Science.gov

Sample records for planted ancient woodland

  1. Ancient woodlands: modern threats.

    PubMed

    Rackham, Oliver

    2008-01-01

    This review discusses the following adverse influences on long-established forests, wood-pastures, and savannas in Europe and other continents: destruction and fragmentation; depletion; pollution and eutrophication; fire and lack of fire; excessive shade; excessive numbers of deer; invasive species and cultivars; infilling of savanna; climate change; and globalization of plant diseases. Human influences on the world's mainland forests and savannas have been pervasive throughout the Holocene, to the extent that recovering 'virgin forest' becomes a somewhat nebulous conservation objective. Present and future threats arise both from increasing human activities and from withdrawal of the human activities that have shaped forests in the past. The severity of different threats depends on so many factors, especially the properties of different plants and animals, that generalization is impossible; however, in the long term, spread of pathogens is probably the most serious threat.

  2. Phytoliths in woody plants from the Miombo woodlands of Mozambique

    PubMed Central

    Mercader, Julio; Bennett, Tim; Esselmont, Chris; Simpson, Steven; Walde, Dale

    2009-01-01

    Background and Aims There are no descriptions of phytoliths produced by plants from the ‘Zambezian’ zone, where Miombo woodlands are the dominant element of the largest single phytochorion in sub-Saharan Africa. The preservation of phytoliths in fossil records of Africa makes phytoliths a tool to study early plant communities. Paleo-ethnobotanical interpretation of phytoliths relies on the comparison of ancient types with morphotypes extracted from living reference collections. Methods Phytoliths were extracted from plant samples representing 41 families, 77 genera and 90 species through sonic cleaning, dry ashing and acid treatment; and phytoliths thus extracted were quantified. For each species, an average of 216 phytoliths were counted. The percentage of each morphotype identified per species was calculated, and types were described according to the descriptors from the International Code for Phytolith Nomenclature. Phytolith assemblages were subject to discriminant analysis, cluster analysis and principal component analysis. Key Results Phytoliths were grouped into 57 morphotypes (two were articulated forms and 55 were discrete shapes), and provide a reference collection of phytolith assemblages produced by Miombo woody species. Common and unique morphotypes are described and taxonomic and grouping variables are looked into from a statistical perspective. Conclusions The first quantitative taxonomy of phytoliths from Miombos is presented here, including new types and constituting the most extensive phytolith key for any African ecoregion. Evidence is presented that local woody species are hypervariable silica producers and their phytolith morphotypes are highly polymorphic. The taxonomic significance of these phytoliths is largely poor, but there are important exceptions that include the morphotypes produced by members from >10 families and orders. The typical phytolithic signal that would allow scientists to identify ancient woodlands of

  3. Phytoliths in woody plants from the Miombo woodlands of Mozambique.

    PubMed

    Mercader, Julio; Bennett, Tim; Esselmont, Chris; Simpson, Steven; Walde, Dale

    2009-07-01

    There are no descriptions of phytoliths produced by plants from the 'Zambezian' zone, where Miombo woodlands are the dominant element of the largest single phytochorion in sub-Saharan Africa. The preservation of phytoliths in fossil records of Africa makes phytoliths a tool to study early plant communities. Paleo-ethnobotanical interpretation of phytoliths relies on the comparison of ancient types with morphotypes extracted from living reference collections. Phytoliths were extracted from plant samples representing 41 families, 77 genera and 90 species through sonic cleaning, dry ashing and acid treatment; and phytoliths thus extracted were quantified. For each species, an average of 216 phytoliths were counted. The percentage of each morphotype identified per species was calculated, and types were described according to the descriptors from the International Code for Phytolith Nomenclature. Phytolith assemblages were subject to discriminant analysis, cluster analysis and principal component analysis. Phytoliths were grouped into 57 morphotypes (two were articulated forms and 55 were discrete shapes), and provide a reference collection of phytolith assemblages produced by Miombo woody species. Common and unique morphotypes are described and taxonomic and grouping variables are looked into from a statistical perspective. The first quantitative taxonomy of phytoliths from Miombos is presented here, including new types and constituting the most extensive phytolith key for any African ecoregion. Evidence is presented that local woody species are hypervariable silica producers and their phytolith morphotypes are highly polymorphic. The taxonomic significance of these phytoliths is largely poor, but there are important exceptions that include the morphotypes produced by members from >10 families and orders. The typical phytolithic signal that would allow scientists to identify ancient woodlands of 'Zambezian' affiliation comprises only half of the original number of

  4. Genetic structure in populations of an ancient woodland sedge, Carex sylvatica Hudson, at a regional and local scale.

    PubMed

    Arens, P; Bijlsma, R-J; van't Westende, W; van Os, B; Smulders, M J M; Vosman, B

    2005-07-01

    Wood sedge (Carex sylvatica) is a well-known ancient woodland species with a long-term persistent seed bank and a caespitose growth habit. All thirteen isolated Carex sylvatica populations in the Dutch Rhine floodplain (including the river branches Waal and IJssel) were mapped in detail and analysed for genetic variation at a large number of AFLP loci and one microsatellite locus. Across all populations, only 40 % of the sampled individuals (n=216) represented a unique genotype. A high number of the studied patches (spatial clusters of tussocks, 2-10 m in diameter) within populations contained only one or a few genotypes. Identical plants (tussocks) were also found 20-500 m apart and in one case even 1000 m apart. Observed heterozygosity levels (H(O)=0.029) were low, indicating low levels of gene flow, which is in agreement with the selfing nature of other caespitose sedges. Although the number of genotypes in populations is low, these genotypes are genetically very distinct and variation within populations accounted for 55% of the total variation. The absence of a correlation between genetic and geographic distances among populations, and the scattered distribution of genotypes among patches within woodlands, support our hypothesis of rare establishments and subsequent local dispersal within woodlands in this forest floor species, which may benefit from and partly depend on human land use and forest management activities.

  5. Avian use of natural versus planted woodlands in eastern South Dakota, USA

    USGS Publications Warehouse

    Bakker, K.K.; Higgins, K.F.

    2003-01-01

    We compared avian use of naturally occurring and planted woodlands in eastern South Dakota, USA, to evaluate whether planted woodlands support the same avian communities as natural woodlands. A stratified cluster sample was used to randomly select 307 public areas in which to survey planted (n = 425) and natural (n = 99) woodland patches. Eighty-five species of birds were detected in eastern South Dakota woodlands, 36 of which occurred in ??? 5 of 524 patches surveyed. The probability of occurrence for 8 of 13 woodland-obligate species was significantly greater in natural woodland habitats than in planted woodland habitats. Four of these species breed in relatively high numbers in eastern South Dakota. Only one woodland-obligate occurred less frequently in natural woodlands. Probability of occurrence for 6 edge and generalist species, including the brown-headed cowbird (Molothrus ater [Boddaert]), was significantly higher in planted woodlands. The avian community of planted woodlands was dominated by edge and generalist species. The homogeneous vegetation structure typical of planted woodlands does not appear to provide the habitat characteristics needed by woodland-obligate birds. We conclude that planted woodlands do not support significant numbers of woodland-obligate species and may negatively impact grassland-nesting birds by attracting edge and generalist bird species and predators into previously treeless habitats. Planted woodlands cannot be considered equal replacement habitats for natural woodland patches when managing for nongame woodland bird species. However, the preservation and maintenance of natural woodlands is critical for woodland-obligate species diversity in the northern Great Plains.

  6. Successful de-fragmentation of woodland by planting in an agricultural landscape? An assessment based on landscape indicators.

    PubMed

    Quine, C P; Watts, K

    2009-01-01

    Habitat fragmentation is the focus of much conservation concern and associated research. In some countries, such as Britain, the main phase of fragmentation occurred centuries ago and the focus of conservation management is now on restoration and recovery. Scenario studies have suggested that spatial targeting is preferable if landscape scale restoration is to be achieved, and that this should bring greater benefits than site-focussed activities but this has rarely been tested in practice. In Britain, woodland expansion has been encouraged through a number of financial incentives, which have evolved from instruments that encouraged almost any addition to the potential woodland resource, to grant schemes that have set out to restore connectivity to remnant ancient woodland. This study assessed the degree of de-fragmentation achieved by woodland expansion on the Isle of Wight and in particular the success of spatial targeting of new woodland planting implemented through grant aid in the JIGSAW (Joining and Increasing Grant Scheme for Ancient Woodland) scheme. Five steps in the re-development of broad-leaved woodland were tested using eight indicators - six commonly used landscape metrics, and two ecologically scaled indicators derived from application of least-cost network evaluation. Only half of the measures indicated de-fragmentation over the whole sequence of five steps. However, the spatial targeting did appear successful, when compared to equivalent untargeted grant-aided woodland expansion, and resulted in positive change to six of the eight indicators. We discuss the utility of the indicators and ways in which future targeting could be supported by their application.

  7. Ancient DNA extraction from plants.

    PubMed

    Kistler, Logan

    2012-01-01

    A variety of protocols for DNA extraction from archaeological and paleobotanical plant specimens have been proposed. This is not surprising given the range of taxa and tissue types that may be preserved and the variety of conditions in which that preservation may take place. Commercially available DNA extraction kits can be used to recover ancient plant DNA, but modifications to standard approaches are often necessary to improve yield. In this chapter, I describe two protocols for extracting DNA from small amounts of ancient plant tissue. The CTAB protocol, which I recommend for use with single seeds, utilizes an incubation period in extraction buffer and subsequent chloroform extraction followed by DNA purification and suspension. The PTB protocol, which I recommend for use with gourd rind and similar tissues, utilizes an overnight incubation of pulverized tissue in extraction buffer, removal of the tissue by centrifugation, and DNA extraction from the buffer using commercial plant DNA extraction kits.

  8. The ancient blue oak woodlands of California: longevity and hydroclimatic history

    USGS Publications Warehouse

    Stahle, D.W.; Griffin, R.D.; Meko, D.M.; Therrell, M.D.; Edmondson, J.R.; Cleaveland, M.K.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; Dettinger, M.D.; Cayan, D.R.

    2013-01-01

    Ancient blue oak trees are still widespread across the foothills of the Coast Ranges, Cascades, and Sierra Nevada in California. The most extensive tracts of intact old-growth blue oak woodland appear to survive on rugged and remote terrain in the south Coast Ranges and on the foothills west and southwest of Mt. Lassen. In our sampling of old-growth stands, most blue oak appear to have recruited to the canopy in the mid- to late-19th century. The oldest living blue oak tree sampled was over 459-years old and several dead blue oak logs had over 500 annual rings. Precipitation sensitive tree-ring chronologies up to 700-years long have been developed from old blue oak trees and logs. Annual ring-width chronologies of blue oak are strongly correlated with cool season precipitation totals, streamflow in the major rivers of California, and the estuarine water quality of San Francisco Bay. A new network of 36 blue oak chronologies records spatial anomalies in growth that arise from latitudinal changes in the mean storm track and location of landfalling atmospheric rivers. These long, climate-sensitive blue oak chronologies have been used to reconstruct hydroclimatic history in California and will help to better understand and manage water resources. The environmental history embedded in blue oak growth chronologies may help justify efforts to conserve these authentic old-growth native woodlands.

  9. Taxonomic homogenization of woodland plant communities over 70 years.

    PubMed

    Keith, Sally A; Newton, Adrian C; Morecroft, Michael D; Bealey, Clive E; Bullock, James M

    2009-10-07

    Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss.

  10. Ancient plant DNA in lake sediments.

    PubMed

    Parducci, Laura; Bennett, Keith D; Ficetola, Gentile Francesco; Alsos, Inger Greve; Suyama, Yoshihisa; Wood, Jamie R; Pedersen, Mikkel Winther

    2017-04-03

    Contents I. II. III. IV. V. VI. VII. VIII. IX. X. XI. References SUMMARY: Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras. Hitherto, ancient frozen soils have proved excellent in preserving DNA molecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a few metres from the sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNA from lake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here, we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progress made up to the present. We argue that aDNA analyses add new and additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.

  11. Modeling the effectiveness of tree planting to mitigate habitat loss in blue oak woodlands

    Treesearch

    Richard B. Standiford; Douglas McCreary; William Frost

    2002-01-01

    Many local conservation policies have attempted to mitigate the loss of oak woodland habitat resulting from conversion to urban or intensive agricultural land uses through tree planting. This paper models the development of blue oak (Quercus douglasii) stand structure attributes over 50 years after planting. The model uses a single tree, distance...

  12. Antifungal activity in seed coat extracts of woodland plants.

    PubMed

    Warr, Susan J; Thompson, Ken; Kent, Martin

    1992-11-01

    Aqueous extracts from seeds of four woodland ground flora species (Hyacinthoides non-scripta, Allium ursinum, Digitalis purpurea and Hypericum pulchrum) were tested for antifungal activity using a petriplate technique. Four species of fungi were investigated. The growth of three of these (Trichoderma viride, Rhizoctonia solani and Pythium sp.) was not affected by any of the seed coat extracts. The growth of Botrytis cinerea was inhibited by the seed coat extracts of Digitalis purpurea and Hypericum pulchrum but not by those of Hyacinthoides non-scripta or Allium ursinum. The buried seeds of Digitalis purpurea and Hypericum pulchrum can survive in woodland soils for long periods, whereas those of Hyacinthoides non-scripta and Allium ursinum are short-lived. The presence of antifungal agents in the seed coats of persistent species and their possible role in protecting seeds against fungal pathogens is discussed.

  13. Plant establishment and soil microenvironments in Utah juniper masticated woodlands

    Treesearch

    Kert R. Young

    2012-01-01

    Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.) and bunchgrass communities has reduced understory plant cover and allowed juniper trees to dominate millions of hectares of semiarid rangelands. Trees are mechanically masticated or shredded to decrease wildfire potential and increase desirable understory plant cover. When trees are masticated after...

  14. Declines in woodland salamander abundance associated with non-native earthworm and plant invasions.

    PubMed

    Maerz, John C; Nuzzo, Victoria A; Blossey, Bernd

    2009-08-01

    Factors that negatively affect the quality of wildlife habitat are a major concern for conservation. Non-native species invasions, in particular, are perceived as a global threat to the quality of wildlife habitat. Recent evidence indicates that some changes to understory plant communities in northern temperate forests of North America, including invasions by 3 non-native plant species, are facilitated by non-native earthworm invasion. Furthermore, non-native earthworm invasions cause a reduction in leaf litter on the forest floor, and the loss of forest leaf litter is commonly associated with declines in forest fauna, including amphibians. We conducted a mark-recapture study of woodland salamander abundance across plant invasion fronts at 10 sites to determine whether earthworm or plant invasions were associated with reduced salamander abundance. Salamander abundance declined exponentially with decreasing leaf litter volume. There was no significant relationship between invasive plant cover and salamander abundance, independent of the effects of leaf litter loss due to earthworm invasion. An analysis of selected salamander prey abundance (excluding earthworms) at 4 sites showed that prey abundance declined with declining leaf litter. The loss of leaf litter layers due to non-native earthworm invasions appears to be negatively affecting woodland salamander abundance, in part, because of declines in the abundance of small arthropods that are a stable resource for salamanders. Our results demonstrate that earthworm invasions pose a significant threat to woodland amphibian fauna in the northeastern United States, and that plant invasions are symptomatic of degraded amphibian habitat but are not necessarily drivers of habitat degradation.

  15. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands.

    Treesearch

    D.W. Peterson; P.B. Reich; K.J. Wrage

    2007-01-01

    We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...

  16. Temporally-limited herbaceous plants significantly contribute to semi-arid woodland ecohydrological fluxes

    NASA Astrophysics Data System (ADS)

    Tyler, A. P.; Scott, R. L.; Huxman, T. E.

    2010-12-01

    Study of the ephemeral components of ecosystems is often overlooked, yet can be important to our understanding of their ecology, how they affect and interact with biotic and abiotic controls of carbon and water cycling, and to improve our estimates of the components of ecohydrological fluxes given shifts in vegetation structure and climate. Grasslands in the semi-arid areas of the southwestern US have been experiencing increasing woody plant encroachment to become shrublands and woodlands due to factors such as historic changes grazing intensity, fire frequency, and changing atmospheric conditions. In a semi-arid riparian woodland in SE Arizona, ephemeral annual and biennial plants are present and active only during the summer monsoon period, yet they constitute a significant proportion of the ecosystem’s photosynthetic biomass. We have found that although their standing biomass is small compared to the dominant perennial shrubs and trees, these ephemeral herbs represent seasonal bursts of increased activity and primary production disproportional to their standing stock. We are finding that when scaled up to the ecosystem level, these ephemeral plants can contribute up to 30% of ecosystem carbon fixation, and affect 20% of morning evapotranspiration. This level of episodic carbon fixation and water flux should be included in our characterization of these systems coupled carbon and water dynamics.

  17. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    NASA Astrophysics Data System (ADS)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  18. Severe dry winter affects plant phenology and carbon balance of a cork oak woodland understorey

    NASA Astrophysics Data System (ADS)

    Correia, A. C.; Costa-e-Silva, F.; Dubbert, M.; Piayda, A.; Pereira, J. S.

    2016-10-01

    Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity? We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP). The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation. Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can

  19. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Treesearch

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren. Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  20. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama.

    PubMed

    MacFadden, Bruce J; Higgins, Pennilyn

    2004-06-01

    Middle Miocene mammals are known from approximately 15 million-year-old sediments exposed along the Panama Canal of Central America, a region that otherwise has an exceedingly poor terrestrial fossil record. These land mammals, which represent a part of the ancient terrestrial herbivore community, include an oreodont Merycochoerus matthewi, small camel-like protoceratid artiodactyl Paratoceras wardi, two horses Anchitherium clarencei and Archaeohippus sp., and two rhinos Menoceras barbouri and Floridaceras whitei. Bulk and serial carbon and oxygen isotope analyses of the tooth enamel carbonate allow reconstruction of the ancient climate and ecology of these fossil mammals. Ancient Panama had an equable climate with seasonal temperature and rainfall fluctuations less than those seen today. The middle Miocene terrestrial community consisted predominantly, or exclusively, of C3 plants, i.e., there is no evidence for C4 grasses. Statistically different mean carbon isotope values for the mammalian herbivores indicate niche partitioning of the C3 plant food resources. The range of individual carbon isotope analyses, i.e., delta13C from -15.9 to -10.1 per thousand, indicates herbivores feeding on diverse plants from different habitats with extrapolated delta13C values of -29.9 to -24.2 per thousand, possibly ranging from dense forest to more open country woodland. The ecological niches of individual mammalian herbivore species were differentiated either by diet or body size.

  1. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  2. TRADITIONAL MEDICINAL PLANTS: ANCIENT AND MODERN APPROACH

    PubMed Central

    Sharma, S. C.; Ahmad, S. Aziz

    1992-01-01

    History of medicine and plants dates back to remote past when herbal treatment was the only answer to all kind of ailments. Nowadays, greater emphasis is again being laid to phytotherapy all over the world. Besides, cultivation-cum-setting up herbal gardens are also mooted on hills and plain areas as management of all kinds of diseases is possible through plant drugs sans toxicity. PMID:22556588

  3. Effect of Site Level Environmental Variables, Spatial Autocorrelation and Sampling Intensity on Arthropod Communities in an Ancient Temperate Lowland Woodland Area

    PubMed Central

    Horak, Jakub

    2013-01-01

    The interaction of arthropods with the environment and the management of their populations is a focus of the ecological agenda. Spatial autocorrelation and under-sampling may generate bias and, when they are ignored, it is hard to determine if results can in any way be trusted. Arthropod communities were studied during two seasons and using two methods: window and panel traps, in an area of ancient temperate lowland woodland of Zebracka (Czech Republic). The composition of arthropod communities was studied focusing on four site level variables (canopy openness, diameter in the breast height and height of tree, and water distance) and finally analysed using two approaches: with and without effects of spatial autocorrelation. I found that the proportion of variance explained by space cannot be ignored (≈20% in both years). Potential bias in analyses of the response of arthropods to site level variables without including spatial co-variables is well illustrated by redundancy analyses. Inclusion of space led to more accurate results, as water distance and tree diameter were significant, showing approximately the same ratio of explained variance and direction in both seasons. Results without spatial co-variables were much more disordered and were difficult to explain. This study showed that neglecting the effects of spatial autocorrelation could lead to wrong conclusions in site level studies and, furthermore, that inclusion of space may lead to more accurate and unambiguous outcomes. Rarefactions showed that lower sampling intensity, when appropriately designed, can produce sufficient results without exploitation of the environment. PMID:24349087

  4. The primary control on ancient land plant diversity is climate

    SciTech Connect

    Raymond, A. . Dept. of Geology)

    1993-03-01

    Reproductive strategy and competition have been proposed as determinants of ancient land plant diversity. However climate is the primary control on modern plant productivity and diversity and may be the primary control on ancient diversity. For Silurian through Mid-Carboniferous land plants, the most profound diversity collapse and the greatest diversity increase occurred during times of global climate change. In the middle to late Frasnian, land plant diversity fell precipitously and remained low through the middle Famennian. Global warming probably triggered this event. Climate models suggest global warming at the end of Frasnian; the cosmopolitan faunas and floras of the Famennian indicate a uniform global climate. The diverse floras of the late Givetian and early Frasnian show pronounced latitudinal differentiation which disappeared after the diversity collapse. The depauperate floras of the late Frasnian--middle Famennian fall into two or three biogeographic units, each of which spans a large paleolatitudinal range. Land plant diversity remained constant during the Early Carboniferous and rose dramatically at the Mid-Carboniferous boundary at the onset of, and perhaps in response to, Southern Hemisphere glaciation. Polar glaciation contributes to ever wet, ever warm tropical climate because polar high pressure zones confine the intertropical convergence zone to a narrow latitudinal belt near the equator. As land plant diversity rose, the paleoequatorial coal belt of the Late Carboniferous became established, suggesting a correlation between increases in land plant diversity and tropical precipitation.

  5. The influence of soil resources and plant traits on invasion and restoration in a subtropical woodland

    USGS Publications Warehouse

    Yelenik, Stephanie G.; D'Antonio, Carla M; August-Schmidt, Elizabeth

    2017-01-01

    It has been shown in some cases that nitrogen (N) addition to soil will increase abundance of plant invaders because many invaders have traits that promote rapid growth in response to high resource supply. Similarly, it has been suggested, and sometimes shown, that decreasing soil N via carbon (C) additions can facilitate native species recovery. Yet all species are unlikely to respond to resource supply in the same way. We asked how soil nutrients and competition affect native and exotic woody species in a restoration experiment where we added N or C, and crossed soil manipulation with the manipulation of dominant exotic grass abundance in a Hawaiian subtropical woodland. We related changes in survival and growth of outplanted individuals to native/exotic status and plant traits. As a group, N-fixers showed reduced survival compared to non-fixers in response to added N, with Morella faya (exotic) and Acacia koa (native) having dramatic negative responses. Among non-fixers, species with greater foliar %N had more positive survival responses to increasing soil N. Specific leaf area was not predictive of responses to nutrients or competition. In general, responses to carbon addition were weak, although reducing competition from existing exotic grasses was beneficial for all outplanted species, with N-fixers showing the most positive response. We conclude that commonly used restoration strategies to clear exotic species or lower soil resources with C addition will most greatly benefit N-fixing species, which themselves may be unwanted invaders. Thus statements about the influence of increased soil N on invasions should be carefully dissected by considering the traits (such as N-fixation status) of the regional species pool.

  6. Ancient-modern concordance in Ayurvedic plants: some examples.

    PubMed Central

    Dev, S

    1999-01-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia. Images Figure 1 Figure 2 PMID:10504143

  7. Ancient-modern concordance in Ayurvedic plants: some examples.

    PubMed

    Dev, S

    1999-10-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia.

  8. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    PubMed

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  9. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape.

    PubMed

    Williams, John N; Hollander, Allan D; O'Geen, A Toby; Thrupp, L Ann; Hanifin, Robert; Steenwerth, Kerri; McGourty, Glenn; Jackson, Louise E

    2011-11-09

    Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision

  10. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    PubMed Central

    2011-01-01

    Background Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Results Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. Conclusions This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create

  11. Survival, growth, and escape from herbivory are determined by habitat and herbivore species for three Australian woodland plants.

    PubMed

    Allcock, Kimberly G; Hik, David S

    2004-01-01

    To understand how plant communities are structured by herbivory it is essential to investigate the roles of different herbivores and the responses of a variety of plant species in different habitats. We examined the effects of mammalian herbivores on survival and growth of transplanted seedlings of two native trees (Eucalyptus albensand Callitris glaucophylla), and one native grass (Themeda australis) in white box ( E. albens) woodlands in eastern Australia over 3 years. Herbivores were manipulated using four fencing treatments that successively excluded livestock, macropods, and rabbits from woodland and grassland (cleared pasture). Survival was highest in the absence of mammalian herbivores and in woodlands, and patterns differed among plant species. Survival of T. australis was low, especially in grasslands, and mortality by overgrowth was common in ungrazed treatments. All plant species were taller in fenced plots, and differences between treatments were greater in grassland. Rabbits and livestock had the greatest influence on C. glaucophylla, while T. australis and E. albens were most affected by livestock and macropods. We used field data to parameterize stage-classified matrix models to predict escape from herbivory (escape height >100 cm) for tree species. Reduced herbivory increased the proportion of individuals reaching escape height after 15 years. Rate of escape was greater in grassland, and this faster growth appeared to counteract much of the negative impact of herbivores. While T. australis was unable to escape herbivory, larger, ungrazed individuals were more likely to flower and therefore contribute to the maintenance of the population. Our results show that habitat and herbivore species strongly influence the effect of herbivory on vegetation.

  12. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    USDA-ARS?s Scientific Manuscript database

    Precipitation patters are expected to change in the Mediterranean region within the next decades, with projected decreases in total rain fall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbustus unedo L., in Central Italy, to study...

  13. Invasive Plants Field and Reference Guide: An Ecological Perspective of Plant Invaders of Forests and Woodlands

    Treesearch

    Cynthia D. Huebner; Cassandra Olson; Heather C. Smith; Heather C. Smith

    2005-01-01

    There are many field guides available about invasive plants and their identification. The purpose of this particular field guide is to give a scientific synthesis of what is known about the behavior of such species in managed, disturbed, and pristine forested systems in addition to key information for accurate identification.

  14. Invasive Plants Field and Reference Guide: An Ecological Perspective of Plant Invaders of Forests and Woodlands

    Treesearch

    Cynthia Huebner; Cassandra Olson; Heather Smith

    2005-01-01

    There are many field guides available about invasive plants and their identification. The purpose of this particular field guide is to give a scientific synthesis of what is known about the behavior of such species in managed, disturbed, and pristine forested systems in addition to key information for accurate identifi...

  15. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE PAGES

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; ...

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductionsmore » in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  16. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  17. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    PubMed Central

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  18. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    PubMed

    Brudvig, Lars A; Orrock, John L; Damschen, Ellen I; Collins, Cathy D; Hahn, Philip G; Mattingly, W Brett; Veldman, Joseph W; Walker, Joan L

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  19. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  20. Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland.

    PubMed

    Daryanto, Stefani; Eldridge, David J

    2010-12-01

    Shrub encroachment into open woodland is a widespread phenomenon in semi-arid woodlands worldwide. Encroachment or woody thickening, is thought to result from overgrazing, changes in fire regimes and increased atmospheric carbon dioxide concentrations. Eighteen years after one-off shrub removal by ploughing we assessed the effects of four different land management systems resulting from two levels each of grazing (grazed, ungrazed) with and without ploughing, on the cover of landscape units, soil surface condition, diversity of understorey plants and density of shrubs. We recorded 2-7 times more patches under conventional conservation (unploughed-ungrazed) than the others treatments, and plant cover and diversity were greater on the two conservation (ungrazed) plots, irrespective of ploughing. Soils under shrubs and log mounds had greater indices of infiltration, stability and nutrients. Shrub density under the active pastoral (ploughed-grazed) treatment was two and a half times greater than that in other treatments, but results were not significant. The effects of different treatments on shrubs were largely species-specific. Overall, our results suggest that ploughing does not provide long-term control of encroaching shrubs. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  1. Conifer encroachment in California oak woodlands

    Treesearch

    Matthew I. Cocking; J. Morgan Varner; Eamon A. Engber

    2015-01-01

    California deciduous oak woodlands provide many ecological, cultural, and economic benefits, and often represent unique plant communities that harbor native rare and declining species. Oak woodlands have suffered substantial losses in area and ecological integrity in the post-settlement era due to land conversion and widespread fire exclusion. Remnant oak woodlands in...

  2. Responses in plant, soil inorganic and microbial nutrient pools to experimental fire, ash and biomass addition in a woodland savanna.

    PubMed

    Jensen, Michael; Michelsen, Anders; Gashaw, Menassie

    2001-06-01

    In order to investigate the effects of savanna fires on nutrient cycling a field experiment was carried out in an open woodland savanna of southwest Ethiopia. This involved manipulations of fire, fuel load and ash fertilisation in a fully factorial design, and recording of responses in plants, soil inorganic and microbial nutrient pools up to 1 year after the disturbances. As plant biomass nitrogen (N) was only 3.5% of that in topsoil the N loss in a single fire event was relatively small. The microbial N pool size in the topsoil was similar to the N pool size in the aboveground part of the plants. Soil microbial biomass carbon increased slightly 12 days after the low severity fire, but the effect was transient and was not accompanied by an increase in microbial N. Instead, the soil inorganic N concentration increased strongly 1 day after the fire, remained higher up to 3 months after the fire and probably caused the 40% higher grass biomass in burned than unburned plots, and the similar sized increase in grass nitrogen, phosphorus and potassium pools in the following rainy season. In contrast, broad-leaved herbs showed less strong increments in biomass and nutrient pool sizes. Fire interacted with fuel load, as burning of plots with double plant biomass led to reduced microbial biomass, plant nutrient pools and herb (but not grass) biomass. Low-severity-fire nutrient losses appear to be moderate and may be replenished from natural sources. However, in areas with frequent fires and high grass biomass (fuel) loads, or with late fires, nutrient losses could be much larger and non-sustainable to the persistence of the woodland savanna ecosystem.

  3. Woodland Detection.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1989-01-01

    Presents tips on nature observation during a woodland hike in the Adirondacks. Discusses engraver beetles and Dutch elm disease, birds' nests, hornets' nests, caterpillar webs, deer and bear signs, woodpecker holes, red squirrels, porcupine and beaver signs, and galls. (SV)

  4. Woodland Detection.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1989-01-01

    Presents tips on nature observation during a woodland hike in the Adirondacks. Discusses engraver beetles and Dutch elm disease, birds' nests, hornets' nests, caterpillar webs, deer and bear signs, woodpecker holes, red squirrels, porcupine and beaver signs, and galls. (SV)

  5. Limits to Understory Plant Restoration Following Fuel-Reduction Treatments in a Piñon-Juniper Woodland

    NASA Astrophysics Data System (ADS)

    Redmond, Miranda D.; Zelikova, Tamara J.; Barger, Nichole N.

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  6. Limits to understory plant restoration following fuel-reduction treatments in a piñon-juniper woodland.

    PubMed

    Redmond, Miranda D; Zelikova, Tamara J; Barger, Nichole N

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  7. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  8. The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pinemountain mahogany woodland

    USGS Publications Warehouse

    Waitman, B.A.; Draper, T.M.; Esque, T.C.

    2009-01-01

    Post-fire seeding with grasses is a common practice for emergency rehabilitation of burned woodlands. However, most post-seeding monitoring does not address consequences to native flora. In November 2004, the US Forest Service hand-seeded triticale (Triticosecale Wittm. ex A. Camus), a sterile wheatrye hybrid, on a small burned area in the Spring Mountains of southern Nevada, United States. A monitoring project using paired plots was designed to quantify the effects of seeding triticale on density and species richness of native annual and perennial plants, cover of perennial plants, and aboveground production of annual plants. We did not find any effects of triticale seeding on annual plant species or most responses of perennial plants. However, the density of woody perennial seedlings was significantly lower 2 years after triticale was added. Although we found a smaller impact from seeding with exotic grass than other studies, quantifiable costs to native vegetation were observed. We caution against the use of non-native grass for seeding in areas with naturally low perennial recruitment. ?? IAWF 2009.

  9. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  10. Kansas woodlands.

    Treesearch

    Clarence D. Chase; John K. Strickler

    1968-01-01

    The report presents statistics on area, volume, growth, mortality, and timber use. Projections of expected timber volumes 30 years in the future are also presented. These data are discussed with regard to possible future development and use of the state's woodlands.

  11. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  12. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.

    PubMed

    Tiley, George P; Ané, Cécile; Burleigh, J Gordon

    2016-04-11

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses.

  13. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  14. Competitive responses of seedlings and understory plants in longleaf pine woodlands: separating canopy influences above and below ground

    Treesearch

    Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers

    2007-01-01

    A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...

  15. Late pleistocene history of coniferous woodland in the mohave desert.

    PubMed

    Wells, P V; Berger, R

    1967-03-31

    Seventeen ancient wood-rat middens, ranging in radiocarbon age from 7400 to 19,500 years and to older than 40,000 years, have been uncovered in the northeastern, north-central, southeastern, and southwestern sectors of the Mohave Desert. Excellent preservation of macroscopic plant materials (including stems, buds, leaves, fruits, and seeds) enables identification of many plant species growing within the limited foraging range of the sedentary wood rat. An approximately synchronous zonal differentiation of vegetation in response to a gradient of elevation on limestone in the northeastern Mohave Desert is apparent from the macrofossil evidence, preserved in wood-rat middens and ground-sloth coprolites, covering a time span bracketed by radiocarbon ages of about 9000 and 10,000 years. XerophilQus juniper woodlands descended to an elevation of 1100 meters, some 600 meters below the present lower limit of woodland (1700 meters) in the latitude of Frenchman Flat. But desert or semidesert shrubs coexisted with the woodland trees throughout much of the span of elevation corresponding to the pluvial lowering of the woodland zone, and the more mesophytic phase of pinyonjuniper woodland was evidently confined to montane habitats at elevations above 1500 meters. Joshua trees, accompanied by desert shrubs, prevailed down to about 600 meters at Gypsum Cave, Nevada, but only the shrubs of the existing warm-desert vegetation occurred at 530 meters near Rampart Cave, Arizona. Pleistocene middens from the southeastern Mohave Desert record a relatively large downward shift of the pinyon-juniper woodland zone, paralleling the remarkably low minimum elevation of the existing woodland zone in that area. The macrofossil evidence speaks for former continuity of the many disjunct stands of woodland vegetation in the Mohave Desert region, at least along the higher divides connecting most of the ranges. However, there is no macrofossil evidence of pluvial continuity of range for the more

  16. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland.

    PubMed

    He, Xinhua; Bledsoe, Caroline S; Zasoski, Robert J; Southworth, Darlene; Horwath, William R

    2006-01-01

    Nitrogen transfer among plants in a California oak woodland was examined in a pulse-labeling study using 15N. The study was designed to examine N movement among plants that were mycorrhizal with ectomycorrhizas (EM), arbuscular mycorrhizas (AM), or both. Isotopically enriched N (K15NO3-) was applied to gray pine (Pinus sabiniana) foliage (donor) and traced to neighboring gray pine, blue oak (Quercus douglasii), buckbrush (Ceanothus cuneatus) and herbaceous annuals (Cynosurus echinatus, Torilis arvensis and Trifolium hirtum). After 2 wk, needles of 15N-treated pines and foliage from nearby annuals were similarly enriched, but little 15N had appeared in nontreated (receiver) pine needles, oak leaves or buckbrush foliage. After 4 wk foliar and root samples from pine, oak, buckbrush and annuals were significantly 15N-enriched, regardless of the type of mycorrhizal association. The rate of transfer during the first and second 2-wk periods was similar, and suggests that 15N could continue to be mobilized over longer times.

  17. Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats

    Treesearch

    Robert J. Warren; Jeffrey K. Lake

    2012-01-01

    Aims: The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying...

  18. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    USGS Publications Warehouse

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  19. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    PubMed Central

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability. PMID:25709807

  20. The genesis and exodus of vascular plant DOM from an oak woodland landscape

    NASA Astrophysics Data System (ADS)

    Hernes, Peter J.; Spencer, Robert G. M.; Dyda, Rachael Y.; O'Geen, Anthony T.; Dahlgren, Randy A.

    2017-02-01

    Evaluating the collective impact of small source inputs to larger rivers is a constant challenge in riverine biogeochemistry. In this study, we investigated the generation of dissolved organic matter (DOM) in a small oak woodland catchment in the foothills of northern California, the subsequent transformation in lignin biomarkers and chromophoric DOM (CDOM) parameters during transport through the landscape to an exporting stream, and finally the overall compositional impact on the larger receiving stream and river. Our study included a natural leaching experiment in which precipitation passing through oak, pine, and grass litter and duff samples was collected after each of a series of storms. Also included were soil trench samples to capture subsurface flow, stream samples along with point-source reservoir inputs, and samples of canopy throughfall, stemflow, and gopher hole (bypass) flow. The litter/duff leaching study demonstrated changing DOM fractionation patterns throughout the season, as evidenced by changing lignin compositions in the leachates with each successive storm. This adds a necessary seasonal component to interpreting lignin compositions in streams, as the source signatures are constantly changing. Released DOM from leaching was modified extensively during transit through the subsurface to the stream, with preferential increases in aromaticity as evidenced by increases in carbon-normalized absorbance at 254 nm, yet preferential decreases in lignin phenols, as evidence by carbon-normalized lignin yields in the headwater stream that was less than half that of the litter/duff leachates. Our extensive number of lignin measurements for source materials reveals a much more complex perspective on using lignin as a source indicator, as many riverine values for syringyl:vanillyl and cinnamyl:vanillyl ratios that have previously been interpreted as degraded lignin signatures are also possible as unmodified source signatures. Finally, this study demonstrated

  1. Effects of invasive plants on public land management of pinyon-juniper woodlands in Arizona

    Treesearch

    Patti Fenner

    2008-01-01

    After a short discussion of terminology used in the fairly new discipline of weed science, specific examples are given to illustrate effects of invasive plants on recreation and scenic values, biodiversity, forage for domestic animals and wildlife, soil stability, fire hazard and frequency, maintenance costs for roads and highways, property values, and funding for...

  2. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland

    PubMed Central

    Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069

  3. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    PubMed

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  4. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities.

    PubMed

    Waldrop, Mark P; Firestone, Mary K

    2004-01-01

    Little is known about how the structure of microbial communities impacts carbon cycling or how soil microbial community composition mediates plant effects on C-decomposition processes. We examined the degradation of four (13)C-labeled compounds (starch, xylose, vanillin, and pine litter), quantified rates of associated enzyme activities, and identified microbial groups utilizing the (13)C-labeled substrates in soils under oaks and in adjacent open grasslands. By quantifying increases in non-(13)C-labeled carbon in microbial biomarkers, we were also able to identify functional groups responsible for the metabolism of indigenous soil organic matter. Although microbial community composition differed between oak and grassland soils, the microbial groups responsible for starch, xylose, and vanillin degradation, as defined by (13)C-PLFA, did not differ significantly between oak and grassland soils. Microbial groups responsible for pine litter and SOM-C degradation did differ between the two soils. Enhanced degradation of SOM resulting from substrate addition (priming) was greater in grassland soils, particularly in response to pine litter addition; under these conditions, fungal and Gram+ biomarkers showed more incorporation of SOM-C than did Gram- biomarkers. In contrast, the oak soil microbial community primarily incorporated C from the added substrates. More (13)C (from both simple and recalcitrant sources) was incorporated into the Gram- biomarkers than Gram+ biomarkers despite the fact that the Gram+ group generally comprised a greater portion of the bacterial biomass than did markers for the Gram- group. These experiments begin to identify components of the soil microbial community responsible for decomposition of different types of C-substrates. The results demonstrate that the presence of distinctly different plant communities did not alter the microbial community profile responsible for decomposition of relatively labile C-substrates but did alter the profiles

  5. Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant Polygonatum verticillatum (Convallariaceae).

    PubMed

    Kramp, K; Huck, S; Niketić, M; Tomović, G; Schmitt, T

    2009-05-01

    The phylogeography of typical alpine plant species is well understood in Europe. However, the genetic patterns of boreo-montane species are mostly unstudied. Therefore, we analysed the AFLPs of 198 individuals of Polygonatum verticillatum over a major part of its European distribution. We obtained a total of 402 reproducible fragments, of which 96.8% were polymorphic. The average Phi(ST) over all samples was high (73.0%). The highest number of private fragments was observed in the Cantabrian Mountains; the highest genetic diversities of the populations were detected in populations from the Alps. BAPS, Principal Coordinates and Cluster analyses revealed a deep split between the Cantabrian population and all other samples. The latter further distinguished two major groups in western and eastern Europe. These results suggest a complex biogeographical history of P. verticillatum. The Cantabrian population was most probably isolated for the longest time. Furthermore, putative glacial survival centres might have existed in the western group around the glaciated Alps and in the eastern group in the foothills of the Carpathian and Balkan mountain systems. The origin of the Scandinavian populations is still unresolved, but an origin from the southeastern Alps or the western Balkans appears the most likely scenario.

  6. Influence of soil water repellency on seedling emergence and plant survival in a burned semi-arid woodland

    USDA-ARS?s Scientific Manuscript database

    Despite post-fire reseeding efforts, Pinus-Juniperus (piñon-juniper) woodlands often become invaded by annual weeds that out-compete native species, degrade ecological processes, and modify natural fire patterns. In order to develop successful post-fire restoration approaches in these communities, i...

  7. Status and limiting factors of three rare plant species in the coastal lowlands and mid-elevation woodlands of Hawai`i Volcanoes National Park

    USGS Publications Warehouse

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody

    2011-01-01

    Two endangered plant species (Portulaca sclerocarpa, `ihi mākole, and Sesbania tomentosa, `ōhai) and a species of concern (Bobea timonioides, `ahakea) native to the coastal lowlands and dry mid-elevation woodlands of Hawai`i Volcanoes National Park were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, seed germination rates in the greenhouse, presence of soil seed bank, and survival of both natural and planted seedlings. The role of rodents as fruit and seed predators was evaluated using exclosures and seed offerings in open and closed stations or cages. Rodents were excluded from randomly selected plants of P. sclerocarpa and from branches of S. tomentosa, and flower and fruit production were compared to that of adjacent unprotected plants. Tagged S. tomentosa fruit were also monitored monthly to detect rodent predation.

  8. Gene regulation: ancient microRNA target sequences in plants.

    PubMed

    Floyd, Sandra K; Bowman, John L

    2004-04-01

    MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.

  9. Ancient signals: comparative genomics of green plant CDPKs.

    PubMed

    Hamel, Louis-Philippe; Sheen, Jen; Séguin, Armand

    2014-02-01

    Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Energy from the woodlands

    Treesearch

    Jerry Payne

    2008-01-01

    (Please note, this is an abstract only) The woodlands offer a significant opportunity for conversion of biomass to energy projects. With the vast acreage in the Southwest in the woodland type, and with the significant soil loss problems prevalent in this area, there is a dire need to treat the woodlands. Since there are limited opportunities for marketable products,...

  11. An ancient tripartite symbiosis of plants, ants and scale insects.

    PubMed

    Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

    2008-10-22

    In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16-20 million years (Myr). The prevalence of coccoids in ant-plant mutualisms suggest that they play an important role in the evolution of ant-plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7-9Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits.

  12. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development.

    PubMed

    Yang, Zefeng; Zhou, Yong; Huang, Jinling; Hu, Yunyun; Zhang, Enying; Xie, Zhengwen; Ma, Sijia; Gao, Yun; Song, Song; Xu, Chenwu; Liang, Guohua

    2015-04-01

    A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments.

  13. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development

    PubMed Central

    Yang, Zefeng; Zhou, Yong; Huang, Jinling; Hu, Yunyun; Zhang, Enying; Xie, Zhengwen; Ma, Sijia; Gao, Yun; Song, Song; Xu, Chenwu; Liang, Guohua

    2015-01-01

    A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments. PMID:25420550

  14. Benefits to rare plants and highway safety from annual population reductions of a "native invader," white-tailed deer, in a Chicago-area woodland.

    PubMed

    Engeman, Richard M; Guerrant, Travis; Dunn, Glen; Beckerman, Scott F; Anchor, Chris

    2014-01-01

    Overabundant white-tailed deer are one of the most serious threats to woodland plant communities in the Chicago area. Moreover, the abundant deer in a highly populated area causes economic harm and poses hazards to human safety through collisions with vehicles. The artificial conditions causing the overabundance and resulting consequences qualify the white-tailed deer in the Chicago area to be considered as "native invaders". We examined the benefits of culling deer at a Chicago-area woodland preserve by comparing browse rates on four endangered plant species from years before culling began with years with culling. We also examined deer-vehicle collision and traffic flow rates on area roads from years before culling began and years with culling to assess whether population reductions may have benefited road safety in the area. All four endangered plant species (three orchid species and sweet fern) had lower browse rates in years with culls, although the decreased browsing rates were statistically distinguishable for only two of the species (grass pink orchid and sweet fern). After first verifying that traffic flow rates did not decrease from pre-cull years to years with culls, we analyzed the Illinois Department of Transportation data from area roads based on deer-vehicle collisions causing >US$500 in damage and showed a one-third reduction in deer-vehicle collisions. An economic analysis showed a cost savings during the cull years of US$0.6 million for reducing browsing to just these four monitored plant species and the reduction in deer-vehicle collisions.

  15. The Sphagnum microbiome: New insights from an ancient plant lineage

    DOE PAGES

    Kostka, Joel E.; Weston, David J.; Glass, Jennifer B.; ...

    2016-05-13

    Here, peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential tomore » act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20–30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum–microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant–microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.« less

  16. Drought Impacts on Ancient Maya Maize Agriculture Inferred from Isotopic Analyses of Plant Biomarkers

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2013-05-01

    There is increasing evidence suggesting that a series of droughts in the Maya lowlands of southeastern Mexico and northern Central America coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax hydrogen and carbon analyses in two lake sediment cores from the Yucatan and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change and assess drought impacts on maize agriculture In the Maya lowlands plant-wax hydrogen isotope ratios (δD) are controlled by the isotopic composition of precipitation and evapotranspiration, and are highly sensitive to changes in aridity. In this low-elevation tropical environment plant-wax carbon isotope ratios (δ13C) are largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δD would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analyses of plant-wax δD and δ13C from two lake sediment cores in the Maya lowlands indicate co-evolving changes in hydroclimate and C4 plant coverage over the past 4000 years. Compound-specific radiocarbon analyses of plant-waxes provide independent chronologies for these plant-wax stable isotope records, and plant-wax δD records developed using these chronologies agree closely with other regional records of hydroclimate change. Trends in plant-wax δD and δ13C diverge following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend

  17. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA.

    PubMed

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W Brad

    2009-05-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element.

  18. Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata).

    PubMed

    Jorquera, Milko A; Shaharoona, Baby; Nadeem, Sajid M; de la Luz Mora, María; Crowley, David E

    2012-11-01

    Plant growth-promoting rhizobacteria (PGPR) are common components of the rhizosphere, but their role in adaptation of plants to extreme environments is not yet understood. Here, we examined rhizobacteria associated with ancient clones of Larrea tridentata in the Mohave desert, including the 11,700-year-old King Clone, which is oldest known specimen of this species. Analysis of unculturable and culturable bacterial community by PCR-DGGE revealed taxa that have previously been described on agricultural plants. These taxa included species of Proteobacteria, Bacteroidetes, and Firmicutes that commonly carry traits associated with plant growth promotion, including genes encoding aminocyclopropane carboxylate deaminase and β-propeller phytase. The PGPR activities of three representative isolates from L. tridentata were further confirmed using cucumber plants to screen for plant growth promotion. This study provides an intriguing first view of the mutualistic bacteria that are associated with some of the world's oldest living plants and suggests that PGPR likely contribute to the adaptation of L. tridentata and other plant species to harsh environmental conditions in desert habitats.

  19. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages

    PubMed Central

    Valiente-Banuet, Alfonso; Rumebe, Adolfo Vital; Verdú, Miguel; Callaway, Ragan M.

    2006-01-01

    One of the most important floristic sorting periods to affect modern plant communities occurred during the shift from the wet Tertiary period to the unusually dry Quaternary, when most global deserts developed. During this time, a wave of new plant species emerged, presumably in response to the new climate. Interestingly, most Tertiary species that have been tracked through the fossil record did not disappear but remained relatively abundant despite the development of a much more unfavorable climate for species adapted to moist conditions. Here we find, by integrating paleobotanical, ecological, and phylogenetic analyses, that a large number of ancient Tertiary species in Mediterranean-climate ecosystems appear to have been preserved by the facilitative or “nurse” effects of modern Quaternary species. Our results indicate that these interdependent relationships among plants have played a central role in the preservation of the global biodiversity and provided a mechanism for stabilizing selection and the conservation of ecological traits over evolutionary time scales. PMID:17068126

  20. Next Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System.

    PubMed

    Fu, Rao; Martin, Cathie; Zhang, Yang

    2017-09-08

    Specialized secondary metabolites serve not only to protect plants against abiotic and biotic challenges, but have also been used extensively by humans to combat diseases. Due to the importance of medicinal plants for health, we need to find new and sustainable ways to produce their specialized metabolites. In addition to direct extraction, recent progress in metabolic engineering of plants offers alternative supply options. We argue that metabolic engineering for the production of some secondary metabolites in plants may have distinct advantages over microbial production platforms and we propose new approaches to plant metabolic engineering, inspired by an ancient Chinese irrigation system. Metabolic engineering strategies work at three levels; introducing biosynthetic genes, use of transcription factors (TFs), and improvement of metabolic flux including increasing the supply of precursors, energy and reducing power. In addition, recent progress in biotechnology can contribute to markedly better engineering, such as the use of specific promoters, and the deletion of competing branch pathways. We suggest that next generation plant metabolic engineering will improve current engineering strategies, for the purpose of producing valuable metabolites in plants, on industrial scales. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  1. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    PubMed

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.

  2. Oak woodland vegetation dynamics: a state and transition approach

    Treesearch

    Melvin R. George; Maximo F. Alonso

    2008-01-01

    California’s oak-woodlands are a complex, often multi-layered mosaic of grassland, shrubland, and woodland patches. While soil type and depth, topography, aspect, and geological substrate influence the distribution of these patches, disturbance and biological interactions are also important determinants of the patchy distribution of these plant communities. Fire...

  3. Pinyon-juniper woodlands in Zion National Park, Utah

    Treesearch

    Kimball T. Harper; Stewart C. Sanderson; E. Durant McArthur

    2003-01-01

    Juniperus osteosperma-Pinus monophylla or P. edulis (P-J) woodlands are the most widespread plant community in Zion National Park (ZNP), southwestern Utah. These woodlands dominate nearly half of the park's land area. Our study of this vegetational complex is based on a sample consisting of 115 macroplots (each 0.01 ha in area) objectively distributed across the...

  4. Northwest California oak woodlands: environment, species composition, and ecological status

    Treesearch

    Thomas M. Jimerson; Sydney K. Carothers

    2002-01-01

    This paper describes the oak woodland plant communities of Northwest California and their ecological status using data from 446 ecology plots collected on federal lands in Humboldt, Trinity, Siskiyou, Mendocino, Tehama, Glenn, Colusa and Lake Counties. Geographically, oak woodlands lie between the coastal mixed evergreen forests and the valley grasslands of the Central...

  5. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland

    PubMed Central

    Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency–Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.–and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest’s models’ quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors’ importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an ‘explanation jump’ at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant’s hierarchy, with differences conforming with their respective stages of invasion. PMID:27992516

  6. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland.

    PubMed

    Obidziński, Artur; Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency-Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.-and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest's models' quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors' importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an 'explanation jump' at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant's hierarchy, with differences conforming with their respective stages of invasion.

  7. Wild medicinal and food plants used by communities living in Mopane woodlands of southern Angola: Results of an ethnobotanical field investigation.

    PubMed

    Urso, Valeria; Signorini, Maria Adele; Tonini, Matteo; Bruschi, Piero

    2016-01-11

    Mopane woodlands play an important role in the livelihood strategies of local populations; however, they have been scarcely investigated by ethnobiologists and very little is currently known about plants traditionally used by local communities, especially about medicinal plants. Our investigation was aimed to document ethnobotanical knowledge in seven communities living in conditions of extreme poverty in a Mopane area of southern Angola (Namibe province). We focused on plants used as medicines and/or food, in order to highlight the role of wild plants in the livelihood of local communities, and possibly to find out plants with potential pharmacological interest. Ethnobotanical data were recorded through semi-structured interviews, filed in a database and quantitatively analyzed. The following synthetic indexes were used: Cultural Importance index (CI), Informant Consensus Factor (FIC), Fidelity Level (FL). Sixty-six informants (26 males, 40 females) were interviewed. A total of 1247 citations were recorded, concerning 132 ethnospecies (folk taxonomic units not necessarily corresponding to single botanical species); 104 were identified at different taxonomic levels. For medicinal purposes, 116 ethnospecies and 20 different uses (650 citations) were reported; for food purposes, 33 ethnospecies and 8 different uses (597 citations). The main used parts resulted to be fruit (471 citations; 21 ethnospecies), followed by underground organs (288, 82) and leaves (175, 41). According to CI values, Berchemia discolor, Ximenia americana var. americana and Adansonia digitata have the highest cultural value in the investigated communities. All of them are woody plants, as well as most of the identified ethnospecies (trees 34.6%, shrubs 32.7%, perennials 21.2%, annuals 8.7%, others 2.8%). Medicinal plants are especially used to treat disorders of the gastrointestinal tract (52 ethnospecies, 205 citations), obstetric/gynecological troubles (27, 40) and colds and respiratory tract

  8. Exploring the Woodland Floor

    ERIC Educational Resources Information Center

    Banner, Pat

    1974-01-01

    The article discusses the often ignored information that can be discovered by examining ground characteristics in woods and forests. Woodland cycles, the food chain, animal habitats, and nature's recycling are included. (KM)

  9. Exploring the Woodland Floor

    ERIC Educational Resources Information Center

    Banner, Pat

    1974-01-01

    The article discusses the often ignored information that can be discovered by examining ground characteristics in woods and forests. Woodland cycles, the food chain, animal habitats, and nature's recycling are included. (KM)

  10. Changes in avian and plant communities of aspen woodlands over 12 years after livestock removal in the Northwestern Great Basin.

    PubMed

    Earnst, Susan L; Dobkin, David S; Ballard, Jennifer A

    2012-10-01

    Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1-3 (phase 1) and 10-12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots (stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.

  11. Changes in avian and plant communities of aspen woodlands over 12 years after livestock removal in the northwestern Great Basin

    USGS Publications Warehouse

    Earnst, Susan L.; Dobkin, David S.; Ballard, Jennifer A.

    2012-01-01

    Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots (x̄ = 2646 stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.

  12. Restoration of herbaceous woodland plants: persistence, growth, and reproductive success of local and non-local propagules

    Treesearch

    Michaeleen Gerken Golay; Robert Manatt; Catherine Mabry; Janette Thompson; Randall. Kolka

    2013-01-01

    Restoring the forest herbaceous layer in remnant forests throughout the Midwestern United States (U.S.) is limited by the lack of seed and propagules for many plant species. As a result, restorationists often have limited material to work with and must seek out plant material at a regional rather than a local scale, without knowing whether regional provenances are...

  13. An ancient plant Lawsonia inermis (henna): determination of in vitro antifungal activity against dermatophytes species.

    PubMed

    Gozubuyuk, G S; Aktas, E; Yigit, N

    2014-12-01

    World is endowed with a rich wealth of medicinal plants. There is a widespread belief that green medicines are healthier and more harmless or safer than synthetic ones. Medicinal plants have been used to cure a number of diseases. The ancient plant Lawsonia inermis or henna is used as medicinal plant because of its attributed strong fungicidal, anti-inflammatory, analgesic, antibacterial, virucidal, antiparasitic, antiamoebiasis, astringent, antihemorrhagic, hypotensive, sedative, anticancer effect and possible anti-sweating properties. In this study, we investigated antifungal activity of L. inermis against clinical dermatophytes species. This study was carried out using 70 clinical isolates of dermatophytes representing six different species; 44 Trichophyton rubrum, 8 Trichophyton mentagrophytes, 6 Microsporum canis, 6 Trichophyton tonsurans, 4 Epidermophyton floccosum, and 2 Trichophyton violaceum. The antifungal activity of L. inermis (henna) was determined by agar diffusion method and henna was used as paste form. Henna paste showed the high antifungal activity against all dermatophytes species (20 to 50mm inhibition zone). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation?

    PubMed

    Madejón, Paula; Lepp, Nicholas W

    2007-07-01

    Plant As accumulation at three As-polluted sites where spontaneous re-vegetation has taken place is examined. Each site had a different source of soil As (coal fly ash, LeBlanc process waste, canal dredging). Plant analysis indicates that soil-plant As transfer is poor at each site. Any mobile As is retained in root tissues, with little transfer to shoots. Bryophytes, pteridophytes, herbaceous and woody plants sampled at each site predominantly showed As concentrations of <3 mg kg(-1) dry wt, whilst total soil As ranged between 50 and 220 mg kg(-1) dry wt. Risk associated with food chain transfer at these sites is low when compared to other routes such as direct ingestion/inhalation of As-contaminated particulates re-entrained from an unvegetated or unstable substrate.

  15. The genome of woodland strawberry (Fragaria vesca)

    USDA-ARS?s Scientific Manuscript database

    The woodland strawberry, Fragaria vesca (2n=2x=14) is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (206Mb), is amenable to genetic transformation, and shares substantial sequence identity with the cultivated strawberry (F. × ananassa) as well as othe...

  16. Development of secondary woodland in oak wood pastures reduces the richness of rare epiphytic lichens.

    PubMed

    Paltto, Heidi; Nordberg, Anna; Nordén, Björn; Snäll, Tord

    2011-01-01

    Wooded pastures with ancient trees were formerly abundant throughout Europe, but during the last century, grazing has largely been abandoned often resulting in dense forests. Ancient trees constitute habitat for many declining and threatened species, but the effects of secondary woodland on the biodiversity associated with these trees are largely unknown. We tested for difference in species richness, occurrence, and abundance of a set of nationally and regionally red-listed epiphytic lichens between ancient oaks located in secondary woodland and ancient oaks located in open conditions. We refined the test of the effect of secondary woodland by also including other explanatory variables. Species occurrence and abundance were modelled jointly using overdispersed zero-inflated Poisson models. The richness of the red-listed lichens on ancient oaks in secondary woodland was half of that compared with oaks growing in open conditions. The species-level analyses revealed that this was mainly the result of lower occupancy of two of the study species. The tree-level abundance of one species was also lower in secondary woodland. Potential explanations for this pattern are that the study lichens are adapted to desiccating conditions enhancing their population persistence by low competition or that open, windy conditions enhance their colonisation rate. This means that the development of secondary woodland is a threat to red-listed epiphytic lichens. We therefore suggest that woody vegetation is cleared and grazing resumed in abandoned oak pastures. Importantly, this will also benefit the vitality of the oaks.

  17. Development of Secondary Woodland in Oak Wood Pastures Reduces the Richness of Rare Epiphytic Lichens

    PubMed Central

    Paltto, Heidi; Nordberg, Anna; Nordén, Björn; Snäll, Tord

    2011-01-01

    Wooded pastures with ancient trees were formerly abundant throughout Europe, but during the last century, grazing has largely been abandoned often resulting in dense forests. Ancient trees constitute habitat for many declining and threatened species, but the effects of secondary woodland on the biodiversity associated with these trees are largely unknown. We tested for difference in species richness, occurrence, and abundance of a set of nationally and regionally red-listed epiphytic lichens between ancient oaks located in secondary woodland and ancient oaks located in open conditions. We refined the test of the effect of secondary woodland by also including other explanatory variables. Species occurrence and abundance were modelled jointly using overdispersed zero-inflated Poisson models. The richness of the red-listed lichens on ancient oaks in secondary woodland was half of that compared with oaks growing in open conditions. The species-level analyses revealed that this was mainly the result of lower occupancy of two of the study species. The tree-level abundance of one species was also lower in secondary woodland. Potential explanations for this pattern are that the study lichens are adapted to desiccating conditions enhancing their population persistence by low competition or that open, windy conditions enhance their colonisation rate. This means that the development of secondary woodland is a threat to red-listed epiphytic lichens. We therefore suggest that woody vegetation is cleared and grazing resumed in abandoned oak pastures. Importantly, this will also benefit the vitality of the oaks. PMID:21961041

  18. Managing pinyon-juniper woodlands

    Treesearch

    Gerald J. Gottfried; Kieth E. Severson

    1994-01-01

    A renewed interest in pinyon-juniper woodlands has accelerated debate regarding management of this unique ecosystem. Should these woodlands be managed only to provide livestock forage through overstory removal-popular programs in the 1950s and 1960s-or should they be managed for production of multiple resource products and amenities? Pinyon-juniper woodlands have...

  19. Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales)

    PubMed Central

    2014-01-01

    Background The aquatic flowering-plant family Hydatellaceae has a classic Gondwanan distribution, as it is found in Australia, India and New Zealand. To shed light on the biogeographic history of this apparently ancient branch of angiosperm phylogeny, we dated the family in the context of other seed-plant divergences, and evaluated its biogeography using parsimony and likelihood methods. We also explicitly tested the effect of different extinction rates on biogeographic inferences. Results We infer that the stem lineage of Hydatellaceae originated in the Lower Cretaceous; in contrast, its crown originated much more recently, in the early Miocene, with the bulk of its diversification after the onset of the Pliocene. Biogeographic reconstructions predict a mix of dispersal and vicariance events, but considerations of geological history preclude most vicariance events, besides a split at the root of the family between southern and northern clades. High extinction rates are plausible in the family, and when these are taken into account there is greater uncertainty in biogeographic inferences. Conclusions A stem origin for Hydatellaceae in the Lower Cretaceous is consistent with the initial appearance of fossils attributed to its sister clade, the water lilies. In contrast, the crown clade is young, indicating that vicariant explanations for species outside Australia are improbable. Although long-distance dispersal is likely the primary driver of biogeographic distribution in Hydatellaceae, we infer that the recent drying out of central Australia divided the family into tropical vs. subtropical/temperate clades around the beginning of the Miocene. PMID:24884487

  20. Choosing the Best Plant for the Job: A Cost-Effective Assay to Prescreen Ancient Plant Remains Destined for Shotgun Sequencing

    PubMed Central

    Wales, Nathan; Romero-Navarro, J. Alberto; Cappellini, Enrico; Gilbert, M. Thomas P

    2012-01-01

    DNA extracted from ancient plant remains almost always contains a mixture of endogenous (that is, derived from the plant) and exogenous (derived from other sources) DNA. The exogenous ‘contaminant’ DNA, chiefly derived from microorganisms, presents significant problems for shotgun sequencing. In some samples, more than 90% of the recovered sequences are exogenous, providing limited data relevant to the sample. However, other samples have far less contamination and subsequently yield much more useful data via shotgun sequencing. Given the investment required for high-throughput sequencing, whenever multiple samples are available, it is most economical to sequence the least contaminated sample. We present an assay based on quantitative real-time PCR which estimates the relative amounts of fungal and bacterial DNA in a sample in comparison to the endogenous plant DNA. Given a collection of contextually-similar ancient plant samples, this low cost assay aids in selecting the best sample for shotgun sequencing. PMID:23029156

  1. Synopsis: the role of prescribed burning in regenerating Quercus macrocarpa and associated woody plants in stringer woodlands in the Black Hills, South Dakota

    Treesearch

    Carolyn Hull Sieg; Henry A. Wright

    1998-01-01

    Poor tree reproduction, sparse shrub cover, and increasing amounts of exotic species such as Kentucky bluegrass (Poa pratensis) are common problems in woody draws in the Northern Great Plains. Although the historic role of fire in maintaining woody draws is unclear, it is likely that these woodlands burned periodically, especially in dry years on hot...

  2. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions?

    PubMed

    Pirie, Michael D; Litsios, Glenn; Bellstedt, Dirk U; Salamin, Nicolas; Kissling, Jonathan

    2015-06-01

    Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the 'Gondwanan vicariance' scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group.

  3. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions?

    PubMed Central

    Pirie, Michael D.; Litsios, Glenn; Bellstedt, Dirk U.; Salamin, Nicolas; Kissling, Jonathan

    2015-01-01

    Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the ‘Gondwanan vicariance’ scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group. PMID:26063747

  4. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens

    NASA Astrophysics Data System (ADS)

    Murray, Dáithí C.; Pearson, Stuart G.; Fullagar, Richard; Chase, Brian M.; Houston, Jayne; Atchison, Jennifer; White, Nicole E.; Bellgard, Matthew I.; Clarke, Edward; Macphail, Mike; Gilbert, M. Thomas P.; Haile, James; Bunce, Michael

    2012-12-01

    The study of arid palaeoenvironments is often frustrated by the poor or non-existent preservation of plant and animal material, yet these environments are of considerable environmental importance. The analysis of pollen and macrofossils isolated from herbivore middens has been an invaluable source of information regarding past environments and the nature of ecological fluctuations within arid zones. The application of ancient DNA (aDNA) techniques to hot, arid zone middens remains unexplored. This paper attempts to retrieve and characterise aDNA from four Southern Hemisphere fossil middens; three located in hot, arid regions of Australia and one sample from South Africa's Western Cape province. The middens are dated to between 30,490 (±380) and 710 (±70) cal yr BP. The Brockman Ridge midden in this study is potentially the oldest sample from which aDNA has been successfully extracted in Australia. The application of high-throughput sequencing approaches to profile the biotic remains preserved in midden material has not been attempted to date and this study clearly demonstrates the potential of such a methodology. In addition to the taxa previously detected via macrofossil and palynological analyses, aDNA analysis identified unreported plant and animal taxa, some of which are locally extinct or endemic. The survival and preservation of DNA in hot, arid environments is a complex and poorly understood process that is both sporadic and rare, but the survival of DNA through desiccation may be important. Herbivore middens now present an important source of material for DNA metabarcoding studies of hot, arid palaeoenvironments and can potentially be used to analyse middens in these environments throughout Australia, Africa, the Americas and the Middle East.

  5. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  6. Pinyon-juniper woodlands

    USGS Publications Warehouse

    Gottfried, Gerald J.; Swetnam, Thomas W.; Allen, Craig D.; Betancourt, Julio L.; Chung-MacCoubrey, Alice L.; Finch, Deborah M.; Tainter, Joseph A.

    1995-01-01

    Pinyon-juniper woodlands are one of the largest ecosystems in the Southwest and in the Middle Rio Grande Basin (Fig. 1). The woodlands have been important to the region's inhabitants since prehistoric times for a variety of natural resources and amenities. The ecosystems have not been static; their distributions, stand characteristics, and site conditions have been altered by changes in climatic patterns and human use and, often, abuse. Management of these lands since European settlement has varied from light exploitation and benign neglect, to attempts to remove the trees in favor of forage for livestock, and then to a realization that these lands contain useful resources and should be managed accordingly. Land management agencies are committed to ecosystem management. While there are several definitions of ecosystem management, the goal is to use ecological approaches to create and maintain diverse, productive, and healthy ecosystems (Kaufmann et al. 1994). Ecosystem management recognizes that people are an integral part of the system and that their needs must be considered. Ecological approaches are central to the concept, but our understanding of basic woodland ecology is incomplete, and there are different opinions and interpretations of existing information (Gottfried and Severson 1993). There are many questions concerning proper ecosystem management of the pinyon-juniper woodlands and how managers can achieve these goals (Gottfried and Severson 1993). While the broad concept of ecosystem management generally is accepted, the USDA Forest Service, other public land management agencies, American Indian tribes, and private landowners may have differing definitions of what constitutes desired conditions. Key questions about the pinyon-juniper ecosystems remain unanswered. Some concern the basic dynamics of biological and physical components of the pinyon-juniper ecosystems. Others concern the distribution of woodlands prior to European settlement and changes

  7. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Banks, Jody [Purdue University

    2016-07-12

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  8. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Banks, Jody

    2012-03-21

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  9. Silviculture to restore oak woodlands

    Treesearch

    Daniel C. Dey; Callie J. Schweitzer; John M. Kabrick

    2016-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak savannas, woodlands and forests that were dominant vegetation types throughout the region. In the past century, once abundant woodlands have become scarce due to conversion to agriculture, or development of forest structure in the absence of fire. Restoration of oak woodlands is a...

  10. Private Woodland Owners' Perspectives on Multifunctionality in English Woodlands

    ERIC Educational Resources Information Center

    Urquhart, Julie; Courtney, Paul; Slee, Bill

    2012-01-01

    Increasing emphasis is being placed in forest policies to deliver public goods such as biodiversity, recreation, landscape and carbon sequestration, alongside timber production. In light of this, it is important to understand how woodland owners themselves perceive their role in delivering these multiple benefits. With up to 80% of woodland in…

  11. Private Woodland Owners' Perspectives on Multifunctionality in English Woodlands

    ERIC Educational Resources Information Center

    Urquhart, Julie; Courtney, Paul; Slee, Bill

    2012-01-01

    Increasing emphasis is being placed in forest policies to deliver public goods such as biodiversity, recreation, landscape and carbon sequestration, alongside timber production. In light of this, it is important to understand how woodland owners themselves perceive their role in delivering these multiple benefits. With up to 80% of woodland in…

  12. Great Basin semi-arid woodland dynamics during the late quaternary

    SciTech Connect

    Wigand, P.E.; Hemphill, M.L.; Sharpe, S.E.

    1995-09-01

    Semi-arid woodlands have dominated the middle elevations of Great Basin mountain ranges during the Holocene where subalpine woodlands prevailed during the Pleistocene. Ancient woodrat middens, and in a few cases pollen records indicate in the late Pleistocene and early Holocene woodland history lowered elevation of subalpine woodland species. After a middle Holocene retrenchment at elevations in excess of 500 meters above today, Juniper-dominated semi-arid woodland reached its late Holocene maximum areal extent during the Neoglacial (2 to 4 ka). These records, along with others indicate contracting semi-arid woodland after the Neoglacial about 1.9 ka. Desert shrub community expansion coupled with increased precariousness of wetland areas in the southern Great Basin between 1.9 and 1.5 ka coincide with shrinking wet-lands in the west-central and northern Great Basin. Coincident greater grass abundance in northern Great Basin sagebrush steppe, reaching its maximum between 1.5 and 1.2 ka, corresponds to dramatic increases in bison remains in the archaeological sites of the northern Intermontane West. Pollen and woodrat midden records indicate that this drought ended about 1.5 ka. Succeeding ameliorating conditions resulted in the sudden northward and downward expansion of pinon into areas that had been dominated by juniper during the Neoglacial. Maximum areal extent of pinon dominated semi-arid woodland in west-central Nevada was centered at 1.2 ka. This followed by 100 years the shift in dominance from juniper to pinon in southern Nevada semi-arid woodlands. Great Basin woodlands suffered from renewed severe droughts between .5 to .6 ka. Effectively wetter conditions during the {open_quotes}Little Ice Age{close_quotes} resulted in re-expansion of semi-arid woodland. Activities related to European settlement in the Great Basin have modified prehistoric factors or imposed new ones that are affecting woodland response to climate.

  13. Sustaining biodiversity in Midwestern woodlands

    Treesearch

    Douglas Ladd

    1997-01-01

    Woodland ecosystems in the Midwestern United States provide habitat for an impressive array of biodiversity, including endemic organisms. Sustainable conservation of high quality woodland landscapes must consider the genesis, process regimes, and ecological dynamics of these systems, both in contemporary and presettlement tine frames. An essential goal of conservation...

  14. An evaluation of woodland reclamation on strip-mined lands in east Texas

    NASA Astrophysics Data System (ADS)

    Gorsira, Bryan; Risenhoover, Ken L.

    1994-09-01

    We compared the composition and structural characteristics of reclaimed and native woody plant communities near Fairfield, Texas, to evaluate the effectiveness of woodland reclamation 3 11 years since establishment. Species composition, foliage density, canopy cover, and woody plant densities were recorded in plots randomly placed along transects bisecting blocks of reclaimed and native woodlands. During summer, vertical foliage densities at heights ≤2 m were similar among native and reclaimed areas. Foliage density and canopy cover declined in reclaimed blocks during winter, but remained relatively constant in native woodlands, where evergreens and vines were more common. Canopy cover was absent in reclaimed woodlands <6 years old but increased with age in 6 to 11-year-old blocks. These data indicated that approximately 27 years will be needed before trees in reclaimed blocks will achieve the stature of canopy trees in native woodlands. Reclaimed woodlands contained different woody plant species and had lower woody stem densities compared to native woodlands. On average, stem densities in reclaimed blocks were six times lower than densities in native woodlands. Comparisons with planting records indicate that survival of most commonly planted woody species was low. Only green ash (Fraxinus pennsylvanica), Russian oliver (Elaeagnus commutata), smooth sumac (Rhus glabra), and redbud (Cercis canadensis) had estimated survival rates >50%. Reclamation procedures used at Big Brown Mine (BBM) during 1981 1988 have not produced woodland habitats with vegetative characteristics comparable to premined woodlands and may not be providing the cover needed to encourage use by certain wildlife species. Procedures for improving woodland reclamation are recommended.

  15. Prescribed burning in mid and late successional juniper woodlands

    USDA-ARS?s Scientific Manuscript database

    Western juniper woodlands of the western United States have expanded rapidly since settlement in the late 1800’s. To recover shrub steppe and other plant communities requires that invasive junipers be controlled. We have evaluated recovery of several plant associations after combinations of junipe...

  16. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices

    PubMed Central

    Szpak, Paul

    2014-01-01

    Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts. PMID:25002865

  17. A conserved alternative splicing event in plants reveals an ancient exonization of 5S rRNA that regulates TFIIIA.

    PubMed

    Barbazuk, W Brad

    2010-01-01

    Uncovering conserved alternative splicing (AS) events can identify AS events that perform important functions. This is especially useful for identifying premature stop codon containing (PTC) AS isoforms that may regulate protein expression by being targets for nonsense mediated decay. This report discusses the identification of a PTC containing splice isoform of the TFIIIA gene that is highly conserved in land plants. TFIIIA is essential for RNA Polymerase III-based transcription of 5S rRNA in eukaryotes. Two independent groups have determined that the PTC containing alternative exon is ultraconserved and is coupled with nonsense-mediated mRNA decay. The alternative exon appears to have been derived by the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA. This provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized non-coding element.

  18. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.

    PubMed

    Meyers, B C; Dickerman, A W; Michelmore, R W; Sivaramakrishnan, S; Sobral, B W; Young, N D

    1999-11-01

    The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.

  19. Potential of woody plants from a Tonglushan ancient copper spoil heap for phytoremediation of heavy metal contaminated soil(1).

    PubMed

    Kang, Wei; Bao, Jianguo; Zheng, Jin; Xu, Fen; Wang, Liuming

    2016-03-25

    Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed the soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg, respectively, belonged to severe contamination. 14 species from 14 genera of 13 families were collected and investigated, except for Ligutrums lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed enrichment index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrums lucidum, Viburnum awabuk, Firminan simplex, Robina pseudoacacial, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firminan simplex, Robina pseudoacacial and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrums lucidum, Firminan simplex, Osmanthus fragrans and Robina pseudoacacial are appropriate to Cu, Pb and Cd multi-metal contaminated areas.

  20. Purple martins in oak woodlands

    Treesearch

    Brian D. C. Williams

    2002-01-01

    Purple martins are cavity-nesting swallows that once nested fairly widely in California’s oak woodlands but are now rare in that habitat. The old oaks of the Tehachapi Range (southern Sierra Nevada) may now host the last martins that nest in oak woodlands, with approximately 100-200 pairs or about 15 percent of the California population. In summer of 2000, we found 57...

  1. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    PubMed

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  2. The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards

    NASA Astrophysics Data System (ADS)

    Madzaric, Suzana; Aly, Adel; Ladisa, Gaetano; Calabrese, Generosa

    2014-05-01

    The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards Madzaric S., Aly A., Ladisa G. and Calabrese G. The loss of natural plant cover due to the inappropriate soil cover management is often a decisive factor for soil degradation in Mediterranean area. This accompanied with typical climate, characterized by cool, wet winters and hot and dry summers leads to soil erosion and loss of productivity. Due to simplification of agricultural practice and to the attempt to decrease cost of production, keeping soil bare is a widespread agricultural practice in Mediterranean ancient olive orchards (AOOs). The consequences of this are degradation of soil quality and reduction of plant biodiversity. In last year's some alternative practices are proposed in order to protect soil and biodiversity. One of these practices is the "grassing" i.e. covering the soil by selected autochthonous plant species. Objectives of our study are: (1) to evaluate impact of different soil cover management practices on soil properties and plant biodiversity in AOOs and (2) to define a minimum indicators' set (Minimum Data Set - MDS) to evaluate the effectiveness of different agricultural practices in environmental performance of AOOs. A comparison was carried on considering two management systems (conventional vs. organic) and three agricultural practices: conventional with bare soil (CON), organic with soil covered by selected autochthonous species (MIX) and organic left to the native vegetation (NAT). In general a clear positive influence of organic management system was recognized. Some soil quality indicators (physical, chemical and biological) showed responsiveness in describing the effects of management system and agricultural practices on soil properties. The both approaches with vegetation cover on the soil surface (either sowing of mixture or soil left to the natural plant cover) performed better than

  3. Re-annotation of the woodland strawberry (Fragaria vesca) genome

    USDA-ARS?s Scientific Manuscript database

    Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a mo...

  4. Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from the endangered Brazilian rupestrian grasslands

    USDA-ARS?s Scientific Manuscript database

    The diversity of cultivable endophytic fungal community associated with the rare, ancient and narrowly endemic Neotropical plant Vellozia gigantea present in the Brazilian Rupestrian Grasslands was assessed. Two hundred and eighty-five fungal isolates obtained were identified into 27 genera and 87 t...

  5. An Ancient P-Loop GTPase in Rice Is Regulated by a Higher Plant-specific Regulatory Protein*

    PubMed Central

    Cheung, Ming-Yan; Xue, Yan; Zhou, Liang; Li, Man-Wah; Sun, Samuel Sai-Ming; Lam, Hon-Ming

    2010-01-01

    YchF is a subfamily of the Obg family in the TRAFAC class of P-loop GTPases. The wide distribution of YchF homologues in both eukarya and bacteria suggests that they are descendents of an ancient protein, yet their physiological roles remain unclear. Using the OsYchF1-OsGAP1 pair from rice as the prototype, we provide evidence for the regulation of GTPase/ATPase activities and RNA binding capacity of a plant YchF (OsYchF1) by its regulatory protein (OsGAP1). The effects of OsGAP1 on the subcellular localization/cycling and physiological functions of OsYchF1 are also discussed. The finding that OsYchF1 and OsGAP1 are involved in plant defense response might shed light on the functional roles of YchF homologues in plants. This work suggests that during evolution, an ancestral P-loop GTPase/ATPase may acquire new regulation and function(s) by the evolution of a lineage-specific regulatory protein. PMID:20876569

  6. Plants of the Olympic Coastal Forests: ancient knowledge of materials and medicines and future heritage.

    PubMed

    Forlines, D R; Tavenner, T; Malan, J C; Karchesy, J J

    1992-01-01

    The indigenous people of the west coast of Washington State's Olympic Peninsula have used a wide variety of forest plants for centuries to make materials and medicines. The late David Forlines shared at least eight generations of the knowledge of uses of these plants for materials and medicines with us in hopes that this information might be used 'to help science catch up with the old people.' Dyes, paints and adhesives were some of the materials made. The medicines were often administered as teas, but in some cases, fresh plant material was required. Some parallels were found to European and Chinese uses of similar species. Plants from the family Rosaceae had the greatest number of medicinal uses, but several other plant families known to contain polyphenols were also encountered. The role of polyphenols in the use of these plants is difficult to estimate because in many cases the plants have not been studied chemically. A preliminary screening indicated that many of the plants were rich in procyanidins and associated compounds.

  7. Factors influencing woodlands of southwestern North Dakota

    Treesearch

    Michele M. Girard; Harold Goetz; Ardell J. Bjugstad

    1987-01-01

    Literature pertaining to woodlands of southwestern North Dakota is reviewed. Woodland species composition and distribution, and factors influencing woodland ecosystems such as climate, logging, fire, and grazing are described. Potential management and improvement techniques using vegetation and livestock manipulation have been suggested.

  8. Indiana residents' perceptions of woodland management

    Treesearch

    Daniel J. Witter; Shannon M. Amberg; David J. Case; Phillip T. Seng

    2013-01-01

    A 2009 telephone survey of 1,402 Indiana adults was conducted to assess opinions regarding woodland management. Forty-eight percent said they were "very concerned" about the health and productivity of Indiana's woodlands, and 45 percent, "somewhat concerned." Almost half (47 percent) thought that the state's woodlands are held in about...

  9. Pinyon/juniper woodlands [Chapter 4

    Treesearch

    Robin J. Tausch; Sharon Hood

    2007-01-01

    Pinyon-juniper woodlands occur in 10 states and cover large areas in many of them. These woodlands can be dominated by several species of pinyon pine (Pinus spp. L.) and juniper (Juniperus spp. L.) (Lanner 1975; Mitchell and Roberts 1999; West 1999a). A considerable amount of information is available on the expansion of the woodlands that has occurred over large parts...

  10. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor.

    PubMed

    Floyd, Sandra K; Ryan, Joseph G; Conway, Stephanie J; Brenner, Eric; Burris, Kellie P; Burris, Jason N; Chen, Tao; Edger, Patrick P; Graham, Sean W; Leebens-Mack, James H; Pires, J Chris; Rothfels, Carl J; Sigel, Erin M; Stevenson, Dennis W; Neal Stewart, C; Wong, Gane Ka-Shu; Bowman, John L

    2014-12-01

    It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins. ZPRs are post-translational negative regulators, via heterodimerization, of class III Homeodomain Leucine Zipper (C3HDZ) proteins that play a key role in directing plant form and growth. We show that ZPR genes originated as a duplication of a C3HDZ transcription factor paralog in the common ancestor of euphyllophytes (ferns and seed plants). The ZPRs evolved by degenerative mutations resulting in loss all of the C3HDZ functional domains, except the leucine zipper that modulates dimerization. ZPRs represent a novel regulatory module of the C3HDZ network unique to the euphyllophyte lineage, and their origin correlates to a period of rapid morphological changes and increased complexity in land plants. The origin of the ZPRs illustrates the significance of gene duplications in creating developmental complexity during land plant evolution that likely led to morphological evolution.

  11. Phenolic Compounds from the Fruits of Medemia argun, a Food and Medicinal Plant of Ancient Egypt.

    PubMed

    Masullo, Milena; Hamed, Arafa I; Mahalel, Usama A; Pizza, Cosimo; Piacente, Sonia

    2016-03-01

    Medemia argun is a mysterious and little known monotypic fan palm from the Nubian Desert Oases of southern Egypt and northern Sudan. Its fruits have been found in the tombs from the 5th Dynasty (ca. 2500 BC) to Roman times (6-7th century AD), including the celebrated tomb of Tutankhamun. In ancient Egypt, the fruits of this palm were widely distributed and were highly valued, as confirmed by their frequent occurrence in offerings in the tombs. In order to elucidate the chemical composition of the phenolic fraction, phytochemical investigation of the BuOH extract of fruits was carried out to afford eight compounds (1-8), among which was the new 2,4-dihydroxy-6-methylacetophenone 2-0-β-D-glucopyranoside (1). With the aim to investigate if the high shelf life of M argun fruits could be related to the occurrence of antioxidant principles that were able to prevent oxidative reactions, the evaluation was carried out of the in vitro antioxidant activity by Trolox equivalent antioxidant capacity (TEAC) assay of the extract and isolated compounds.

  12. Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants.

    PubMed

    Friedman, William E; Ryerson, Kirsten C

    2009-01-01

    For more than a century, the common ancestor of flowering plants was thought to have had a seven-celled, eight-nucleate Polygonum-type female gametophyte. It is now evident that not one, but in fact three, patterns of female gametophyte development and mature structure characterize the common ancestors of the four most ancient clades of extant angiosperms: Amborella-type, Nuphar/Schisandra-type and Polygonum-type. The Amborella-type female gametophyte is restricted to a single extant species, Amborella trichopoda, and at maturity consists of eight cells and nine nuclei. Development of the Amborella-type gametophyte is essentially identical to the Polygonum-type except that there is an additional and asynchronous cell division at the micropylar pole prior to maturation that produces a third synergid and the egg cell. The Nuphar/Schisandra-type female gametophyte is four-nucleate and four-celled and at maturity contains a typical three-celled egg apparatus and a central cell with a single haploid polar nucleus. This type of gametophyte appears to be universal among extant members of the Nymphaeales (including Hydatellaceae) and Austrobaileyales. Based on explicit reconstruction of character distribution and evolution, the Polygonum-type female gametophyte is certain to be representative of the common ancestors of monocots, eudicots, magnoliids, Ceratophyllaceae, and Chloranthaceae. There are compelling biological reasons to suggest that the four-celled, four-nucleate female gametophyte (as found in Nymphaeales and Austrobaileyales) is ancestral among angiosperms, with transitions to Polygonum-type female gametophytes separately in the Amborellales and in the ancient angiosperm clade that includes all angiosperms except Amborella, Nymphaeales, and Austrobaileyales. Subsequent to the evolution of a seven-celled, eight-nucleate Polygonum-type female gametophyte in the Amborellales, we hypothesize that a peramorphic increase in egg apparatus cell number took place and

  13. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject.

    PubMed

    de Castro, Érika C P; Zagrobelny, Mika; Cardoso, Márcio Z; Bak, Søren

    2017-09-13

    Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these

  14. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions

    PubMed Central

    Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue

    2016-01-01

    Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4–1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions. PMID:27149436

  15. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages

    PubMed Central

    Johnson, Deborah A; Hill, Jeffrey P; Thomas, Michael A

    2006-01-01

    subfamilies of the Arabidopsis MST gene family are ancient in land plants and show differential subfamily expression and lineage-specific subfamily expansions. Patterns of gene expression in Arabidopsis and correlation of highly represented genes with best match homologs in early lineages suggests that broadly expressed genes are often highly conserved, and that most genes have more limited expression. PMID:16923188

  16. The genome of woodland strawberry (Fragaria vesca).

    PubMed

    Shulaev, Vladimir; Sargent, Daniel J; Crowhurst, Ross N; Mockler, Todd C; Folkerts, Otto; Delcher, Arthur L; Jaiswal, Pankaj; Mockaitis, Keithanne; Liston, Aaron; Mane, Shrinivasrao P; Burns, Paul; Davis, Thomas M; Slovin, Janet P; Bassil, Nahla; Hellens, Roger P; Evans, Clive; Harkins, Tim; Kodira, Chinnappa; Desany, Brian; Crasta, Oswald R; Jensen, Roderick V; Allan, Andrew C; Michael, Todd P; Setubal, Joao Carlos; Celton, Jean-Marc; Rees, D Jasper G; Williams, Kelly P; Holt, Sarah H; Ruiz Rojas, Juan Jairo; Chatterjee, Mithu; Liu, Bo; Silva, Herman; Meisel, Lee; Adato, Avital; Filichkin, Sergei A; Troggio, Michela; Viola, Roberto; Ashman, Tia-Lynn; Wang, Hao; Dharmawardhana, Palitha; Elser, Justin; Raja, Rajani; Priest, Henry D; Bryant, Douglas W; Fox, Samuel E; Givan, Scott A; Wilhelm, Larry J; Naithani, Sushma; Christoffels, Alan; Salama, David Y; Carter, Jade; Lopez Girona, Elena; Zdepski, Anna; Wang, Wenqin; Kerstetter, Randall A; Schwab, Wilfried; Korban, Schuyler S; Davik, Jahn; Monfort, Amparo; Denoyes-Rothan, Beatrice; Arus, Pere; Mittler, Ron; Flinn, Barry; Aharoni, Asaph; Bennetzen, Jeffrey L; Salzberg, Steven L; Dickerman, Allan W; Velasco, Riccardo; Borodovsky, Mark; Veilleux, Richard E; Folta, Kevin M

    2011-02-01

    The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.

  17. All that is gold does not glitter? Age, taxonomy, and ancient plant DNA quality

    PubMed Central

    Choi, JinHee; Lee, HyeJi

    2015-01-01

    More than 600 herbarium samples from four distantly related groups of flowering plants were used for DNA extraction and subsequent measurements of DNA purity and concentration. We did not find any significant relation between DNA purity and the age of the sample. However, DNA yields were different between plant groups studied. We believe that there there should be no reservations about “old” samples if the goal is to extract more DNA of better purity. We argue that the older herbarium samples are the mine for the future DNA studies, and have the value not less than the “fresh” specimens. PMID:26244108

  18. Isolated history of the coastal plant Lathyrus japonicus (Leguminosae) in Lake Biwa, an ancient freshwater lake

    PubMed Central

    Ohtsuki, Tatsuo; Kaneko, Yuko; Setoguchi, Hiroaki

    2011-01-01

    Background and aims Lake Biwa is one of the world's few ancient lakes. Formed ∼4 million years ago, the lake harbours many coastal species that commonly inhabit seashores. The beach pea Lathyrus japonicus is a typical coastal species of this freshwater lake, but its inland populations are faced with the threat of extinction. Here, we investigated the phylogeographical and population structures of both inland and coastal populations of L. japonicus. We also elucidated the historical isolation of the Lake Biwa population. Methodology In total, 520 individuals from 50 L. japonicus populations were sampled throughout the species distribution in Japan. Chloroplast haplotyping using intergenic spacers psbA–trnH and atpI–atpH was performed to investigate the phylogeographical structure as well as the genetic diversity of L. japonicus. Six nuclear microsatellite markers were also used to analyse the population structure. Principal results Population structure analyses of chloroplast DNA (cpDNA) and nuclear DNA (nDNA) identified inland and coastal groups. Based on the genetic differentiation, inland populations exhibited a single cpDNA haplotype and significantly lower values of HS, AR and FIS than coastal populations. In addition to the presence of a bottleneck, the lack of gene flow among inland populations was supported by estimates of recent migration rates between subpopulations. Conclusions Our data revealed that inland populations have been isolated in Lake Biwa as ‘landlocked’ populations since the predecessor lake was isolated from sea. This was also seen in a previous study of Calystegia soldanella. However, the high genetic differentiation, accompanied by a lack of gene flow among the Lake Biwa populations (according to the BAYESASS+ analysis), contradicts the results with C. soldanella. We conclude that because of the presence of a bottleneck and low genetic diversity of the inland populations, self-sustaining population persistence may be difficult in

  19. Oak woodlands as wildlife habitat

    Treesearch

    W. Tietje; K. Purcell; S. Drill

    2005-01-01

    This chapter provides local planners and policymakers with information on the diversity and abundance of oak woodland wildlife, wildlife habitat needs, and how local planning activities can influence wildlife abundance and diversity. Federal and state laws, particularly the federal and California Endangered Species Act and the California Environmental Quality Act (CEQA...

  20. Forestry lessons on home woodlands

    Treesearch

    Wilbur R. Mattoon; Alvin Dille

    1920-01-01

    The right handling of the home forest has come to be a matter of recognized importance in farm management. Farming touches forestry at a number of different points. The farm requires timber for the building and repair of houses, barns, sheds, fences, and telephone lines. It needs more or less wood for fuel, and it should have some woodland also for protecting the soil...

  1. Fungus diversity in revegetated paddocks compared with remnant woodland in a south-eastern Australian agricultural landscape

    Treesearch

    Geoff Barrett; James M. Trappe; Alex Drew; Jacqui Stol; David Freudenberger

    2009-01-01

    Despite the importance of fungi for restoration, their presence in revegetated sites has received little attention. We compared the diversity and composition of macrofungi (i.e., those that form fleshy mushrooms and truffles) in 12 sites where 3- to 6-year-old native trees and shrubs had been planted (woodland restoration sites), with that in 6 woodland remnants. All...

  2. An ancient transcriptional regulatory module for tip growth has been conserved throughout the vascular plant lineage.

    PubMed

    Cho, Hyung-Taeg

    2017-02-17

    The root hair development of vascular plants can be divided into two major processes, fate determination and hair morphogenesis, and the latter should be governed by the former so as to express the morphogenetic toolkits in a root hair-specific manner. Vascular plants, depending on taxa, show different fate-determining mechanisms for hair cell/non-hair cell fates, which leads to a question whether the downstream mophogenetic regulatory module is diverged accordingly to the upstream fate determiners or not. Our study demonstrates that the module of a transcription factor and a root hair-specific cis-element (RHE) for root hair-specific expression of morphogenetic toolkit genes is conserved in spite of different fate-determing mechanisms.

  3. Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae)

    PubMed Central

    Balasubramanian, P.; Jayalakshmi, K.; Vidhya, N.; Prasad, R.; Sheriff, A. Khaleefathullah; Kathiravan, G.; Rajagopal, K.; Sureban, Sripathi M.

    2009-01-01

    Partially purified methanolic extract of Cissus quadrangularis (belonging to Vitaceae member, South Indian medicinal plant) have been explored for antiviral activity and their phytochemical characterisation. In vitro antiviral activity against HSV type1 and 2, and Vero cells at non-cytotoxic concentration were determined. HSV1 and HSV2 showed more sensitivity against the partially purified compound. Phytochemical analysis showed the presence of the Steroids and Terpenoids. PMID:25206252

  4. Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae).

    PubMed

    Balasubramanian, P; Jayalakshmi, K; Vidhya, N; Prasad, R; Sheriff, A Khaleefathullah; Kathiravan, G; Rajagopal, K; Sureban, Sripathi M

    2009-12-01

    Partially purified methanolic extract of Cissus quadrangularis (belonging to Vitaceae member, South Indian medicinal plant) have been explored for antiviral activity and their phytochemical characterisation. In vitro antiviral activity against HSV type1 and 2, and Vero cells at non-cytotoxic concentration were determined. HSV1 and HSV2 showed more sensitivity against the partially purified compound. Phytochemical analysis showed the presence of the Steroids and Terpenoids.

  5. The Sphagnum microbiome: New insights from an ancient plant lineage

    SciTech Connect

    Kostka, Joel E.; Weston, David J.; Glass, Jennifer B.; Lilleskov, Erik A.; Shaw, A. Jonathan; Turetsky, Merritt R.

    2016-05-13

    Here, peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20–30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum–microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant–microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.

  6. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA

    PubMed Central

    Parducci, Laura; Väliranta, Minna; Salonen, J. Sakari; Ronkainen, Tiina; Matetovici, Irina; Fontana, Sonia L.; Eskola, Tiina; Sarala, Pertti; Suyama, Yoshihisa

    2015-01-01

    We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora. PMID:25487333

  7. Ancient Egyptian herbal wines

    PubMed Central

    McGovern, Patrick E.; Mirzoian, Armen; Hall, Gretchen R.

    2009-01-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products—specifically, herbs and tree resins—were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  8. Endocrinology in ancient Sparta.

    PubMed

    Tsoulogiannis, Ioannis N; Spandidos, Demetrios A

    2007-01-01

    This article attempts to analyze the crucial link between the plant Agnus castus and human health, particularly hormonal status, with special reference to the needs of the society of ancient Sparta. The ancient Spartans used Agnus both as a cure for infertility and as a remedy to treat battle wounds. These special properties were recognized by the sanctuary of Asclepios Agnita, which was located in Sparta, as well as by medical practitioners in Sparta during the classical, Hellenistic and Roman ages.

  9. Large-Scale Proteome Comparative Analysis of Developing Rhizomes of the Ancient Vascular Plant Equisetum Hyemale

    PubMed Central

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R.; Thelen, Jay J.

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  10. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland

    USGS Publications Warehouse

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.

    2017-01-01

    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  11. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

    PubMed

    Izzo, Angelo A; Borrelli, Francesca; Capasso, Raffaele; Di Marzo, Vincenzo; Mechoulam, Raphael

    2009-10-01

    Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.

  12. The role of prescribed burning in regenerating Quercus macrocarpa and associated woody plants in stringer woodlands in the Black Hills, South Dakota

    Treesearch

    Carolyn Hull Sieg; Henry A. Wright

    1996-01-01

    Throughout the range of Quercus macrocarpa, fire historically played an important role in maintaining Quercus stands. However, little is known about the role of fire in maintaining stringer Quercus stands on the western edge of its distribution. This research suggests that prescribed burning could be used to rejuvenate woody plants...

  13. Global hotspots in the present-day distribution of ancient animal and plant lineages

    PubMed Central

    Procheş, Şerban; Ramdhani, Syd; Perera, Sandun J.; Ali, Jason R.; Gairola, Sanjay

    2015-01-01

    The current distribution of biotic lineages that emerged in the deep time has both theoretical and practical implications, in particular for understanding the processes that have forged present-day biodiversity and informing local and regional-scale conservation efforts. To date however, there has been no examination of such patterns globally across taxa and geological time. Here we map the diversity of selected extant seed plant and tetrapod vertebrate lineages that were already in existence either in the latest Triassic or latest Cretaceous. For Triassic-age linages, we find concentrations in several regions – both tropical and temperate – parts of North America, Europe, East and South-east Asia, northern South America, and New Zealand. With Cretaceous-age lineages, high values are relatively uniformly distributed across the tropics, with peak the values along the Andes, in South-east Asia and Queensland, but also in the temperate Cape Mountains. These patterns result from a combination of factors, including land area, geographic isolation, climate stability and mass extinction survival ability. While the need to protect many of these lineages has been long recognised, a spatially-explicit approach is critical for understanding and maintaining the factors responsible for their persistence, and this will need to be taken forward across finer scales. PMID:26498226

  14. Bats of the piñon-juniper woodlands of southwestern Colorado

    USGS Publications Warehouse

    Chung-MacCoubrey, Alice L.; Bogan, Michael A.; Floyd, Lisa M.

    2003-01-01

    As one of the most abundant and widespread forest types in the Southwest, piñon-juniper woodlands are used to varying degrees by many bat species (Chung-MacCoubrey 1996; Findley et al. 1975; Hoffmeister 1986; Jones 1965). Because of the uniqueness and rarity of old-growth piñon-juniper, the ancient woodlands of Mesa Verde Country likely provide bats with a combination of roosting and foraging opportunities not found elsewhere. Although no studies on bat habitat use have been conducted in southwestern Colorado and Mesa Verde National Park – coupled with habitat use studies piñon-juniper woodlands of New Mexico – provide insight into how the bat community in Mesa Verde Country uses he landscape. In this chapter we describe the bat species that occur in the Mesa Verde region, some of their life history, availability of bat roosts in piñon-juniper woodlands, and general patterns of habitat use by each species. We also discuss how the pat community probably uses piñon-juniper woodlands in southwestern Colorado.

  15. Farmers and woods: a look at woodlands and woodland-owner intentions in the heartland

    Treesearch

    W. Keith Moser; Earl C. Leatherberry; Mark H. Hansen; Brett Butler

    2005-01-01

    This paper reports the results of a pilot study that explores the relationship between farm woodland owners` stated intentions for owning woodland, and their use of the land, with the structure and composition of the woodland. Two databases maintained by the USDA Forest Service, Forest Inventory and Analysis (FIA) program were used in the analysis-- the FIA forest...

  16. Wildlife response to stand structure of deciduous woodlands

    Treesearch

    Robert A. Hodorff; Carolyn Hull Sieg; Raymond L. Linder

    1988-01-01

    Deciduous woodlands provide important habitat for wildlife but comprise Fraxinus pennsylvanica) woodlands in northwestern South Dakota. Closed-canopy stands were multilayered communities with dense...

  17. Ancient Egypt.

    ERIC Educational Resources Information Center

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  18. Ancient Forests and the Tree-Ring Reconstruction of Past Climate (Ancient Forests and Dendroclimatology)

    SciTech Connect

    Stahle, David

    2003-02-12

    The original presettlement forests of North America have been dramatically altered, but thousands of unmolested ancient forests survive on remote or noncommercial terrain, including dry-site eastern hardwoods such as chestnut oak and post oak, the pinyon-juniper woodlands of the semiarid West, oak woodlands of California and in northeast Mexico, and the boreal forests of Canada and Alaska. Long tree-ring chronologies derived from these ancient forest remnants provide irreplaceable archives of environmental variability which are crucial for evaluating present and future change. Temperature sensitive tree -ring chronologies from cold treeline environments place 20th century warming into long historical perspective, and moisture sensitive tree-ring chronologies provide analogs to the decadal moisture regimes of the 20th century. These tree-ring data suggests that the 16th century megadrought was the most severe-sustained drought to impact North America in 1500 years, and had huge environmental and social impacts at the dawn of European settlement.

  19. Pinyon-juniper woodlands [chapter 6

    Treesearch

    Gerald J. Gottfried; Thomas W. Swetnam; Craig D. Allen; Julio L. Betancourt; Alice L. Chung-MacCoubrey

    1995-01-01

    Pinyon-juniper woodlands are one of the largest ecosystems in the Southwest and in the Middle Rio Grande Basin (Fig. 1). The woodlands have been important to the region's inhabitants since prehistoric times for a variety of natural resources and amenities. The ecosystems have not been static; their distributions, stand characteristics, and site conditions have...

  20. Yields of southwestern pinyon-juniper woodlands

    Treesearch

    Frederick W. Smith; Thomas. Schuler

    1988-01-01

    Site quality and growth-growing stock relations were developed for southwestern woodlands of pinyon (Pinus edulis) and one-seed juniper (Juniperus monosperma) or Utah juniper (J. osteosperma). Anamorphic height-age site index curves for pinyon were developed from a regional sample of 60 woodlands. Site index was...

  1. Breeding bird response to juniper woodland expansion

    USGS Publications Warehouse

    Rosenstock, Steven S.; van Riper, Charles

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997a??1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  2. The genome of woodland strawberry (Fragaria vesca)

    PubMed Central

    Shulaev, Vladimir; Sargent, Daniel J; Crowhurst, Ross N; Mockler, Todd C; Folkerts, Otto; Delcher, Arthur L; Jaiswal, Pankaj; Mockaitis, Keithanne; Liston, Aaron; Mane, Shrinivasrao P; Burns, Paul; Davis, Thomas M; Slovin, Janet P; Bassil, Nahla; Hellens, Roger P; Evans, Clive; Harkins, Tim; Kodira, Chinnappa; Desany, Brian; Crasta, Oswald R; Jensen, Roderick V; Allan, Andrew C; Michael, Todd P; Setubal, Joao Carlos; Celton, Jean-Marc; Rees, D Jasper G; Williams, Kelly P; Holt, Sarah H; Ruiz Rojas, Juan Jairo; Chatterjee, Mithu; Liu, Bo; Silva, Herman; Meisel, Lee; Adato, Avital; Filichkin, Sergei A; Troggio, Michela; Viola, Roberto; Ashman, Tia-Lynn; Wang, Hao; Dharmawardhana, Palitha; Elser, Justin; Raja, Rajani; Priest, Henry D; Bryant, Douglas W; Fox, Samuel E; Givan, Scott A; Wilhelm, Larry J; Naithani, Sushma; Christoffels, Alan; Salama, David Y; Carter, Jade; Girona, Elena Lopez; Zdepski, Anna; Wang, Wenqin; Kerstetter, Randall A; Schwab, Wilfried; Korban, Schuyler S; Davik, Jahn; Monfort, Amparo; Denoyes-Rothan, Beatrice; Arus, Pere; Mittler, Ron; Flinn, Barry; Aharoni, Asaph; Bennetzen, Jeffrey L; Salzberg, Steven L; Dickerman, Allan W; Velasco, Riccardo; Borodovsky, Mark; Veilleux, Richard E; Folta, Kevin M

    2012-01-01

    The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted. PMID:21186353

  3. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed Central

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  4. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  5. Vŗkşăyurvĕda of parăśara--an ancient treatise on plant science.

    PubMed

    Prasad, G P; Neelima, G; Pratap, G P; Swamy, G K

    2006-01-01

    Vŗkşăyurvĕda of Parăśara is a great contribution to the Botany in ancient India. N.N. Sircar and Roma sarkar edited this text with English translation. Notes with comparative references of modern botany were added. This book can be placed in all probability in between 1st century B.C to 4th century A.D by its linguistic style. Many scientific branches of Botany including origin of life, ecology, distribution of forests, morphology, classification, nomenclature, histology and physiology were dealt in this ancient work. Though it is presumed that this book was written by Parăśara to teach Botany to preparatory to Ayurvĕda studies to ancient Ayurvĕda students, it is true to the Ayurvĕda personals and other disciplines related to Botany of present day as well. Aim of this article is to attract the attention of all scholars who are related to Ayurvĕda and Botany and to feel the depth of the knowledge of ancient Indian botany.

  6. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2.

    PubMed

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2015-01-01

    The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant-fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant-fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort-Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort-Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2 , we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis.

  7. Management of California Oak Woodlands: Uncertainties and Modeling

    Treesearch

    Jay E. Noel; Richard P. Thompson

    1995-01-01

    A mathematical policy model of oak woodlands is presented. The model illustrates the policy uncertainties that exist in the management of oak woodlands. These uncertainties include: (1) selection of a policy criterion function, (2) woodland dynamics, (3) initial and final state of the woodland stock. The paper provides a review of each of the uncertainty issues. The...

  8. Optimizing Emory oak woodlands for multiple resource benefits [Poster

    Treesearch

    Catlow Shipek; Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano

    2005-01-01

    The Emory oak woodlands in the southwestern United States present a diverse range of resources. People utilize these woodlands for wood products, cattle grazing, and recreational purposes. The woodlands provide a diversity of wildlife habitats for resident and migratory species. Occupying predominantly upland regions, the oak woodlands protect watersheds from excessive...

  9. 77 FR 38475 - Amendment of Class E Airspace; Woodland, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Woodland, CA AGENCY: Federal... Watts-Woodland Airport, Woodland, CA. The projected decommissioning of the Travis VHF Omni- Directional... amend controlled airspace at Woodland, CA (77 FR 23172). Interested parties were invited to participate...

  10. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  11. Woodlands Grazing Issues in Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Campos, P.

    2009-04-01

    In Mediterranean basin, woodlands grazing still continue to be important commercial owners' benefits. These owners manage woodlands vegetations as if they were not at risk of degradation and declining. Frequently, no temporally grazing set-aside is taken into account to avoid overgrazing of annual and perennial vegetations. Although less common, in the northern shore of Mediterranean basin undergrazing might increase the frequency and the number of catastrophic forest fires. This under/over grazing regime occurs in the Mediterranean basin woodlands with contrasted differences on land property rights, local economies and government livestock policy incentives. Spain and Tunisia are examples of these Mediterranean livestock contrasts. Most of Spanish Mediterranean woodlands and livestock herds are large private ownerships and owners could maintain their lands and livestock herds properties on the basis of moderate cash-income compensation against land revaluation and exclusive amenity self-consumption. The later is less tangible benefit and it could include family land legacy, nature enjoyment, country stile of life development, social status and so on. In public woodlands, social and environmental goals -as they are cultural heritage, biodiversity loss mitigation, soil conservation and employment- could maintain market unprofitable woodlands operations. Last three decades Spanish Mediterranean woodlands owners have increased the livestock herds incentivized by government subsidies. As result, grazing rent is pending on the level of European Union and Spanish government livestock subsidies. In this context, Spanish Mediterranean woodlands maintain a high extensive livestock stoking population, which economy could be called fragile and environmentally unsustainable because forest degradation and over/under grazing practices. Tunisian Mediterranean woodlands are state properties and livestock grazing is practice as a free private regimen. Livestock herds are small herd

  12. Invasive plants in Arizona's forests and woodlands

    Treesearch

    Alix Rogstad; Tom DeGomez; Carol Hull Sieg

    2007-01-01

    Climate is critically linked to vegetation dynamics at many different spatial and temporal scales across the desert Southwest. Small-scale, short duration monsoon season thunderstorms can bring much needed precipitation to small patches of vegetation or can initiate widespread flooding. Long-term variations in climate related to ocean circulation patterns can create...

  13. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    PubMed Central

    2012-01-01

    Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. PMID:23102090

  14. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike

    2017-02-01

    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.

  15. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns

    NASA Astrophysics Data System (ADS)

    Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.

    2016-06-01

    Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.

  16. Recent Development Affect Woodland Owner Tax Issues

    Treesearch

    William C. Siegel

    2002-01-01

    This article will begin with discussion of several recent income and gift tax developments of interest to woodland owners. It will be followed by a question recently brought to my attention and the answer provided.

  17. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2

    PubMed Central

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2015-01-01

    The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant–fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant–fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort–Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort–Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2, we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis. PMID:25230098

  18. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  19. Ancient genomics.

    PubMed

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  20. Woodland structure affects intensity of infection by an exotic forest pathogen

    Treesearch

    Nathan Rank; Hall Cushman; Ross Meentemeyer

    2008-01-01

    Woodland ecosystems often consist of a mosaic of interacting dominant woody species that vary in density and abundance. Local variation in dominant species abundance may influence spread of plant pathogens across this heterogeneous landscape. We investigated this possibility in a 275 km2 study area in eastern Sonoma County, which is being invaded by the pathogen that...

  1. Effect of cultural treatments on regeneration of native woodlands on the Northern Great Plains

    Treesearch

    Daniel W. Uresk; Charles E. Boldt

    1986-01-01

    Two cultural treatments were evaluated over a 6-year post-treatment period to determine their effect on regeneration of native woodlands in southwestern North Dakota. Cultural treatments included livestock exclusion and the combination of felling and removal of low-vigor trees and transplanting of woody plants. Shrub density varied by species when grazed and ungrazed...

  2. Wildlife diversity of restored shortleaf pine-oak woodlands in the northern Ozarks

    Treesearch

    Corinne S. Mann; Andrew R. Forbes

    2007-01-01

    Historic changes in land use have altered the plant composition and structure of shortleaf pine-oak woodlands in the northern Ozarks. As a result, the composition of wildlife communities in these landscapes has shifted to species that are more associated with closed canopy oak forests. For example, the red-cockaded woodpecker (Picoides borealis) has...

  3. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Employment and Training Administration Woodland Mills Corporation Mill Spring, NC; Notice of Revised... of Woodland Mills Corporation, Mill Spring, North Carolina, to apply for Trade Adjustment Assistance... yarn produced by Woodland Mills Corporation, Mill Spring, North Carolina Woodland Mills...

  4. Factors related to the recovery of subalpine woodland on Mauna Kea, Hawaii

    USGS Publications Warehouse

    Hess, Steven C.; Banko, Paul C.; Brenner, Gregory J.; Jacobi, James D.

    1999-01-01

    We measured mature tree and sapling density, tree associations, crown size, age structure, recovery from ungulate browsing, and grass cover at four study sites in two types of subalpine woodland on Mauna Kea volcano, island of Hawaii. Beginning in 1981, introduced ungulates were reduced in number to allow regeneration of Sophora chrysophylla (mamane) in habitat supporting the endangered Hawaiian finch, Loxioides bailleui (palila). We found Sophora regeneration at all four study sites, but regeneration was higher in mixed species woodland with codominant Myoporum sandwicense (naio) than in areas where Sophora dominated. Regeneration of Myoporum was uniformly very low in comparison. Invasive grass cover, which suppresses Sophora germination, was highest in mid-elevation woodland where Sophora dominated. The distribution of mature and sapling Sophora were both related to study site, reflecting previous ungulate browsing and uneven recovery due to grasses. Densities of Sophora snags were not different among any of the sites, suggesting a more even distribution in the past. Selective browsing before ungulate reduction may have favored Myoporum over Sophora, leading to high densities of mature Myoporum in codominant woodland. After ungulate reduction, however, we found no pattern of competitive inhibition by Myoporum on regeneration of Sophora. Reduction of Myoporum is not likely to enhance habitat for Loxioides as much as supplemental planting of Sophora, grass control, and continued ungulate eradication. Mid-elevation Sophora woodland areas, where Loxioides forage and nest in high densities, would benefit the most from these management actions.

  5. Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade.

    PubMed

    Volkmar, U; Groth-Malonek, M; Heinrichs, J; Muhle, H; Polsakiewicz, M; Knoop, V

    2012-03-01

    Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales.

  6. Timing and host plant associations in the evolution of the weevil tribe Apionini (Apioninae, Brentidae, Curculionoidea, Coleoptera) indicate an ancient co-diversification pattern of beetles and flowering plants.

    PubMed

    Winter, Sven; Friedman, Ariel L L; Astrin, Jonas J; Gottsberger, Brigitte; Letsch, Harald

    2017-02-01

    Host plant shifts of insects can lead to a burst of diversification driven by their arrival in a new adaptive zone. In this context, our study aims to explore timing and patterns in the evolution of the weevil tribe Apionini (Brentidae, Curculionoidea, Coleoptera), particularly in relation to affiliations with their host plants. The classification of Apionini is difficult because of their relatively uniform appearance. Most taxa live mono- or oligophagously on members of Asteraceae or Fabaceae, but many are associated with other plant families, like Lamiaceae, Malvaceae and Polygonaceae. However, a comprehensive hypothesis of the phylogenetic relationships within the tribe Apionini is still missing. In the present study, we reconstructed trees and estimated divergence times among tribes. These results were further used to reconstruct the ancestral host plant use in Apionini weevils and to infer if the divergence timing of putative subtribes corresponds with the occurrence and radiation of their specific host plant groups. Phylogenetic analyses confirm the monophyly of most subtribes, with the exceptions of Oxystomatina, Kalcapiina and Aspidapiina. The subribe Aplemonina is inferred to be sister to all remaining Apionini. Divergence time estimates indicate the first occurrence of Apionini in the Upper Cretaceous and a simultaneous occurrence of several families of flowering plants and the occupation by Apionini weevil herbivores. These conspicuous coincidences support either an ancient co-diversification scenario or an escalating diversification in weevils induced by the radiation of flowering plants.

  7. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants.

    PubMed

    Yeats, Trevor H; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F; Clausen, Mads H; Stark, Ruth E; Rose, Jocelyn K C

    2014-03-01

    The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors.

  8. Ancient quarries

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    Using a unique set of remote sensing techniques, a team of University of Colorado researchers has detected mining pits dug by Montana Indians 10,000 years ago. The team used satellite images, aerial photographs, and ground tests to locate quarries where ancient North Americans obtained chert for making tools. Anthropology doctoral student Thomas Carr, Mort Turner, of the University of Colorado's Institute of Arctic and Alpine Research, and four undergraduate and graduate students developed 12 “spectral classes” characterizing distinct geologic and vegetation types found in the Horse Prairie Valley study area in southwest Montana. Their data included electromagnetic measurements of soil conductivity from a known Indian quarry in the area, where the altered bedrock contains veins of chert, and an adjacent area of disturbed soil. Using special computer software, the team compared characteristics of nearly one million 30-m2 pixels from a 1985 regional Landsat satellite image to those of the 12 spectral classes. Twelve possible ancient mining sites in the 800-square-mile research area were identified. During a later ground survey using GPS satellite receivers, eight of these were confirmed to be ancient Indian quarries.

  9. The economic drivers behind residential conversion in the oak woodlands

    Treesearch

    William Stewart; James Spero; Shawn Saving

    2008-01-01

    Acre for acre, oak woodlands provide habitats for a greater range of wildlife species than grasslands and irrigated agricultural lands. Oak woodlands also are highly valued as open space around residential development. The rich habitat diversity and the physical attractiveness drives residential interest in living in or adjacent to oak woodlands as well as preservation...

  10. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    NASA Astrophysics Data System (ADS)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  11. Farmers' objectives toward their woodlands in the upper Midwest of the United States: implications for woodland volumes and diversity

    Treesearch

    W. Keith Moser; Earl C. Leatherberry; Mark H. Hansen; Brett J. Butler

    2009-01-01

    This paper reports the results of a study that explores the relationship between farm woodland owners' stated intentions for owning woodland, and the structure and composition of these woodlands in the states of Illinois, Indiana and Iowa in the upper Midwest of the United States. Data from two sample-based inventories conducted by the USDA Forest Service, Forest...

  12. The oak woodland bird conservation plan: a strategy for protecting and managing oak woodland habitats and associated birds in California

    Treesearch

    Steve Zack; Mary K. Chase; Geoffrey R. Geupel

    2002-01-01

    Over 330 species of birds, mammals, reptiles, and amphibians depend on oak woodlands in California at some stage in their life cycle. California oak woodlands may rank among the top three habitat types in North America for bird richness. Oak woodlands are able to sustain such abundant wildlife primarily because they produce acorns, a high quality and frequently copious...

  13. Are molecular and isotopic patterns in modern plants representative of ancient floras? Examples from Paleocene and Eocene floras and sediments in the Bighorn Basin (WY, USA)

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.; Currano, E. D.

    2011-12-01

    In modern ecosystems, climate, biome and plant community are important predictors of carbon isotope patterns recorded in leaves, leaf waxes, and leaf terpenoids. However, it is unclear if modern carbon isotope patterns are useful analogs in the past when climate and atmospheric CO2 conditions were drastically different than today. It is also uncertain if molecular carbon isotope approaches are more robust with respect to reconstructing patterns of atmospheric δ13C compared to bulk isotope approaches. To evaluate these questions, we present a study of carbon isotope values of bulk organic matter and biomarkers for terrestrial plants (di- and triterpenoids and n-alkanes) from the late Paleocene (62 MA) to the Early Eocene Climatic Optimum (EECO; 52.6 MA) in the Bighorn Basin (WY, USA). We sampled along eight laterally extensive outcrops from the Fort Union and Willwood Formations. Each unit varies in exposure from tens of meters to eighteen kilometers. Sediment lithology includes carbonaceous mudstones, shales, and lignites with total organic carbon ranging from 0.2% to 55%. Climate during this interval, as determined from fossil leaf metrics, warmed from the cooler Paleocene (~10.5°C) to the hot Eocene (~22.2°C) with mean annual precipitation varying from 110 to 170 cm. We collected multiple samples across a laterally extensive outcrop to capture previously reported spatial variability in flora and depositional environment. Carbon isotopes of bulk organic matter, n-alkanes, and di- and triterpenoids (specific for conifers and angiosperms, respectively) were characterized. To determine if plant biomarker relationships from modern plants are applicable to ancient plants, we reconstructed carbon isotope fractionation during photosynthesis (Δleaf) from biomarker carbon isotope values (n-alkanes and terpenoids) and from δ13C values of atmospheric CO2 estimated from planktonic foraminifera. Reconstructed Δleaf values are consistent with predicted Δleaf values when

  14. Ancient Egypt

    NASA Astrophysics Data System (ADS)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  15. Woodland in Practical Skills Therapeutic Education

    ERIC Educational Resources Information Center

    Mata, Paula; Gibons, Kenneth; Mata, Fernando

    2016-01-01

    Modern urban life provides less opportunities to contact with nature, which is a potential cause of developmental deviances in children. We investigated the potential therapeutic effect of woodlands, within the context of Practical Skills Therapeutic Education at the Ruskin Mill College, UK. Data on physical and emotional perceptions were…

  16. Woodland Culture Area. Native American Curriculum Series.

    ERIC Educational Resources Information Center

    Ross, Cathy; Fernandes, Roger

    One in a series of Native American instructional materials, this booklet introduces elementary students to the tribes of the woodland culture area, extending from the Mississippi River to the Atlantic Ocean and from Florida to the Great Lakes. Written in simple language, the booklet provides an overview of the regional culture, as well as,…

  17. Silviculture to restore oak savannas and woodlands

    Treesearch

    Daniel C. Dey; John M. Kabrick; Callie J. Schweitzer

    2017-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak natural communities that were dominant across the region. In the past century, savannas and woodlands have become scarce because of conversion to agriculture or development of forest structure in the absence of fire. Their restoration is a primary goal for public agencies and...

  18. Woodland Culture Area. Native American Curriculum Series.

    ERIC Educational Resources Information Center

    Ross, Cathy; Fernandes, Roger

    One in a series of Native American instructional materials, this booklet introduces elementary students to the tribes of the woodland culture area, extending from the Mississippi River to the Atlantic Ocean and from Florida to the Great Lakes. Written in simple language, the booklet provides an overview of the regional culture, as well as,…

  19. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  20. Woodland in Practical Skills Therapeutic Education

    ERIC Educational Resources Information Center

    Mata, Paula; Gibons, Kenneth; Mata, Fernando

    2016-01-01

    Modern urban life provides less opportunities to contact with nature, which is a potential cause of developmental deviances in children. We investigated the potential therapeutic effect of woodlands, within the context of Practical Skills Therapeutic Education at the Ruskin Mill College, UK. Data on physical and emotional perceptions were…

  1. Restoration of midwestern oak woodlands and savannas

    Treesearch

    Dan C. Dey; John M. Kabrick

    2015-01-01

    There are various definitions for savanna and woodland in the ecological literature. Characteristic elements of each community are broadly defined and often overlap according to the authorities (Curtis 1959; Nuzzo 1986; Nelson 2010). Some confusion is inevitable when categorizing what is in reality a continuum of states from prairie to forest in which there can be much...

  2. The small forest landowner and his woodland

    Treesearch

    Walter C. Anderson

    1960-01-01

    To find out what kinds of individuals are particularly interested in forestry and how they use their forest land, 100 owners were interviewed (fig. 1) and their woodlands examined in each of two study areas, one in the North Carolina Piedmont and the other in the Georgia Coastal Plain. Total acreage of the two areas is about the same. And although total acreage in...

  3. The influence of vegetation on bird distribution in dry forests and oak woodlands of western Mexico.

    PubMed

    Corcuera, Pablo; Zavala-Hurtado, J Alejandro

    2006-06-01

    The bird species distribution along a dry forest-oak woodland vegetation gradient was studied in autumn and spring in two consecutive years. Intra-seasonal comparisons showed that bird species had similar distributions in each of the two years. Inter-seasonal changes were mainly due to compositional differences even though resident species generally used similar habitats in both seasons. Ordination analyses, based on the first year bird species abundances, showed a clearly segregated distribution between forest and woodland birds. Within these two vegetation types, the distribution tended to be more individualistic. Nevertheless further habitats could be identified according to groups of birds having similar distributions. These habitats did not correspond to the plant associations which resulted from a previous classification of the vegetation. Observations of the plant use by the birds during the study period showed that, in most cases, the plant variables associated with ordination analyses are unlikely to be very important for the bird species life cycles.

  4. Plant communities of Santa Rosa Island, Channel Islands National Park

    USGS Publications Warehouse

    Clark, Ronilee A.; Halvorson, William L.; Sawdo, Andell A.; Danielsen, Karen C.

    1990-01-01

    A survey of the plant communities on Santa Rosa Island, Channel Islands National Park, was conducted from January through July 1988.  Vegetation data were collected at 296 sites using a releve technique.  The plant communities described include: grassland, coastal marsh, caliche scrub, coastal sage scrub, lupine scrub, baccharis scrub, coastal bluff scrub, coastal dune scrub, mixed chaparral, mixed woodland, torrey pine woodland, closed-cone pine woodland, island oak woodland, riparian woodland, and riparian herbaceous vegetation. The areal extent of each community was mapper on USGS 7.5' topographic maps, and digitized for GIS manipulation.

  5. P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants.

    PubMed

    Williams, Lorraine E; Mills, Rebecca F

    2005-10-01

    P(1B)-ATPases form a distinct evolutionary sub-family of P-type ATPases, transporting transition metals such as Cu, Zn, Cd, Pb and Co across membranes in a wide range of organisms, including plants. Structurally they are distinct from other P-types, possessing eight transmembrane helices, a CPx/SPC motif in transmembrane domain six, and putative transition metal-binding domains at the N- and/or C-termini. Arabidopsis has eight P(1B)-ATPases (AtHMA1-AtHMA8), which differ in their structure, function and regulation. They perform a variety of important physiological tasks relating to transition metal transport and homeostasis. The crucial roles of plant P(1B)-ATPases in micronutrient nutrition, delivery of essential metals to target proteins, and toxic metal detoxification are discussed.

  6. Photosynthetic Mechanisms and Paleoecology from Carbon Isotope Ratios in Ancient Specimens of C4 and CAM Plants.

    PubMed

    Troughton, J H; Wells, P V; Mooney, H A

    1974-08-16

    Carbon istotope ratios of modern, 10,000-year-old, and more than 40,000-year-old Atriplex confertifolia (C(4)) material from Nevada caves indicate that the C(4) photosynthetic pathway was operating in these plants over that period. Samples of a plant with crassulacean acid metabolism, Opuntia polyacantha, were also measured, and a shift in the 8(13)C value from -21.9 per mil (more than 40,000 years ago) to -13.9 per mil (10,000 years ago) was observed. This provides unique physiological evidence to support the hypothesis that the late Pleistocene pluvial climate in the region already had become drier about 10,000 years ago.

  7. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages.

    PubMed

    Frank, Margaret H; Edwards, Molly B; Schultz, Eric R; McKain, Michael R; Fei, Zhangjun; Sørensen, Iben; Rose, Jocelyn K C; Scanlon, Michael J

    2015-08-01

    Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes.

  8. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  9. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  10. The ancient name of rose.

    PubMed

    Dalby, A

    2001-01-01

    The article is a survey of plants foods and drugs that Greeks and Romans thought to be aphrodisiac and to have a specific effect on the male libido. The article is a useful support to study the sexual therapy in ancient world.

  11. The impact of Pleistocene climate change on an ancient arctic–alpine plant: multiple lineages of disparate history in Oxyria digyna

    PubMed Central

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-01-01

    The ranges of arctic–alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic–alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, TMRCA) ranged from ∼0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic–alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum. PMID:22822441

  12. The impact of Pleistocene climate change on an ancient arctic-alpine plant: multiple lineages of disparate history in Oxyria digyna.

    PubMed

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-03-01

    The ranges of arctic-alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic-alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, T(MRCA)) ranged from ∼0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic-alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum.

  13. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage

    PubMed Central

    Iles, William J.D.; Barrett, Craig F.; Smith, Selena Y.; Specht, Chelsea D.

    2016-01-01

    The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths. PMID:26819846

  14. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage.

    PubMed

    Sass, Chodon; Iles, William J D; Barrett, Craig F; Smith, Selena Y; Specht, Chelsea D

    2016-01-01

    The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths.

  15. Treponemal disease in the middle Archaic to early Woodland periods of the western Tennessee River Valley.

    PubMed

    Smith, Maria Ostendorf

    2006-10-01

    The high frequency of late prehistoric New World treponemal disease is attributable to the demographic changes concomitant with the adoption of agriculture. However, these demographic changes in group mobility and site density episodically preceded intensive plant domestication, suggesting possible staggered temporal change in observed treponemal disease case frequency. Thirteen convincing and an additional two probable (N = 581) cases of treponemal disease were identified in an eight-site skeletal sample spanning the Middle (6,000-3,000 BCE) to Late (2,500-ca. 1,000 to 500 BCE) Archaic and Early Woodland (500 BCE-0 CE) periods from the western Tennessee River Valley. Treponemal disease cases are infrequent in both the Middle (3/115, 2.6%) and Late (2 to 4 cases, Woodland horizon. As the subsistence economy across the Archaic-Woodland temporal boundary in the western Tennessee River Valley remained, as elsewhere, based on intensive hunting and collecting, the demographic corollaries of treponemal disease would apparently not be met. However, the traditional horizon marker of the Woodland period is the adoption of pottery, an activity associated with sedentism.

  16. VRIKSHAYURVEDA (Arboreal Medicine in Ancient India)

    PubMed Central

    Ramachanran, C.K.

    1984-01-01

    This paper discusses the special branch of the Ancient Indian science on plant life as depicted by Vrikshayurveda, and the obvious relevance of the insights these provide to enrich our knowledge and practice in this field PMID:22557461

  17. Plantlet regeneration from callus cultures of selected genotype of Aloe vera L.--an ancient plant for modern herbal industries.

    PubMed

    Rathore, Mangal S; Chikara, J; Shekhawat, N S

    2011-04-01

    Aloe vera L., a member of Liliaceae, is a medicinal plant and has a number of curative properties. We describe here the development of tissue culture method for high-frequency plantlet regeneration from inflorescence axis-derived callus cultures of sweet aloe genotype. Competent callus cultures were established on 0.8% agar-gelled Murashige and Skoog's (MS) basal medium supplemented with 6.0 mg l⁻¹ of 2,4-dichlorophenoxyacetic acid (2,4-D) and 100.0 mg l⁻¹ of activated charcoal and additives (100 mg l⁻¹ of ascorbic acid, 50.0 mg l⁻¹ each of citric acid and polyvinylpyrrolidone, and 25.0 mg l⁻¹ each of L-arginine and adenine sulfate). The callus cultures were cultured on MS medium containing 1.5 mg l⁻¹ of 2,4-D, 0.25 mg l⁻¹ of Kinetin (Kin), and additives with 4% carbohydrate source for multiplication and long-term maintenance of regenerative callus cultures. Callus cultures organized, differentiated, and produced globular embryogenic structures on MS medium with 1.0 mg l⁻¹ of 2,4-D, 0.25 mg l⁻¹ of Kin, and additives (50.0 mg l⁻¹ of ascorbic acid and 25.0 mg l⁻¹ each of citric acid, L-arginine, and adenine sulfate). These globular structures subsequently produced shoot buds and then complete plantlets on MS medium containing 1.0 mg l⁻¹ of 6-benzylaminopurine and additives. A hundred percent regenerated plantlets were hardened in the greenhouse and stored under an agro-net house/nursery. The regeneration system defined could be a useful tool not only for mass-scale propagation of selected genotype of A. vera, but also for genetic improvement of plant species through genetic transformation.

  18. Santa Barbara microwave backscattering model for woodlands

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Day, J.; Sun, G.

    1993-01-01

    The Santa Barbara microwave backscattering model for woodland vegetation with discontinuous tree canopies is described, with an emphasis on the construction of the model from probability-weighted sub-components. The modelling approach is to treat individual tree crowns as scatterers and attenuators, using the probabilities of scattering and attenuation to compute total backscatter. Four major model components are defined: surface backscattering, crown volume scattering, multi-path interactions between crown and ground, and double-bounce trunk-ground interactions. Each component is divided into subcomponents having distinct scattering and attenuation paths. The scattering of each subcomponent is computed and weighted by the probability of its occurrence. Total backscatter from a simulated woodland stand is computed by incoherent summation of the components. Recent revisions to the model have modified the subcomponent definitions and improved the probability formulation.

  19. Ancient Rivers

    NASA Image and Video Library

    2016-01-14

    Early in Martian history, liquid water energetically carved the surface, forming channel systems that look remarkably similar to river valleys and drainage networks on Earth. Exactly how these channels formed -- by rainfall, snowmelt, or seepage from underground springs -- is often debated. The answer has important ramifications about the early Martian climate. Clues about the source of the water may indicate the shape, layout, and scale of the various tributaries in a channel system. Our image shows an example of just such a water-carved channel. The channel pattern, called "dendritic" because of its tree-like branching, begins at the top of the image and runs down over the rim of an ancient impact basin across the basin floor. The soil surface overlying these channels, and indeed the entire landscape, has been changed and reworked over the intervening millions of years, by the combined actions of wind and ice. Over time, the original channels become muted or even erased. Nevertheless, some characteristics of the smallest tributary channels are still visible at scales seen by HiRISE. http://photojournal.jpl.nasa.gov/catalog/PIA20337

  20. As Long as it is Not My Land: Landowners and Oak Woodland Conservation in Spain and California

    NASA Astrophysics Data System (ADS)

    Huntsinger, L.; Oviedo, J. L.; Plieninger, T.

    2009-04-01

    In Spain and California, landowners have a crucial role to play in the conservation of oak woodlands. The value of environmental services from private oak woodlands used for extensive agriculture has drawn the attention of policymakers and conservationists, and policy strategies for maintenance of traditional extensive agriculture are emergent in both places. These strategies require landowner participation. Surveys of landowners in each place reveal similarities in management practices, goals, attitudes, and demographics, as well as some interesting points of divergence. Despite very different institutional and political contexts, landowner attitudes show some striking similarities. Both favor a degree of government protection of natural resources, but would prefer that this would not include regulation of activities on their own lands. With a relatively stable woodland ecologically, and a high rate of urban out-migration into woodland areas, the more visible initiatives in California today focus on landowner education, and tax relief for temporary or permanent restrictions on land conversion. Non-governmental organizations have taken an increasingly visible role in the brokering of purchased or donated land title restrictions for conservation. These programs have resulted in an apparent decline in oak harvest and some limitations on development, but have not often directly influenced regeneration or management on private lands. In contrast, with more stable patterns of population distribution and less stable woodland ecological dynamics, Spanish incentive programs approach regeneration and management issues more directly, with subsidies for oak planting and maintenance, and price advantages for the products of traditional agriculture. The results of a twenty-year longitudinal study in California show a shift towards an increasing focus on amenities by California oak woodland landowners, whether they are ranch owners with hundreds of hectares of woodland, or

  1. Simulation of snowmelt in a subarctic spruce woodland: 2. Open woodland model

    NASA Astrophysics Data System (ADS)

    Giesbrecht, Mark A.; Woo, Ming-Ko

    2000-08-01

    A model is presented to simulate snowmelt in a subarctic woodland using a Geographic Information System to express the spatial distribution of snow and the pattern of trees and their shifting shadows during the day. The woodland is distinguished into several zone types, including openings under the Sun and in the shade, zones beneath the tree canopy, and the tree trunks. Meteorological data obtained at an open site are transposed to each zone for the calculation of melt rates. The wooded experimental plot is subdivided into 2×2 m2 grid cells, each with different fractional areas occupied by various zone types. Melt rates at each cell are obtained by weighting the zonal melt with these fractional areas. Despite some limitations the model provides a spatial dimension to snowmelt in the woodland and yields mean melt values that enhance the representation of the forest melt conditions conventionally obtained using calculations for single points.

  2. GENERAL VIEW, MAIN ENTRANCE GATES, LOOKING SOUTH ACROSS WOODLANDS AVENUE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, MAIN ENTRANCE GATES, LOOKING SOUTH ACROSS WOODLANDS AVENUE. IN 1933, A CITY OF PHILADELPHIA LAND CONDEMNATION REQUIRED THE DEMOLITION OF AN EXISTING GATEWAY COMPLETED IN 1857 ON PLANS BY JOHN MCARTHUR, JR. PAUL CRET DESIGNED THE NEW GATES IN 1936. THEY WERE COMPLETED THE FOLLOWING YEAR AND MOVED TO THEIR PRESENT LOCATION IN 1948 AFTER ANOTHER CITY LAND CONDEMNATION. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  3. Ancient biomolecules in Quaternary palaeoecology

    NASA Astrophysics Data System (ADS)

    Hofreiter, Michael; Collins, Matthew; Stewart, John R.

    2012-02-01

    The last few years have seen an enormous proliferation of ancient biomolecules research, especially in the field of ancient DNA. Ancient DNA studies have been transformed by the advent of next generation sequencing, with the first Pleistocene sample being analysed in 2005, and several complete and draft genomes that have been compiled from ancient DNA to date. At the same time, although less conspicuous, research on ancient proteins has also seen advances, with the time limit for research on ancient biomolecules now extending to over 1 million years. Here we review which effects these developments have on research in Quaternary science. We identify several lines of research that have the potential to profit substantially from these recent developments in ancient biomolecules research. First, the identification of taxa can be made using ancient biomolecules, and in the case of ancient DNA, specimens can even be assigned to specific populations within a species. Second, increasingly large DNA data sets from Pleistocene animals allow the elucidation of ever more precise pictures of the population dynamic processes whereby organisms respond to climate and environmental change. With the accompanying better understanding of process in the Quaternary, past ecologies can also more realistically be interpreted from proxy data sets. The dominant message from this research so far is that the Quaternary saw a great deal more dynamism in populations than had been forecast by conventional palaeoecology. This suggests that reconstructions of past environmental conditions need to be done with caution. Third, ancient DNA can also now be obtained directly from sediments to elucidate the presence of both plant and animal species in an area even in the absence of identifiable fossils, be it macro- or micro-fossils. Finally, the analysis of proteins enables the identification of bone remains to genus and sometimes species level far beyond the survival time of DNA, at least in temperate

  4. Vegetation community change in Atlantic oak woodlands along a nitrogen deposition gradient.

    PubMed

    Wilkins, Kayla; Aherne, Julian

    2016-09-01

    Atlantic old sessile oak woodlands are of high conservation importance in Europe, listed in the European Union (EU) Habitats Directive Annex I, and known for their rich bryophyte communities. Their conservation status ranges from unfavourable to bad across their known distribution, which is predominantly within the UK and Ireland, but also extends into Iberia and Brittany. The objectives of this study were to determine if nitrogen (N) deposition, a known driver of terrestrial biodiversity loss, was a significant predictor of community composition in old sessile oak woodlands (i.e., EU Habitats Directive Annex I class: 91A0), and to identify significant changes in individual plant species and community-level abundance (i.e., change points) along an N deposition gradient. Relevé data from 260 Irish oak woodland plots were evaluated using Canonical Correspondence Analysis (CCA) and Threshold Indicator Taxa ANalysis (TITAN). Nitrogen deposition accounted for 14% of the explainable variation in the dataset (inertia = 0.069, p < 0.005). A community scale change point of 13.2 kg N ha(-1) yr(-1) was indicated by TITAN, which falls within the current recommended critical load (CL) range for acidophilous Quercus-dominated (oak) woodlands (10-15 kg N ha(-1) yr(-1)). The results suggest that the current CL is sufficient for maintaining a core group of indicator species in old sessile oak woodlands, but many nutrient sensitive species may disappear even at the CL range minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland

    Treesearch

    Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell

    2005-01-01

    Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...

  6. Restoring grassland savannas from degraded pinyon-juniper woodlands: effects of mechanical overstory reduction and slash treatment alternatives

    Treesearch

    Dale G. Brockway; Richard G. Gatewood; Randi B. Paris

    2002-01-01

    Although the distribution and structure of pinyon-juniper woodlands in the Southwestern United States are thought to be the result of historic fluctuations in regional climatic conditions, more recent increases in the areal extent, tree density, soil erosion rates, and loss of understory plant diversity are attributed to heavy grazing by domestic livestock and...

  7. Distribution of Paradine plains cactus in pinyon-juniper woodland on the North Kaibab Ranger District, Kaibab National Forest

    Treesearch

    Arthur M. Phillips; Debra J. Kennedy; Barbara G. Phillips; Diedre Weage

    2001-01-01

    Surveys for Paradine plains cactus (Pediocactus paradinei B. W. Benson) conducted for the Kaibab National Forest, North Kaibab Ranger District in 1992-94 qualitatively showed a fairly substantial population of scattered individuals in the pinyon-juniper woodland, and indicated that there might be a correlation between plant distribution and dripline of trees. This...

  8. Groundlayer vegetation gradients across oak woodland canopy gaps

    USGS Publications Warehouse

    Pavlovic, N.B.; Grundel, R.; Sluis, W.

    2006-01-01

    Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.

  9. Ecohydrologic relationships of two juniper woodlands with different precipitation regimes

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Guldan, S. J.; Deboodt, T.; Fernald, A.; Ray, G.

    2015-12-01

    The significant expansion of juniper (Juniperus spp.) woodlands throughout the western U.S. during the last two centuries has disrupted important ecological functions and hydrologic processes. The relationships between water and vegetation distribution are highly impacted by the ongoing shift from shrub steppe and grassland to woodland-dominated landscapes. We investigated vegetation dynamics and hydrologic processes occurring in two distinct juniper landscapes with different precipitation regimes in the Intermountain West region: A winter snow-dominated (Oregon) and a summer rain-dominated with some winter precipitation (New Mexico) landscape. Results from the Oregon site showed marginal differences (1-2%) in soil moisture in treated vs untreated watersheds throughout the dry and wet seasons. In general, soil moisture was greater in the treated watershed in both seasons. Canopy cover affected soil moisture over time. Perennial grass cover was positively correlated with changes in soil moisture, whereas juniper cover was negatively correlated with changes in soil moisture. Shallow groundwater response observed in upland and valley monitoring wells indicate there are temporary hydrologic connections between upland and valley locations during the winter precipitation season. Results from the New Mexico site provided valuable information regarding timing and intensity of monsoon-driven precipitation and the rainfall threshold (5 mm/15 min) that triggers runoff. Long-term vegetation dynamics and hydrologic processes were evaluated based on pre- and post-juniper removal (70%) in three watersheds. In general, less runoff and greater forage response was observed in the treated watersheds. During rainfall events, soil moisture was less under juniper canopy compared with inter-canopy; this difference in soil moisture was intensified during high intensity, short duration rainstorms in the summer months. We found that winter snow precipitation helped recharge soil moisture

  10. Firewood, food and human niche construction: the potential role of Mesolithic hunter-gatherers in actively structuring Scotland's woodlands

    NASA Astrophysics Data System (ADS)

    Bishop, Rosie R.; Church, Mike J.; Rowley-Conwy, Peter A.

    2015-01-01

    Over the past few decades the potential role of Mesolithic hunter-gatherers in actively constructing their own niches, through the management of wild plants, has frequently been discussed. It is probable that Mesolithic hunter-gatherers systematically exploited specific woodland resources for food and fuel and influenced the 'natural' abundance or distribution of particular species within Mesolithic environments. Though there has been considerable discussion of the pollen evidence for potential small-scale human-woodland manipulation in Mesolithic Scotland, the archaeobotanical evidence for anthropogenic firewood and food selection has not been discussed in this context. This paper assesses the evidence for the active role of Mesolithic hunter-gatherer communities in systematically exploiting and managing woodlands for food and fuel in Scotland. While taphonomic factors may have impacted on the frequency of specific species in archaeobotanical assemblages, it is suggested that hunter-gatherers in Mesolithic Scotland were systematically using woodland plants, and in particular hazel and oak, for food and fuel. It is argued that the pollen evidence for woodland management is equivocal, but hints at the role of hunter-gatherers in shaping the structure of their environments, through the maintenance or creation of woodland clearings for settlement or as part of vegetation management strategies. It is proposed that Mesolithic hunter-gatherers may have actively contributed to niche construction and that the systematic use of hazel and oak as a fuel may reflect the deliberate pruning of hazel trees to increase nut-yields and the inadvertent - or perhaps deliberate - coppicing of hazel and oak during greenwood collection.

  11. Coarse woody debris metrics in a California oak woodland

    Treesearch

    William D. Tietje; Michael A. Hardy; Christopher C. Yim

    2015-01-01

    Little information is available on the metrics of coarse woody debris (CWD) in California oak woodland, most notably at the scale of the stand and woodland type. In a remote part of the National Guard Post, Camp Roberts, that has not burned in over a half century, we tallied 314 pieces of CWD in a blue oak (Quercus douglasii)-coast live oak (

  12. Changing fire regimes and the avifauna of California oak woodlands

    Treesearch

    Kathryn L. Purcell; Scott L. Stephens

    2005-01-01

    Abstract. Natural and anthropogenic fi re once played an important role in oak woodlands of California. Although lightning-ignited fi res were infrequent, the California Indians used fi re to modify oak woodland vegetation for at least 3,000 yr. These high-frequency, low-intensity fi res likely resulted in little mortality of mature oaks, low but continuous tree...

  13. Silvicultural considerations for managing fire-dependent oak woodland ecosystems

    Treesearch

    John M. Kabrick; Daniel C. Dey; Carter O. Kinkead; Benjamin O. Knapp; Michael Leahy; Matthew G. Olson; Michael C. Stambaugh; Aaron P. Stevenson

    2014-01-01

    Oak woodlands are characterized by open understories and dense ground flora composed of forbs, grasses, and sedges. They once were common in the western Central Hardwood Forest region and the prairie-forest transition zone where low-intensity fires occurred frequently. In the absence of fire, many of the woodland ecosystems throughout much of this region have succeeded...

  14. Economic incentives for oak woodland preservation and conservation

    Treesearch

    Rosi Dagit; Cy Carlberg; Christy Cuba; Thomas Scott

    2015-01-01

    Numerous ordinances and laws recognize the value of oak trees and woodlands, and dictate serious and expensive consequences for removing or harming them. Unfortunately, the methods used to calculate these values are equally numerous and often inconsistent. More important, these ordinances typically lack economic incentives to avoid impacts to oak woodland values...

  15. Coarse woody debris in oak woodlands of California.

    Treesearch

    William D. Tietje; Karen L. Waddell; Justin K. Vreeland; Charles L. Bolsinger

    2002-01-01

    An extensive forest inventory was conducted to estimate the amount and distribution of coarse woody debris (CWD) on 5.6 million ac of woodlands in California that are outside of national forests and reserved areas. Woodlands consist primarily of oak (Quercus spp.) types and are defined as forestland incapable of producing commercial quantities of...

  16. Silvics and silviculture in the southwestern pinyon-juniper woodlands

    Treesearch

    Gerald J. Gottfried

    2004-01-01

    Southwestern pinyon-juniper and juniper woodlands cover large areas of the western United States. The woodlands have been viewed as places of beauty and sources of valuable resource products or as weed-dominated landscapes that hinder the production of forage for livestock. They are special places because of the emotions and controversies that encircle their management...

  17. Woodland successional phase effects vegetation recovery after prescribed fire

    USDA-ARS?s Scientific Manuscript database

    Piñon-juniper (Pinus-Juniperus L.) woodlands have expanded into big sagebrush (Artemisia tridentata Beetle) steppe of the western United States primarily as a result of reduced fire disturbances. Prescribed fire in post-settlement piñon-juniper woodlands has been increasingly employed to restore big...

  18. Influencing woodland management using web-based technology

    Treesearch

    William R. Thomas; Jeffrey W. Stringer

    2011-01-01

    The University of Kentucky, Department of Forestry Extension delivered hosted Web-based forestry educational programs ("webinars") in 2009 to promote woodland management in Kentucky and engage county extension agents in forestry programming. These webinars were hosted by county extension agents and attended by woodland owners. This hosted webinar approach was...

  19. Longleaf pine forests and woodlands: old growth under fire!

    Treesearch

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  20. Oak woodland conservation management planning in southern CA - lessons learned

    Treesearch

    Rosi Dagit

    2015-01-01

    The California Oak Woodlands Conservation Act (AB 242 2001) established requirements for the preservation and protection of oak woodlands and trees, and allocated funding managed by the Wildlife Conservation Board. In order to qualify to use these funds, counties and cities need to adopt an oak conservation management plan. Between 2008 and 2011, a team of concerned...

  1. Removal of pinyon-juniper woodlands on the Colorado Plateau

    Treesearch

    Michael Peters; Neil S. Cobb

    2008-01-01

    (Please note, this is an abstract only) Pinyon-Juniper (PJ) woodland is the 3rd largest vegetation type in the United States, covering 35.5% of the Colorado Plateau, it is the largest vegetation type administered by the Bureau of Land Management (BLM) on the Colorado Plateau. These woodlands have been increasing dramatically in density and extent over the last 100...

  2. Oak woodlands and other hardwood forests of California, 1990s.

    Treesearch

    K.L. Waddell; T.M. Barrett

    2005-01-01

    This report provides a multiownership assessment of oak woodlands and other hardwood forests in California, excluding only reserved lands outside of national forests. Because sampling intensity on woodlands was doubled from the previous 1981-84 inventory, and because national forests were inventoried, this is the most complete assessment to date for California...

  3. Oak woodland economics: a contingent valuation of conversion alternatives

    Treesearch

    Richard P. Thompson; Jay E. Noel; Sarah P. Cross

    2002-01-01

    Decisions on how much land should be devoted to oak woodland preservation is ultimately determined by society's valuation of its benefits and relative scarcity. Scarcity value can be measured by people's willingness-to-pay (WTP) to prevent oak woodland conversion to higher value land uses. In this study, we used the contingent valuation (CV) method to...

  4. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  5. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  6. The Oak Woodland Bird Conservation Plan: A Strategy for Protecting and Managing Oak Woodland Habitats and Associated Birds in California

    Treesearch

    Steve Zack; Mary K. Chase; Geoffrey R. Geupel; Diana Stralberg

    2005-01-01

    Over 330 species of birds, mammals, reptiles, and amphibians depend on oak woodlands in California (fig. 1) at some stage in their life cycle (Barrett 1980; Verner 1980; Block and Morrison 1998). These woodlands are able to sustain such abundant wildlife primarily because they produce acorns, a high quality and frequently copious food supply. The birds of California?s...

  7. Relationships of pinon juniper woodland expansion and climate trends in the Walker Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Donald, Jonathon

    Landscapes are in constant flux. Vegetation distributions have changed in conjunction with climate, driven by factors such as Milankovitch cycles and atmospheric composition. Until recently, these changes have occurred gradually. Human populations are altering Earth's systems, including atmospheric composition and land use. This is altering vegetation distributions at landscape scales due to changes in species potential niche, as well as current and historical alteration of their realized niche. Vegetation shifts have the potential to be more pronounced in arid and mountainous environments as resources available to plants such as soil moisture are more limiting. In the Great Basin physiographic region of the western United States, woody encroachment of pinon juniper (Pinus monophylla & Juniperus osteosperma) woodlands is well known, but the drivers of its expansion are not well understood across elevational gradients. Predominant theories of future vegetation distribution change due to a changing climate, predict that montane species will move upslope in response to increasing temperatures. In pinon juniper woodlands, the focus has been on downslope movement of woodlands into other ecosystem types. The drivers for this are typically thought to be historical land uses such as grazing and fire exclusion. However, infilling and establishment is occurring throughout its distribution and relatively little attention has been paid to woodland movement uphill. This study focuses on two mountain ranges within the Walker Lake Basin, so as to understand changes occurring along the full gradient of pinon juniper woodlands, from lower to upper treeline, on both the western and eastern side of the ranges. The overall goal of this study was to understand trends of change (increasing, decreasing canopy density) in pinon juniper woodlands and determine if these trends were related to climate change trends. Trends in both vegetation and climate were analyzed for the entire

  8. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV).

    PubMed

    Chen, Jing; Zhang, Hanping; Feng, Mingfeng; Zuo, Dengpan; Hu, Yahui; Jiang, Tong

    2016-07-13

    Woodland strawberry (Fragaria vesca) infected with Strawberry vein banding virus (SVBV) exhibits chlorotic symptoms along the leaf veins. However, little is known about the molecular mechanism of strawberry disease caused by SVBV. We performed the next-generation sequencing (RNA-Seq) study to identify gene expression changes induced by SVBV in woodland strawberry using mock-inoculated plants as a control. Using RNA-Seq, we have identified 36,850 unigenes, of which 517 were differentially expressed in the virus-infected plants (DEGs). The unigenes were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The KEGG pathway analysis of these genes suggested that strawberry disease caused by SVBV may affect multiple processes including pigment metabolism, photosynthesis and plant-pathogen interactions. Our research provides comprehensive transcriptome information regarding SVBV infection in strawberry.

  9. Macromoths of northwest forests and woodlands

    USGS Publications Warehouse

    Miller, Jeffrey C.; Hammond, Paul C.

    2000-01-01

    The macromoths are a group of families within the order Lepidoptera. The macromoths in the woodlands and forests of the Pacific Northwest are represented by 1,200 species in 12 families: Arctiidae, Dioptidae, Drepanidae, Epiplemidae, Geometridae, Lasiocampidae, Lymantriidae, Noctuidae, Notodontidae, Saturniidae, Sphingidae, and Thyatiridae. In addition to the macromoths, the Lepidoptera are represented by the butterflies and skippers, and the micromoths. Butterflies possess a knob at the tip of the antennae while the tip of the antennae in skippers is typically hooked. The tip of the antennae in macromoths and micromoths is tapered. The differences between macromoths and micromoths is not literally based on size as the names suggest but rather in details of the female reproductive tract and wing venation. These details are discussed and illustrated in most texts on general entomology (Borror et al. 1989) and in books about Lepidoptera (Covell 1984).

  10. Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?

    PubMed Central

    Marcus, Tamar; Boch, Steffen; Durka, Walter; Fischer, Markus; Gossner, Martin M.; Müller, Jörg; Schöning, Ingo; Weisser, Wolfgang W.

    2015-01-01

    Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes. PMID:26641644

  11. Distribution of heavy metals in a woodland food web

    SciTech Connect

    Scharenberg, W.; Ebeling, E.

    1996-03-01

    Often investigations deal with the residue situation in contaminated areas and their effects on ecosystems, however, information are rare concerning relatively uncontaminated areas - so called {open_quotes}reference areas{close_quotes}. In such areas we can assume an insignificant influence of pollutants and we can measure the metal flux under relatively natural conditions. Since 1988 we have investigated the nutrient and energy flow as well as the metal flux in an area which is hardly influenced by anthropogenic activities besides some agro-chemical compounds. For example, the deposition and contamination of some plants is relatively low in comparison to other places in North Germany. Also the average of geological background concentrations of soil from Schleswig-Holstein are higher than soil concentrations from Bornhoeved. With this investigation we demonstrate the flux of metals through selected biotic compartments of a relatively uncontaminated woodland. Good indicators accumulating the non essential metals Cd and Pb are beetles and isopods. In contrast ground spiders, although predators, show only low metal concentrations. The essential metals Cu and Zn were relatively homogeneous in concentration in the animals. Zn showed the highest values and beetles seem to accumulate it.

  12. Assessment of soil erosion under woodlands using USLE in China

    NASA Astrophysics Data System (ADS)

    Zhang, Changshun; Xie, Gaodi; Liu, Chunlan; Lu, Chunxia

    2011-06-01

    Universal Soil Loss Equation (USLE), originally developed by the USDA for agricultural lands and then used throughout the world, was applied in mountainous forest terrain in China. The woodland area was divide into 100 m × 100 m grid cells. The ArcInfo 9.2 GIS software provided spatial input data was used to predict the spatial distribution of the average annual soil loss on grid basis. The average rainfall erositivity factor ( R) for national woodlands was found to be 21-1798 MJ·mm·ha-1·h-1·a-1. The soil erodibility factor ( K) with a magnitude of 0.043 t·ha·h· ha-1·MJ-1·mm-1 is the highest for Chinese woodland. Most of the slope length factors ( LS) were less than 5 for the national woodland. The highest and lowest values of cover and management factor ( C) were found out to be 0.0068 and 0.2550 respectively for coniferous woodland and orchard woodland. The value of conservation factor ( P) was assigned to be 1 for Chinese woodlands because of scarcity of conversation practice data at the national scale. The average annual soil loss of the national woodland areas was 3.82 t·km-2·a-1. About 99.89% of Chinese woodland area was found out to be under slight erosion class, whereas it only resulted in about 41.97% of soil loss under woodland area, and 58.03% of soil loss occurred under high erosion potential zone, namely more than 5 t·ha-1·a-1. Therefore, those zones need immediate attention from soil conservation point of view. The results here are consistent with many domestic and oversea previous researches under mountainous forests or hilly catchments, thus we showed that the USLE can be applied to estimations of soil erosion for Chinese woodlands at the national scale.

  13. Restoring grassland savannas from degraded pinyon-juniper woodlands: effects of mechanical overstory reduction and slash treatment alternatives.

    PubMed

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-02-01

    Although the distribution and structure of pinyon-juiper woodlands in the southwestern United States are thought to be the result of historic fluctuations in regional climatic conditions, more recent increases in the areal extent, tree density, soil erosion rates and loss of understory plant diversity are attributed to heavy grazing by domestic livestock and interruption of the natural fire regime. Prior to 1850, many areas currently occupied by high-density pinyon-juniper woodlands, with their degraded soils and depauperate understories, were very likely savannas dominated by native grasses and forbs and containing sparse tree cover scattered across the landscape. The purpose of this study was to evaluate the effectiveness of mechanical overstory reduction and three slash treatment alternatives (removal, clustering and scattering) followed by prescribed fire as techniques for restoring grassland savannas from degraded woodlands. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry and erosion rates were measured prior to and for two years following experimental treatment in a degraded pinyon-juniper woodland in central New Mexico. Treatment resulted in a significant increase in the cover of native grasses and, to a lesser degree, forbs and shrubs. Plant species richness and diversity increased most on sites where slash was either completely removed or scattered to serve as a mulch. Although no changes in soil chemistry or plant nutrient status were observed, understory biomass increased over 200% for all harvest treatments and was significantly greater than controls. While treatment increased litter cover and decreased soil exposure, this improvement did not significantly affect soil loss rates. Even though all slash treatment alternatives increased the cover and biomass of native grasses, scattering slash across the site to serve as a mulch appears most beneficial to improving plant species diversity and conserving site resources.

  14. The Influence of Woodland Encroachment on Runoff and Erosion in Sagebrush Steppe Systems, Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Pierson, F. B.; Kormos, P. R.; Williams, C. J.

    2007-12-01

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant community structure and composition and respective increases in overland flow and erosion from these landscapes. The Sagebrush Steppe Treatment Evaluation Project (SageSTEP, www.sagestep.org) was implemented in 2005 as a 5 year interdisciplinary research study to evaluate restoration methodologies for sagebrush rangelands degraded by woodland and grassland encroachment over a six state area within the Great Basin. The hydrology component of SageSTEP focuses on the relationships between changes in vegetation and groundcover and runoff/erosion processes. In 2006, 140 small scale (0.5 m2) rainfall simulations were conducted at 2 locations within the Great Basin to determine whether critical thresholds exist in vegetation and ground cover that significantly influence infiltration, runoff, and erosion in pinyon and juniper woodlands. Simulation plots were distributed on interspaces (areas between shrub/tree canopies) and juniper, pinyon, and shrub coppices (areas underneath canopy). Water drop penetration times and litter depths were also collected for each plot to explore controls on soil hydrophobicity. Preliminary results suggest a positive correlation between litter depth and hydrophobicity, as soils under thick pinyon and juniper coppices are strongly water repellant and soils in interspaces and under shrub coppices are easily wettable. Interspace plots with varying amounts of grasses and forbs have the highest erosion and runoff rates due to higher percentages of bare ground and relatively low soil stability. Pinyon coppices have the least runoff and erosion due to very high litter depths and low bare ground cover, even though surface soils are hydrophobic. Juniper and

  15. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  16. Ancient Astronomy in Armenia

    NASA Astrophysics Data System (ADS)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  17. Ancient Maya Mercury

    NASA Astrophysics Data System (ADS)

    Pendergast, David M.

    1982-08-01

    Discovery of mercury in an ancient Maya offering at Lamanai, Belize, has stimulated examination of possible sources of the material in the Maya area. Two zones of cinnabar and native mercury deposits can be defined in the Maya highlands, and the presence of the native metal suggests that the ancient Maya collected rather than extracted the mercury from ore.

  18. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  19. Re-annotation of the woodland strawberry (Fragaria vesca) genome.

    PubMed

    Darwish, Omar; Shahan, Rachel; Liu, Zhongchi; Slovin, Janet P; Alkharouf, Nadim W

    2015-01-27

    Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a model for the agriculturally important Rosaceae family. A draft of the F. vesca genome sequence was published in 2011 [Nat Genet 43:223,2011]. The first generation annotation (version 1.1) were developed using GeneMark-ES+[Nuc Acids Res 33:6494,2005]which is a self-training gene prediction tool that relies primarily on the combination of ab initio predictions with mapping high confidence ESTs in addition to mapping gene deserts from transposable elements. Based on over 25 different tissue transcriptomes, we have revised the F. vesca genome annotation, thereby providing several improvements over version 1.1. The new annotation, which was achieved using Maker, describes many more predicted protein coding genes compared to the GeneMark generated annotation that is currently hosted at the Genome Database for Rosaceae ( http://www.rosaceae.org/ ). Our new annotation also results in an increase in the overall total coding length, and the number of coding regions found. The total number of gene predictions that do not overlap with the previous annotations is 2286, most of which were found to be homologous to other plant genes. We have experimentally verified one of the new gene model predictions to validate our results. Using the RNA-Seq transcriptome sequences from 25 diverse tissue types, the re-annotation pipeline improved existing annotations by increasing the annotation accuracy based on extensive transcriptome data. It uncovered new genes, added exons to current genes, and extended or merged exons. This complete genome re-annotation will significantly benefit functional genomic studies of the strawberry and other members of the Rosaceae.

  20. Improving the Sustainability of Oak Woodland Forage and Productivity in San Diego County Through the Exploration for and Introduction of Nitrogen Fixing Annual Legumes

    Treesearch

    Walter L. Graves; Melvin D. Rumbaugh; Wesley M. Jarrell

    1991-01-01

    The oak woodlands of San Diego County are below their potential productivity due to the low levels of the most needed plant nutrient, nitrogen, associated with the common soils of this zone. Atmospheric nitrogen fixing legumes could address this deficiency. However, because of limiting environmental constraints, adapted commercial legume cultivars have not been...

  1. The importance of shortleaf pine for wildlife and diversity in mixed oak-pine forests and in pine-grassland woodlands

    Treesearch

    Ronald E. Masters

    2007-01-01

    Shortleaf pine, by virtue of its wide distribution and occurrence in many forest types in eastern North America, is an important species that provides high habitat value for many wildlife species. Shortleaf pine functions as a structural habitat element in both mixed oak-pine forests and in pine-grassland woodlands. It also adds diversity throughout all stages of plant...

  2. Stop and smell the flowers: Herbaceous understory significantly contributes to woodland carbon and water fluxes in a semi-arid ecosystem 2025

    USDA-ARS?s Scientific Manuscript database

    Changes in vegetation structure in pulse-driven, water-limited systems can have important and non-linear affects on ecosystem function and biogeochemical cycling. Conversion of grasslands to woodlands in these systems through woody plant encroachment also results in greater patch heterogeneity, and ...

  3. Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408

  4. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  5. Woodland as working space: where is the restorative green idyll?

    PubMed

    Bingley, Amanda

    2013-08-01

    Much has been written on the beneficial, restorative qualities of 'natural' (non-built) rural or urban 'green' space, including woodland, in promoting mental and physical health when accessed for leisure, sport and education. In contrast, with the exception of rural health studies, there is relatively little debate about the health benefits of 'green space' as work place, especially in woodland and forests. In the developed world, this apparent gap in the literature may be partly due to an assumption of the forest work place as inherently healthy, and also the invisibility of a tiny percentage of the workforce now employed in forestry. However, in the UK and parts of Europe over recent years there has been a small, though significant, increase in opportunities to train and work in woodlands using traditional, sustainable management such as coppicing, and an exploration of health issues of woodland work is timely. This paper reports on findings from a secondary narrative analysis of oral history interviews selected from two phases of the Woodland Recollections Project and newsletters written by local people historically and currently engaged in coppicing and woodland work in North West England. Perceptions of healthy working in green space are examined by applying key concepts of Attention Restoration Theory (ART). Findings suggest that woodland work environments involve many counter-restorative factors that can render the 'green idyll' detrimental to health and wellbeing. To benefit from restorative elements requires drawing on a high level of specialist skills that empower individuals to manage and maintain healthy working practices in these diverse and challenging environments.

  6. Nest survival of clay-colored and vesper sparrows in relation to woodland edge in mixed-grass prairies

    USGS Publications Warehouse

    Grant, T.A.; Madden, E.M.; Shaffer, T.L.; Pietz, P.J.; Berkey, G.B.; Kadrmas, N.J.

    2006-01-01

    The quantity and quality of northern mixed-grass prairie continues to decline because of conversion to agriculture, invasion of woody and exotic plants, and disruption of important ecological processes that shape grasslands. Declines in grassland bird populations in North Dakota, USA, have coincided with these largely anthropogenic alterations to prairie habitat. In grasslands of north-central and northwestern North Dakota, woody plants have increased due primarily to fire suppression, extirpation of bison (Bos bison), and widescale planting of tree shelter belts. In northern grasslands, effects of woody vegetation on survival of grassland birds are poorly understood, and conclusions are based mainly on studies conducted outside the region. We examined nest survival of clay-colored sparrows (Spizella pallida) and vesper sparrows (Pooecetes gramineus) relative to the distance nests were located from aspen (Populus tremuloides,) woodland edges and relative to other habitat features near the nest. Clay-colored and vesper sparrow nest survival was higher for nests located near woodland edges, nests with greater cover of Kentucky bluegrass (Poa pratensis), and nests more concealed by vegetation. Vesper sparrow nest survival increased as the percent cover of tall shrubs near the nest increased. Based on video-camera data, the 13-lined ground squirrel (Spermophilus tridecemlineatus,) was the most common predator of sparrow eggs and young. Thirteen-lined ground squirrels were more common far from woodland edges than near, and this pattern may, in part, explain clay-colored and vesper sparrow nest survival in relation to woodland edges. In contrast to our results, studies conducted in other grassland systems generally report lower nest survival for grassland birds nesting near trees and shrubs. This disparity in results demonstrates the need to identify specific nest predators and their distributions with respect to important habitat features because these data can be

  7. Are the long-term effects of mesobrowsers on woodland dynamics substitutive or additive to those of elephants?

    NASA Astrophysics Data System (ADS)

    O'Kane, Christopher A. J.; Duffy, Kevin J.; Page, Bruce R.; Macdonald, David W.

    2011-09-01

    The large spectrum of existing literature on browser-woodland dynamics, both from savanna and temperate biomes, converges towards concluding that all browsers importantly impact woody plants. In this context a crucial question in the current debate about reintroducing elephant culling, is whether the long-term effects of elephants and mesobrowsers are similar. If the two groups impact the same woody species in the same habitats, sufficiently high biomass-densities of mesobrowsers may, following removal of elephants, continue to heavily impact earlier life-history stages of the same suite of woody plants that elephant impacted, preventing these species from maturing. Thus, as existing mature trees die from natural causes and fade from the system, a similar end-point for woodland structure and composition is achieved. We reviewed 49 years of literature on the savanna browser guild, performing a meta-analysis on the disparate data on the guild's woody plant species use (3677 records) and habitat use (894 records). Mesobrowsers' and elephants' extensive overlap in habitat use and staple woody species diet, together with evidence of their influencing each others' abundance and of their dietary separation increasing with resource depletion, implies that the two groups impact the same core woody species in the same habitats. It therefore seems probable that high biomass-density mesobrowsers may have a long-term substitutive effect to that of elephant on woodland dynamics. Consequently management wanting a particular state of savanna woodland, should consider the biomass-density of both groups, rather than just focus on the system's perceived keystone species. Such principles may also apply to temperate and other systems.

  8. Kashaya Pomo Plants.

    ERIC Educational Resources Information Center

    Goodrich, Jennie; And Others

    The monograph describes more than 200 plants growing within the approximately 300 square miles of the original land of the Kashaya Pomo Indians, which lies along the coast of Sonoma County, California. An introduction provides information on the plant communities represented (redwood forest, mixed evergreen forest, oak woodland, Douglas fir…

  9. Kashaya Pomo Plants.

    ERIC Educational Resources Information Center

    Goodrich, Jennie; And Others

    The monograph describes more than 200 plants growing within the approximately 300 square miles of the original land of the Kashaya Pomo Indians, which lies along the coast of Sonoma County, California. An introduction provides information on the plant communities represented (redwood forest, mixed evergreen forest, oak woodland, Douglas fir…

  10. How resilient are African woodlands to disturbance from shifting cultivation?

    PubMed

    McNicol, Iain M; Ryan, Casey M; Williams, Mathew

    2015-12-01

    Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits

  11. Root sssociations of Phytophthora ramorum and Phytophthora kernoviae in U.K. woodlands

    Treesearch

    Elizabeth Fichtner; David Rizzo; Susan Kirk; A. Whybrow; J. Webber.

    2009-01-01

    Phytophthora kernoviae and Phytophthora ramorum, two pathogens recently introduced to the U.K., incite foliar lesions, shoot necrosis, and death of Rhododendron ponticum, an invasive weed pervading U.K. woodlands. In infested woodlands, R. ponticum serves as an...

  12. What are the Potential CO2 Emission Offsets for Thorn Woodlands? A Promising Remote Sensing Approach for Mapping Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Adhikari, A.; White, J. D.

    2010-12-01

    Quantifying carbon sequestration poses a challenge for monitoring and assessment of recently established woody plants with relatively small canopies. Multispectral remote sensing can increase efficacy of carbon assessment in woodlands for large spatial extents by using fine grained data. In this study, we demonstrate a novel crown identification algorithm using Digital Ortho Quarter Quadrangle (DOQQ) data, with 1 m spatial resolution and three bands in the green, red, and near-infrared wavelengths, to determine canopy attributes for woodlands in the Lower Rio Grande Valley, USA, which as part of the U.S. Fish and Wildlife South Texas Refuge Complex. We applied this algorithm for areas within the refuge covering 7496 ha of thorn woodlands which had been restored through natural regeneration and replanting since the early 1990’s. On average, the algorithm delineated 83% of individual crowns, though calibration of algorithm thresholds was necessary for different areas. From derived canopy attributes, carbon stored by individual plants was calculated from allometric equations developed for three shrub species for this biotic province. The remotely sensed data estimated plant densities of 25 individuals/ha in naturally regenerated and 20 individuals/ha for replanted areas. From these data, we calculated average aboveground carbon of 1.6 kg/plant for naturally regeneration area and 0.5 kg/plant for replanted areas. We estimated an average value of 1.41+ 0.01 Mg/ha of carbon stored by woody plants in natural regeneration areas compared to 1.1+0.01 Mg/ha in replanted areas. Belowground biomass estimated from aboveground carbon density literature values with 0.41+0.01 Mg/ha and 0.49+0.01 Mg/ha for natural regeneration versus replanted areas, respectively. Based on these derived values, we estimate that woody plants for the entire refuge complex have sequestered 20516 Mg carbon, with approximately 6% of this amount attributed to restoration.

  13. Physicians of ancient India

    PubMed Central

    Saini, Anu

    2016-01-01

    A survey of Indian medical historiography will reveal no dearth of work on the systems of medicine and medical literature of ancient India. However, the people who were responsible for the healing have not received much attention. This article traces the evolution of the physician as a professional in ancient India. This article reviews the secondary literature on healing and medical practice in India, specifically pertaining to the individual medical practitioner, drawing from varied sources. The healers of ancient India hailed from different castes and classes. They were well-respected and enjoyed state patronage. They were held to the highest ethical standards of the day and were bound by a strict code of conduct. They underwent rigorous training in both medicine and surgery. Most physicians were multi-skilled generalists, and expected to be skilled in elocution and debate. They were reasonably well-off financially. The paper also briefly traces the evolution of medicinal ideas in ancient India. PMID:27843823

  14. Reconstructing an Ancient Wonder.

    ERIC Educational Resources Information Center

    Imhof, Christopher J.

    2001-01-01

    Describes a Montessori class project involving the building of a model of the ancient Briton monument, Stonehenge. Illustrates how the flexibility of the Montessori elementary curriculum encourages children to make their own toys and learn from the process. (JPB)

  15. Ancient Egyptian Astronomical Calander

    NASA Astrophysics Data System (ADS)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  16. Quantifying Grassland-to-Woodland Transitions and the Implications for Carbon and Nitrogen Dynamics in the Southwest United States

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann

    2004-01-01

    Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.

  17. Distributed Hydrologic Modeling of LID in The Woodlands, Texas

    NASA Astrophysics Data System (ADS)

    Bedient, P.; Doubleday, G.; Sebastian, A.; Fang, N.

    2012-12-01

    As early as the 1960s, the Woodlands, TX employed stormwater management similar to modern Low Impact Development (LID) design. Innovative for its time, the master drainage plan attempted to minimize adverse impact to the 100-year floodplain and reduce the impact of development on the natural environment. Today, it is Texas's most celebrated master-planned community. This paper employs the use of NEXRAD radar rainfall in the distributed hydrologic model, VfloTM, to evaluate the effectiveness of The Woodlands master drainage design as a stormwater management technique. Three models were created in order to analyze the rainfall-runoff response of The Woodlands watershed under different development conditions: two calibrated, fully distributed hydrologic models to represent the (A) undeveloped and (B) 2006-development conditions and (C) a hypothetical, highly urbanized model, representing Houston-style development. Parameters, such as imperviousness and land cover, were varied in order to represent the different developed conditions. The A and B models were calibrated using NEXRAD radar rainfall for two recent storm events in 2008 and 2009. All three models were used to compare peak flows, discharge volumes and time to peak of hydrographs for the recent radar rainfall events and a historical gaged rainfall event that occurred in 1974. Results show that compared to pre-developed conditions, the construction of The Woodlands resulted in an average increase in peak flows of only 15% during small storms and 27% during a major event. Furthermore, when compared to the highly urbanized model, peak flows are often two to three times smaller for the 2006-model. In the 2006-model, the peak flow of the 100 year event was successfully attenuated, suggesting that the design of The Woodlands effectively protects the development from the 1% occurrence storm event using LID practices and reservoirs. This study uses a calibrated hydrologic distributed-model supported by NEXRAD radar

  18. Beyond cool: adapting upland streams for climate change using riparian woodlands.

    PubMed

    Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J

    2016-01-01

    Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem

  19. Analysis of change in pinon-juniper woodlands based on aerial photography, 1930's-1980's

    Treesearch

    Alan R. Johnson; Bruce T. Milne; Peter Hraber

    1999-01-01

    We conducted an analysis of land cover change in selected piñon-juniper woodlands of New Mexico and Arizona, using aerial photographs from the 1930's through the 1980's. Both increases and decreases in woodland cover were observed. Fractal dimensions of woodland patches and cover-type changes were analyzed following the method of Krummel and others (1987)....

  20. Seedling response to initial oak woodland restoration treatments on the Ozark National Forest

    Treesearch

    Jamie L. Schuler; Don C. Bragg; Eric Heitzman; Jason Milks

    2013-01-01

    Over the last century, the range of oak woodland ecosystems has diminished as woodlands have become more closed-canopy forests. A century of fire suppression efforts has all but eliminated the frequent ground fires necessary to maintain the open canopy characteristics of oak woodland ecosystems. Restoration efforts are underway to return some of the closed-canopy...

  1. Seasonal burning of juniper woodlands and spatial recovery of herbaceous vegetation

    USDA-ARS?s Scientific Manuscript database

    The decrease in fire activity has been recognized as a main cause of expansion and infilling of North American woodlands. Piñon-juniper (Pinus-Juniperus L.) woodlands in the western United States have expanded in area 2 to 10-fold since the late 1800’s. Woodland control measures using chainsaws, hea...

  2. Likeliness to pay for oak woodlands by the residents of San Luis Obispo county

    Treesearch

    Sarah P. Cross

    2002-01-01

    The golden hillsides with scattered oaks, known throughout California, are decreasing each day. Some oak woodlands are being developed into residential and commercial communities while other woodlands are being converted into intensive agriculture, such as wine grape production. This continued decrease in oak woodlands has led some lawmakers to create preservation...

  3. Wildlife-Habitat Relationships in California's Oak Woodlands: Where Do We Go From Here?

    Treesearch

    Michael L. Morrison; William M. Block; Jared Verner

    1991-01-01

    We discuss management goals and research directions for a comprehensive study of wildlife in California's oak woodlands. Oak woodlands are under intensive multiple use, including urbanization, recreation, grazing, fuel wood cutting, and hunting. Research in oak woodlands is thus complicated by these numerous, often competing, interests. Complicating understanding...

  4. Age structure and expansion of pinon-juniper woodlands: a regional perspective in the Intermountain West

    Treesearch

    Richard F. Miller; Robin J. Tausch; E. Durant McArthur; Dustin D. Johnson; Stewart C. Sanderson

    2008-01-01

    Numerous studies have documented the expansion of woodlands in the Intermountain West; however, few have compared the chronology of expansion for woodlands across different geographic regions or determined the mix and extent of presettlement stands. We evaluated tree age structure and establishment for six woodlands in four ecological provinces in the central and...

  5. The value of Rocky Mountain juniper (Juniperus scopulorum) woodlands in South Dakota as small mammal habitat

    Treesearch

    Carolyn Hull Sieg

    1988-01-01

    Small mammals and vegetation were sampled over two years in Rocky Mountain juniper woodlands and adjacent grasslands in South Dakota. Juniper woodlands provided specialized habitat for two woodland species, white-footed mice and bushy-tailed woodrats, and attracted a number of species generally associated with grasslands.

  6. Evidence of herpesvirus infection in Woodland Caribou in Saskatchewan.

    PubMed

    Jordan, Lorne T; Rettie, W James; Tessaro, Stacy V

    2003-01-01

    Sera were collected from 40 female and two male woodland caribou (Rangifer tarandus caribou) in Saskatchewan (Canada) from March 1992 to January 1995, inclusive. The samples were examined for antibodies against smooth Brucella spp., five serovars of Leptospira interrogans, bovine viral diarrhea virus, and bovine herpesvirus 1 (BHV-1). Twenty-two (52%) of 42 sera exhibited positive reactions to BHV-1 by a modified serum neutralization test, and the prevalence correlated positively with the age of the animals. No antibodies were detected against the other pathogens. This is the first reported evidence of herpesvirus infection in isolated populations of woodland caribou in western Canada.

  7. Woodland survey of Great Britain 1971-2001

    NASA Astrophysics Data System (ADS)

    Wood, C. M.; Smart, S. M.; Bunce, R. G. H.

    2015-02-01

    The Woodland Survey of Great Britain is a unique dataset, consisting of a detailed range of ecological measurements at a national scale, covering a time span of 30 years. A set of 103 woods spread across Britain were first surveyed in 1971, which were again surveyed in 2000-2003 (for convenience referred to subsequently as the "2001 survey"). Standardised methods of describing the trees, shrubs, ground flora, soils and general habitats present were used for both sets of surveys. The sample of 1648 plots spread through 103 woodland sites located across Britain makes it probably the most extensive quantitative ecological woodland survey undertaken in Britain; it is also notable for the range of sites that have been re-visited after such a long interval. The dataset provides a unique opportunity to explore the effects of a range of potential drivers of woodland change that operated between 1971 and 2001. The dataset is available in four discrete parts, which have been assigned the following DOIs: doi:10.5285/4d93f9ac-68e3-49cf-8a41-4d02a7ead81a (Woodlands survey tree diameter data 1971-2001), doi:10.5285/d6409d40-58fe-4fa7-b7c8-71a105b965b4 (Woodlands survey site information 1971-2001), doi:10.5285/fb1e474d-456b-42a9-9a10-a02c35af10d2 (Woodlands survey soil data 1971-2001), doi:10.5285/2d023ce9-6dbe-4b4f-a0cd-34768e1455ae (Woodlands survey flora data 1971-2001).

  8. Ancient Plant Glyoxylate/Succinic Semialdehyde Reductases: GLYR1s Are Cytosolic, Whereas GLYR2s Are Localized to Both Mitochondria and Plastids

    PubMed Central

    Brikis, Carolyne J.; Zarei, Adel; Trobacher, Christopher P.; DeEll, Jennifer R.; Akama, Kazuhito; Mullen, Robert T.; Bozzo, Gale G.; Shelp, Barry J.

    2017-01-01

    Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2) are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh.), rice (Oryza sativa L.) and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L.) suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell. PMID:28484477

  9. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication.

    PubMed

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L

    2015-02-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  10. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication

    PubMed Central

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L.

    2015-01-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  11. Historic Carbon Isotopic Shifts in Pinyon Pines and Woodland Junipers are Unprecedented During the Quaternary History of These Taxa

    NASA Astrophysics Data System (ADS)

    van de Water, P. K.; Leavitt, S. W.; Betancourt, J. L.

    2003-12-01

    Packrat (Neotoma) midden macrofossil records from arid and semiarid western North America provide evidence that pinyon pines and woodland junipers have grown together for at least the past 50,000 radiocarbon years. The midden records show that this association was sustained despite large-scale changes in climate and atmospheric CO2 concentrations over the past 50 millenia. Reconstruction of physiological parameters, using 13C analysis of a select sample of pinyon pine and juniper macrofossils from radiocarbon-dated ancient packrat middens, shows distinct physical responses to these changes despite a offset between the carbon isotopic values of the two genera, with pinyon pines having consistently lower 13C values than junipers. Remarkably, analysis of historic (from herbarium sheets) and present-day (from field collections) materials from northern Arizona and the Four-Corners region indicates that the long-term offset between the carbon isotopic values of pinyon pines and woodland junipers has inverted; with the junipers now providing isotopically lighter values than the pinyon pines. This reversal began in the late 1800's to early 1900's and has widened over the past century. The inverted isotopic offsets in the historic period may be due to the unprecedented levels of carbon dioxide and other trace gases in the atmosphere.

  12. Explaining the forest product selling behavior of private woodland owners

    Treesearch

    David N. Larsen; David A. Gansner; David A. Gansner

    1973-01-01

    A multiple-variable screening technique, AID, was used to explain the forest-product-sales behavior of private woodland owners. Results provide a basis for policy-related inferences and suggest an optimal strategy for encouraging sales of forest products.

  13. Light transmittance estimates in a longleaf pine woodland

    Treesearch

    Michael A. Battaglia; Robert J. Mitchell; Paul P. Mou; Stephen D. Pecot

    2003-01-01

    While the importance of canopy structure in open woodlands and savannas on regulating the flow of energy and matter is well known, few studies have investigated how variation in overstory abundance influences canopy light transmission and the extent that estimates vary in their ability to characterize the light environment in these ecosystems. Canopy light...

  14. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  15. Woody debris dynamics in Interior West forests and woodlands

    Treesearch

    John D. Shaw; James Long; Raffaella Marzano; Matteo Garbarino

    2012-01-01

    Managers are interested in the dynamics of down woody material because of its role as a fuel component, a feature of wildlife habitat, a carbon pool, and other characteristics. We analyzed nearly 9,000 plots from the Interior West, spanning the range from sparse juniper and mesquite woodland to dense spruce-fir forests, in order to characterize down woody material as...

  16. A National Perspective on Women Owning Woodlands (WOW) Networks

    ERIC Educational Resources Information Center

    Huff, Emily S.

    2017-01-01

    This article provides a national overview of women owning woodlands (WOW) networks and the barriers and successes they encounter. Qualitative interview data with key network leaders were used for increasing understanding of how these networks operate. Network leaders were all connected professionally, and all successful WOW networks involved…

  17. Regional variations in biomass distribution in Brazilian savanna woodland

    Treesearch

    S.d.C. de Miranda; M. Bustamente; M. Palace; S. Hagen; M. Keller; L.G. Ferreira

    2014-01-01

    The Cerrado, the savanna biome in central Brazil, mostly comprised of woodland savanna, is experiencing intense and fast land use changes. To understand the changes in Cerrado carbon stocks, we present an overview of biomass distribution in different Cerrado vegetation types (i.e., grasslands, shrublands and forestlands). We surveyed 26 studies including 170 Cerrado...

  18. Cryptic indirect effects of exurban edges on a woodland community

    Treesearch

    R. J. Warren; S. M. Pearson; S. Henry; K. Rossouw; J. P. Love; M. J. Olejniczak; Katherine Elliott; M. A. Bradford

    2015-01-01

    Exurban development (e.g., second homes) in woodlands spreads urban land use impacts beyond suburbs, but because exurban developments often retain many components of original ecosystem structure—such as a forest canopy rather than open lawn—their ecological impacts may be underestimated. Changes in seed-dispersing ant behavior prompted by exurban land use,...

  19. Habitat relationships of amphibians and reptiles in California oak woodlands

    Treesearch

    William M. Block; Michael L. Morrison

    1998-01-01

    We used pitfall traps and time-constrained searches to sample amphibians and reptiles and to describe their habitats in oak woodlands at three areas in California. We captured 766 individuals representing 15 species during pitfall trapping and 333 animals representing 15 species during the time-constrained searches. A total of 19 species were sampled. Across all study...

  20. Restoring indigenous prescribed fires to California oak woodlands

    Treesearch

    Don L. Hankins

    2015-01-01

    It is recognized that California Indians have stewarded the landscape for millennia. As such, the coupling of fire and culture are interrelated and interdependent in many California ecosystems including oak woodlands. Colonization and subsequent governmental fire policy mandates have disrupted the cultural use of fire, which in turn has disrupted ecological functions...

  1. Hydrologic response to mechanical shredding in a juniper woodland

    USDA-ARS?s Scientific Manuscript database

    Juniper (Juniperus spp.) woodland expansion in the western United States is thought to result in increased catastrophic wildfires throughout its range and has prompted land managers to search for effective fuel control methods. Recently, mechanical shredding (Bull Hog ®) has been used to reduce juni...

  2. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  3. Characteristics of urban woodlands affecting breeding bird diversity and abundance

    Treesearch

    N.G. Tilghman

    1987-01-01

    Breeding bird communities were studied in 32 forest islands surrounded by urban development. These isolated woodlands in Springfield, Massachusetts, provided breeding habitats for a wider variety of birds (77 species) than previously described for other urban habitats (e.g. four times as many species as found in urban residential areas in the same city in a...

  4. Teacher-in-Residence at the Woodland Park Zoo

    ERIC Educational Resources Information Center

    Gantert, Robert L.

    1977-01-01

    Described is a field trip program to the Woodland Park Zoological Gardens, Seattle, Washington, which includes an indoor lecture-discussion and tours of the zoological facility led by docents. An educational survey revealed that fourth graders asked the greatest number of logical animal biology questions and had the highest interest in reading…

  5. San Diego County Planning Efforts to Preserve Oak Woodlands

    Treesearch

    Thomas A. Oberbauer

    1991-01-01

    Development of San Diego County has traditionally taken place on the coastal plain and in coastal valleys. Within the past two decades, it has spread into the foothills resulting in conflicts with oak woodlands. The County of San Diego has proposed a number of measures to protect oak vegetation including a tree protection ordinance, land use designations and zones...

  6. The hardwoods of California's timberlands, woodlands, and savannas.

    Treesearch

    Charles L. Bolsinger

    1988-01-01

    The results of a statewide inventory of California's hardwood resources are presented. This is the first comprehensive inventory with tree and stand measurements ever conducted in the extensive oak woodlands. In timberland areas where hardwoods had been previously inventoried, improved procedures and volume equations developed specifically for the major California...

  7. Improvement cuttings on farm woodlands bring good dividends

    Treesearch

    Carl J. Holcomb

    1954-01-01

    West Virginia farmers own one-third of the forest in the State - more than 3 million acres. If these woodland areas were given the same attention and care that is given to cropland, within a few years West Virginia farm forests could be producing their proportionate share of the farm income. Yet the farm woods are almost completely neglected.

  8. Oak woodland restoration: understory response to removal of encroaching conifers.

    Treesearch

    Warren D. Devine; Constance A. Harrington; David H. Peter

    2007-01-01

    Oregon white oak (or Garry oak, Quercus garryana) woodlands and savannas of the coastal Pacific Northwest are legacies of an anthropogenic fire regime that ended with European settlement in the mid-1800s. Historically, these oak stands had a sparse overstory and an understory dominated by fire-tolerant grasses and forbs. Post-settlement fire...

  9. Vegetation Change in Blue Oak Woodlands in California

    Treesearch

    Barbara A. Holzman; Barbara H. Allen-Diaz

    1991-01-01

    A preliminary report of a statewide project investigating vegetation change in blue oak (Quercus douglasii) woodlands in California is presented. Vegetation plots taken in the 1930s, as part of a statewide vegetation mapping project, were relocated and surveyed. Species composition, cover and tree stand structure data from the earlier study were...

  10. Thirteen years of thinning in a Douglas-fir woodland

    Treesearch

    Norman P. Worthington

    1963-01-01

    The impressive, integrated forest products industries and large forest ownerships of the Douglas-fir region are well known. Sometimes overlooked are the 53,000 owners of woodlands of under 100 acres, the average holding being 35 acres. These small tracts, totaling 1,900,000 acres, are growing timber at rates far below their potential.1 To secure...

  11. Comparative habitat use in a juniper woodland bird community

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2004-01-01

    We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

  12. Runoff and erosion in a pinon-juniper woodland: Influence of vegetation patches

    SciTech Connect

    Reid, K.D.; Wilcox, B.P.; Breshears, D.D.; MacDonald, L.

    1999-12-01

    In many semiarid regions, runoff and erosion differ according to vegetation patch type. These differences, although hypothesized to fundamentally affect ecological processes, have been poorly quantified. In a semiarid pinion-juniper woodland [Pinus edulis Engelm. and Juniperus monosperma (Engelm) Sarg.] in northern New Mexico, the authors measured runoff and erosion from the three patch types that compose these woodlands: Canopy patches (those beneath woody plants), vegetated patched in intercanopy areas, and bare patches in intercanopy areas. The bare intercanopy patches exhibited the highest rates, followed by vegetated intercanopy patches and then by canopy patches. Large convective summer storms, though relatively infrequent, generated much of the runoff and most of the sediment; prolonged frontal storms were capable of generating considerable runoff but little sediment. A portion of the runoff and most of the sediment generated from bare intercanopy patches was redistributed down-slope, probably to adjacent vegetated intercanopy patches, demonstrating connectivity between these two patch types. Their results indicate that there are significant and important differences in runoff and sediment production from the three patch types; that bare intercanopy patches act as sources of both water and sediment for the vegetated intercanopy patches; and that the transfer of water and sediment at small scales is both frequent enough and substantial enough to be considered ecologically significant.

  13. Dentistry in ancient mesopotamia.

    PubMed

    Neiburger, E J

    2000-01-01

    Sumer, an empire in ancient Mesopotamia (southern Iraq), is well known as the cradle of our modern civilization and the home of biblical Abraham. An analysis of skeletal remains from cemeteries at the ancient cities of Ur and Kish (circa 2000 B.C.), show a genetically homogeneous, diseased, and short-lived population. These ancient Mesopotamians suffered severe dental attrition (95 percent), periodontal disease (42 percent), and caries (2 percent). Many oral congenital and neoplastic lesions were noted. During this period, the "local dentists" knew only a few modern dental techniques. Skeletal (dental) evidence indicates that the population suffered from chronic malnutrition. Malnutrition was probably caused by famine, which is substantiated in historic cuneiform and biblical writings, geologic strata samples, and analysis of skeletal and forensic dental pathology. These people had modern dentition but relatively poor dental health. The population's lack of malocclusions, caries, and TMJ problems appear to be due to flat plane occlusion.

  14. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.

  15. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens

    PubMed Central

    Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf

    2005-01-01

    Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in

  16. Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-01-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  17. Forest and woodland depletion in the Lake Elementeita Basin, Kenya.

    PubMed

    Mwaura, F; Moore, T R

    1991-01-01

    Research geographers combined LANDSAT imagery analysis and vegetation survey (LANDSAT data interpretation, ground truthing, and quantitative transect sampling) to study the spatial dynamics of forest and woodland areas in the Lake Elementeita watershed in the central Rift Valley of Kenya. Between 1973-1984, trees in forests and woodlands disappeared rapidly from a cover of 152-64 sq. km, i.e. 45-19% of total catchment. The most rapid decrease occurred between 1973-1976 which was associated with immigration into the area in the 1960s and 1970s. Indeed the annual population growth rate in the area was 5.7%. Further most of the population concentrated in the upper and middle catchment areas of Ndunduri, Ngorika, and Nyaituga where the soils and climate were best for commercial crop and livestock farming. This high concentration of people in 1 area along with the high population growth rate contributed greatly to deforestation. In fact, it resulted in a 57.9% loss of total forest and woodland areas. These trees used to cover most of the Ndunduri and Ngorika areas. Agroecosystems have replaced the Juniperus procera and Olea africana forest belts which dominated the Ngorika plains in the past. Further, in 1988, field observations revealed that very limited forest and woodland areas have remained undisturbed. Based on these results and the fact that little substantial efforts towards conservation and afforestation, the researchers predicted that most of the watershed would be with forests and woodlands by 2000. They further noted that deforestation could cause lower water levels in Lake Elementeita, especially during droughts, and worsen soil erosion. Therefore the government should initiate environmental controls in this watershed that match local conditions and the true and increasing needs of the rural population.

  18. Ancient Chinese constellations

    NASA Astrophysics Data System (ADS)

    Xu, Junjun

    2011-06-01

    China, a country with a long history and a specific culture, has also a long and specific astronomy. Ancient Chinese astronomers observed the stars, named and distributed them into constellations in a very specific way, which is quite different from the current one. Around the Zodiac, stars are divided into four big regions corresponding with the four orientations, and each is related to a totem, either the Azure Dragon, the Vermilion Bird, the White Tiger or the Murky Warrior. We present a general pattern of the ancient Chinese constellations, including the four totems, their stars and their names.

  19. [Psychiatry in ancient Mexico].

    PubMed

    Calderón Narváez, G

    1992-12-01

    Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described.

  20. Traditional food and herbal uses of wild plants in the ancient South-Slavic diaspora of Mundimitar/Montemitro (Southern Italy)

    PubMed Central

    2012-01-01

    Background In Europe, only a limited number of cross-cultural comparative field studies or meta-analyses have been focused on the dynamics through which folk plant knowledge changes over space and time, while a few studies have contributed to the understanding of how plant uses change among newcomers. Nevertheless, ethnic minority groups and/or linguistic “isles” in Southern and Eastern Europe may provide wonderful arenas for understanding the various factors that influence changes in plant uses. Methods A field ethnobotanical study was carried out in Mundimitar (Montemitro in Italian), a village of approx. 450 inhabitants, located in the Molise region of South-Eastern Italy. Mundimitar is a South-Slavic community, composed of the descendants of people who migrated to the area during the first half of the 14th century, probably from the lower Neretva valley (Dalmatia and Herzegovina regions). Eighteen key informants (average age: 63.7) were selected using the snowball sampling technique and participated in in-depth interviews regarding their Traditional Knowledge (TK) of the local flora. Results Although TK on wild plants is eroded in Montemitro among the youngest generations, fifty-seven taxa (including two cultivated species, which were included due to their unusual uses) were quoted by the study participants. Half of the taxa have correspondence in the Croatian and Herzegovinian folk botanical nomenclature, and the other half with South-Italian folk plant names. A remarkable link to the wild vegetable uses recorded in Dalmatia is evident. A comparison of the collected data with the previous ethnobotanical data of the Molise region and of the entire Italian Peninsula pointed out a few uses that have not been recorded in Italy thus far: the culinary use of boiled black bryony (Tamus communis) shoots in sauces and also on pasta; the use of squirting cucumber ( Ecballium elaterium) juice for treating malaria in humans; the aerial parts of the elderberry tree

  1. Traditional food and herbal uses of wild plants in the ancient South-Slavic diaspora of Mundimitar/Montemitro (Southern Italy).

    PubMed

    di Tizio, Alessandro; Łuczaj, Łukasz Jacub; Quave, Cassandra L; Redžić, Sulejman; Pieroni, Andrea

    2012-06-06

    In Europe, only a limited number of cross-cultural comparative field studies or meta-analyses have been focused on the dynamics through which folk plant knowledge changes over space and time, while a few studies have contributed to the understanding of how plant uses change among newcomers. Nevertheless, ethnic minority groups and/or linguistic "isles" in Southern and Eastern Europe may provide wonderful arenas for understanding the various factors that influence changes in plant uses. A field ethnobotanical study was carried out in Mundimitar (Montemitro in Italian), a village of approx. 450 inhabitants, located in the Molise region of South-Eastern Italy. Mundimitar is a South-Slavic community, composed of the descendants of people who migrated to the area during the first half of the 14th century, probably from the lower Neretva valley (Dalmatia and Herzegovina regions). Eighteen key informants (average age: 63.7) were selected using the snowball sampling technique and participated in in-depth interviews regarding their Traditional Knowledge (TK) of the local flora. Although TK on wild plants is eroded in Montemitro among the youngest generations, fifty-seven taxa (including two cultivated species, which were included due to their unusual uses) were quoted by the study participants. Half of the taxa have correspondence in the Croatian and Herzegovinian folk botanical nomenclature, and the other half with South-Italian folk plant names. A remarkable link to the wild vegetable uses recorded in Dalmatia is evident. A comparison of the collected data with the previous ethnobotanical data of the Molise region and of the entire Italian Peninsula pointed out a few uses that have not been recorded in Italy thus far: the culinary use of boiled black bryony (Tamus communis) shoots in sauces and also on pasta; the use of squirting cucumber ( Ecballium elaterium) juice for treating malaria in humans; the aerial parts of the elderberry tree ( Sambucus nigra) for treating

  2. Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition.

    SciTech Connect

    Brudvig, Lars A.; Damschen, Ellen L.

    2010-08-13

    Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site-level characteristics, landscape factors, and land-use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site-level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red-cockaded woodpecker in the southeastern United States. Land-use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post-agricultural sites; however, understory species composition was affected by historical connectivity, but only for post-agricultural sites. The influences of management and restoration activities were only apparent once land-use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post-agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site-level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land-use history, and underscore the importance of considering land

  3. [Ancient DNA: principles and methodologies].

    PubMed

    De Angelis, Flavio; Scorrano, Gabriele; Rickards, Olga

    2013-01-01

    Paleogenetics is providing increasing evidence about the biological characteristics of ancient populations. This paper examines the guiding principles and methodologies to the study of ancient DNA with constant references to the state of the art in this fascinating disciplin.

  4. Effects of cattle management on oak regeneration in northern Californian Mediterranean oak woodlands.

    PubMed

    López-Sánchez, Aida; Schroeder, John; Roig, Sonia; Sobral, Mar; Dirzo, Rodolfo

    2014-01-01

    Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands.

  5. Effects of Cattle Management on Oak Regeneration in Northern Californian Mediterranean Oak Woodlands

    PubMed Central

    López-Sánchez, Aida; Schroeder, John; Roig, Sonia; Sobral, Mar; Dirzo, Rodolfo

    2014-01-01

    Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands. PMID:25126939

  6. Ancient deforestation revisited.

    PubMed

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.

  7. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  8. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major…

  9. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  10. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  11. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  12. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  13. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  14. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major…

  15. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  16. [Midwifes in ancient Greece].

    PubMed

    Arata, Luigi

    2009-01-01

    The article deals with the evidence about obstetrics and in particular midwifes in ancient Greece. The substantives which mean "obstetrician" in Greek are quite numerous, but the most attested and common is [see text]. This work examines all the tasks which were connected with this profession (e.g. in the legal field).

  17. Biomass Potentials in Different Maintenance Scenarios of Satoyama Woodlands

    NASA Astrophysics Data System (ADS)

    Terada, T.

    2012-04-01

    Woodlands near human settlements often have long histories of providing people with fuelwood and other organic materials. In Japan, these woodlands are called satoyama. While satoyama woodlands were historically coppiced to provide an essential source of fuelwood, many have been developed into residential areas as a result of the introduction of fossil fuels beginning in the 1960's. Remaining satoyamas were simply abandoned due to the loss of economic value from fuelwood. This has resulted in a loss of other satoyama-related functions such as their ecological function. In response to the abandonment of satoyamas, thousands of volunteer groups have formed since the 1990's to restore satoyama woodlands. However, in spite of the importance of grassroots volunteers, their actual activities are limited in spatial extent due to shortages of manpower, time, and maintenance skill. This suggests that more substantial incentives are necessary, if maintenance of satoyama woodlands is to be extended. This study focused on an increased attention of biomass enegy utilization from satoyama trees as a promising incentive, and estimated biomass potentials in different maintenance scenarios of satoyama woodlands through a case study site in peri-urban Tokyo. This study set four maintenance scenarios; a) ground cover removal, b) light-thinning, c) intensive-thinning, and d) rotational coppicing. Based on the scenarios, the amount of biomass obtained, bioenergy generated, and carbon reduced were estimated respectively by the combination of conducting tree measurement and applying a long-term forest dynamics estimation model. Since there is tradeoff between CO2 reduction through woodenergy utilization and CO2 fixation by standing trees, these two variables were analyzed in tandem. The scenario that produces the most woody biomass was rotational coppicing, the maintenance scenario which also mimics historical management regimes. Despite the lowest potential of CO2 fixation by standing

  18. Spatial partitioning of water use by herbaceous and woody lifeforms in semiarid woodlands

    SciTech Connect

    Breshears, D.D.

    1993-12-31

    Ecological studies of soil moisture, plant water uptake, and community composition in semiarid regions have focused on differences with depth in the soil profile, yet there are many reasons to expect that moisture also varies with the presence or absence of woody vegetation. Plant and soil moisture relationships for three dominant species in a semiarid woodland, Bouteloua gracilis, Juniperus monosperma, and Pinus edulis, were studied for 1.5 years. Soil moisture varied by type of plant cover as well as by depth. Plant water potential and conductance differed among species and was related to spatial variability in soil moisture. Water potential for blue grama was most correlated with soil moisture in the 0-15 cm layer of intercanopies; juniper water potential was highly correlated with soil moisture in the 0-15 cm layer beneath tree canopies of either species, and pinyon water potential was only weakly correlated with soil moisture in the 15-30 cm depth interval beneath pinyons. Pinyons had consistently greater maximum conductance rates than junipers, even though pinyon conductance was more sensitive to reductions in soil moisture. The results from this study indicate that horizontal differences in the soil moisture profile associated with type of plant cover may be as important as differences in depth for predicting plant-water relationships. A simple model was hypothesized for predicting community composition of three lifeforms: Herbaceous plants, shallow-rooted woody plants, and deeper-rooted woody plants. Distributions of roots of each lifeform and plant-available water were defined with respect to four soil compartments that distinguish upper vs. lower and canopy vs. intercanopy soil regions. The model predicts that multiple combinations of herbaceous and woody biomass can exist at a site and was qualitatively consistent with field data from a climatic gradient.

  19. USDA Forest Service National Woodland Owner Survey: national, regional, and state statistics for family forest and woodland ownerships with 10+ acres, 2011-2013

    Treesearch

    Brett Butler; Jaketon H. Hewes; Brenton J. Dickinson; Kyle Andrejczyk; Sarah M. Butler; Marla. Markowski-Lindsay

    2016-01-01

    This report summarizes the results from the 2011-2013 National Woodland Owner Survey (NWOS) conducted by the U.S. Forest Service, Forest Inventory and Analysis program. The focus of the results reported here is family forest and woodland ownerships with holdings of at least 10 acres. Summaries are based on responses from 8,576 family ownerships with at least 10 acres...

  20. Woodland biodiversity management as a tool for reducing human exposure to Ixodes ricinus ticks: a preliminary study in an english woodland.

    PubMed

    Medlock, J M; Shuttleworth, H; Copley, V; Hansford, K M; Leach, S

    2012-12-01

    This paper presents preliminary findings towards developing a UK-specific approach to reducing public exposure to woodland questing Ixodes ricinus tick populations by harnessing existing biodiversity-enhancing woodland ride (i.e., linear non-wooded herbaceous habitat either side of track within woodland) management strategies. This preliminary study in an English woodland firstly assesses whether ecological and environmental factors determine presence and density of questing Ixodes ricinus along woodland rides. Secondly, it sets these findings in the context of woodland ride management guidelines in England in order to understand what impact ride management strategies might have on numbers of questing ticks and tick survival. Nymph and adult I. ricinus presence and abundance were modelled in relation to relevant microclimate and ecological parameter variables. Predictor variables for increased questing nymph abundance included ride orientation, mat depth, occurrence of bracken/bramble and animal tracks, ride/path width, and sward height. Ticks thrive in the ecotonal habitat of a woodland ride, therefore we urge woodland managers to consider the impact of their ride management on ticks and human exposure to ticks. Possible recommendations for mitigating questing I. ricinus in line with biodiversity management guidelines rides are discussed in this paper and include seasonal mowing regimes, management of mulch/mat, and bracken/bramble management through use of scalloped ride edges. © 2012 The Society for Vector Ecology.

  1. Late Pleistocene woodlands in the Bolson de Mapimi: A refugium for the Chihuahuan Desert Biota?

    NASA Astrophysics Data System (ADS)

    Van Devender, Thomas R.; Burgess, Tony L.

    1985-11-01

    Packrat middens radiocarbon dated at 12,280 ± 345 and 12,700 ± 165 yr B.P. record expansions of junipers and papershell pinyon ( Pinus remota) into the desert lowlands of Durango and Coahuila, Mexico (26° N). Extralocal trees and shrubs presently occur 24-580 km in nearly all directions including more subtropical areas to the northeast and southeast. An equable Late Wisconsin climate marked by mild winters with increased precipitation and by cool summers with reduced summer monsoons is proposed. The extensive playas of the Bolson de Mapimi probably held water at that time. The Bolson de Mapimi was not a geographical refugium unaffected by glacial climates, although many Chihuahuan Desert plants and animals probably remain in situ as members of equable woodlands. Equable climates, low extinction rates, and repeated, rapid glacial/interglacial climatic fluctuations may have been important in the evolution and accumulation of species at lower latitudes.

  2. Ecohydrologic Implications and Management of Post-fire Soil Water Repellency in Burned Pinon-Juniper Woodlands

    NASA Astrophysics Data System (ADS)

    Madsen, Matthew; Zvirzdin, Daniel; Fernelius, Kaitlynn; McMillan, Mica; Kostka, Stanley

    2014-05-01

    Erosion and weed dominance often limit the recovery of piñon-juniper woodlands of western North America after high intensity wildfires. Soil water repellency (SWR) is one factor that may promote overland flow and impede seedling establishment. In spite of these effects, the influence of post-fire SWR on site recovery is poorly understood. Our presentation summarizes data collected within studies on burned piñon-juniper woodlands that provide new insight on: 1) the spatial distribution and severity of SWR, 2) influence of SWR on soil hydrology, nitrogen cycling, and site revegetation, and 3) the suitability of soil surfactants as a post-fire restoration tool. We demonstrate how patterns of SWR are highly correlated to pre-fire woodland canopy structure. At sites where SWR is present, infiltration, soil water content, and plant establishment is significantly less than at non-hydrophobic sites. We show how newly developed soil surfactants can significantly improve ecohydrologic properties required for plant growth by overcoming SWR; thus, increasing the amount and duration of available water for seed germination and plant growth. However, the application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We have developed a potential solution to this problem by using seed coating technology to use the seed as the carrier for the delivery of soil surfactant. Through this approach, precipitation leaches the surfactant from the seed into the soil where it absorbs onto the soil particles and ameliorates water repellency within the seeds microsite. We present findings from laboratory and field evaluations of surfactant seed coatings, which provide evidence that it may be plausible for the technology to improve post-fire seeding efforts by restoring soil hydrologic function and increasing seedling

  3. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  4. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  5. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  6. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  7. Criconema proclivus n. sp. (Nematoda: Criconematinae) from Woodlands.

    PubMed

    Hoffmann, J K

    1973-04-01

    Criconema proclivis n. sp. from soil around roots of woodland trees in the northeastern USA is described and illustrated. It is characterized by a total of 67-74 annules, two naked offset head annules, a stylet length of 68.7 -80.7 mu, a sculpted vulval flap, and forward-projecting body annules. The annules at midbody are covered with a continuous fringe of 60-70 spines.

  8. A condition metric for Eucalyptus woodland derived from expert evaluations.

    PubMed

    Sinclair, Steve J; Bruce, Matthew J; Griffioen, Peter; Dodd, Amanda; White, Matthew D

    2017-03-31

    The evaluation of ecosystem quality is important for land management and land-use planning. Evaluation is unavoidably subjective, and robust metrics must be based on consensus and the structured use of observations. This paper presents a means of building and testing metrics based on expert evaluation data, using a transparent and repeatable process. We gather quantitative evaluation data from a defined expert group, about the quality of synthetic (fictional) grassy woodland sites. We use these data to train a model (an ensemble of thirty bagged regression trees) capable of predicting the perceived quality of similar synthetic woodlands using a set of thirteen site variables as inputs. These variables can be measured at any site, and the model implemented in a spreadsheet as a metric of woodland quality. We demonstrate that the model produces evaluations that are similar to those provided by experts. We also investigated the number of experts required to produce a stable metric, and showed that our use of 44 experts was sufficient. To test the metric's performance in the real world, we applied it to thirteen woodland conservation reserves on the periphery of Melbourne, Australia, and asked the managers of these sites to independently evaluate their quality. We assessed metric performance by quantifying its ability to match the mean evaluation of the managers for each site, and comparing this with the ability of each manager in turn to match the mean of the remaining evaluators. The metric performed relatively well. Given it brings the benefits of consensus and repeatability, which no human evaluator can demonstrate, we suggest that the metric is a valuable tool for making evaluations in the real-world context where accountability is required. The basic approaches of development and testing that we demonstrate are applicable to any ecosystem. This article is protected by copyright. All rights reserved.

  9. Native woodlands and birds of South Dakota: Past and present

    Treesearch

    Mark A. Rumble; Carolyn Hull Sieg; Daniel W. Uresk; Jody Javersak

    1998-01-01

    Eighty-four percent of the upland bird species in present-day bird counts along the Missouri River were included in bird species lists 150 years ago. Eighty-three percent of upland bird species in the Slim Buttes area also occurred 80 to 120 years ago. Historical photographs show native woodlands were part of the presettlement landscape. Expansion of the ranges of blue...

  10. Woodland Survey of Great Britain 1971-2001

    NASA Astrophysics Data System (ADS)

    Wood, C. M.; Smart, S. M.; Bunce, R. G. H.

    2015-08-01

    The Woodland Survey of Great Britain is a unique data set, consisting of a detailed range of ecological measurements at a national scale, covering a time span of 30 years. A set of 103 woods spread across Britain were first surveyed in 1971, which were again surveyed in 2000-2003 (for convenience referred to subsequently as the "2001 survey"). Standardised methods of describing the trees, shrubs, ground flora, soils and general habitats present were used for both sets of surveys. The sample of 1648 plots spread through 103 woodland sites located across Britain makes it probably the most extensive quantitative ecological woodland survey undertaken in Britain; it is also notable for the range of sites that have been revisited after such a long interval. The data set provides a unique opportunity to explore the effects of a range of potential drivers of woodland change that operated between 1971 and 2001. The data set is available in four discrete parts, which have been assigned the following DOIs: 10.5285/4d93f9ac-68e3-49cf-8a41-4d02a7ead81a (Kirby et al., 2013b), 10.5285/d6409d40-58fe-4fa7-b7c8-71a105b965b4 (Kirby et al., 2013d), 10.5285/fb1e474d-456b-42a9-9a10-a02c35af10d2 (Kirby et al., 2013c), 10.5285 (Kirby et al., 2013a).

  11. Changes in Woodland Use from Longleaf Pine to Loblolly Pine

    Treesearch

    Yaoqi Zhang; Indrajit Majumdar; John Schelhas

    2010-01-01

    Abstract: There is growing evidence suggesting that the United States’ roots are not in a state of pristine nature but rather in a human-modified landscape over which Native people have since long exerted vast control and use. The longleaf pine is a typical woodland use largely shaped by fires, lightning and by Native Americans. The frequent fires, which were used to...

  12. Criconema proclivus n. sp. (Nematoda: Criconematinae) from Woodlands

    PubMed Central

    Hoffmann, J. K.

    1973-01-01

    Criconema proclivis n. sp. from soil around roots of woodland trees in the northeastern USA is described and illustrated. It is characterized by a total of 67-74 annules, two naked offset head annules, a stylet length of 68.7 -80.7 μ, a sculpted vulval flap, and forward-projecting body annules. The annules at midbody are covered with a continuous fringe of 60-70 spines. PMID:19319323

  13. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  14. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  15. Ancient human microbiomes.

    PubMed

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  16. The Case of the Missing Ancient Fungal Polyploids.

    PubMed

    Campbell, Matthew A; Ganley, Austen R D; Gabaldón, Toni; Cox, Murray P

    2016-12-01

    Polyploidy-the increase in the number of whole chromosome sets-is an important evolutionary force in eukaryotes. Polyploidy is well recognized throughout the evolutionary history of plants and animals, where several ancient events have been hypothesized to be drivers of major evolutionary radiations. However, fungi provide a striking contrast: while numerous recent polyploids have been documented, ancient fungal polyploidy is virtually unknown. We present a survey of known fungal polyploids that confirms the absence of ancient fungal polyploidy events. Three hypotheses may explain this finding. First, ancient fungal polyploids are indeed rare, with unique aspects of fungal biology providing similar benefits without genome duplication. Second, fungal polyploids are not successful in the long term, leading to few extant species derived from ancient polyploidy events. Third, ancient fungal polyploids are difficult to detect, causing the real contribution of polyploidy to fungal evolution to be underappreciated. We consider each of these hypotheses in turn and propose that failure to detect ancient events is the most likely reason for the lack of observed ancient fungal polyploids. We examine whether existing data can provide evidence for previously unrecognized ancient fungal polyploidy events but discover that current resources are too limited. We contend that establishing whether unrecognized ancient fungal polyploidy events exist is important to ascertain whether polyploidy has played a key role in the evolution of the extensive complexity and diversity observed in fungi today and, thus, whether polyploidy is a driver of evolutionary diversifications across eukaryotes. Therefore, we conclude by suggesting ways to test the hypothesis that there are unrecognized polyploidy events in the deep evolutionary history of the fungi.

  17. Avian habitat relationships in pinyon-juniper woodland

    USGS Publications Warehouse

    Sedgwick, James A.

    1987-01-01

    Habitat relationships of breeding birds were examined in northwestern Colorado in pinyon-juniper (Pinus edulis-Juniperus osteosperma) woodland and in openings where most overstory trees had been knocked down by anchor chaining. Vegetation characteristics and physical habitat features were measured in 233 0.04-ha circular plots around singing males of 13 species of birds from 15 May to 15 July 1980. Thirteen-group discriminant function analysis ordinated bird species along three habitat dimensions described by (1) canopy height; (2) slope, shrub size, and shrub species diversity; and (3) percentage canopy cover, large tree density, distance from a habitat edge, litter cover, and green cover. Woodland, open-area, and intermediate edge species were clearly segregated along the first discriminant axis, and species' associations with shrubs, inclination, ground cover, and edges were revealed by the ordinations along the second and third discriminant axes. Two-group discriminant analyses comparing occupied and available plots identified additional and more specific habitat associations. For example, Hermit Thrushes (Catharus guttatus) were associated with mature forested habitats and forest interiors, Virginia's Warblers (Vermivora virginiae) favored steep, oak-covered draws, Rock Wrens (Salpinctes obsoletus) selected areas where percentage log cover and small tree density were high, and Dusky Flycatchers (Empidonax oberholseri) preferred shrubby slopes with scattered large trees near woodland edges.

  18. Carbon, Nitrogen, and Phosphorus Increase in Soil Physical Fractions Following Vegetation Change from Grassland to Woodland

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Boutton, T. W.; Filley, T. R.; Hallmark, C. T.

    2009-12-01

    Woody plant encroachment has been pervasive in grass-dominated ecosystems around the world during the past century due to livestock grazing, fire suppression, and/or changes in climate and atmospheric chemistry. In the Rio Grande Plains of Texas, subtropical thorn woodlands dominated by N-fixing tree legumes have largely replaced grasslands. This dramatic land cover change has increased above- and belowground primary productivity and accelerated rates of biogeochemical processes in the soil. The purpose of this study was to assess the impact of this grassland to woodland transition on C, N, and P concentrations in soil physical fractions that differ in turnover rates. Soil samples (0-10 cm) were collected in remnant grasslands and near the centers of woody plant clusters ranging in age from 15 to 90 yrs in a subtropical savanna parkland in southern Texas. Soils were fractionated by wet sieving into five size and density classes: un-sieved whole soil, free light fraction (density <1 g/cm3), macroaggregates (>250 µm), microaggregates (53-250 µm), and free silt and clay (<53 µm). C and N concentrations in each of the fractions were determined by elemental analysis, and total P concentrations were determined by alkaline oxidation and sulfuric acid digestion coupled with ascorbic acid colorimetry. C, N, and P concentrations in whole soil were 2-3X greater in woody clusters than in grasslands. In addition, C, N, and P concentrations all increased linearly with time following woody plant invasion in all fractions except free silt and clay. Most of the newly accrued C, N, and P was in the relatively more labile light fractions and macroaggregates. C:P and N:P ratios increased following woody encroachment, indicating carbon and nitrogen accumulated at a faster rate than phosphorus. Since N and P are generally the most limiting nutrients in terrestrial ecosystems, increased stores of these elements are likely to alter rates of microbial processes, plant-microbe and plant-plant

  19. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators.

    PubMed

    Costa, Augusta; Madeira, Manuel; Lima Santos, José; Plieninger, Tobias; Seixas, Júlia

    2014-01-15

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands in relation to their surrounding landscape matrix, and to characterize and quantify woodland boundaries and edges. The present study aims to fill this gap by analyzing fragmentation patterns of oak woodlands over a 50-year period (1958-2007) in three landscapes. Using archived aerial imagery from 1958, 1995 and 2007, for two consecutive periods (1958-1995 and 1995-2007), we calculated a set of landscape metrics to compare woodland fragmentation over time. Our results indicated a continuous woodland fragmentation characterized by their edge dynamics. From 1958 to 2007, the replacement of open farmland by shrubland and by new afforestation areas in the oak woodland landscape surrounding matrix, led to the highest values for edge contrast length trends of 5.0 and 12.3, respectively. Linear discriminant analysis was performed to delineate fragmented woodland structures and identify metric variables that characterize woodland spatial configuration. The edge contrast length with open farmland showed a strong correlation with F1 (correlations ranging between 0.55 and 0.98) and may be used as a proxy for oak woodland mixedness in landscape matrix. The edge dynamics of oak woodlands may result in different patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Suicide in ancient Greece.

    PubMed

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  1. [Vertical distribution characteristics of N2O emission in tea garden and its adjacent woodland].

    PubMed

    Fan, Li-chao; Han, Wen-yan; Li, Xin; Li, Zhi-xin

    2015-09-01

    In this study, we determined the vertical distribution of N2O emission rates in tea soils and its adjacent woodland soils. The results showed that total nitrogen contents, N2O fluxes and cumulative emissions in the tea garden and woodland decreased with the increasing depth of the soil layer, and their average values were greater in tea garden than in woodland. Generally, pH, soil water soluble organic nitrogen (WSON), soil microbial biomass nitrogen (MBN), NO(3-)-N and NH(4+)-N contents had a downward trend with the increasing depth of soil layer. The WSON, MBN, NO(3-)-N and NH(4+)-N contents from each soil layer were greater in tea garden than in woodland, but the pH value in tea garden was lower than that in woodland. The N2O emission rate was significantly positively related with TN, MBN and NH(4+)-N contents, but not with pH value. The N2O emission rate was significantly correlated with WSON content in woodland, but not in tea garden. The N20 emission rate was significantly correlated with NO(3-)-N concentration in tea garden, but not in woodland. WSON/TN and N2O-N/SMBN were averagely greater than in tea garden in woodland, and SMBN/TN was opposite. These results indicated that tea soil was not conducive to accumulate nitrogen pool, maintain soil quality and its sustainable use compared to woodland.

  2. Pharmacy and medicine education in ancient Egypt.

    PubMed

    El-Gammal, S Y

    1993-01-01

    The ancient Egyptians knew many of the therapeutical effects of the medicinal plants. This knowledge was taught at home from father to son. So, these houses formed the first primitive pharmacy and medicine schools. Century after century, the ancient Egyptians became more and more interested in medical sciences. Temples began to establish medical and pharmaceutical schools. Priests of good and honest character with scientific background were chosen to become teachers and professors in these schools. Another medical and pharmaceutical schools teaching all the scientific courses were the Per Ankh or Houses of Life. Special schools were erected inside the Royal palaces for the education of the Royal family children, the nobles and the court officials comprising all sorts of sciences and arts, specially taught in its own Per Ankh, as in Heliopolis and Memphis palaces.

  3. Deep Sequencing of RNA from Ancient Maize Kernels

    PubMed Central

    Rasmussen, Morten; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Alquezar-Planas, David E.; Penfield, Steven; Brown, Terence A.; Vielle-Calzada, Jean-Philippe; Montiel, Rafael; Jørgensen, Tina; Odegaard, Nancy; Jacobs, Michael; Arriaza, Bernardo; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Willerslev, Eske; Gilbert, M. Thomas P.

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited – perhaps due to dogma associated with the fragility of RNA. We hypothesize that seeds offer a plausible refuge for long-term RNA survival, due to the fundamental role of RNA during seed germination. Using RNA-Seq on cDNA synthesized from nucleic acid extracts, we validate this hypothesis through demonstration of partial transcriptomal recovery from two sources of ancient maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication. PMID:23326310

  4. Harnessing ancient genomes to study the history of human adaptation.

    PubMed

    Marciniak, Stephanie; Perry, George H

    2017-09-11

    The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.

  5. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    PubMed

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  6. Infectious diseases in ancient Egypt.

    PubMed

    Brier, Bob

    2004-03-01

    Techniques for studying infectious disease in the ancient world are discussed. A brief survey of infectious diseases, such as schistosomiasis and malaria, in ancient Egypt is presented, and the physical traces of these diseases are examined. A discussion of the ancient Egyptian physician's response to infectious disease is included. There are two substantial sources of evidence for infectious diseases-physical remains and descriptions in Egyptian medical papyri. This preliminary survey suggests that ancient Egypt was far from the idyllic paradise on the Nile that some historians would like to imagine.

  7. Gnomons in Ancient China

    NASA Astrophysics Data System (ADS)

    Li, Geng

    Gnomon shadow measurement was one of the most fundamental astronomical observations in ancient China. It was crucial for calendar making, which constituted an important aspect of imperial governance. A painted stick discovered from a prehistoric (2300 BC) astronomical site of Taosi (see Chap. 201, "Taosi Observatory", 10.1007/978-1-4614-6141-8_215") is the oldest gnomon known of China. From second century BC onward, gnomon shadow measurements have been essential part of calendrical practice. Various historical measurements are discussed in this chapter.

  8. Tracheostomy in ancient Egypt.

    PubMed

    Blomstedt, Patric

    2014-08-01

    It has often been reported that the ancient Egyptians performed tracheostomies. An analysis of this claim demonstrates it to be founded on only two depictions from the Protodynastic period (thirty-first century bc). These depictions are difficult to reconcile with tracheostomy from an anatomical point of view and can more easily be explained as human sacrifices. Considering that Egyptian surgery included only minor procedures even at its zenith during later dynastic periods, it is difficult to imagine that they would have developed such an advanced procedure at such an early date.

  9. Urology in ancient India

    PubMed Central

    Das, Sakti

    2007-01-01

    The practice of medical and surgical measures in the management of urological ailments prevailed in ancient India from the Vedic era around 3000 BC. Subsequently in the Samhita period, the two stalwarts - Charaka in medicine and Susruta in surgery elevated the art of medicine in India to unprecedented heights. Their elaboration of the etiopathological hypothesis and the medical and surgical treatments of various urological disorders of unparalleled ingenuity still remain valid to some extent in our contemporary understanding. The new generation of accomplished Indian urologists should humbly venerate the legacy of the illustrious pioneers in urology of our motherland. PMID:19675749

  10. The moon's ancient magnetism

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.

    1987-12-01

    While the moon at present has no magnetic field, magnetized areas on its surface called magnetic anomalies do exist. Evidence is presented here that these anomalies are due to an ancient magnetic field. This field was produced by an internal dynamo due to a once molten lunar core of iron. The anomalies fall into three groups which were formed at different times and point in different directions, indicating that the moon underwent reorientation during its early history. It is shown that this reorienation could have been caused by the impact of disintegrated lunar satellites on the lunar surface.

  11. Carbon and Nitrogen Storage in Glomalin-Related Soil Protein During Grassland-to- Woodland Succession

    NASA Astrophysics Data System (ADS)

    Ariza, M. C.; Boutton, T. W.; Gonzalez-Chavez, M. C.; Filley, T. R.

    2008-12-01

    Glomalin is a hyphal glycoprotein produced by arbuscular mycorrhizal fungi that has been found to make a significant contribution to soil organic matter and to play a key role in the process of soil aggregation. However, little is known regarding the effects of land cover changes on glomalin storage in soil. To evaluate this, we quantified glomalin in soils along a grassland-to-woodland chronosequence in a subtropical mesquite savanna located in southern Texas. Soil cores (0-10 cm) were collected from remnant grasslands (age 0) and from adjacent woody plant stands (ages 14 to 86 yr). Glomalin-related soil protein (GRSP), operationally defined as Bradford reactive soil protein was extracted from soil as easily extractable glomalin (EE-GRSP) and as total glomalin (T-GRSP). EE-GRSP was extracted from 1 g soil with 8 ml of 20 mM citrate-buffer, pH 7.0 at 121 °C for 30 minutes. T-GRSP was extracted from 1 g soil with 8 ml of 50 mM citrate-buffer, pH 8.0 at 121 °C for 60 minutes; extractions were repeated up to 4 times. Extracts were purified by precipitation at pH 2.5, reconstituted in 0.1 NaOH, dialyzed against dH2O, freeze-dried, and analyzed for %C and N. EE-GRSP concentrations ranged from 1.0-1.4 mg/g in remnant grasslands, and from 1.7-2.3 mg/g in wooded areas. Similarly, T-GRSP concentrations ranged from 1.2-2.6 mg/g in remnant grasslands, and from 2.8-4.3 mg/g. Both GRSP fractions increased linearly during the first 40 years of woody plant encroachment, and then remained relatively constant at approximately 4 mg/g in woody clusters ranging in age from 50-90 years. Carbon and nitrogen concentrations in T-GRSP (C = 10-25%; N = 1-3%) were similar in both remnant grasslands and woody plant stands. C and N in T-GRSP accounted for 6% of total soil organic carbon (SOC) and 5% of soil total N in remnant grasslands, and 4% of both SOC and total N in wooded areas. Our results show that woody plant cover significantly affects GRSP concentrations, likely due to increased

  12. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    PubMed

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover.

  13. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  14. Ancient DNA from the Schild site in Illinois: Implications for the Mississippian transition in the Lower Illinois River Valley.

    PubMed

    Reynolds, Austin W; Raff, Jennifer A; Bolnick, Deborah A; Cook, Della C; Kaestle, Frederika A

    2015-03-01

    Archaeologists have long debated whether rapid cultural change in the archaeological record is due to in situ developments, migration of a new group into the region, or the spread of new cultural practices into an area through existing social networks, with the local peoples adopting and adapting practices from elsewhere as they see fit (acculturation). Researchers have suggested each of these explanations for the major cultural transition that occurred at the beginning of the Mississippian period (AD 1050) across eastern North America. In this study, we used ancient DNA to test competing hypotheses of migration and acculturation for the culture change that occurred between the Late Woodland (AD 400-1050) and Mississippian (AD 1050-1500) periods in the Lower Illinois River Valley. We obtained sequences of the first hypervariable segment of the mitochondrial genome (mtDNA) from 39 individuals (17 Late Woodland, 22 Mississippian) interred in the Schild cemetery in western Illinois, and compared these lineages to ancient mtDNA lineages present at other sites in the region. Computer simulations were used to test a null hypothesis of population continuity from Late Woodland to Mississippian times at the Schild site and to investigate the possibility of gene flow from elsewhere in the region. Our results suggest that the Late Woodland to Mississippian cultural transition at Schild was not due to an influx of people from elsewhere. Instead, it is more likely that the transition to Mississippian cultural practices at this site was due to a process of acculturation. © 2014 Wiley Periodicals, Inc.

  15. Epigenetics of Ancient DNA

    PubMed Central

    Zhenilo, S. V.; Sokolov, A.S.; Prokhortchouk, E. B.

    2016-01-01

    Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences. PMID:27795845

  16. Ancient celtic horns

    NASA Astrophysics Data System (ADS)

    Campbell, Murray

    2002-11-01

    There is considerable evidence from iconographic and documentary sources that musical lip-reed instruments were important in the early celtic communities of Scotland and Ireland. In recent years several studies have been undertaken with the aim of gaining a better understanding of the musical nature of these ancient horns, and of their place in the life and culture of the time. A valuable source of tangible evidence is to be found in the archaeological remains deposited across Scotland and the whole of Ireland. A project is now under way, under the auspices of the Kilmartin House Trust and the general direction of John Purser, which has brought together an international team of musicians, craftsmen, archaeologists, musicologists and physicists with the aim of analyzing ancient musical artifacts, reconstructing some of the original instruments, and analyzing the sounds they produce. This paper describes acoustical studies carried out on a number of recent reconstructions of wooden and bronze instruments, and discusses the role of acoustics in this type of investigation. [Work supported by Sciart and EPSRC.

  17. Ancient Chinese Literature Reveals Pathways of Eggplant Domestication

    PubMed Central

    Wang, Jin-Xiu; Gao, Tian-Gang; Knapp, Sandra

    2008-01-01

    Background and Aims Changes in key traits occurring during the processes of plant domestication have long been subjects of debate. Only in the case of genetic analysis or with extensive plant remains can specific sets of changes be documented. Historical details of the plant domestication processes are rare and other evidence of morphological change can be difficult to obtain, especially for those vegetables that lack a substantial body of archaeological data. Botanical records chronicled in the ancient literature of established ancient civilizations, such as that of China, are invaluable resources for the study and understanding of the process of plant domestication. Here, the considerable body of ancient Chinese literature is used to explore the domestication process that has occurred with the eggplant (Solanum melongena), an important vegetable in Old World. Methods Information about eggplant domestication in the ancient Chinese literature was retrieved using a variety of methods. The information obtained was then sorted by taxon, examined and taxonomic identifications verified. Key Results It was found that the earliest record of the eggplant documented in ancient Chinese literature was in a work from 59 bc. As far as is known, this is the earliest reliable and accurately dated record of eggplant in cultivation. The analysis reveals that the process of domestication of the eggplant in China involved three principal aspects of fruit quality: size, shape and taste. These traits were actively and gradually selected; fruit size changed from small to large, taste changed from not palatable to what was termed at the time sweetish, and that over time, a wider variety of fruit shapes was cultivated. Conclusions The results indicate that, in addition to data gleaned from archaeology and genetics, evidence as to changes in key traits occurring during the process of plant domestication and selective forces responsible for these changes can be traced through the ancient

  18. Energy-conserving site design: case study, The Woodlands, Texas

    SciTech Connect

    Swanson, M

    1980-03-01

    The Woodlands is a HUD Title VII New Town located north of Houston. It includes 22,000 acres and the plan for the new town consists of 6 residential villages, a town center called the Metro Center and several additional tracts, such as the Trade Center for larger-scale industrial use. Each village is to be structured around one large and several supporting neighborhood centers. Ultimate population is planned to be 150,000. Included in this report are sections on background, team structure and organization, methodological considerations, the conventional and energy-conserving plan, constraints to implementation, and general conclusions and next phases.

  19. Monitoring vegetation dynamics and carbon stock density in miombo woodlands.

    PubMed

    Ribeiro, Natasha S; Matos, Céu N; Moura, Isabel R; Washington-Allen, Robert A; Ribeiro, Ana I

    2013-11-09

    The United Nation's Program for Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to reduce the 20% contribution to global emissions of greenhouse gases from the forest sector, offering a financial value of the carbon stored in forests as an incentive for local communities. The pre-requisite for the setup of a participatory REDD + Program is the monitoring, reporting and verification (MRV) of baseline carbon stocks and their changes over time. In this study, we investigated miombo woodland's dynamics in terms of composition, structure and biomass over a 4-year period (2005-2009), and the Carbon Stock Density (CSD) for the year 2009. The study was conducted in the Niassa National Reserve (NNR) in northern Mozambique, which is the 14th largest protected area in the world. Mean tree density distributed across 79 species increased slightly between 2005 and 2009, respectively, from 548 to 587 trees ha-1. Julbernardia globiflora (Benth.) was the most important species in this area [importance value index (IVI2005= 61 and IVI2009 = 54)]. The woodlands presented an inverted J-shaped diametric curve, with 69% of the individuals representing the young cohort. Woody biomass had a net increase of 3 Mg ha-1 with the highest growth observed in Dyplorhynchus condilocarpon (Müll.Arg.) Pichon (0.54 Mg ha-1). J. globiflora had a net decrease in biomass of 0.09 Mg ha-1. Total CSD density was estimated at ca. 67 MgC ha-1 ± 24.85 with soils (average 34.72 ± 17.93 MgC ha-1) and woody vegetation (average 29.8 MgC ha-1 ± 13.07) representing the major carbon pools. The results point to a relatively stable ecosystem, but they call for the need to refocus management activities. The miombo woodlands in NNR are representative of the woodlands in the eco-region in terms of vegetation structure and composition. They experienced net increase in woody biomass, a considerable recruitment level and low mortality. According to our results, NNR

  20. Invertible canopy reflectance modeling of vegetation structure in semiarid woodland

    NASA Technical Reports Server (NTRS)

    Franklin, Janet; Strahler, Alan H.

    1988-01-01

    The Li-Strahler canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, provided regional estimates of tree size and density in two bioclimatic zones in West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size distribution of trees) and in the imagery (spectral signatures of scene components). The model was tested in sparse woodland and wooded grassland in the Sahelian and Sudanian bioclimatic zones in West Africa.

  1. Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland

    USDA-ARS?s Scientific Manuscript database

    Pinus-Juniperus L. (Piñon- juniper) woodlands have expanded into Artemisia tridentata Beetle (big sagebrush) steppe of the western United States primarily as a result of reduced fire disturbances. Woodland control measures, including prescribed fire, have been increasingly employed to restore sagebr...

  2. Restoring fire suppressed Texas pak woodlands to historic conditions using prescribed fire

    Treesearch

    Jeff C. Sparks; Michael C. Stambaugh; Eric L. Keith

    2012-01-01

    Comparable to many oak ecosystems across the eastern United States, oak woodlands in Texas display characteristics of changing composition and structure due to altered fire regimes. Information describing historic fire regimes suggests woodlands underwent relatively frequent and repeated burning prior to major Euro-American influence in the early 19th century. Oak...

  3. Variable response by aquatic invertebrates to experimental manipulations of leaf litter input into seasonal woodland ponds

    Treesearch

    Darold P. Batzer; Brian J. Palik

    2007-01-01

    Aquatic invertebrates are crucial components of foodwebs in seasonal woodland ponds, and leaf litter is probably the most important food resource for those organisms. We quantified the influence of leaf litter inputs on aquatic invertebrates in two seasonal woodland ponds using an interception experiment. Ponds were hydrologically split using a sandbag-plastic barrier...

  4. Numerical response of small vertebrates to prescribed fire in California oak woodland

    Treesearch

    Justin K. Vreeland; William D. Tietje

    2002-01-01

    Use of prescribed fire is increasing in California oak woodlands, but its effects on vertebrate wildlife are unknown. We conducted a light-intensity prescribed fire in mixed blue oak?coast live-oak woodlands in coastal-central California and assessed vegetation change and numerical response of small, nongame vertebrates to the fire. Four of 13 vegetation and habitat...

  5. Numerical response of small vertebrates to prescribed fire in a California oak woodland

    Treesearch

    Justin K. Vreeland; William D. Tietje

    2002-01-01

    Use of prescribed fire for management of livestock forage and fuel load is increasing in California oak woodlands, but its effects on vertebrate wildlife are unknown. We conducted a light-intensity prescribed fire in mixed blue oak-coast live-oak woodlands in coastal-central California and assessed vegetation change and numerical response of small, non-game vertebrates...

  6. California's western juniper and pinyon-juniper woodlands: area, stand characteristics, wood volume, and fenceposts.

    Treesearch

    Charles L. Bolsinger

    1989-01-01

    The results of a statewide inventory of western juniper and pinyon-juniper woodlands are presented. Included are statistics on area of woodland by type and ownership; area of rangeland with scattered juniper and pinyon trees; wood volume by ownership, species, and tree size; juniper fenceposts; tree and stand age distribution; stand characteristics, including overstory...

  7. Restoring oak forest, woodlands and savannahs using modern silvicultural analogs to historic cultural fire regimes

    Treesearch

    Daniel C. Dey; Richard P. Guyette; Callie J. Schweitzer; Michael C. Stambaugh; John M. Kabrick

    2015-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak savannahs, woodlands and forests that were dominant vegetation types throughout the region. In the past century, once abundant savannahs and woodlands have become scarce due to conversion to agriculture, or development of forest structure in the absence of fire. In addition, the...

  8. USDA Forest Service National Woodland Owner Survey, 2011-2013: design, implementation, and estimation methods

    Treesearch

    Brett J. Butler; Brenton J. Dickinson; Jaketon H. Hewes; Sarah M. Butler; Kyle Andrejczyk; Marla. Markowski-Lindsay

    2016-01-01

    The National Woodland Owner Survey (NWOS) is conducted by the U.S. Forest Service, Forest Inventory and Analysis program to increase the understanding of the attitudes, behaviors, and demographics of private forest and woodland ownerships across the United States. The information is intended to help policy makers, resource managers, educators, service providers, and...

  9. Hydrologic vulnerability of western US rangelands in the wake of woodland encroachment and increasing wildfire activity

    USDA-ARS?s Scientific Manuscript database

    Pinyon and juniper woodlands have dramatically increased their range in the past 150 years and currently occupy more than 30 million ha of the western US. Range expansion has primarily occurred through encroachment into sagebrush rangelands. Woodland expansion and infill on western rangelands have a...

  10. A Comparison of Management Strategies in the Oak Woodlands of Spain and California

    Treesearch

    Lynn Huntsinger; James W. Bartolome; Paul F. Starrs

    1991-01-01

    The characteristics, uses, and management of oak woodlands and savannas in California and southern Spain are compared. There are many similarities between the Spanish dehesa and the California oak woodland. Both are located in Mediterranean climate zones, and are used predominantly for livestock grazing. However the Spanish dehesa is a more diverse and long-standing...

  11. Working woodlands: public demand, owner management, and government intervention in conserving mediterranean ranches and dehesas

    Treesearch

    Pablo Campos-Palacín; Lynn Huntsinger; Richard Standiford; David Martin-Barroso; Pedro Mariscal-Lorente; Paul F. Starrs

    2002-01-01

    The contributions of California and Spanish oak woodlands to owners, neighbors, and society are undervalued. Recent Spanish studies have begun to identify the components of value provided by traditional oak woodland agro-sylvo-pastoral systems, including environmental and self-consumption values. Work in California has revealed that self-consumption by owners, benefits...

  12. Effects of short-rotation controlled burning on amphibians and reptiles in pine woodlands

    Treesearch

    Roger W. Perry; D. Craig Rudolph; Ronald E. Thill

    2012-01-01

    Fire is being used increasingly as a forest management tool throughout North America, but its effects on reptiles and amphibians in many ecosystems are unclear. Open woodlands with understories dominated by herbaceous vegetation benefit many wildlife species, but maintaining these woodlands requires frequent burning. Although many studies have compared herpetofaunal...

  13. Effect of firewood harvesting on birds in a California oak-pine woodland

    Treesearch

    Paul A. Aigner; William M. Block; Michael L. Morrison

    1998-01-01

    Despite a history of oak clearing and thinning in California, little is known about the effects of firewood harvesting on wildlife in oak woodlands. We studied the effect of firewood harvesting on population trends of birds during the breeding season in an oak-pine woodland in the foothills of the northern Sierra Nevada, California. During fall-winter of 1993-94, total...

  14. An Old-Growth Definition for Seasonally Wet Oak-Hardwood Woodlands

    Treesearch

    Harvey E. Kennedy; Gregory J. Nowacki

    1997-01-01

    An interim definition of old-growth, seasonally wet, oak-hardwood woodlands is presented to assist in management of these communities until comprehensive definitions based on research can be formulated. The basic criteria for identifying old-growth, seasonally wet, oak-hardwood woodland communities in the South are also presented.

  15. Silviculture and multi-resource management case studies for southwestern pinyon-juniper woodlands

    Treesearch

    Gerald J. Gottfried

    2008-01-01

    Southwestern pinyon-juniper and juniper woodlands cover large areas of the Western United States. The woodlands are heterogeneous, consisting of numerous combinations of tree, shrub, and herbaceous species and stand densities that are representative of the wide range of sites and habitat types they occupy. Silvicultural methods can be employed on better sites to meet...

  16. Determining significance within CEQA: a new UC program to assist planners in conserving oak woodlands

    Treesearch

    Gregory A. Giusti; Douglas D. McCreary

    2008-01-01

    In 2004, the California State Legislature passed Senate Bill 1334 (Bill), titled Oak Woodlands Conservation: Environmental Quality. This Bill states, “A county…shall determine whether a project within its jurisdiction may result in a conversion of oak woodlands that will have a significant effect on the environment”. Once a determination has been...

  17. Drought induced tree mortality and ensuing bark beetle outbreaks in southwestern pinyon-juniper woodlands

    Treesearch

    Michael J. Clifford; Monique E. Rocca; Robert Delph; Paulette L. Ford; Neil S. Cobb

    2008-01-01

    The current drought and ensuing bark beetle outbreaks during 2002 to 2004 in the Southwest have greatly increased tree mortality in pinyon-juniper woodlands. We studied causes and consequences of the drought-induced mortality. First, we tested the paradigm that high stand densities in pinyon-juniper woodlands would increase tree mortality. Stand densities did not...

  18. Nest-site selection and nest survival of Lewis's woodpecker in aspen riparian woodlands

    Treesearch

    Karen R. Newlon; Victoria A. Saab

    2011-01-01

    Riparian woodlands of aspen (Populus tremuloides) provide valuable breeding habitat for several cavity-nesting birds. Although anecdotal information for this habitat is available for Lewis's Woodpecker (Melanerpes lewis), no study has previously examined the importance of aspen woodlands to this species' breeding biology. From 2002 to 2004, we monitored 76...

  19. Multiple treatments yield early success in a shortleaf pine woodland restoration project in the Missouri Ozarks

    Treesearch

    Matthew G. Olson; Elizabeth K. Olson

    2016-01-01

    Shortleaf pine woodland communities were more extensive in the southeastern Missouri Ozarks prior to Euro-American settlement than today. In 2000, the Missouri Department of Conservation initiated a shortleaf pine woodland restoration project on state land in the Ozarks of southeast Missouri at an area called the Midco Pine Flats Restoration Area. The purpose of this...

  20. Small mammals in successional prairie woodlands of the northern Great Plains

    Treesearch

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  1. Communication Media in Ancient Cultures.

    ERIC Educational Resources Information Center

    Jabusch, David M.

    Interest in early means of communication and in the uses and kinds of media that existed in ancient cultures is starting to grow among communication scholars. Conversation analysis of these cultures is obviously impossible, so that the emphasis must rest with material cultural artifacts. Many ancient cultures used non-verbal codes for dyadic…

  2. The Ancients' Appliance of Science

    ERIC Educational Resources Information Center

    Stephenson, Philip; Sword, Frances

    2004-01-01

    An innovative collaboration between the Fitzwilliam Museum in Cambridge and the University of Cambridge Faculty of Education encourages new questions to be asked of ancient objects. In the museum galleries children work directly from ancient Egyptian objects through activities designed to encourage questioning that unpicks the technologies of the…

  3. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.

  4. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  5. Wetland plant waxes from Olduvai Gorge, Tanzania

    NASA Astrophysics Data System (ADS)

    Tamalavage, A.; Magill, C. R.; Barboni, D.; Ashley, G. M.; Freeman, K. H.

    2013-12-01

    Olduvai Gorge, northern Tanzania, exposes a Plio-Pleistocene sedimentary record that includes lake and lake-margin sediments and fossil remains of ancient plants and early humans. There are rich paleontological and cultural records at Olduvai Gorge that include thousands of vertebrate fossils and stone tools. Previous studies of plant biomarkers in lake sediments from Olduvai Gorge reveal repeated, abrupt changes in landscape dominance by woodland or grassland vegetation during the early Pleistocene, about 1.8 million years ago. However, the reconstruction of wetland vegetation in the past is limited by a dearth of published lipid signatures for modern wetland species. Here, we present lipid and isotopic data for leaf tissues from eight modern plants (i.e., sedge and Typha species) living in wetlands near Olduvai Gorge. Trends in values for molecular and leaf δ13C and average chain length (ACL) of n-alkanes in plant tissues are similar to values for underlying soils. Compound-specific δ13C values for n-alkanes C25 to C33 range between -36.4 to -23.1‰ for C3 plants and -22.3 to -19.5‰ for C4 plants. Fractionation factors between leaf and lipids, ɛ29 and ɛ33, fall within the range reported in the literature, but they differ more widely within a single plant. For C3 plants, the average difference between ɛ29 and ɛ33 is 6.5 ‰, and the difference between ɛ29 and ɛ33 for C4 plants is less than 2‰. Both plant types show a parabolic relationship between chain length and δ13C values, in which C29 typically has the most depleted value, and typically shift by 3-5‰ between alkane homologs. This pattern has not been previously reported, and could be unique for sedge lipids. If so, these data help constrain the application of plant wax biomarkers from sedges for paleo-vegetation reconstruction in paleoclimate studies and at archaeological sites.

  6. Tamil Merchant in Ancient Mesopotamia

    PubMed Central

    Palanichamy, Malliya gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  7. Tamil merchant in ancient Mesopotamia.

    PubMed

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  8. Burns treatment in ancient times.

    PubMed

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques.

  9. Ancient Chinese Sundials

    NASA Astrophysics Data System (ADS)

    Deng, Kehui

    Timekeeping was essential in the agricultural society of ancient China. The use of sundials for timekeeping was associated with the use of the gnomon, which had its origin in remote antiquity. This chapter studies three sundials (guiyi 晷仪) from the Qin and Han dynasties, the shorter shadow plane sundial (duanying ping yi 短影平仪) invented by Yuan Chong in the Sui Dynasty, and the sundial chart (guiyingtu 晷影图) invented by Zeng Minxing in the Southern Song dynasty. This chapter also introduces Guo Shoujing's hemispherical sundial (yang yi 仰仪). A circular stone sundial discovered at the Small Wild Goose Pagoda in Xi'an is also mentioned. It is dated from the Sui and Tang dynasties. A brief survey of sundials from the Qing dynasty shows various types of sundials.

  10. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  11. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  12. Characterization of Ancient Tripitaka

    NASA Astrophysics Data System (ADS)

    Gong, Y. X.; Geng, L.; Gong, D. C.

    2015-08-01

    Tripitaka is the world's most comprehensive version of Buddhist sutra. There are limited numbers of Tripitaka currently preserved, most of them present various patterns of degradation. As little is known about the materials and crafts used in Tripitaka, it appeared necessary to identify them, and to further define adapted conservation treatment. In this work, a study concerning the paper source and dyestuff of the Tripitaka from approximate 16th century was carried out using fiber analysis and thin-layer chromatography (TLC). The results proved that the papers were mainly made from hemp or bark of mulberry tree, and indigo was used for colorizing the paper. At the end, we provide with suggestions for protecting and restoring the ancient Tripitaka.

  13. Ancient River revealed

    NASA Astrophysics Data System (ADS)

    Recent flights of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) mission aboard the space shuttle Endeavour discovered a previously unknown branch of an ancient river. The images, released at AGU's Spring Meeting, show the river channel buried under thousands of years worth of windblown sand in a region of North Africa's Sahara Desert near the Kufra Oasis in southeast Libya, centered at 23.3°N latitude, 22.9°E longitude. The image from the flight last October reveals a system of old, now inactive stream valleys, called “paleodrainage systems,” which carried running water northward across the Sahara during periods of wetter climate.

  14. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  15. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2002-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  16. The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture

    NASA Astrophysics Data System (ADS)

    Scheper, Jeroen; Smit, Christian

    2011-03-01

    Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main bottleneck for a dynamic shifting of grassland - shrub - woodland mosaics - is an essential unanswered question. We studied post-primary dispersal seed fate - i.e. removal, predation, secondary dispersal and survival of seeds after primary dispersal - of the thorny shrub blackthorn ( Prunus spinosa) in an ancient wood pasture in the Netherlands. Blackthorn seeds are primarily dispersed by frugivorous birds and may secondarily be dispersed by scatter-hoarding rodents. We performed two cafeteria-style experiments with blackthorn seeds placed on dishes in the dominant vegetation types. In the first we monitored seed removal in grassland, swards or blackthorn shrubs and determined rodent species abundance by live-trapping. In the second we followed tagged blackthorn seeds under shrubs and in swards to determine seed removal, predation, survival and secondary dispersal patterns. Tagged seeds were retrieved using a metal detector and by visual means. We recorded dispersal direction and distance, vegetation type, seed handling (burial, consumption) and rodent species responsible via bite marks. Seed removal and number of live-trapped rodents differed between vegetation types, with higher removal and rodent captures under shrubs than in swards and grassland. All retrieved seeds were depredated, predominantly by the wood mouse ( Apodemus sylvaticus). Disproportionally high seed numbers were retrieved in the vegetation type where originally placed (shrubs or swards). Our study suggests that rodents play an important role for blackthorn in wood pastures, predominantly as seed predators rather than secondary seed dispersers. Predation is particularly high under blackthorn shrubs

  17. Management effect on bird and arthropod interaction in suburban woodlands

    PubMed Central

    2011-01-01

    Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods. PMID:21362174

  18. Effects of a Major Tree Invader on Urban Woodland Arthropods

    PubMed Central

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  19. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    PubMed

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  20. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria.

    PubMed

    Ishwarya, Ramachandran; Vaseeharan, Baskaralingam; Anuradha, Ramasamy; Rekha, Ravichandran; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-09-01

    The control of Zika virus mosquito vectors and well as the development of drugs in the fight against biofilm-forming microbial pathogens, are timely and important challenges in current bionanoscience. Here we focused on the eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant. Initial confirmation of Ag nanoparticles (AgNPs) production was showed by a color change from transparent to dark brown. The UV-Visible spectrum (476nm), X-ray diffraction peaks (101, 200, 220 and 311) and Fourier transform infrared spectroscopy shed light on the production of green-capped AgNPs. Morphological structure analysis using HR-TEM showed that the AgNPs were mostly hexagonal in shape with rough edges, and a size of 20-30nm. The larvicidal potential of P. murex seed extract and AgNPs fabricated using the P. murex seed extract (Pm-AgNPs) was tested on fourth instar mosquito larvae of the Zika virus vector Aedes aegypti. Maximum efficacy was achieved by Pm-AgNPs against Ae. aegypti after 24h (LC50 34.88; LC90 64.56mg/ml), if compared to the P. murex seed extract. Histopathological analyses showed severe damages to the hindgut and larval muscles in NPs-treated Ae. aegypti larvae. The sub-MIC concentrations of Pm-AgNPs exhibited significant anti-biofilm activity against Gram positive (Enterococcus faecalis, Staphylococcus aureus) and Gram negative (Shigella sonnei, Pseudomonas aeruginosa) bacterial pathogens, as showed by EPS and MTP assays. Light and CLSM microscopic studies highlighted a significant impact of P. murex seed extract and Pm-synthesized AgNPs on the surface topography and architecture of bacterial biofilm, both in Gram positive and Gram negative species. Overall, results reported here contribute to the development of reliable large-scale protocols for the green fabrication of effective mosquito larvicides and biofilm inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes.

    PubMed Central

    Jacobs, Bonnie F

    2004-01-01

    Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa. PMID:15519973

  2. Improvement in Fruit Quality by Overexpressing miR399a in Woodland Strawberry.

    PubMed

    Wang, Yan; Zhang, Junxiang; Cui, Weixu; Guan, Chunyue; Mao, Wenjuan; Zhang, Zhihong

    2017-08-30

    Fruit quality is an important trait in strawberry and is determined by many factors. The soluble solid content in strawberry fruits is positively related to the phosphorus content. MicroRNA399 (miR399) is involved in the regulation of phosphate (Pi) homeostasis. However, the effect of miR399 on strawberry quality remains unknown. In this study, miR399a-overexpressing transgenic woodland strawberries (Fragaria vesca) were obtained via an Agrobacterium-mediated transformation. The phosphorus (P) content was 1.1-fold to 2.1-fold higher in the leaves and fruits of the miR399a-overexpressing plants than in the wild type (WT). However, the P content in the miR399a-overexpressing plants was decreased by 25% to 45% in the roots. The primary root length of the transgenic lines in both the high-Pi and low-Pi media was shorter than that of the WT. Interestingly, the transgenic lines in pots under Pi-sufficient conditions grew better than the WT, and the fruit quality, including the contents of fructose and glucose and soluble solid, was significantly higher in the transgenic lines than in the WT. The overexpression of miR399a in strawberry can be used to improve the parameters involved in fruit quality and provides information regarding breeding nutrient-improved strawberry.

  3. Caribou-induced changes in species dominance of lichen woodlands: an analysis ofplant remains.

    PubMed

    Boudreau, Stéphane; Payette, Serge

    2004-03-01

    Plant communities in northern Quebec-Labrador, Canada have been severely grazed and trampled since the early 1980s by the increasingly large George River caribou herd (GRCH). To evaluate changes in species dominance associated with caribou disturbance, we compared past and present ground vegetation from 14 lichen woodlands. Plant remains from superficial organic horizons indicate that ground vegetation was largely dominated by lichens (especially Cladina) before the onset of caribou disturbance. In enlargments of aerial photos taken before 1975 (i.e., prior to maximum size of the GRCH), all sites were free of caribou trails and were dominated by a continuous lichen (Cladina) carpet. Principal components analysis showed that partial or complete destruction of the Cladina-dominated lichen carpet was the most striking change in ground vegetation. Severe trampling degraded superficial organic horizons, subsequently exposing mineral soil in heavily used sites. With reduced caribou activity in the 1990s, exposed ground was colonized by crustose lichens and Cladonia. Sites that faced severe grazing but light trampling were recolonized mainly by small podetia of Cladina stellaris sprouting from the lichen litter. However, patterns of post-caribou disturbance lichen succession differed from those of post-fire succession, because species from different successional stages are present at the same time in a stand and also because caribou can modify the successional trajectory at any time.

  4. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.

    PubMed

    Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2012-01-01

    • Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap.

  5. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes.

    PubMed

    Jacobs, Bonnie F

    2004-10-29

    Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa.

  6. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca

    PubMed Central

    Waters, Erica M.; Watson, Maxine A.

    2015-01-01

    Studies of clonal plant foraging generally focus on growth responses to patch quality once rooted. Here we explore the possibility of true plant foraging; the ability to detect and respond to patch resource status prior to rooting. Two greenhouse experiments were conducted to investigate the morphological changes that occur when individual daughter ramets of Fragaria vesca (woodland strawberry) were exposed to air above live (non-sterilized) or dead (sterilized) substrates. Contact between daughter ramets and substrate was prohibited. Daughter ramet root biomass was significantly larger over live versus dead substrate. Root:shoot ratio also increased over live substrate, a morphological response we interpret as indicative of active nutrient foraging. Daughter ramet root biomass was positively correlated with mother ramet size over live but not dead substrate. Given the choice between a live versus a dead substrate, primary stolons extended preferentially toward live substrates. We conclude that exposure to live substrate drives positive nutrient foraging responses in F. vesca. We propose that volatiles emitted from the substrates might be effecting the morphological changes that occur during true nutrient foraging. PMID:26483826

  7. Planting native oak in the Pacific Northwest

    Treesearch

    Warren D. Devine; Constance A. Harrington

    2010-01-01

    The extent of oak woodland and savanna habitat in the Pacific Northwest has been dramatically reduced since settlement in the mid-1800s. This report presents a practical guide for landowners and managers who are interested in reestablishing native oak by planting seedlings. Keys to successful establishment are (1) planting quality...

  8. Woody Biomass and Carbon Stocks of Natural vs. Restored Mountain Birch (Betula pubescens, Ehrh.) Woodlands in South Iceland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Sigurdsson, Bjarni D.; Halldorsson, Gudmundur; Kuhn, Nikolaus J.

    2010-05-01

    Following a period of land degradation lasting more than one thousand years, Iceland has been undertaken ambitious restoration and afforestation efforts for one century now. Afforestation has also been a central venture of the Icelandic government in order to meet the commitments assigned by the Kyoto Protocol because vegetation represents an important carbon sink. Yet, currently little is known on how much carbon is sequestrated effectively in afforested Icelandic woody ecosystems. In order to fill this knowledge gap the 'KolBjörk' (CarbBirch), a three year (2008-2011) Icelandic ecosystem research project, was launched. In this project the development of key ecosystem factors are studied in a chronosequence study of restored birch woodlands, ranging from 0-60 years in age. These factors are: a) forest growth, b) plant communities, c) soil biota, d) soil chemistry and physics and e) carbon stocks and fluxes. Restored woodlands are compared with: a) eroded land, representing the status of the area before restoration and b) original birch woodlands. The aim of present study which is part of 'KolBjörk' was to estimate the above-and belowground woody biomass and carbon stocks of old native birch (Betula pubescens) vs. restored birch woodlands in South Iceland. In summer 2009 31 trees (0.1-5.5m height) were measured and excavated and tree inventories (n=519) were established. The excavated trees formed the dataset to establish allometric biomass functions for young, afforested Icelandic mountain birch. The functions were statistically fitted using numerical nonlinear regression using Matlab. Subsequently, forest biomass and carbon stock of the four different old sites were estimated by the newly developed allometric relationships. The age of the four sites is 10, 15, 60 and 80 years, respectively, while the 80-yr old stand represents a natural grown forest, the others are replanted. The total C-stock in the 10-yr old birch stand was 2.0 Mg/ha, in the 15-yr old 11.0 Mg

  9. Chemical changes to nonagrregtaed particulate soil organic matter following grassland-to woodland transition ina subtropical savanna.

    SciTech Connect

    Filley, T. R.; Boutton, T. W.; Liao, J. D.; Jastrow, J. D.; Gamblin, D. E.; Biosciences Division; Purdue Univ.; Texas A&M

    2008-07-19

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  10. Not all kinds of revegetation are created equal: revegetation type influences bird assemblages in threatened Australian woodland ecosystems.

    PubMed

    Lindenmayer, David B; Northrop-Mackie, Amanda R; Montague-Drake, Rebecca; Crane, Mason; Michael, Damian; Okada, Sachiko; Gibbons, Philip

    2012-01-01

    The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity.Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined.

  11. Not All Kinds of Revegetation Are Created Equal: Revegetation Type Influences Bird Assemblages in Threatened Australian Woodland Ecosystems

    PubMed Central

    Lindenmayer, David B.; Northrop-Mackie, Amanda R.; Montague-Drake, Rebecca; Crane, Mason; Michael, Damian; Okada, Sachiko; Gibbons, Philip

    2012-01-01

    The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity. Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined. PMID:22493698

  12. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Filley, Timothy R.; Boutton, Thomas W.; Liao, Julia D.; Jastrow, Julie D.; Gamblin, David E.

    2008-09-01

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  13. Senenmut: An Ancient Egyptian Astronomer

    NASA Astrophysics Data System (ADS)

    Novakovic, B.

    2008-10-01

    The celestial phenomena have always been a source of wonder and interest to people, even as long ago as the ancient Egyptians. While the ancient Egyptians did not know all the things about astronomy that we do now, they had a good understanding of some celestial phenomena. The achievements in astronomy of ancient Egyptians are relatively well known, but we know very little about the people who made these achievements. The goal of this paper is to bring some light on the life of Senenmut, the chief architect and astronomer during the reign of Queen Hatshepsut.

  14. Estimation of Tree Height, Biomass, and Standing Carbon in Miombo Woodlands Using Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Ribiero, N. S.; Washington-Allen, R. A.; Simard, M.; Shugart, H. H.

    2007-12-01

    Savannas and woodlands are a major component of the world's vegetation covering one-sixth of the global land surface and one-half of the African continent. They account for about 30% of the primary production of all terrestrial vegetation. The southern African savannas cover 54% of the sub-continent with a plant diversity of approximately 8500 species and approximately 50% endemism. Miombo covers about two thirds of Mozambique and estimations of its biomass are critical because ecosystem services provided include food, fiber, and fuel for 39 million rural peoples and another 15 million urban dwellers in southern Africa. The Shuttle Radar Topography Mission (SRTM) C-band derived digital terrain model (DTM) can be used to estimate tree height by subtracting a base-level digital elevation model (DEM) from the calibrated SRTM. SRTM C-band's wavelength is such that there is partial penetration of the tree canopy before scattering which results in an underestimate of tree height. Consequently, mean tree height data from 50 30-m x 30-m random-stratified field plots in Niassa Reserve were used to bias the SRTM data up to average tree height and thus calibrate. However, DEMs in developing countries, particularly Africa, are not usually present and have to be developed either from field survey, orthophotography, or topographic maps. We derived a bare-ground binary mask from a land cover map of Niassa Reserve in northern Mozambique. The land cover map was generated from a Landsat Enhanced Thematic Mapper (ETM+) scene and the binary mask was overlaid against the SRTM to derive ground elevations from the SRTM. The resulting point map of elevations was spatially interpolated using thin plate spines with tension to derive a base-level DEM. The DEM was then subtracted from the calibrated SRTM to get tree heights. Secondly we explored the derivation of an independent base elevation DEM using the last return of the NASA Geoscience Laser Altimeter System (GLAS) and compared this to

  15. Landscape dynamics in aspen and western juniper woodlands on the Owyhee Plateau, Idaho

    NASA Astrophysics Data System (ADS)

    Strand, Eva K.

    A century of altered fire regimes has affected the landscape vegetation dynamics in the Intermountain West. Suppression of wildfires has resulted in increases in woody plant cover in these semi-arid ecosystems, which has resulted in land cover changes affecting biogeochemical cycling, landscape composition, and habitat diversity. Recent developments in remote sensing technology, computational power, and a rapid development of analysis techniques have enabled us to quantify such changes at the landscape scale. Wavelet analysis is a powerful image analysis technique that is here applied in a novel fashion to fine scale remote sensing imagery to automatically detect the location and crown diameter of individual western juniper plants (Juniperus occidentalis ssp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe at multiple scales. The produced marked point pattern of historical and current spatial juniper distribution was compared regionally and changes in foliar cover and above ground biomass were estimated across a 330,000 ha area on the Owyhee Plateau, Idaho. The above ground carbon accumulation rate from 1946 to 1998 was estimate to be 3.3 gCm-2yr-1 and 10.0 gCm-2yr -1 employing the wavelet and conventional texture analysis methods, respectively, with an additional 25% rise in belowground carbon accumulation in root stock. This research further demonstrates that estimates of carbon accumulation rates as a result of woody encroachment are highly dependent on the spatial and temporal scales of analysis. Conifer species, western juniper and Douglas-fir (Pseudotsuga menziesii) on the Owyhee Plateau, have further expanded into the biologically important quaking aspen ( Populus tremuloides) habitats resulting in conifer dominance and occasional loss of aspen clones. Classification of remotely sensed imagery combined with spatially explicit modeling of aspen successional stages indicate that, in the absence of management activity, loss of seral aspen stands

  16. Ancient Astronomy in Ukraine

    NASA Astrophysics Data System (ADS)

    Artemenko, Tatyana G.; Vavilova, Iryna B.

    2007-08-01

    Astronomical culture and research have long-standing traditions in Ukraine. The first signs of astronomical knowledge were found in archaeological excavations and records. The most ancient find (dated as 15,000 B.C.) is a mammoth tusk with a fretwork image of a table of lunar phases found in the Poltava region. The so-called Trypillya culture (dated 4,000 - 3,000 B.C) had numerous examples of ornaments at the howls, distaffs, wheels and other everyday articles with symbolic images of zodiac constellations, and vessel-calendars indicating the vernal/autumnal equinoxes and the motion of the Sun. Some of such unique exhibits stored at the National Museum of History of Ukraine will be described in details in this paper. For example, the vessel calendar dating by IV century of our era (from village Romashki, Kyiv region). This image was interpreted by B. Rybakov as an agricultural calendar from May to August (time of harvesting). Most of exhibits of Museum were founded by archaeologist Vikenty Khvoyko and presented by him to Museum in 1905. Description and pictures of vessels and cups from Chernyahiv, Trypillya IV century B.C. with the Solar signs and tusk of the mammoth from Kyrilovska parking with notches interpreted as a calendar as well as tree-storied pictures of vessel from Trypillya interpreted as a “vertical cross section of the world” in dynamics will be also given. Another unique historical record relates to the times of the powerful state of the Kievan Rus' (X- XIII centuries), when astronomical observations were conducted mainly in cloisters. For example, the authors of the Lavrentievska chronicle describe the solar eclipses of the years 1064, 1091, and 1115 A.D. and the lunar eclipses of 1161 A.D. At that times some natural cataclysms have been connected with eclipses that, for example, was described in “The Word about Igor's shelf” by Nestor Letopisec. Thus, facts discussed in paper pointed out once more that astronomy is one of the most ancient

  17. [Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits].

    PubMed

    Stakhov, V L; Gubin, S V; Maksimovich, S V; Rebrikov, D V; Savilova, A M; Kochkina, G A; Ozerskaia, S M; Ivanushkina, N E; Vorob'eva, E A

    2008-01-01

    Microbial communities from the surface of ancient seeds of higher plants and embedding frozen material dated to the late Pleistocene (formed about 30 thousand years ago) were studied by various methods: scanning electron microscopy, epifluorescence microscopy, and inoculation of nutrient media, followed by identification of isolated cultures. Both prokaryotic and eukaryotic microorganisms were found on the surface of ancient seeds. The total quantity of bacterial cells determined by direct counting and dilution plating (CFU) for the samples of ancient seeds exceeded the value in the embedding frozen material by one to two orders of magnitude. This pattern was not maintained for mycelial fungi; their quantity in the embedding material was also rather high. A significant difference was revealed between the microbial communities of ancient seeds and embedding frozen material. These findings suggest that ancient plant seeds are a particular ecological niche for microorganisms existing in permafrost and require individual detailed study.

  18. Saproxylic beetles of the Po plain woodlands, Italy

    PubMed Central

    Bogliani, Giuseppe

    2014-01-01

    Abstract Forest ecosystems play an important role for the conservation of biodiversity, and for the protection of ecological processes. The Po plain woodlands which once covered the whole Plain, today are reduced in isolated highly threatened remnants by modern intensive agriculture. These close to natural floodplain forests are one of the most scarce and endangered ecosystems in Europe. Saproxylic species represent a major part of biodiversity of woodlands. The saproxylic insects are considered one of the most reliable bio-indicators of high-quality mature woodlands and have a very important role in regard to the protection and monitoring of forest biodiversity due to their highly specific living environments. As a result of the dramatic reduction of mature forests and the decreased availability of deadwood most of the saproxylic communities are greatly diminishing. The study was conducted in the Ticino Valley Regional Park and the aim is to contribute to the expansion of knowledge on the saproxylic beetles of Lombardy. We investigated 6 sampling sites belonging to alluvial and riparian mixed forests. For each forest we selected 12 trees. For beetles’ collection we used two different traps: Eclector Traps and Trunk Window Traps (total of 72 traps and 864 samples collected). We determined 4.387 beetles from 87 saproxylic species belonging to 21 families. Of these species 51 were not included in the previous checklist of the Park. By comparing the two different techniques used for catching saproxylic beetles, we found a significantly high difference in species richness between Window Traps (WT) and Eclector Traps (ET) with a higher number of species captured in the Window Traps. However, the combined use of two different types of traps significantly expanded the spectrum of insects captured Among the species reported as Least Concern in the IUCN Red List, we found interesting species such as the Elateridae Calambus bipustulats, the Eucnemidae Melasis buprestoides

  19. Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites

    PubMed Central

    Friberg, Magne; Schwind, Christopher; Raguso, Robert A.; Thompson, John N.

    2013-01-01

    Backgrounds and Aims A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. Methods Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. Key Results Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. Conclusions The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the

  20. Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites.

    PubMed

    Friberg, Magne; Schwind, Christopher; Raguso, Robert A; Thompson, John N

    2013-04-01

    A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours 'private channels' of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma

  1. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  2. Petrology: Ancient magma sources revealed

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth

    2017-06-01

    The composition of Earth's oldest crust is uncertain. Comparison of the most ancient mineral grains with more recent analogues suggests that formation of the earliest crust was heavily influenced by re-melting of igneous basement rocks.

  3. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  4. Ancient Astronomers Along the Nile.

    ERIC Educational Resources Information Center

    Reed, George

    1986-01-01

    Discussed contributions to the field of astronomy made by ancient Egyptians. Provides examples of how some of the observations made were applied to science. The use of geometry is illustrated by several calculations of celestial alignment. (TW)

  5. Layout of Ancient Maya Cities

    NASA Astrophysics Data System (ADS)

    Aylesworth, Grant R.

    Although there is little doubt that the ancient Maya of Mesoamerica laid their cities out based, in part, on astronomical considerations, the proliferation of "cosmograms" in contemporary scholarly discourse has complicated matters for the acceptance of rigorous archaeoastronomical research.

  6. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  7. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  8. Survey of simple sequence repeats in woodland strawberry (Fragaria vesca).

    PubMed

    Guan, L; Huang, J F; Feng, G Q; Wang, X W; Wang, Y; Chen, B Y; Qiao, Y S

    2013-07-30

    The use of simple sequence repeats (SSRs), or microsatellites, as genetic markers has become popular due to their abundance and variation in length among individuals. In this study, we investigated linkage groups (LGs) in the woodland strawberry (Fragaria vesca) and demonstrated variation in the abundances, densities, and relative densities of mononucleotide, dinucleotide, and trinucleotide repeats. Mononucleotide, dinucleotide, and trinucleotide repeats were more common than longer repeats in all LGs examined. Perfect SSRs were the predominant SSR type found and their abundance was extremely stable among LGs and chloroplasts. Abundances of mononucleotide, dinucleotide, and trinucleotide repeats were positively correlated with LG size, whereas those of tetranucleotide and hexanucleotide SSRs were not. Generally, in each LG, the abundance, relative abundance, relative density, and the proportion of each unique SSR all declined rapidly as the repeated unit increased. Furthermore, the lengths and frequencies of SSRs varied among different LGs.

  9. Surveying woodland raptors by broadcast of conspecific vocalizations

    USGS Publications Warehouse

    Mosher, J.A.; Fuller, M.R.; Kopeny, M.

    1990-01-01

    We surveyed for raptors in forests on study areas in five of the eastern United States. For Cooper's Hawks (Accipiter cooperi), Red-shouldered Hawks (Buteo lineatus), and Barred Owls (Strix varia) the contact rates obtained by broadcasting taped vocalizations of conspecifics along roads were significantly greater than contact rates obtained by only looking and listening from the roadside. Broad-winged Hawks (B. platypterus) were detected only after their calls were broadcast. Most raptors were detected within 10 min of the beginning of the broadcasts. Red-tailed Hawks (B. jamaicensis) and Goshawks (A. gentilis) nested infrequently on our study areas, and we were unable to increase detections of these species. Generally, point count transects along woodland roads, from which conspecific vocalizations were broadcast, resulted in higher species specific detection rates than when walking, driving continuously, or only looking and listening for raptors at roadside stops.

  10. Ancient lakes on Mars?

    NASA Technical Reports Server (NTRS)

    Goldspiel, J. M.; Squyres, S. W.

    1989-01-01

    The valley systems in Mars' ancient cratered terrain provide strong evidence for a warmer and wetter climate very early in planetary history. The valley systems in some instances debouch into closed depressions that could have acted as local ponding basins for the flow. A survey of the Martian equatorial region shows that numerous local depressions at the confluence of valley systems exist. These depressions (approximately 100 km) typically are characterized by many valleys flowing into them and few or none flowing out. If ponding did take place, these basin would have contained lakes for some period during Mars' early warmer epoch. Although the collection basins are numerous, location of ones that have not suffered significant subsequent geologic modification is difficult. Some morphologic features suggest that volcanic lavas may have filled them subsequent to any early fluvial activity. Two detailed maps of valley systems and local ponding basins in USGC 1:2,000,000 subquadrangles were completed and a third is in progress. The completed regions are in Mare Tyrrhenum (MC-22 SW) and Margarifter Sinus (MC-19 SE), and the region in progress is in Iapygia (MC-21 NW). On the maps, the valley systems and interpreted margins of ponding basins are indicated. The depressions are of interest for two reasons. First, the depressions were surely the sites in which the materials eroded from the valleys were deposited. Such sediments could preserve important information about the physical conditions at the time of deposition. Second, the sediments could preserve evidence of water-atmosphere interactions during the early period of the Martian climate. Atmospheric carbon dioxide would dissolve in water, and solid carbonate minerals would tend to precipitate out to form carbonate sedimentary deposits. Formation of carbonates in this manner might account for some of the CO2 lost from the early more dense atmosphere.

  11. California condor associated with spruce-jack pine woodland in the late Pleistocene of New York

    NASA Astrophysics Data System (ADS)

    Steadman, David W.; Miller, Norton G.

    1987-11-01

    A humerus, coracoid, and pedal phalanx of the California Condor, Gymnogyps californianus, were recovered from the Hiscock Site in western New York, in an inorganic stratum containing wood that is 11,000 radiocarbon years old. Associated vertebrates include mastodont, wapiti, and caribou. Pollen and plant macrofossils from the sediments indicate a spruce-jack pine woodland and a local, herb-dominated wetland community. Historic records (all from western North America) and previous late Pleistocene fossils of the California Condor are associated mainly with warm-temperate climates and floras. The New York fossils show that this bird was able to live in a colder climate and in a boreal, coniferous setting at a time when appropriate food (large mammal carrion) was available. The California Condor, which survives only in captivity, has suffered a greater reduction in geographical range than previously suspected. Much of this reduction in range probably occurred ca. 11,000 yr B.P. when the extinction many North American large mammals resulted in severely reduced availability of food for the California Condor and other large scavenging birds.

  12. Baseline tritium concentrations in soils and vegetation: The Tshirege woodland site at TA-54

    SciTech Connect

    Fresquez, P.R.

    1998-09-01

    In compliance with Department of Energy (DOE) Order 5400.1, a preoperational environmental survey was conducted for the Tshirege woodland site--an experimental area managed by the Earth and Environmental Science Group (EES-15)--where radioactive tritium ({sup 3}H) will be injected ten cm deep in and around the base of pinyon (Pinus edulis) and one-seeded juniper (Juniperus monosperma) trees during the summer of 1990. The site is located at the lower end of Canada del Buey close to the intersection of Pajarito and State Road 4. Baseline values of {sup 3}H were measured in soil and plant samples from five locations immediately surrounding the study area. Mean values of {sup 3}H in soils collected from the 0--5 and 25--30 cm depths were 1.24 ({+-}0.22) and 1.08 ({+-}0.41) pCi mL{sup {minus}1}, respectively. Pinyon needles averaged 1.68 ({+-}0.18) pCi mL{sup {minus}1} and blue grama grass (Bouteloua gracilis) averaged 1.16 ({+-}0.95) pCi mL{sup {minus}1}.

  13. Understanding patterns of water use in a subtropical woodland using stable isotopes

    NASA Astrophysics Data System (ADS)

    Grierson, Pauline; Page, Gerald; Skrzypek, Grzegorz; Dogramaci, Shawan; Luccitti, Samuel; O'Donnell, Alison

    2015-04-01

    Vegetation structure in the arid subtropics is often highly variable across the landscape, reflecting at least in part the high spatial and temporal heterogeneity of rainfall, groundwater and soil moisture. Here, we investigated how patterns of water uptake by trees and shrubs differed across landscape positions in the Pilbara region of northwest Australia and assessed the responsiveness of trees and shrubs to large (cyclonic) rainfall events. We sampled water stable isotope compositions of xylem, soil, rain and groundwater as well as soil water content and root distributions of eucalypt and mulga woodlands in the Pilbara region over three years. Based on the 18O results, we found that the sampled plant taxa (mulga, Eucalyptus victrix) were using water originally derived from a large rainfall event (Cyclone Heidi), both at lowland and upland sites. Trees and shrubs such as mulga were accessing shallow soil water of meteoric origin. Eucalyptus victrix accessed water deeper in the profile (8-10 m) as surface soils dried out. Mulga appeared to store water for many months after the recharge event. This ability to take up and likely store a large proportion of shallow soil water after rainfall is a key feature enabling mulga to survive through the period of greatest water demand and to acclimate to the spatiotemporal changes to water conditions in the soil profile. Alternatively, episodic cyclonic recharge maintains deep soil and groundwater resources that maintain deeper-rooted species such as E. victrix throughout the prolonged drought periods.

  14. Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Duval, B. D.; Dijkstra, P.; Johnson, D. W.; Ketterer, M. E.; Stiling, P.; Cheng, W.; Millman, J.; Hartley, A.; Stover, D. B.

    2014-06-01

    Rising atmospheric CO2 concentrations may alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 years of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light or nutrients in shaping the response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on nonsymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response of N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.

  15. Will elevated CO2 alter fuel characteristics and flammability of eucalypt woodlands?

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Resco, Victor; Boer, Matthias; Bradstock, Ross; Sawyer, Robert

    2016-04-01

    Rising atmospheric CO2 may enhance forest productivity via CO2 fertilisation and increased soil moisture associated with water savings, potentially resulting in increased woody plant abundance i.e. woody thickening. Changes to vegetation structure via woody thickening, as well as changes to vegetation properties (e.g. leaf characteristics and moisture content), may have important implications for ecosystem flammability and fire regimes. Understanding how elevated CO2 alters flammability and fire regimes will have implications for ecosystem dynamics, particularly carbon sequestration and emissions. We present data from Free Air CO2 Enrichment (EucFACE) and whole tree growth chamber (WTC) experiments to assess the effect of elevated CO2 on fuel properties and flammability of eucalypt woodlands. Experiments involved ambient (˜400 ppm) and elevated CO2treatments, with elevated treatments being +150 ppm and +240 ppm at EucFACE and the WTCs respectively. We examined the response of vegetation parameters known to influence ecosystem flammability, namely (i) understorey vegetation characteristics (ii) understorey fuel moisture and (iii) leaf flammability. Understorey growth experiments at EucFACE using seedlings of two common woody species (Hakea sericia, Eucalyptus tereticornis) indicate that elevated CO2 did not influence stem and leaf biomass, height or crown dimensions of seedlings after 12 months exposure to experimental treatments. Temporal changes to understorey live fuel moisture were assessed at EucFACE over an 18 month period using time lapse cameras. Understorey vegetation greenness was measured daily from digital photos using the green chromatic coordinate (GCC), an index that is highly correlated with live fuel moisture (R2 = 0.90). GCC and rates of greening and browning were not affected by elevated CO2, though they were highly responsive to soil moisture availability and temperature. This suggests that there is limited potential for elevated CO2 to alter

  16. Conversion of woodlands changes soil related ecosystem services in Subsaharan Africa

    NASA Astrophysics Data System (ADS)

    Groengroeft, Alexander; Landschreiber, Lars; Luther-Mosebach, Jona; Masamba, Wellington; Zimmermann, Ibo; Eschenbach, Annette

    2015-04-01

    In remote areas of Subsaharan Africa, growing population, changes in consumption patterns and increasing global influences are leading to a strong pressure on the land resources. Smallholders convert woodlands by fire, grazing and clearing in different intensities thus changing soil properties and their ecosystem functioning. As the extraction of ecosystem services forms the basis of local wellbeing for many communities, the role of soils in providing ecosystem services is of high importance. Since 2010, "The Future Okavango" project investigates the quantification of ecosystem functions and services at four core research sites along the Okavango river basin (Angola, Namibia, Botswana, see http://www.future-okavango.org/). These research sites have an extent of 100 km2 each. Within our subproject the soil functions underlying ecosystem services are studied: The amount and spatial variation of soil nutrient reserves in woodland and their changes by land use activities, the water storage function as a basis for plant growth, and their effect on groundwater recharge and the carbon storage function. The scientific framework consists of four major parts including soil survey and mapping, lab analysis, field measurements and modeling approaches on different scales. A detailed soil survey leads to a measure of the spatial distribution, extent and heterogeneity of soil types for each research site. For generalization purposes, geomorphological and pedological characteristics are merged to derive landscape units. These landscape units have been overlaid by recent land use types to stratify the research site for subsequent soil sampling. On the basis of field and laboratory analysis, spatial distribution of soil properties as well as boundaries between neighboring landscape units are derived. The parameters analysed describe properties according to grain size distribution, organic carbon content, saturated and unsaturated hydraulic conductivity as well as pore space

  17. Productivity and species richness in longleaf pine woodlands: resource-disturbance influences across an edaphic gradient.

    PubMed

    Kirkman, L K; Giencke, L M; Taylor, R S; Boring, L R; Staudhammer, C L; Mitchell, R J

    2016-09-01

    This study examines the complex feedback mechanisms that regulate a positive relationship between species richness and productivity in a longleaf pine-wiregrass woodland. Across a natural soil moisture gradient spanning wet-mesic to xeric conditions, two large scale manipulations over a 10-yr period were used to determine how limiting resources and fire regulate plant species diversity and productivity at multiple scales. A fully factorial experiment was used to examine productivity and species richness responses to N and water additions. A separate experiment examined standing crop and richness responses to N addition in the presence and absence of fire. Specifically, these manipulations addressed the following questions: (1) How do N and water addition influence annual aboveground net primary productivity of the midstory/overstory and ground cover? (2) How do species richness responses to resource manipulations vary with scale and among functional groups of ground cover species? (3) How does standing crop (including overstory, understory/midstory, and ground cover components) differ between frequently burned and fire excluded plots after a decade without fire? (4) What is the role of fire in regulating species richness responses to N addition? This long-term study across a soil moisture gradient provides empirical evidence that species richness and productivity in longleaf pine woodlands are strongly regulated by soil moisture. After a decade of treatment, there was an overall species richness decline with N addition, an increase in richness of some functional groups with irrigation, and a substantial decline in species richness with fire exclusion. Changes in species richness in response to treatments were scale-dependent, occurring primarily at small scales (≤10 m(2) ). Further, with fire exclusion, standing crop of ground cover decreased with N addition and non-pine understory/midstory increased in wet-mesic sites. Non-pine understory/midstory standing crop

  18. The timberland and woodland resources of central and west Oklahoma, 1989

    Treesearch

    James F. Rosson

    1995-01-01

    SRS Publications Principal findings of the first forest survey of central and west Oklahoma are presented. Topics examined include forest area, forest types, stand structure, basal area, timber volume, growth, and mortality. Information is presented for timberland and woodland forests.

  19. 75 FR 49524 - Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated July 22, 2010,...

  20. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  1. Role of vegetation in modulating rainfall interception and soil water flux in ecosystems under transition from grassland to woodland

    NASA Astrophysics Data System (ADS)

    Zou, Chris; Will, Rodney; Stebler, Elaine; Qiao, Lei

    2014-05-01

    Vegetation exerts strong control on the hydrological budget by shielding the soil from rainfall through interception and modulating water transmission in the soil by altering soil properties and rooting zone water extraction. Therefore, a change in vegetation alters the water cycle by a combination of a passive, rainfall redistribution mechanism controlled by the physical dimensions of vegetation and active, water extracting processes resulting from physiological attributes of different plants. As a result, the role of vegetation on the water cycle is likely to change where vegetation is under transition such as in the southern Great Plains of USA due to woody plant encroachment. However, it remains largely unknown how this physiognomic transformation from herbaceous cover to woody canopy alters rainfall influx, soil water transmission and efflux from the soil profile and consequently alters historic patterns of runoff and groundwater recharge. This knowledge is critical for both water resource and ecosystem management. We conducted a comprehensive, 5-year study involving direct quantification of throughfall and stemflow for grassland and encroached juniper woodland (Juniperus virginiana), water efflux through transpiration using an improved Granier thermal dissipation method (trees) and ET chamber (grassland), soil moisture storage and dynamics (capacitance probe) and streamflow (small catchment). We calibrated a prevailing hydrological model (SWAT) based on observed data to simulate potential change in runoff and recharge for the Cimarron River basin (study site located within this basin) under various phases of grassland to woodland transition. Our results show that juniper encroachment reduces throughfall reaching the soil surface compared with grassland under moderate grazing. The evergreen junipers transpired water year-round including fall and winter when the warm season grasses were senescent. As a result, soil water content and soil water storage on the

  2. Early-winter diet of woodland caribou in relation to snow accumulation, Selkirk Mountains, British Columbia, Canada

    USGS Publications Warehouse

    Rominger, Eric M.; Oldemeyer, John L.

    1990-01-01

    Woodland caribou (Rangifer tarandus caribou) in the southern Selkirk Mountains of British Columbia shift from a diet of primarily vascular taxa during snow-free months to an arboreal lichen – conifer diet during late winter. We present evidence that caribou diets, during the early-winter transition period, are influenced by snow accumulation rates. Caribou shift to an arboreal lichen – conifer diet earlier during winters of rapid snow accumulation and forage extensively on myrtle boxwood (Pachistima myrsinites), an evergreen shrub, and other vascular plants during years of slower snow accumulation. The role of coniferous forage in early-winter food habits is examined. Forest management strategies can be developed to provide habitat that will enable caribou to forage in response to varying snow accumulation rates.

  3. Drepanidine movements in relation to food availability in subalpine woodland on Mauna Kea, Hawai'i

    USGS Publications Warehouse

    Hess, Steven C.; Banko, Paul C.; Reynolds, Michelle H.; Brenner, Gregory J.; Laniawe, Leona P.; Jacobi, James D.

    2001-01-01

    Flowers of the mamane tree (Sophoru chrysophylla) are the primary nectar source for Hawaiian honeycreepers in subalpine woodland on Mauna Kea Volcano on the island of Hawai‘i. Mamane seeds are the primary food resource of the endangered Palila (Loxioides bailleui), which is now restricted to subalpine woodland on Mauna Kea. The objectives of this study were to determine the patterns and relative scales of movements of the drepanidine community in relationship to food availability and tree density on leeward Mauna Kea. ‘I‘iwi (Vestiaria coccinea) and ‘Apapane (Himatione sanguinea) densities were related to mamane flower abundance. Palila densities were related to mamane pod abundance. These species also had higher densities in mamane woodland than in naiomamane woodland, unlike the more insectivorous Hawai‘i ‘Amakihi (Hemignathus virens) whose densities did not differ between woodland types. Palila and Hawai’i ‘Amakihi do not make movements on the same scale as ‘I‘iwi and ‘Apapane, whose densities changed by more than an order of magnitude. Ungulate eradication, grass reduction, tire management, and restored corridors of mamane woodland would benefit all drepanidines on Mauna Kea, particularly the Palila.

  4. Population structure and skeletal variation in the Late Woodland of west-central Illinois.

    PubMed

    Conner, M D

    1990-05-01

    This paper analyzes nonmetric trait variation in 11 late Late Woodland (ca. AD 700-1000) and one Mississippian (AD 1000-1300) skeletal samples from west-central Illinois from a population-structure perspective. Most of the sites are of the Bluff phase of Late Woodland in the lower Illinois River valley; others are from a nearby, contemporary archaeological phase. Late Woodland as a whole era (ca. AD 250-1000) was a period of marked population growth and expansion into new regional environments, trends that accompanied horticultural intensification in the area. Overall variation between sites was low, but males, females, and the total sample exhibited a significant geographic component to variation due to interregional morphological differences. The Bluff sites tended to group together relative to the non-Bluff sites. However, there was no significant geographic component to variation among the Bluff sites. The results are only partially consistent with archaeological data suggesting population growth and expansion through fissioning. Previous studies have demonstrated significant heterogeneity for nonmetric trait frequencies among Middle Woodland (ca. 100 BC to AD 250) sites, suggesting a Middle to Late Woodland change in population structure that lowered levels of morphological variation. This supports a model of increased intra- and interregional interaction from Middle to Late Woodland times developed from ceramic data by Braun and by Braun and Plog.

  5. Non-equilibrium hillslope dynamics and irreversible landscape changes at a shifting pinyon-juniper woodland ecotone

    NASA Astrophysics Data System (ADS)

    McAuliffe, Joseph R.; McFadden, Leslie D.; Roberts, Leah M.; Wawrzyniec, Tim F.; Scuderi, Louis A.; Meyer, Grant A.; King, Matthew P.

    2014-11-01

    Pinyon-juniper woodlands of the western United States frequently exist within topographically complex landscapes where varied slope aspect yields substantial, local microclimate variation. Vegetation composition and cover typically change markedly along the gradient of relatively mesic northern aspects to more xeric southern aspects. Ecohydrological processes including precipitation runoff, soil moisture storage, and erosion are strongly influenced by vegetation. In certain cases, reduction of plant cover may set self-enhancing feedbacks in motion that lead to further declines of both vegetation and soils, and in some cases, replacement of woodlands with more xerophytic vegetation. The first place such change is likely to occur is in the ecotone between the drier southern aspects and moister north aspects. We studied vegetation, soils, and soil erosion in two small (1-2 ha) drainage basins in northeastern Arizona where pinyon-juniper woodlands occupy northern aspects, grading to shrub-dominated vegetation on more xeric southern aspects. Mapping of soil thickness, use of tree-root exposure to measure long-term soil erosion rates, and data on tree mortality and establishment indicate that the ecotone between woodland and more xerophytic vegetation has apparently been shifting for centuries, with a reduction in woodland vegetation. Erosion rates on xeric aspects ranged from 14 to 23 cm per century in one basin and as much as 60 cm per century in the other basin. In contrast, mesic aspects showed either no net soil losses over the last several centuries or rates significantly less than on the xeric aspects. Exposure of small roots (< 5 mm diameter) of cliff rose (Purshia stansburiana) directly overlying bare bedrock surfaces indicates that the process of denudation is ongoing and probably expanding in ecotonal areas. Mesic and xeric aspects exemplify "conserving" vs. "non-conserving" ecohydrologic systems in terms of their capacities to retain water and soils. The

  6. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca.

    PubMed

    Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue

    2015-01-01

    Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli.

  7. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca

    PubMed Central

    Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue

    2015-01-01

    Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli. PMID:26442049

  8. Quality of rooting environments and patterns of root colonization by arbuscular mycorrhizal fungi in strangler figs in a Mexican palmetto woodland.

    PubMed

    Guevara, Roger; López, Juan C

    2007-10-01

    Arbuscular mycorrhizal colonization in strangler figs, spore richness, and abundance of arbuscular mycorrhizal fungi were quantified in epiphytic and ground-rooted trees in a Sabal palmetto woodland that had marked heterogeneity in rooting environments for hemiepiphytic plants. An inoculation experiment was performed to assess whether low spore density could limit mycorrhizal colonization. There was no significant difference in mycorrhizal colonization among Ficus species, but epiphytic plants in nutrient-rich rooting environments had less mycorrhizal colonization than ground-rooted plants in low-nutrient soils. However, richness and abundance of spores was low, and to some extent, this limited the mycorrhizal colonization of strangler figs. Nevertheless, our results suggest intraindividual adjusting levels of root colonization in strangler figs in accordance with mineral availability. Such responses could maximize the cost-benefit balance of arbuscular mycorrhizal interactions throughout the development of strangler figs from epiphytic young plants to ground-rooted trees.

  9. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  10. Ancient suture zones within continents.

    PubMed

    Moores, E M

    1981-07-03

    Ancient suture belts within continents are deformed regions which contain the remnants of former ocean basins. They form when two continents or island arcs that earlier were separated by an ocean basin converge and collide during plate tectonic activity. These belts provide the only record we have of deep oceanic crust and of ancient sea-floor processes for the first 94 percent of the earth's history, that is, prior to the oldest preserved crust in the oceans. Ten criteria for the recognition and interpretation of these ancient belts are discussed. A comprehensive program for the study of these belts should have great scientific and economic benefit for the United States and would be relatively cheap compared to other large national scientific efforts.

  11. Neonatal medicine in ancient art.

    PubMed

    Yurdakök, Murat

    2010-01-01

    There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau).

  12. Improving ancient DNA genome assembly

    PubMed Central

    Nieselt, Kay

    2017-01-01

    Most reconstruction methods for genomes of ancient origin that are used today require a closely related reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer approach, where multiple assemblies are generated in the first layer, which are then combined in the second layer. We used this two-layer assembly to generate assemblies for two different ancient samples and compared the results to current de novo assembly approaches. We are able to improve the assembly with respect to the length of the contigs and can resolve more repetitive regions. PMID:28392981

  13. Egg clumping, host plant selection and population regulation in Cactoblastis cactorum (Lepidoptera).

    PubMed

    Myers, Judith H; Monro, John; Murray, Neil

    1981-10-01

    Since the successful control of prickly pear cactus by Cactoblastis cactorum in Australia, populations of plants and moths have persisted at low densities in open woodland sites. A contagious egg distribution causes overcrowding of larvae on some plants but insures low levels or no attack of other plants. This prevents extinction of plants and insects. Cactoblastis moths choose plants with characteristics which may increase the success of their larvae. Field observations and cage experiments indicate that large, green cactuses near previously attacked cactuses receive more eggs. Plants which are actively photosynthesizing are also more attractive as oviposition sites. These oviposition preferences contribute to the observed contagious egg distribution.While open woodland Opuntia and Cactoblastis populations fluctuate around an equilibrium, pasture populations may better be described by the "hide and seek" model, with the woodland populations serving as refuges. Average plant quality and variation in quality are suggested as important components in the dynamics of this system.

  14. Skeletal dysplasia in ancient Egypt.

    PubMed

    Kozma, Chahira

    2008-12-01

    The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society.

  15. Proboscidean DNA from museum and fossil specimens: an assessment of ancient DNA extraction and amplification techniques.

    PubMed

    Yang, H; Golenberg, E M; Shoshani, J

    1997-06-01

    Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.

  16. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    PubMed Central

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development. PMID:28066489

  17. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca.

    PubMed

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development.

  18. Night Blindness and Ancient Remedy

    PubMed Central

    Al Binali, H.A. Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  19. Impact of a prescribed fire on soil water repellency in a Banksia woodland (Western Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Miller, Ben; Tangney, Ryan; Miller, Russell; González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; Zavala, Lorena M.; Jordán, Antonio

    2016-04-01

    , Wittkuhn RS, McCaw L, Grierson PF. 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires - evidence from 50 years of active fire management in sw australian forests. Forest Ecology and Management 259: 132-142. DOI: 10.1016/j.foreco.2009.10.005. Burrows ND, McCaw WL. 1990. Fuel characteristics and bushfire control in banksia low woodlands in western australia. Journal of Environmental Management 31: 229-236. DOI: 10.1016/S0301-4797(05)80036-2. Jordán A, Gordillo-Rivero AJ, García-Moreno J, Zavala LM, Granged AJP, Gil J, Neto-Paixão HM. 2014. Post-fire evolution of water repellency and aggregate stability in Mediterranean calcareous soils: A 6-year study. Catena 118:115-123. DOI: 10.1016/j.catena.2014.02.001. Lozano E, Jiménez-Pinilla P, Mataix-Solera J, Arcenegui V, Bárcenas GM, González-Pérez JA, García-Orenes F, Torres MP, Mataix-Beneyto J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 207-208:212-220. DOI: 10.1016/j.geoderma.2013.05.021. Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ. 2016. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators 63:14-22. DOI: 10.1016/j.ecolind.2015.11.038. Zavala LM, Jordán A, Gil J, Bellinfante N, Pain C. 2009. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire. Earth Surface Processes and Landforms 34: 1522-1532. DOI: 10.1002/esp.1837.

  20. Association patterns in saproxylic insect networks in three Iberian Mediterranean woodlands and their resistance to microhabitat loss.

    PubMed

    Quinto, Javier; Marcos-García, María de los Ángeles; Díaz-Castelazo, Cecilia; Rico-Gray, Víctor; Galante, Eduardo; Micó, Estefanía

    2015-01-01

    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages' persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly

  1. Association Patterns in Saproxylic Insect Networks in Three Iberian Mediterranean Woodlands and Their Resistance to Microhabitat Loss

    PubMed Central

    Quinto, Javier; Marcos-García, María de los Ángeles; Díaz-Castelazo, Cecilia; Rico-Gray, Víctor; Galante, Eduardo; Micó, Estefanía

    2015-01-01

    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly

  2. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    PubMed Central

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  3. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO₂ exposure in a subtropical oak woodland.

    PubMed

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-11-01

    Rising atmospheric carbon dioxide (CO₂) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO₂. We used open-top chambers to manipulate CO₂ during regrowth after fire, and measured C, N and tracer (15) N in ecosystem components throughout the experiment. Elevated CO₂ increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO₂ increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term (15) N tracer indicated that CO₂ exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO₂ on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO₂ in current biogeochemical models, where the effect of elevated CO₂ on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Reactive nitrogen oxides and ozone above a taiga woodland

    NASA Astrophysics Data System (ADS)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.; Blake, Donald R.

    1994-01-01

    Measurements of reactive nitrogen oxides (NOx and NOy) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artie Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NOx, NOy and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NOx and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NOx to NOy were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3 A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  5. Selection of Reserves for Woodland Caribou Using an Optimization Approach

    PubMed Central

    Schneider, Richard R.; Hauer, Grant; Dawe, Kimberly; Adamowicz, Wiktor; Boutin, Stan

    2012-01-01

    Habitat protection has been identified as an important strategy for the conservation of woodland caribou (Rangifer tarandus). However, because of the economic opportunity costs associated with protection it is unlikely that all caribou ranges can be protected in their entirety. We used an optimization approach to identify reserve designs for caribou in Alberta, Canada, across a range of potential protection targets. Our designs minimized costs as well as three demographic risk factors: current industrial footprint, presence of white-tailed deer (Odocoileus virginianus), and climate change. We found that, using optimization, 60% of current caribou range can be protected (including 17% in existing parks) while maintaining access to over 98% of the value of resources on public lands. The trade-off between minimizing cost and minimizing demographic risk factors was minimal because the spatial distributions of cost and risk were similar. The prospects for protection are much reduced if protection is directed towards the herds that are most at risk of near-term extirpation. PMID:22363702

  6. Selection of reserves for woodland caribou using an optimization approach.

    PubMed

    Schneider, Richard R; Hauer, Grant; Dawe, Kimberly; Adamowicz, Wiktor; Boutin, Stan

    2012-01-01

    Habitat protection has been identified as an important strategy for the conservation of woodland caribou (Rangifer tarandus). However, because of the economic opportunity costs associated with protection it is unlikely that all caribou ranges can be protected in their entirety. We used an optimization approach to identify reserve designs for caribou in Alberta, Canada, across a range of potential protection targets. Our designs minimized costs as well as three demographic risk factors: current industrial footprint, presence of white-tailed deer (Odocoileus virginianus), and climate change. We found that, using optimization, 60% of current caribou range can be protected (including 17% in existing parks) while maintaining access to over 98% of the value of resources on public lands. The trade-off between minimizing cost and minimizing demographic risk factors was minimal because the spatial distributions of cost and risk were similar. The prospects for protection are much reduced if protection is directed towards the herds that are most at risk of near-term extirpation.

  7. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  8. Life-cycle assessment of typical Portuguese cork oak woodlands.

    PubMed

    González-García, Sara; Dias, Ana Cláudia; Arroja, Luis

    2013-05-01

    Cork forest systems are responsible for making an important economic contribution to the Mediterranean region, especially Portugal where the cork oak woodlands or montados contain about 32% of the world's area. The environmental profile derived from reproduction cork production and extraction in two Portuguese regions (Tagus valley and Alentejo) representative of the Portuguese sector were assessed in detail using the Life-Cycle Assessment (LCA) methodology from a cradle-to-gate perspective. The production line was divided into four stages considering all the processes involved: stand establishment, stand management, cork stripping and field recovery. According to the environmental results, there were remarkable differences between the two production scenarios mainly due to the intensity and repetition of forest activities even though the cork yield was reported to be the same. The management system in the Alentejo region presented the worse environmental profile in almost all the impact categories under assessment, mainly due to the shorter cycle duration of the mechanical cleaning and pruning processes. Cork stripping was identified in both scenarios as the production stage with the highest contribution to the environmental profile due to the cleaning and pruning processes. A sensitivity assessment concerning the cork yield was performed since the average production yields in the Portuguese montados are lower than the ones used in this study. Thus, if the cork yield is reduced, the environmental profile in both scenarios gets worse since almost all the forest activities involved are the same.

  9. Root water compensation sustains transpiration rates in an Australian woodland

    NASA Astrophysics Data System (ADS)

    Verma, Parikshit; Loheide, Steven P.; Eamus, Derek; Daly, Edoardo

    2014-12-01

    We apply a model of root-water uptake to a woodland in Australia to examine the regulation of transpiration by root water compensation (i.e., the ability of roots to regulate root water uptake from different parts of the soil profile depending on local moisture availability). We model soil water movement using the Richards equation and water flow in the xylem with Darcy's equation. These two equations are coupled by a term that governs the exchange of water between soil and root xylem as a function of the difference in water potential between the two. The model is able to reproduce measured diurnal patterns of sap flux and results in leaf water potentials that are consistent with field observations. The model shows that root water compensation is a key process to allow for sustained rates of transpiration across several months. Scenarios with different root depths showed the importance of having a root system deeper than about 2 m to achieve the measured transpiration rates without reducing the leaf water potential to levels inconsistent with field measurements. The model suggests that the presence of more than 5 % of the root system below 0.6 m allows trees to maintain sustained transpiration rates keeping leaf water potential levels within the range observed in the field. According to the model, a large contribution to transpiration in dry periods was provided by the roots below 0.3 m, even though the percentage of roots at these depths was less than 40 % in all scenarios.

  10. Social complexity and the bow in the Eastern Woodlands.

    PubMed

    Blitz, John H; Porth, Erik S

    2013-01-01

    Bingham and Souza have presented an evolutionary theory that specifies a causal relationship between the advent of powerful projectile weapons such as the bow and radical rearrangements in social relations and histories. They propose that the acquisition of weapons that permitted humans to kill at ever-increasing distances provided the coercive means to suppress conflicts of interest among nonkin, self-interested individuals in social groups, thus paving the way for greater social complexity. An unprecedented reduction in projectile point size identifies the arrival of the bow ca. A.D. 300 in the Eastern Woodlands of North America, which initiated a causal chain of cultural changes. In the Midwest, the bow, combined with food production, precipitated the decline of Hopewell by conferring household autonomy and dispersal, which at first suppressed social complexity, but later created conditions favorable to maize intensification. In the lower Southeast, where food production was unimportant, populations aggregated at concentrated wild-food sources, and the bow did not confer household autonomy. The relationship between the bow and social complexity varied under different environmental, social, and historical conditions.

  11. Reactive nitrogen oxides and ozone above a taiga woodland

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  12. Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields

    PubMed Central

    Barbu, Corentin Mario; Franck, Pierre; Roger-Estrade, Jean; Butier, Arnaud; Bazot, Mathieu; Valantin-Morison, Muriel

    2017-01-01

    Many crop pests rely on resources out of crop fields; understanding how they colonize the fields is an important factor to develop integrated pest management. In particular, the time of crop colonization and damage severity might be determined by pest movements between fields and non-crop areas. Notably, the pollen beetle, Brassicogethes aeneus, previously named Meligethes aeneus, one of the most important pests of winter oilseed rape, overwinters in woodlands. As a result, its abundance increases in oilseed rape fields near wooded areas. Here, we assessed the spatio-temporal patterns of the dispersal from woodlands to oilseed rape fields in diversified landscapes of a same region. We observed on four dates the abundance of pollen beetles in 24 fields spread in the Eure department, France. We modeled the abundance as a result of the dispersal from the neighboring woodlands. We compared the modalities of dispersal corresponding to different hypotheses on the dispersal origin, kernel shape and sources of variability. Within oilseed rape the distance to the edges of woodlands is not the main determinant of pollen beetle abundance. On the contrary, the variability of the abundance between fields is largely explained by the dispersal from neighboring woodlands but there is considerable variability between dates, sites and, to a lesser extent, between fields. The two dispersal kernels received similar support from the data and lead to similar conclusions. The mean dispersal distance is 1.2 km but seems to increase from a few hundred meters the first week to more than two kilometers the fourth, allowing the pollen beetles to reach more distant OSR fields. These results suggest that early varieties away from woodlands and late varieties close to the woodlands may limit attacks at the time when oilseed rape is the most sensitive. PMID:28841712

  13. Taxonomic status of Woodland's enigmatic tapeworms (Cestoda: Proteocephalidea) from Amazonian catfishes: back to museum collections.

    PubMed

    de Chambrier, Alain; Scholz, Tomáš; Kuchta, Roman

    2014-01-01

    Poorly known proteocephalidean cestodes of peculiar morphology, described by Woodland (1934) from pimelodid catfishes in Amazonia, Brazil, were studied. Re-examination of their type-specimens and evaluation of newly-collected material from Brazil and Peru made it possible to clarify their taxonomic status. Brayela karuatayi (Woodland, 1934), the type-species of the monotypic Brayela Rego, 1984, which has never been recorded since its original description, is redescribed and its scolex morphology, which has been misinterpreted in the original description, was studied using scanning electron microscopy (SEM). The actual definitive host of B. karuatayi is not a species of Glanidium Lütken (Auchenipteridae), but coroatá, Platynematichthys notatus (Jardine) (Pimelodidae). Peru is a new geographical record for B. karuatayi. The definitive host of other two proteocephalidean cestodes, Megathylacus jandia Woodland, 1934 and Proteocephalus jandia Woodland, 1934, is not a species of Rhamdia Bleeker (family Heptapteridae), but the pimelodid Zungaro zungaro (Humboldt) [syn. Paulicea luetkeni (Steindachner)]. Proteocephalus jandia is in fact conspecific with Travassiella avitellina Rego & Pavanelli, 1987, type-species of Travassiella Rego & Pavanelli, 1987. As a result, a new combination, Travassiella jandia (Woodland, 1934), is proposed. Megathylacus jandia Woodland, 1934 is considered conspecific with M. brooksi Rego & Pavanelli, 1985 described from the congeneric host [Zungaro jahu (Ihering)] from the Paraná River in Brazil; the latter species becomes its new junior synonym. The validity of M. travassosi Pavanelli & Rego, 1992, a parasite of Pseudoplatystoma corruscans (Spix & Agassiz) in the Paraná River basin in Brazil, is confirmed by a study of its type- and voucher specimens. The present account provides strong arguments to always study museum specimens in taxonomic studies; it also represents an evidence of the importance of depositing types and vouchers in

  14. Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields.

    PubMed

    Juhel, Amandine Suzanne; Barbu, Corentin Mario; Franck, Pierre; Roger-Estrade, Jean; Butier, Arnaud; Bazot, Mathieu; Valantin-Morison, Muriel

    2017-01-01

    Many crop pests rely on resources out of crop fields; understanding how they colonize the fields is an important factor to develop integrated pest management. In particular, the time of crop colonization and damage severity might be determined by pest movements between fields and non-crop areas. Notably, the pollen beetle, Brassicogethes aeneus, previously named Meligethes aeneus, one of the most important pests of winter oilseed rape, overwinters in woodlands. As a result, its abundance increases in oilseed rape fields near wooded areas. Here, we assessed the spatio-temporal patterns of the dispersal from woodlands to oilseed rape fields in diversified landscapes of a same region. We observed on four dates the abundance of pollen beetles in 24 fields spread in the Eure department, France. We modeled the abundance as a result of the dispersal from the neighboring woodlands. We compared the modalities of dispersal corresponding to different hypotheses on the dispersal origin, kernel shape and sources of variability. Within oilseed rape the distance to the edges of woodlands is not the main determinant of pollen beetle abundance. On the contrary, the variability of the abundance between fields is largely explained by the dispersal from neighboring woodlands but there is considerable variability between dates, sites and, to a lesser extent, between fields. The two dispersal kernels received similar support from the data and lead to similar conclusions. The mean dispersal distance is 1.2 km but seems to increase from a few hundred meters the first week to more than two kilometers the fourth, allowing the pollen beetles to reach more distant OSR fields. These results suggest that early varieties away from woodlands and late varieties close to the woodlands may limit attacks at the time when oilseed rape is the most sensitive.

  15. Five-year dynamics and carbon stock of vegetation in miombo woodlands of Niassa National Reserve, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Matos, C. N.

    2011-12-01

    Niassa National Reserve (NNR) incorporates one of the most pristine miombo woodlands in southern Africa. It provides habitat to several plant and animal species and is home for ca. 40,000 people who depend on forest resources to sustain their livelihoods. Anthropogenic fires have been considered a major concern for the management of this large conservation area. This study investigates the dynamics of ecosystem vegetation and carbon stock across a fire-gradient in NNR. Fifty sampling plots established in 2004 were measured in 2005 and 2009 for growth of adult, ingrowth (individuals entering the 5 cm class of diameter at breast height), mortality and carbon stocks in woody, shrubby and grass vegetation and soils. We found 62 species for a total of 2172 individuals, which represents an increase in order of 5% from 2005. About 72% of the species had an increase in biomass during the five-year period, while 28% showed a decrease in biomass. The latter was a result of damage and mortality by fires and elephants. In general the ingrowth is low (between 0 and 3%) as well as the mortality which varied between -9.25% and 0.25%. The average carbon stock in the various compartments of the ecosystem are: soils (34.7 ± 17.93), Trees (62 MgC/ha ± 30.94), Dead trees (164 MgC/ha ± 259.95), grass (4.47 MgC/ha ± 3.51), Litter (0.12 MgC/ha ± 0.07), Shrubs (0.04 MgC/ha ± 0.03). This gives a total carbon stock of 127.6 mgC/ha ± 126.06. These results indicate that NNR is still a stable ecosystem in which the rates of mortality are low and mainly caused by fires and elephants. The ingrowth and growth seems to be enough to guarantee reposition of vegetation stocks in this ecosystem. The carbon stock is similar to other areas of miombo woodlands in the region. This is an indication that miombo in NNR is still function as a sink of carbon. This associated with the fact that NNR is one of the largest conservation areas of miombo in the world, makes the reserve an important area to

  16. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  17. Retroflex Endings in Ancient Chinese

    ERIC Educational Resources Information Center

    Hashimoto, Mantaro J.

    1973-01-01

    Reconstruction of Ancient Chinese retroflex endings (syllable-final consonants) based on internal phonological evidence in Modern Chinese. Paper read at the December 1972 meeting of the Kukeo Hakhoe (The National Language Association of Korea); research supported by the Social Science Research Council, Committee for Korean Studies. (RS)

  18. The Echoes of Ancient Humans

    ERIC Educational Resources Information Center

    Watzman, Haim

    2006-01-01

    Several artifacts found at the Gesher Benot Ya'aqov, or Daughters of Jacob Bridge, archaeological site in Israel provide a picture of ancient human ancestors that is different from the once accepted by most scholars. The discoveries by Israeli archaeologist Naama Goren-Inbar suggest that humans developed language and other key abilities far…

  19. Drinking habits in ancient India.

    PubMed

    Somasundaram, Ottilingam; Raghavan, D Vijaya; Murthy, A G Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature.

  20. Adult Reading of Ancient Languages.

    ERIC Educational Resources Information Center

    Casler, Frederick H.

    Traditionally, students of ancient languages have been taught to translate rather than read. The four most popular current approaches to language instruction--the grammar-translation method, the direct-reading or inductive approach, the audiolingual method, and the structural approach--all have inherent deficiencies that are magnified when applied…