eversion strength ratio. There were no differences between groups for foot alignment, dorsiflexor or invertor strength, ankle inversion or eversion range of motion, first MTP joint extension range of motion, generalized hypermobility, occupational standing time, or exercise level. Plantar heel pain is associated with higher BMI and reductions in some foot and ankle strength and flexibility measures. Although these factors could be either causal or consequential, they are all potentially modifiable and could be targeted in the management of plantar heel pain. Level III, comparative study. © The Author(s) 2014.

  12. Plantar calcaneal spurs in older people: longitudinal traction or vertical compression?

    PubMed Central

    Menz, Hylton B; Zammit, Gerard V; Landorf, Karl B; Munteanu, Shannon E

    2008-01-01

    Background Plantar calcaneal spurs are common, however their pathophysiology is poorly understood. This study aimed to evaluate the prevalence and correlates of plantar calcaneal spurs in a large sample of older people. Methods Weightbearing lateral foot radiographs of 216 people (140 women and 76 men) aged 62 to 94 years (mean age 75.9, SD 6.6) were examined for plantar calcaneal and Achilles tendon spurs. Associations between the presence of spurs and sex, body mass index, radiographic measures of foot posture, self-reported co-morbidities and current or previous heel pain were then explored. Results Of the 216 participants, 119 (55%) had at least one plantar calcaneal spur and 103 (48%) had at least one Achilles tendon spur. Those with plantar calcaneal spurs were more likely to have Achilles tendon spurs (odds ratio [OR] = 2.0, 95% confidence interval [CI] 1.2 to 3.5). Prevalence of spurs did not differ according to sex. Participants with plantar calcaneal spurs were more likely to be obese (OR = 7.9, 95% CI 3.6 to 17.0), report osteoarthritis (OR = 2.6, 95% CI 1.6 to 4.8) and have current or previous heel pain (OR = 4.6, 95% CI 2.3 to 9.4). No relationship was found between the presence of calcaneal spurs and radiographic measures of foot posture. Conclusion Calcaneal spurs are common in older men and women and are related to obesity, osteoarthritis and current or previous heel pain, but are unrelated to radiographic measurements of foot posture. These findings support the theory that plantar calcaneal spurs may be an adaptive response to vertical compression of the heel rather than longitudinal traction at the calcaneal enthesis. PMID:18822162

  13. Can the Foot Posture Index or their individual criteria predict dynamic plantar pressures?

    PubMed

    Sánchez-Rodríguez, Raquel; Martínez-Nova, Alfonso; Escamilla-Martínez, Elena; Pedrera-Zamorano, Juan Diego

    2012-07-01

    The Foot Posture Index (FPI) quantifies foot posture through the evaluation of six individual criteria. The objective of the present study was then to establish the plantar pressure differences between types of feet, and to study the capacity of the whole FPI value and the six individual criteria to predict the pattern of plantar pressures. In a sample of 400 healthy subjects (201 men and 199 women), the FPI was evaluated and plantar pressures were measured in 10 zones using the Footscan(®) platform. Five plantar pressures measurements were made for each foot, using for the study the mean of these measurements for each subject's left foot. The hallux and the lesser toes had lower pressure indices in highly supinated feet, with the values increasing progressively toward the highly pronated feet (p<0.001 and p=0.019 respectively). The fifth metatarsal head (MTH) values were greater in highly supinated feet, and decreased in the highly pronated feet (p<0.001). The FPI value predicts low variability of plantar pressures, mainly in the heel and midfoot, while the individual criteria predict higher variability in the forefoot. The talonavicular prominence and the calcaneal frontal plane position was the most influential criterion, explaining 8.5% of the hallux pressure and 11.1% of the fifth MTH pressure. Neither talar head palpation nor the supra and infra malleolar curvature predicted any of the plantar pressures variables. The FPI can distinguish three groups of feet--pronated, neutral, and supinated. Its individual criteria predict moderate or low plantar pressures variability, with the talonavicular prominence being the most influential criterion. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review)

    PubMed Central

    2013-01-01

    There is an increasing interest by doctors and patients in extracorporeal shock wave therapy (ESWT) for chronic plantar fasciopathy (PF), particularly in second generation radial extracorporeal shock wave therapy (RSWT). The present review aims at serving this interest by providing a comprehensive overview on physical and medical definitions of shock waves and a detailed assessment of the quality and significance of the randomized clinical trials published on ESWT and RSWT as it is used to treat chronic PF. Both ESWT and RSWT are safe, effective, and technically easy treatments for chronic PF. The main advantages of RSWT over ESWT are the lack of need for any anesthesia during the treatment and the demonstrated long-term treatment success (demonstrated at both 6 and 12 months after the first treatment using RSWT, compared to follow-up intervals of no more than 12 weeks after the first treatment using ESWT). In recent years, a greater understanding of the clinical outcomes in ESWT and RSWT for chronic PF has arisen in relationship not only in the design of studies, but also in procedure, energy level, and shock wave propagation. Either procedure should be considered for patients 18 years of age or older with chronic PF prior to surgical intervention. PMID:24004715

  15. Factors associated with chronic plantar heel pain: a systematic review.

    PubMed

    Irving, D B; Cook, J L; Menz, H B

    2006-05-01

    Chronic plantar heel pain (CPHP) is one of the most common soft tissue disorders of the foot, yet its aetiology is poorly understood. The purpose of this systematic review was to examine the association between CPHP and the various aetiological factors reported in the literature. Seven electronic databases and the reference lists of key articles were searched in August 2005. The resulting list of articles was assessed by two independent reviewers according to pre-determined selection criteria and a final list of articles for review was created. The methodological quality of the included articles was assessed and the evidence presented in each of the articles was descriptively analysed. From the 16 included articles, body mass index in a non-athletic population and the presence of calcaneal spur were the two factors found to have an association with CPHP. Increased weight in a non athletic population, increased age, decreased ankle dorsiflexion, decreased first metatarsophalangeal joint extension and prolonged standing all demonstrated some evidence of an association with CPHP. Evidence for static foot posture and dynamic foot motion was inconclusive and height, weight and BMI in an athletic population were not associated with CPHP. The findings of this review should be used to guide the focus of prospective cohort studies, the results of which would ultimately provide a list of risk factors for CPHP. Such a list is essential in the development of new and improved preventative and treatment strategies for CPHP.

  16. Dry cupping for plantar fasciitis: a randomized controlled trial

    PubMed Central

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-01-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested. PMID:28603360

  17. Dry cupping for plantar fasciitis: a randomized controlled trial.

    PubMed

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-05-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested.

  18. [Palmar-plantar erythrodysaesthesia syndrome local cold prevention].

    PubMed

    Serrano Fernández, María Paz; Gutiérrez Vilella, María Jesús; Pérez Martín-Palanco, Angeles; Vanaclocha Sebastián, Francisco; Cabezón Gutiérrez, Luis

    2011-09-01

    to evaluate the role of local cold applied to the tips on the prevention of palmar-plantar erythrodysaesthesia (PPE) caused by pegylated liposomal doxorubicin (PLD). from may 2006 to june 2009, 8 patients with cutaneous T-cell lymphoma mycosis fungoides type were treated with PLD. The median age was 56 years and was administered a total of 63 cycle, with an average of 7.87 cycle per person, with a dose of PLD 20 mg/m2 every 2 weeks. All patients had premedication with dexamethasone, ondasetron and pyridoxine. At the time all were given prophylaxis with local cold for an hour only one patient had grade 4 PPE (12.5%), which appeared after the first cycle, subsequent can manage a total of 10. In absolute terms was recorded EPP grade 4 only 1.58% of cycles administered (1/63). In the remaining patients there was no degree of EPP. this paper demonstrates the effectiveness of several preventive measures (pyridoxine, corticosteroid and local cold) in the prevention of the PPE.

  19. Palmar-plantar hyperpigmentation with capecitabine in adjuvant colon cancer.

    PubMed

    Vickers, Michael M; Easaw, Jacob C

    2008-01-01

    Capecitabine (XELODA) is a chemotherapeutic agent used widely in the treatment of adjuvant/metastatic colon cancer and metastatic breast cancer. It is usually well tolerated; however, one of the major side effects, hand-foot syndrome (HFS), can be quite disabling. Hyperpigmentation is currently not part of the grading system of HFS, but may be a marker of developing toxicity. Here, we describe three patients treated with adjuvant capecitabine for colon cancer (a 49-year-old East Indian man, a 58-year-old Asian woman, and a 54-year-old Aboriginal man) who developed moderate to severe HFS requiring delay and dose reduction. In every case, toxic side effects were preceded by hyperpigmented macules on the hands and feet. Hyperpigmentation of the hands and feet is a rare side effect with capecitabine chemotherapy and appeared to predict impending grade 2 HFS in our patients. Clinicians and health care workers in oncology should be aware of this potential side effect; however, further investigation is required to determine whether or not palmar-plantar hyperpigmentation should be included in the spectrum of HFS. Hyperpigmentation may also be more common in the non-Caucasian populations but more research is required to determine the ethnic distribution of this finding.

  20. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect

    Reuter, R.C. Jr.

    1980-09-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptablemore » levels and methods of controlling it, are presented and discussed.« less

  1. Torque compensation technology for the geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Wang, Lusha; Chen, Shilu; Li, Qing

    2009-12-01

    To acquire high quality image, the new generation Geostationary Meteorological Satellite in China (GMSC) adopts three-axis stabilized attitude control mode, besides an advanced control system is required to be designed to get higher pointing precision and degree of stability of the satellite. However, the ability of the control system is limited. Torque compensation technology is studied in this paper aiming at rejecting the disturbance factors, which cannot be absorbed by the control system. In the research of torque compensation technology, the main factors that influence the degree of stability of satellite are analyzed; the objects compensated are confirmed through analysis of simulation; the system technical concept of torque compensation is designed; the mathematical models of the compensated objects and compensation devices are founded; the torque compensation arithmetic is designed; the valid arithmetic of torque compensation is proved through simulation. The research provides theoretical principles to develop the new generation GMSC.

  2. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  3. Perspective: Interface generation of spin-orbit torques

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-11-14

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  4. Lower Extremity Muscle Activation and Knee Flexion During a Jump-Landing Task

    PubMed Central

    Walsh, Meghan; Boling, Michelle C.; McGrath, Melanie; Blackburn, J. Troy; Padua, Darin A.

    2012-01-01

    Context Decreased sagittal-plane motion at the knee during dynamic tasks has been reported to increase impact forces during landing, potentially leading to knee injuries such as anterior cruciate ligament rupture. Objective To describe the relationship between lower extremity muscle activity and knee-flexion angle during a jump-landing task. Design Cross-sectional study. Setting Research laboratory. Patients or Other Participants Thirty recreationally active volunteers (15 men, 15 women: age = 21.63 ± 2.01 years, height = 173.95 ± 11.88 cm, mass = 72.57 ± 14.25 kg). Intervention(s) Knee-flexion angle and lower extremity muscle activity were collected during 10 trials of a jump-landing task. Main Outcome Measure(s) Simple correlation analyses were performed to determine the relationship between each knee-flexion variable (initial contact, peak, and displacement) and electromyographic amplitude of the gluteus maximus (GMAX), quadriceps (VMO and VL), hamstrings, gastrocnemius, and quadriceps : hamstring (Q : H) ratio. Separate forward stepwise multiple regressions were conducted to determine which combination of muscle activity variables predicted each knee-flexion variable. Results During preactivation, VMO and GMAX activity and the Q : H ratio were negatively correlated with knee-flexion angle at initial contact (VMO: r = −0.382, P = .045; GMAX: r = −0.385, P = .043; Q : H ratio: r = −0.442, P = .018). The VMO, VL, and GMAX deceleration values were negatively correlated with peak knee-flexion angle (VMO: r = −0.687, P = .001; VL: r = −0.467, P = .011; GMAX: r = −0.386, P = .043). The VMO and VL deceleration values were negatively correlated with knee-flexion displacement (VMO: r = −0.631, P = .001; VL: r = −0.453, P = .014). The Q : H ratio and GM activity predicted 34.7% of the variance in knee-flexion angle at initial contact (P = .006). The VMO activity predicted 47.1% of the variance in peak knee-flexion angle (P = .001

  5. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  6. Displacement of Implant Abutments Following Initial and Repeated Torqueing.

    PubMed

    Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2015-01-01

    To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of a