Science.gov

Sample records for planthopper nilaparvata lugens

  1. A Cripavirus in the brown planthopper, Nilaparvata lugens.

    PubMed

    Wang, Si-Liang; Cheng, Ruo-Lin; Lu, Jia-Bao; Yu, Xiao-Ping; Zhang, Chuan-Xi

    2016-03-01

    A Cripavirus-like long unique sequence was identified during transcriptome sequencing of the brown planthopper (BPH), Nilaparvata lugens. This unique sequence demonstrated high similarity with the whole-genome sequence of cricket paralysis virus, including 5' and 3' untranslated regions; thus we considered it the whole genome of a new virus. We propose that the virus be named Nilaparvata lugens C virus (NlCV). The plus-strand RNA genome spanned 9144 nt, excluding a 3' poly(A) tail with two large ORFs encoding structural and non-structural proteins, respectively. Detection of NlCV in BPH honeydew raised the hypothesis of horizontal transmission of the virus. Honeydew from viruliferous BPHs was used to feed non-viruliferous insects, the results of which indicated that the BPH could acquire NlCV through feeding and that the virus could multiply in the insect body. A tissue-specific distribution test using real-time quantitative PCR demonstrated that NlCV was mainly present in the reproductive organs, and the virus was detected in eggs laid by viruliferous female insects using nested PCR, indicating the possibility of vertical transmission as well. As no significant symptom was detected in the viruliferous BPH, NlCV is considered a new commensal virus of BPH. Interestingly, this virus was also detected in two other hemipteran insects, the white-backed planthopper and the horned gall aphid, indicating that NlCV might be present in many other hemipteran insects and have a wide host range. PMID:26746854

  2. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stal), via fatty acid synthase gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report d...

  3. Silencing a sugar transporter gene reduces fecundity, growth and development in the brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The brown planthopper (BPH), Nilaparvata lugens, sugar transporter gene 6 (Nlst6) is a facilitative glucose/fructose transporter expressed in midgut that mediates sugar uptake from rice phloem, a major energy source for BPH. In mammals, down regulation of the major sugar transporter gene GLUT or SGL...

  4. Differential resistance and cross-resistance to three phenylpyrazole insecticides in the Brown Planthopper Nilaparvata lugens (Homoptera: Delphacidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-resistance to two fipronil analogs, butene-fipronil and ethiprole were detected in fipronil-resistant field populations and a resistant laboratorial strain of the brown planthopper, Nilaparvata lugens, although the two analogs have not been used widely in rice-growing areas in China. The resul...

  5. Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stål) in Southern China.

    PubMed

    Qi, H; Jiang, C; Zhang, Y; Yang, X; Cheng, D

    2014-12-01

    The summer and autumn migrations of the brown planthopper (Nilaparvata lugens) were observed in Southern China with a millimetric scanning entomological radar and a searchlight trap supplemented with capture in field cages, field surveys, and dissections of females. Nilaparvata lugens took off at dusk and dawn in summer, but in autumn there was sometimes only a dusk take-off. The variation of the area density of the radar targets indicated that flight durations were about 9-10 h. In summer, planthopper-size targets generally flew below 1800 m above ground level (AGL), although some insects reached 2000 m AGL; in autumn, they flew lower, generally below 1100 m although some insects reached 1700 m AGL. Multiple layer concentrations were seen every night in both summer and autumn. The depths of these layers in autumn were less than in summer. Nilaparvata lugens flew in strong winds; wind shear may be the main factor causing them to accumulate and form dense layers at certain heights. Nilaparvata lugens emigrating in summer from the vicinity of the radar site in the Northeastern Guangxi Zhuang Autonomous Region, and carried by the prevailing southwesterly wind, would have travelled northeastwards and reached Northern Hunan Province. In autumn, with the prevailing northeasterly wind, emigrants would have reached overwintering areas (south of 21°N).

  6. Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stål) in Southern China.

    PubMed

    Qi, H; Jiang, C; Zhang, Y; Yang, X; Cheng, D

    2014-12-01

    The summer and autumn migrations of the brown planthopper (Nilaparvata lugens) were observed in Southern China with a millimetric scanning entomological radar and a searchlight trap supplemented with capture in field cages, field surveys, and dissections of females. Nilaparvata lugens took off at dusk and dawn in summer, but in autumn there was sometimes only a dusk take-off. The variation of the area density of the radar targets indicated that flight durations were about 9-10 h. In summer, planthopper-size targets generally flew below 1800 m above ground level (AGL), although some insects reached 2000 m AGL; in autumn, they flew lower, generally below 1100 m although some insects reached 1700 m AGL. Multiple layer concentrations were seen every night in both summer and autumn. The depths of these layers in autumn were less than in summer. Nilaparvata lugens flew in strong winds; wind shear may be the main factor causing them to accumulate and form dense layers at certain heights. Nilaparvata lugens emigrating in summer from the vicinity of the radar site in the Northeastern Guangxi Zhuang Autonomous Region, and carried by the prevailing southwesterly wind, would have travelled northeastwards and reached Northern Hunan Province. In autumn, with the prevailing northeasterly wind, emigrants would have reached overwintering areas (south of 21°N). PMID:25229712

  7. Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389

  8. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens

    PubMed Central

    2013-01-01

    Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and

  9. Complete genome sequences of two iflaviruses from the brown planthopper, Nilaparvata lugens.

    PubMed

    Murakami, Ritsuko; Suetsugu, Yoshitaka; Nakashima, Nobuhiko

    2014-03-01

    The complete genome sequences of two new iflaviruses (genus Iflavirus, family Iflaviridae) were determined. These viral sequences were first identified in RNA-seq contig sequences of Nilaparvata lugens in two distinct colonies: Izumo and Kagoshima. The accuracy of the contig sequences of the two viruses was verified by restriction enzyme digestion of RT-PCR products from viruliferous insects. RT-PCR of RNA extracted from honeydews after viruliferous insect feeding detected the expected viral products, which suggested that viruses were excreted into the honeydews by the insects. Since we previously designated a similar iflavirus as "Nilaparvata lugens honeydew virus 1", the two new viruses have been tentatively named "Nilaparvata lugens honeydew virus 2" and "Nilaparvata lugens honeydew virus 3". The identity of the putative amino acid sequences of the capsid proteins of these viruses met the criterion for iflavirus species demarcation. Therefore, these two viruses are suggested to be members of distinct species in the genus Iflavirus.

  10. Effects of temperature on mate location in the planthopper, Nilaparvata lugens (Homoptera: Delphacidae).

    PubMed

    Long, Ying; Hu, Chaoxing; Shi, Baokun; Yang, Xiao; Hou, Maolin

    2012-10-01

    The planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae), uses acoustic signals generated by abdominal vibration and transmitted through rice (Oryza sativa L.) plants to locate mates. The influence of temperature (20, 28, and 32°C) on abdominal vibration patterns of individual females and males, proportion of mated females, and responsivity of male to female vibrational signals was investigated. When female and male adults were observed individually, temperatures of 20 and 32°C inhibited abdominal vibration by both genders in terms of proportion of vibrating insects, time spent in vibration per insect, time spent per bout of vibration, or all of these; the effects were more pronounced at 32°C than at 20°C especially in males at 32°C. Although not significantly different, male responsivity to vibrating female was relatively high at 28°C, lower at 32°C, and still lower at 20°C, and finally more males located females at 28°C than at 20°C, which contributes to the higher proportion of mated females at 28°C than at 20 or 32°C. Our results indicate that temperatures of 20 and 32°C inhibit the production of abdominal vibration and, to some extent, reduce male responsivity to female vibrational signals, which may partially explain the frequent population outbreaks in N. lugens in the years with warm autumn.

  11. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens

    PubMed Central

    Pan, Weidong; Wan, Guijun; Xu, Jingjing; Li, Xiaoming; Liu, Yuxin; Qi, Liping; Chen, Fajun

    2016-01-01

    Biogenic magnetic particles have been detected in some migratory insects, which implies the basis of magnetoreception mechanism for orientation and navigation. Here, the biogenic magnetic particles in the migratory brown planthopper (BPH), Nilaparvata lugens were qualitatively measured by SQUID magnetometry, and their characteristics were further determined by Prussian Blue staining, electron microscopy and energy dispersive x-ray spectroscopy. The results indicate that there were remarkable magnetic materials in the abdomens and not in the head or thorax of the 3rd–5th instar nymphs, and in macropterous and brachypterous female and male adults of BPH. The size of magnetic particles was shown to be between 50–450 nm with a shape factor estimate of between 0.8–1.0 for all the tested BPHs. Moreover, the amount of magnetic particles was associated with the developmental stage (the 3rd–5th instar), wing form (macropterous vs. brachypterous) and sex. The macropterous female adults had the largest amount of magnetic particles. Although the existence of magnetic particles in the abdomens of BPH provides sound basis for the assumption of magnetic orientation, further behavioral studies and complementary physical characterization experiments should be conducted to determine whether the orientation behavior of BPH is associated with the magnetic particles detected in this study. PMID:26727944

  12. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    PubMed Central

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. PMID:24870048

  13. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens.

    PubMed

    Pan, Weidong; Wan, Guijun; Xu, Jingjing; Li, Xiaoming; Liu, Yuxin; Qi, Liping; Chen, Fajun

    2016-01-05

    Biogenic magnetic particles have been detected in some migratory insects, which implies the basis of magnetoreception mechanism for orientation and navigation. Here, the biogenic magnetic particles in the migratory brown planthopper (BPH), Nilaparvata lugens were qualitatively measured by SQUID magnetometry, and their characteristics were further determined by Prussian Blue staining, electron microscopy and energy dispersive x-ray spectroscopy. The results indicate that there were remarkable magnetic materials in the abdomens and not in the head or thorax of the 3(rd)-5(th) instar nymphs, and in macropterous and brachypterous female and male adults of BPH. The size of magnetic particles was shown to be between 50-450 nm with a shape factor estimate of between 0.8-1.0 for all the tested BPHs. Moreover, the amount of magnetic particles was associated with the developmental stage (the 3(rd)-5(th) instar), wing form (macropterous vs. brachypterous) and sex. The macropterous female adults had the largest amount of magnetic particles. Although the existence of magnetic particles in the abdomens of BPH provides sound basis for the assumption of magnetic orientation, further behavioral studies and complementary physical characterization experiments should be conducted to determine whether the orientation behavior of BPH is associated with the magnetic particles detected in this study.

  14. Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens).

    PubMed

    Du, J; Foissac, X; Carss, A; Gatehouse, A M; Gatehouse, J A

    2000-04-01

    The mannose-specific snowdrop lectin [Galanthus nivalis agglutinin (GNA)] displays toxicity to the rice brown planthopper Nilaparvata lugens. A 26kDa GNA-binding polypeptide from N. lugens midgut was identified by lectin blotting and affinity chromatography, and characterized by N-terminal sequencing. This polypeptide is the most abundant binding protein for GNA in the N. lugens midgut. A cDNA (fersub2) encoding this protein was isolated from an N. lugens cDNA library. The deduced amino acid sequence shows significant homology to ferritin subunits from Manduca sexta and other arthropods, plants and vertebrates, and contains a putative N-glycosylation site. Native ferritin was purified from whole insects as a protein of more than 400kDa in size and characterized biochemically. Three subunits of 20, 26 and 27kDa were released from the native complex. The 26kDa subunit binds GNA, and its N-terminal sequence was identical to that of fersub2. A second cDNA (fersub1), exhibiting strong homology with dipteran ferritin, was identified as an abundant cDNA in an N. lugens midgut-specific cDNA library, and could encode the larger ferritin subunit. The fersub1 cDNA carries a stem-loop structure (iron-responsive element) upstream from the start codon, similar to structures that have been shown to play a role in the control of ferritin synthesis in other insects.

  15. Outbreaks of the Brown Planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or Local Reproduction?

    PubMed Central

    Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi

    2014-01-01

    An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population. PMID:24558459

  16. A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi

    2013-01-01

    In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257

  17. Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopper Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Xu, Hong-Xing; He, Xiao-Chan; Zheng, Xu-Song; Yang, Ya-Jun; Lu, Zhong-Xian

    2014-08-01

    Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stål), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus.

  18. Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopper Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Xu, Hong-Xing; He, Xiao-Chan; Zheng, Xu-Song; Yang, Ya-Jun; Lu, Zhong-Xian

    2014-08-01

    Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stål), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus. PMID:23956237

  19. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens.

    PubMed

    Chen, J; Zhang, D; Yao, Q; Zhang, J; Dong, X; Tian, H; Chen, J; Zhang, W

    2010-12-01

    The brown planthopper, Nilaparvata lugens, is the most devastating rice insect pest to have given rise to an outbreak in recent years. RNA interference (RNAi) is a technological breakthrough that has been developed as a powerful tool for studying gene function and for the highly targeted control of insect pests. Here, we examined the effects of using a feeding-based RNAi technique to target the gene trehalose phosphate synthase (TPS) in N. lugens. The full-length cDNA of N. lugens TPS (NlTPS) is 3235 bp and has an open reading frame of 2424 bp, encoding a protein of 807 amino acids. NlTPS was expressed in the fat body, midgut and ovary. Quantitative real-time PCR (qRT-PCR) analysis revealed that NlTPS mRNA is expressed continuously with little change during the life of the insect. Efficient silencing of the TPS gene through double-stranded RNA (dsRNA) feeding led to rapid and significant reduction levels of TPS mRNA and enzymatic activity. Additionally, the development of N. lugens larvae that had been fed with the dsRNA was disturbed, resulting in lethality, and the cumulative survival rates dropped to 75.56, 64.44, 55.56 and 40.00% after continuous ingestion of 0.5 µg/µl dsRNA for 2, 4, 7 and 10 days, respectively. These values were significantly lower than those of the insects in the control group, suggesting that NlTPS dsRNA may be useful as a means of insect pest control. PMID:20726907

  20. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper).

    PubMed

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S

    2005-06-14

    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide. PMID:15937112

  1. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens.

    PubMed

    Tanaka, Yoshiaki; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Noda, Hiroaki; Shinoda, Tetsuro

    2014-03-01

    The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information.

  2. Virus-mediated chemical changes in rice plants impact the relationship between non-vector planthopper Nilaparvata lugens Stål and its egg parasitoid Anagrus nilaparvatae Pang et Wang.

    PubMed

    He, Xiaochan; Xu, Hongxing; Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  3. Virus-Mediated Chemical Changes in Rice Plants Impact the Relationship between Non-Vector Planthopper Nilaparvata lugens Stål and Its Egg Parasitoid Anagrus nilaparvatae Pang et Wang

    PubMed Central

    Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  4. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Xi, Y; Pan, P-L; Ye, Y-X; Yu, B; Zhang, C-X

    2014-12-01

    Chitin deacetylases (CDAs) are enzymes required for one of the pathways of chitin degradation, in which chitosan is produced by the deacetylation of chitin. Bioinformatic investigations with genomic and transcriptomic databases identified four genes encoding CDAs in Nilaparvata lugens (NlCDAs). Phylogenetic analysis showed that insect CDAs were clustered into five major groups. Group I, III and IV CDAs are found in all insect species, whereas the pupa-specific group II and gut-specific group V CDAs are not found in the plant-sap/blood-sucking hemimetabolous species from Hemiptera and Anoplura. The developmental and tissue-specific expression patterns of four NlCDAs revealed that NlCDA3 was a gut-specific CDA, with high expression at all developmental stages; NlCDA1, NlCDA2 and NlCDA4 were highly expressed in the integument and peaked periodically during every moulting, which suggests their roles in chitin turnover of the insect old cuticle. Lethal phenotypes of cuticle shedding failure and high mortality after the injection of double-stranded RNAs (dsRNAs) for NlCDA1, NlCDA2 and NlCDA4 provide further evidence for their functions associated with moulting. No observable morphological and internal structural abnormality was obtained in insects treated with dsRNA for gut-specific NlCDA3.

  5. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic resource for studying agricultural pests

    PubMed Central

    Noda, Hiroaki; Kawai, Sawako; Koizumi, Yoko; Matsui, Kageaki; Zhang, Qiang; Furukawa, Shigetoyo; Shimomura, Michihiko; Mita, Kazuei

    2008-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. Results More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. Conclusion The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest. PMID:18315884

  6. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    PubMed Central

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  7. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    PubMed

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-05-31

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  8. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    PubMed

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  9. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal).

    PubMed

    Gatehouse, A M.R.; Gatehouse, J A.; Bharathi, M; Spence, J; Powell, K S.

    1998-07-01

    Rice brown planthoppers (Nilaparvata lugens) were fed on artificial diet containing snowdrop lectin (Galanthus nivalis agglutinin; GNA), which has been shown to be toxic towards this insect pest. In addition to decreasing survival, the lectin affected development, reducing the growth rate of nymphs by approximately 50% when present at a concentration of 5.3&mgr;M. Immunolocalisation studies showed that lectin binding was concentrated on the luminal surface of the midgut epithelial cells within the planthopper, suggesting that GNA binds to cell surface carbohydrate moieties in the gut. Immunolabelling at a lower level was also observed in the fat bodies, the ovarioles, and throughout the haemolymph. These observations suggest that GNA is able to cross the midgut epithelial barrier, and pass into the insect's circulatory system, resulting in a systemic toxic effect. Electron microscope studies showed morphological changes in the midgut region of planthoppers fed on a toxic dose of GNA, with disruption of the microvilli brush border region. No significant proteolytic degradation of GNA was observed either in the gut or honeydew of planthoppers fed on lectin-containing diet. The presence of glycoproteins which bind GNA in the gut of the brown planthopper was confirmed using digoxigen-labeled lectins to probe blots of extracted gut polypeptides.

  10. Characterization of the Distal-less gene homologue, NlDll, in the brown planthopper, Nilaparvata lugens (Stål).

    PubMed

    Lin, Xinda; Yao, Yun; Jin, Minna; Li, Qilin

    2014-02-10

    The brown planthopper, Nilaparvata lugens (Stål), is a globally devastating insect pest of rice, particularly in eastern Asia. Distal-less or Dll is a highly conserved and well studied transcription factor required for limb formation in invertebrates and vertebrates. We have identified a homologue of this gene, NlDll, and demonstrated that it is expressed in all life stages of N. lugens, particularly in adult brachypterous females. When we compared between specific adult tissues it was expressed most strongly in wings. Using RNAi techniques we demonstrated that downregulation of NlDll in the 3rd instar larvae led to the disrupted development of the leg, while downregulation of NlDll in the 5th instar larvae led to abnormal wing formation. Ectopic over-expression of NlDll in Drosophila melanogaster using the GAL4-UAS system led to fatal or visible phenotypic changes such as the loss of normal wing structure and disrupted haltere structure. Our work suggests that NlDll is a conserved homologue of Distal-less and is required for both leg development and wing structure. Since researches have shown that Dll is required for wing morphogenesis, understanding the role of NlDll during the wing development will further provide a basis for revealing the molecular mechanism of the wing dimorphism in brown planthopper. In the future, NlDll could be used as a target gene for brown planthopper pest management in the field.

  11. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012-2014.

    PubMed

    Zhang, Xiaolei; Liao, Xun; Mao, Kaikai; Zhang, Kaixiong; Wan, Hu; Li, Jianhong

    2016-09-01

    The brown planthopper is a serious rice pest in China. Chemical insecticides have been considered a satisfactory means of controlling the brown planthopper. In the present study, we determined the susceptibility of twenty-one populations of Nilaparvata lugens to eleven insecticides by a rice-stem dipping method from 2012 to 2014 in eight provinces of China. These field-collected populations of N. lugens had developed high levels of resistance to imidacloprid (resistant ratio, RR=233.3-2029-fold) and buprofezin (RR=147.0-1222). Furthermore, N. lugens showed moderate to high levels of resistance to thiamethoxam (RR=25.9-159.2) and low to moderate levels of resistance to dinotefuran (RR=6.4-29.1), clothianidin (RR=6.1-33.6), ethiprole (RR=11.5-71.8), isoprocarb (RR=17.1-70.2), and chlorpyrifos (RR=7.4-30.7). In contrast, the susceptibility of N. lugens to etofenprox (RR=1.1-4.9), thiacloprid (RR=2.9-8.2) and acetamiprid (RR=2.7-26.2) remained susceptible to moderate levels of resistance. Significant correlations were detected between the LC50 values of imidacloprid and thiamethoxam, dinotefuran, buprofezin, and etofenprox, as well as between clothianidin and thiamethoxam, dinotefuran, ethiprole, acetamiprid, and thiacloprid. Similarly, significant correlations were observed between chlorpyrifos and etofenprox, acetamiprid and thiacloprid. Additionally, the activity of the detoxification enzymes of N. lugens showed a significant correlation with the log LC50 values of imidacloprid, dinotefuran and ethiprole. These results will be beneficial for effective insecticide resistance management strategies to prevent or delay the development of insecticide resistance. PMID:27521908

  12. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012-2014.

    PubMed

    Zhang, Xiaolei; Liao, Xun; Mao, Kaikai; Zhang, Kaixiong; Wan, Hu; Li, Jianhong

    2016-09-01

    The brown planthopper is a serious rice pest in China. Chemical insecticides have been considered a satisfactory means of controlling the brown planthopper. In the present study, we determined the susceptibility of twenty-one populations of Nilaparvata lugens to eleven insecticides by a rice-stem dipping method from 2012 to 2014 in eight provinces of China. These field-collected populations of N. lugens had developed high levels of resistance to imidacloprid (resistant ratio, RR=233.3-2029-fold) and buprofezin (RR=147.0-1222). Furthermore, N. lugens showed moderate to high levels of resistance to thiamethoxam (RR=25.9-159.2) and low to moderate levels of resistance to dinotefuran (RR=6.4-29.1), clothianidin (RR=6.1-33.6), ethiprole (RR=11.5-71.8), isoprocarb (RR=17.1-70.2), and chlorpyrifos (RR=7.4-30.7). In contrast, the susceptibility of N. lugens to etofenprox (RR=1.1-4.9), thiacloprid (RR=2.9-8.2) and acetamiprid (RR=2.7-26.2) remained susceptible to moderate levels of resistance. Significant correlations were detected between the LC50 values of imidacloprid and thiamethoxam, dinotefuran, buprofezin, and etofenprox, as well as between clothianidin and thiamethoxam, dinotefuran, ethiprole, acetamiprid, and thiacloprid. Similarly, significant correlations were observed between chlorpyrifos and etofenprox, acetamiprid and thiacloprid. Additionally, the activity of the detoxification enzymes of N. lugens showed a significant correlation with the log LC50 values of imidacloprid, dinotefuran and ethiprole. These results will be beneficial for effective insecticide resistance management strategies to prevent or delay the development of insecticide resistance.

  13. Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens Stål, the brown planthopper.

    PubMed

    Senthil-Nathan, Sengottayan; Choi, Man-Young; Paik, Chae-Hoon; Seo, Hong-Yul; Kalaivani, Kandaswamy

    2009-09-01

    The effects of two different neem products (Parker Oil and Neema) on mortality, food consumption and survival of the brown planthopper, Nilaparvata lugens Stål (BPH) (Homoptera: Delphacidae) were investigated. The LC(50) (3.45 ml/L for nymph and 4.42 ml/L for adult in Parker Oil treatment; 4.18 ml/L for nymph and 5.63 ml/L for adult in Neema treatment) and LC(90) (8.72 ml/L for nymph and 11.1 ml/L for adult in Parker Oil treatment; 9.84 ml/L for nymph and 13.07 ml/L for adult in Neema treatment) were identified by probit analysis. The LC(90) (equal to recommended dose) was applied in the rice field. The effective concentration of both Parker Oil and Neema took more than 48 h to kill 80% of the N. lugens. Fourth instar nymph and adult female N. lugens were caged on rice plants and exposed to a series (both LC(50) and LC(90)) of neem concentrations. Nymph and adult female N. lugens that were chronically exposed to neem pesticides showed immediate mortality after application in laboratory experiment. The quantity of food ingested and assimilated by N. lugens on neem-treated rice plants was significantly less than on control rice plants. The results clearly indicate the neem-based pesticide (Parker Oil and Neema), containing low lethal concentration, can be used effectively to inhibit the growth and survival of N. lugens. PMID:19500844

  14. RNA interference-aided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).

    PubMed

    Wan, P-J; Yang, L; Yuan, S-Y; Tang, Y-H; Fu, Q; Li, G-Q

    2015-08-01

    The brown planthopper Nilaparvata lugens is a serious phloem-feeding pest of rice in China. The current study focuses on a saccharopine dehydrogenase (SDH) that catalyzes the penultimate reaction in biosynthesis of the amino acid lysine (Lys), which plays a role in insect growth and carnitine production (as a substrate). The protein, provisionally designated as NlylsSDH [a SDH derived from yeast-like symbiont (YLS) in N. lugens], had a higher transcript level in abdomens, compared with heads, wings, legs and thoraces, which agrees with YLS distribution in N. lugens. Ingestion of Nlylssdh targeted double-stranded RNA (dsNlylssdh) for 5, 10 and 15 days decreased the mRNA abundance in the hoppers by 47, 70 and 31%, respectively, comparing with those ingesting normal or dsegfp diets. Nlylssdh knockdown slightly decreased the body weights, significantly delayed the development of females, and killed approximately 30% of the nymphs. Moreover, some surviving adults showed two apparent phenotypic defects: wing deformation and nymphal cuticles remained on tips of the legs and abdomens. The brachypterours/macropterours and sex ratios (female/male) of the adults on the dsRNA diet were lowered compared with the adults on diets without dsRNA. These results suggest that Nlylssdh encodes a functional SDH protein. The adverse effect of Nlylssdh knockdown on N. lugens implies the importance of Lys in hopper development. This study provides a proof of concept example that Nlylssdh could serve as a possible dsRNA-based pesticide for planthopper control. PMID:25908053

  15. No impact of transgenic cry1C rice on the rove beetle Paederus fuscipes, a generalist predator of brown planthopper Nilaparvata lugens

    PubMed Central

    Meng, Jiarong; Mabubu, Juma Ibrahim; Han, Yu; He, Yueping; Zhao, Jing; Hua, Hongxia; Feng, Yanni; Wu, Gang

    2016-01-01

    T1C-19 is newly developed transgenic rice active against lepidopteran pests, and expresses a synthesized cry1C gene driven by the maize ubiquitin promoter. The brown planthopper, Nilaparvata lugens, is a major non-target pest of rice, and the rove beetle (Paederus fuscipes) is a generalist predator of N. lugens nymphs. As P. fuscipes may be exposed to the Cry1C protein through preying on N. lugens, it is essential to assess the potential effects of transgenic cry1C rice on this predator. In this study, two experiments (a direct feeding experiment and a tritrophic experiment) were conducted to evaluate the ecological risk of cry1C rice to P. fuscipes. No significant negative effects were observed in the development, survival, female ratio and body weight of P. fuscipes in both treatments of direct exposure to elevated doses of Cry1C protein and prey-mediated exposure to realistic doses of the protein. This indicated that cry1C rice had no detrimental effects on P. fuscipes. This work represents the first study of an assessment continuum for the effects of transgenic cry1C rice on P. fuscipes. Use of the rove beetle as an indicator species to assess potential effects of genetically modified crops on non-target arthropods is feasible. PMID:27444416

  16. No impact of transgenic cry1C rice on the rove beetle Paederus fuscipes, a generalist predator of brown planthopper Nilaparvata lugens.

    PubMed

    Meng, Jiarong; Mabubu, Juma Ibrahim; Han, Yu; He, Yueping; Zhao, Jing; Hua, Hongxia; Feng, Yanni; Wu, Gang

    2016-01-01

    T1C-19 is newly developed transgenic rice active against lepidopteran pests, and expresses a synthesized cry1C gene driven by the maize ubiquitin promoter. The brown planthopper, Nilaparvata lugens, is a major non-target pest of rice, and the rove beetle (Paederus fuscipes) is a generalist predator of N. lugens nymphs. As P. fuscipes may be exposed to the Cry1C protein through preying on N. lugens, it is essential to assess the potential effects of transgenic cry1C rice on this predator. In this study, two experiments (a direct feeding experiment and a tritrophic experiment) were conducted to evaluate the ecological risk of cry1C rice to P. fuscipes. No significant negative effects were observed in the development, survival, female ratio and body weight of P. fuscipes in both treatments of direct exposure to elevated doses of Cry1C protein and prey-mediated exposure to realistic doses of the protein. This indicated that cry1C rice had no detrimental effects on P. fuscipes. This work represents the first study of an assessment continuum for the effects of transgenic cry1C rice on P. fuscipes. Use of the rove beetle as an indicator species to assess potential effects of genetically modified crops on non-target arthropods is feasible. PMID:27444416

  17. Adipose triglyceride lipase (Atgl) mediates the antibiotic jinggangmycin-stimulated reproduction in the brown planthopper, Nilaparvata lugens Stål

    PubMed Central

    Jiang, Yi-Ping; Li, Lei; Liu, Zong-Yu; You, Lin-Lin; Wu, You; Xu, Bing; Ge, Lin-Quan; Song, Qi-Sheng; Wu, Jin-Cai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH. PMID:26739506

  18. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens

    PubMed Central

    Zhang, Yi-Xin; Ge, Lin-Quan; Jiang, Yi-Ping; Lu, Xiu-Li; Li, Xin; Stanley, David; Song, Qi-Sheng; Wu, Jin-Cai

    2015-01-01

    A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by > 60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level. PMID:26482193

  19. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR.

    PubMed

    Yuan, Miao; Lu, Yanhui; Zhu, Xun; Wan, Hu; Shakeel, Muhammad; Zhan, Sha; Jin, Byung-Rae; Li, Jianhong

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR). Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT), muscle actin (MACT), ribosomal protein S11 (RPS11), ribosomal protein S15e (RPS15), alpha 2-tubulin (TUB), elongation factor 1 delta (EF), 18S ribosomal RNA (18S), and arginine kinase (AK) and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method) to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation) following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments) guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  20. Immunodetection of a brown planthopper (Nilaparvata lugens Stål) salivary catalase-like protein into tissues of rice, Oryza sativa.

    PubMed

    Petrova, A; Smith, C M

    2014-02-01

    Saliva plays an important role in host plant-phloem-feeding insect molecular interactions. To better elucidate the role of insect saliva, a series of experiments were conducted to establish if catalase from the salivary glands of the brown planthopper (BPH; Nilaparvata lugens Stål) was secreted into rice host plant tissue during feeding. Catalase is the main enzyme that decomposes hydrogen peroxide (H2O2) at high concentrations. H2O2 is a part of the free radicals system that mediates important physiological roles including signalling and defence. Previous studies have suggested that H2O2 is involved in the rice endogenous response to BPH feeding. If, the BPH secretes catalase into host plant tissue this will counter the effects of H2O2, from detoxification to interfering with plant signalling and defence mechanisms. When BPHs were fed on a hopper-resistant rice variety for 24 h, catalase activity in the salivary glands increased 3.5-fold compared with hoppers fed on a susceptible rice variety. Further supporting evidence of the effects of BPH catalase was demonstrated by immunodetection analyses where results from two independent sources: BPH-infested rice tissue and BPH-probed artificial diets, suggest that the BPH secretes catalase-like protein during feeding. The possible physiological roles of BPH-secreted catalase are discussed.

  1. Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA).

    PubMed

    Foissac, X; Thi Loc, N; Christou, P; Gatehouse, A M.R.; Gatehouse, J A.

    2000-04-01

    Transgenic rice plants expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA) were screened for resistance to green leafhopper (Nephotettix virescens; GLH), a major homopteran pest of rice. Survival was reduced by 29% and 53% (P<0.05) respectively, on plants where GNA expression was tissue-specific (phloem and epidermal layer) or constitutive. Similar levels of resistance in GNA-expressing transgenic rice were previously reported for rice brown planthopper (Nilaparvata lugens; BPH). GNA binding to glycoproteins in gut tissues showed that BPH contained more "receptors" than GLH, and that the binding affinity was stronger, particularly in the midgut. Subsequent toxicity of GNA is thus unlikely to be directly related to the amount of lectin bound. GNA was not detected in the honeydew of either insect species when they were fed on GNA-expressing plants, in contrast to results from artificial diet studies. This result suggests that GNA is not being delivered to the insect efficiently. When offered a free choice vs control plants, BPH nymphs tended to avoid plants expressing GNA; avoidance was less pronounced and took longer to develop on plants where GNA expression was tissue-specific, In contrast to BPH, GLH nymphs were attracted to plants expressing GNA, whether constitutively or in a tissue-specific manner.

  2. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål)

    PubMed Central

    Shao, Ensi; Lin, Li; Chen, Chen; Chen, Hanze; Zhuang, Haohan; Wu, Songqing; Sha, Li; Guan, Xiong; Huang, Zhipeng

    2016-01-01

    Bacillus thuringiensis (Bt) Cry toxins have been used widely in pest managements. However, Cry toxins are not effective against sap-sucking insects (Hemiptera), which limits the application of Bt for pest management. In order to extend the insecticidal spectrum of Bt toxins to the rice brown planthopper (BPH), Nilaparvata lugens, we modified Cry1Ab putative receptor binding domains with selected BPH gut-binding peptides (GBPs). Three surface exposed loops in the domain II of Cry1Ab were replaced with two GBPs (P2S and P1Z) respectively. Bioassay results showed that toxicity of modified toxin L2-P2S increased significantly (~9 folds) against BPH nymphs. In addition, damage of midgut cells was observed from the nymphs fed with L2-P2S. Our results indicate that modifying Cry toxins based on the toxin-gut interactions can broaden the insecticidal spectrum of Bt toxin. This method provides another approach for the development of transgenic crops with novel insecticidal activity against hemipteran insects and insect populations resistant to current Bt transgenic crops. PMID:26830331

  3. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål).

    PubMed

    Shao, Ensi; Lin, Li; Chen, Chen; Chen, Hanze; Zhuang, Haohan; Wu, Songqing; Sha, Li; Guan, Xiong; Huang, Zhipeng

    2016-01-01

    Bacillus thuringiensis (Bt) Cry toxins have been used widely in pest managements. However, Cry toxins are not effective against sap-sucking insects (Hemiptera), which limits the application of Bt for pest management. In order to extend the insecticidal spectrum of Bt toxins to the rice brown planthopper (BPH), Nilaparvata lugens, we modified Cry1Ab putative receptor binding domains with selected BPH gut-binding peptides (GBPs). Three surface exposed loops in the domain II of Cry1Ab were replaced with two GBPs (P2S and P1Z) respectively. Bioassay results showed that toxicity of modified toxin L2-P2S increased significantly (~9 folds) against BPH nymphs. In addition, damage of midgut cells was observed from the nymphs fed with L2-P2S. Our results indicate that modifying Cry toxins based on the toxin-gut interactions can broaden the insecticidal spectrum of Bt toxin. This method provides another approach for the development of transgenic crops with novel insecticidal activity against hemipteran insects and insect populations resistant to current Bt transgenic crops. PMID:26830331

  4. Heat Stress Impedes Development and Lowers Fecundity of the Brown Planthopper Nilaparvata lugens (Stål)

    PubMed Central

    Piyaphongkul, Jiranan; Pritchard, Jeremy; Bale, Jeff

    2012-01-01

    This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT50 (41.8°C) mean development time to adult was increased in both males and females, from 15.2±0.3 and 18.2±0.3 days respectively in the control to 18.7±0.2 and 19±0.2 days in the treated insects. These differences in development arising from heat stress experienced in the first instar nymph did not persist into the adult stage (adult longevity of 23.5±1.1 and 24.4±1.1 days for treated males and females compared with 25.7±1.0 and 20.6±1.1 days in the control groups), although untreated males lived longer than untreated females. Total mean longevity was increased from 38.8±0.1 to 43.4±1.0 days in treated females, but male longevity was not affected (40.9±0.9 and 42.2±1.1 days respectively). When male and female first instar nymphs were exposed at their ULT50 of 41.8°C and allowed to mate on reaching adult, mean fecundity was reduced from 403.8±13.7 to 128.0±16.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT50 (42.5°C), the three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated female produced 169.3±14.7, 249.6±21.3 and 233.4±17.2 eggs per female respectively, all significantly lower than the control. Exposure of nymphs and adults at their respective ULT50 temperatures also significantly extended the time required for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat stress inhibited nymphal development, lowered fecundity and extended egg development time. PMID:23071803

  5. Roles of NlAKTIP in the Growth and Eclosion of the Rice Brown Planthopper, Nilaparvata lugens Stål, as Revealed by RNA Interference

    PubMed Central

    Hao, Peiying; Lu, Chaofeng; Ma, Yan; Xu, Lingbo; Zhu, Jiajun; Yu, Xiaoping

    2015-01-01

    AKT-interacting protein (AKTIP) interacts with serine/threonine protein kinase B (PKB)/AKT. AKTIP modulates AKT’s activity by enhancing the phosphorylation of the regulatory site and plays a crucial role in multiple biological processes. In this study, the full length cDNA of NlAKTIP, a novel AKTIP gene in the brown planthopper (BPH) Nilaparvata lugens, was cloned. The reverse transcription quantitive PCR (RT-qPCR) results showed that the NlAKTIP gene was strongly expressed in gravid female adults, but was relatively weakly expressed in nymphs and male adult BPH. In female BPH, treatment with dsAKTIP resulted in the efficient silencing of NlAKTIP, leading to a significant reduction of mRNA levels, about 50% of those of the untreated control group at day 7 of the study. BPH fed with dsAKTIP had reduced growth with lower body weights and smaller sizes, and the body weight of BPH treated with dsAKTIP at day 7 decreased to about 30% of that of the untreated control. Treatment of dsAKTIP significantly delayed the eclosion for over 7 days relative to the control group and restricted ovarian development to Grade I (transparent stage), whereas the controls developed to Grade IV (matured stage). These results indicated that NlAKTIP is crucial to the growth and development of female BPH. This study provided a valuable clue of a potential target NlAKTIP for inhibiting the BPH, and also provided a new point of view on the interaction between BPH and resistant rice. PMID:26402675

  6. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Down, Rachel E; Fitches, Elaine C; Wiles, Duncan P; Corti, Paola; Bell, Howard A; Gatehouse, John A; Edwards, John P

    2006-01-01

    The SFI1/GNA fusion protein, comprising of snowdrop lectin (Galanthus nivalis agglutinin, GNA) fused to an insecticidal spider venom neurotoxin (Segestria florentina toxin 1, SFI1) was tested for toxicity against the rice brown planthopper Nilaparvata lugens (Stål) and the peach-potato aphid Myzus persicae (Sulzer) by incorporation into artificial diets. Significant effects on the mortality of N. lugens were observed, with 100% of the insects fed on the SFI1/GNA fusion protein diet dead by day 7. The survival of the aphid M. persicae was also reduced when fed on the SFI1/GNA fusion protein. After 14 days, only 49% of the aphids that were fed on the fusion protein were still alive compared with approximately 90% of the aphids fed on the control diet or on diet containing GNA only. The SFI1/GNA fusion protein also slowed the development of M. persicae, and the reproductive capacity of the aphids fed on the SFI1/GNA fusion protein was severely reduced. The ability of GNA to act as a carrier protein, and deliver the SFI1 neurotoxin to the haemolymph of N. lugens, following oral ingestion, was investigated. The successful delivery of intact SFI1/GNA fusion protein to the haemolymph of these insects was shown by western blotting. Haemolymph taken from the insects that were fed on the fusion protein contained two GNA-immunoreactive proteins of molecular weights corresponding to GNA and to the SFI1/GNA fusion protein.

  7. Selection of Beauveria Isolates Pathogenic to Adults of Nilaparvata lugens

    PubMed Central

    Li, Maoye; Li, Shiguang; Xu, Amei; Lin, Huafeng; Chen, Dexin; Wang, Hui

    2014-01-01

    The brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), is a destructive invasive pest and has become one of the most economically-important rice pests in China. Effective control measures are desperately needed. Entomopathogenic fungi, such as Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae) and B. brongniartii (Saccardo), have shown great potential for the management of some sucking pest species. In this study, to explore alternative strategies for sustainable control of the sucking pest population, nine isolates of Beauveria from different pests were bioassayed under the concentrated standard spray of 1000 conidia/mm2 in laboratory. The cumulative mortalities of adults ranged from 17.2 to 79.1% 10 days after inoculation. The virulence among all tested isolates exhibited significant differences (at p = 0.05). The highest virulent isolate was Bb09, which killed 79.1% of the treated insects and had a median lethal time of 5.5 days. Its median lethal concentration values were estimated as 134 conidia/mm2 on day 10. The chitinase activities of nine isolates were also assayed. The results showed that the chitinase activity (18.7 U/mg) of isolate Bbr09 was the highest among all tested isolates. The biological characteristics of these strains, including growth rate, sporulation, and germination rate, were further investigated. The results showed that strain Bbr09 exhibited the best biological characteristics with relatively higher hyphal growth rate, the highest spore production, and the fastest spore germination. The isolate of Bbr09 had strong pathogenicity and exhibited great potential for sustainable control of N. lugens. PMID:25373179

  8. Selection of Beauveria isolates pathogenic to adults of Nilaparvata lugens.

    PubMed

    Li, Maoye; Li, Shiguang; Xu, Amei; Lin, Huafeng; Chen, Dexin; Wang, Hui

    2014-02-26

    The brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), is a destructive invasive pest and has become one of the most economically-important rice pests in China. Effective control measures are desperately needed. Entomopathogenic fungi, such as Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae) and B. brongniartii (Saccardo), have shown great potential for the management of some sucking pest species. In this study, to explore alternative strategies for sustainable control of the sucking pest population, nine isolates of Beauveria from different pests were bioassayed under the concentrated standard spray of 1000 conidia/mm(2) in laboratory. The cumulative mortalities of adults ranged from 17.2 to 79.1% 10 days after inoculation. The virulence among all tested isolates exhibited significant differences (at p = 0.05). The highest virulent isolate was Bb09, which killed 79.1% of the treated insects and had a median lethal time of 5.5 days. Its median lethal concentration values were estimated as 134 conidia/mm(2) on day 10. The chitinase activities of nine isolates were also assayed. The results showed that the chitinase activity (18.7 U/mg) of isolate Bbr09 was the highest among all tested isolates. The biological characteristics of these strains, including growth rate, sporulation, and germination rate, were further investigated. The results showed that strain Bbr09 exhibited the best biological characteristics with relatively higher hyphal growth rate, the highest spore production, and the fastest spore germination. The isolate of Bbr09 had strong pathogenicity and exhibited great potential for sustainable control of N. lugens.

  9. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp, organophosphate) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly in...

  10. Heavy metal bioaccumulation and mobility from rice plants to Nilaparvata lugens (Homoptera: Delphacidae) in China.

    PubMed

    Wan, Ting-li; Liu, Shun; Tang, Qi-yi; Cheng, Jia-an

    2014-06-01

    Samples of soils, rice plants, and the adult, long-winged, brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), were collected from 18 sites of 9 regions in southern China. The concentrations of seven elements (Cu, Zn, As, Mo, Ag, Cd, and Pb) were measured using inductively coupled plasma mass spectrometry. Heavy metal mobility and bioaccumulation were analyzed in the rice plant-N. lugens system. The concentrations of Zn, As, Cd, and Pb in rice plants were positively correlated with their relevant concentrations in soil samples The bioconcentration factors of the seven elements in the rice plant-N. lugens system showed that the order of metal accumulation was Mo>Zn>Ag>Cd>Cu>Pb>As. In particular, Mo and Zn showed significantly high accumulation in N. lugens. A cluster analysis and factor analysis showed that the bioaccumulation of these seven elements in the rice plant-N. lugens system could be classified into two groups, closely related to their molar mass. The first group consisted of five elements with relatively light molar masses: Cu, Zn, As, Mo, and Ag. Cu and Zn, which have nearly equal molar masses, showed similar accumulation levels in N. lugens. The second group included two elements with relatively heavy molar masses: Cd and Pb. This study demonstrated that bioaccumulation of seven heavy metals was regular in the rice plant-N. lugens system. N. lugens could be used as bioindicators of the contaminated degree for Zn in rice paddy fields. This information may provide a basis for future ecological research on the bioaccumulation mechanism in N. lugens. PMID:24735989

  11. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices.

    PubMed

    Choi, Man-Soo; Kim, Yul-Ho; Park, Hyang-Mi; Seo, Bo-Yoon; Jung, Jin-Kyo; Kim, Sun-Tae; Kim, Min-Chul; Shin, Dong-Bum; Yun, Hong-Tai; Choi, Im-Soo; Kim, Chung-Kon; Lee, Jang-Yong

    2009-08-31

    Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

  12. Infection of rice plants by rice black streaked dwarf virus improves an egg parasitoid, Anagrus nilaparvatae (Hymenoptera: Mymaridae), of rice planthoppers.

    PubMed

    Xu, Hongxing; He, Xiaochan; Zheng, Xusong; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-10-01

    The effects of rice plants infected by rice black streaked dwarf virus (RBSDV) on the host preference, duration of immature stages, sex ratio, and adult longevity and parasitic capacity of an egg parasitoid, Anagrus nilaparvatae Pang et Wang, of rice brown planthopper, Nilaparvata lugens Stål, were evaluated. Tests of response to plant volatiles using an olfactometer showed that A. nilaparvatae preferred rice plants harboring rice brown planthopper eggs over plants free of rice brown planthopper eggs. However, both the response to plant volatiles and the host selectivity test showed no significant differences in host preference between RBSDV-infected plants and healthy plants when both contained rice brown planthopper eggs. The developmental duration at immature stage of the male A. nilaparvatae in rice brown planthopper eggs on RBSDV-infected rice plants was significantly prolonged, and the parasitic capacity of rice brown planthopper eggs was significantly increased in comparison with the A. nilaparvatae parasite in rice brown planthopper eggs on healthy rice plants. There were no significant differences between RBSDV-infected rice plants and healthy rice plants in other ecological fitness parameters, including the developmental duration of female adults, female percentage, and adult longevity of A. nilaparvatae.

  13. Infection of rice plants by rice black streaked dwarf virus improves an egg parasitoid, Anagrus nilaparvatae (Hymenoptera: Mymaridae), of rice planthoppers.

    PubMed

    Xu, Hongxing; He, Xiaochan; Zheng, Xusong; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-10-01

    The effects of rice plants infected by rice black streaked dwarf virus (RBSDV) on the host preference, duration of immature stages, sex ratio, and adult longevity and parasitic capacity of an egg parasitoid, Anagrus nilaparvatae Pang et Wang, of rice brown planthopper, Nilaparvata lugens Stål, were evaluated. Tests of response to plant volatiles using an olfactometer showed that A. nilaparvatae preferred rice plants harboring rice brown planthopper eggs over plants free of rice brown planthopper eggs. However, both the response to plant volatiles and the host selectivity test showed no significant differences in host preference between RBSDV-infected plants and healthy plants when both contained rice brown planthopper eggs. The developmental duration at immature stage of the male A. nilaparvatae in rice brown planthopper eggs on RBSDV-infected rice plants was significantly prolonged, and the parasitic capacity of rice brown planthopper eggs was significantly increased in comparison with the A. nilaparvatae parasite in rice brown planthopper eggs on healthy rice plants. There were no significant differences between RBSDV-infected rice plants and healthy rice plants in other ecological fitness parameters, including the developmental duration of female adults, female percentage, and adult longevity of A. nilaparvatae. PMID:25199055

  14. Complete nucleotide sequence of the Nilaparvata lugens reovirus: a putative member of the genus Fijivirus.

    PubMed

    Nakashima, N; Koizumi, M; Watanabe, H; Noda, H

    1996-01-01

    The nucleotide sequences of all genome segments of the Nilaparvata lugens reovirus (NLRV), which is found in the brown planthopper Nilaparvata lugens, have been determined and some genes have been assigned to structural and functional proteins. The genome of NLRV consists of 28 699 nucleotides and contains at least 11 large open reading frames (ORFs). The genome of NLRV is the largest among viruses of the family Reoviridae reported to date. The deduced amino acid sequence of genome segment S1 contained the major motifs of RNA polymerase and that of S7 had the purine NTP-binding motif. Based on the molecular masses of the deduced proteins and the particle structure of NLRV, segments S1, S3 and S7 were assigned to the 160, 140 and 75 kDa proteins, respectively, that are located in the inner core. It was deduced that S2 codes for the 135 kDa protein (B spike), which is located on the surface of the inner core. Most reported ORFs of rice black streaked dwarf virus (RBSDV), which shares many properties with NLRV, had similarities with the corresponding ORFs of NLRV. An exception was S7 ORF2, which is found in RBSDV but not NLRV and may therefore be involved in multiplication of RBSDV in rice plants. These results and our previous observations indicate that NLRV should be classified in the genus Fijivirus.

  15. Nutritional Signaling Regulates Vitellogenin Synthesis and Egg Development through Juvenile Hormone in Nilaparvata lugens (Stål)

    PubMed Central

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhang, Xin-Yu; Chen, Ming-Xiao; Zhou, Qiang

    2016-01-01

    Insect female reproduction which comprises the synthesis of vitellogenein (Vg) in the fat body and its incorporation into developing oocytes, needs a large amount of energy and food resources. Our previous studies found that juvenile hormone (JH) regulates vitellogenesis in the brown planthopper, Nilaparvata lugens. Here, we report on the role of JH in nutrient-regulated Vg synthesis and egg development. We first cloned the genes coding for juvenile hormone acid methyltransferase (JHAMT) which is involved in JH biosynthesis and methoprene-tolerant (Met) for JH action. Amino acids (AAs) induced the expression of jmtN, while showing no effects on the expression of met using an artificial diet culture system. Reduction in JH biosynthesis or its action by RNA interference (RNAi)-mediated silencing of jmtN or met led to a severe inhibition of AAs-induced Vg synthesis and oocyte maturation, together with lower fecundity. Furthermore, exogenous application of JH III partially restored Vg expression levels in jmtN RNAi females. However, JH III application did not rescue Vg synthesis in these met RNAi insects. Our results show that AAs induce Vg synthesis in the fat body and egg development in concert with JH biosynthesis in Nilaparvata lugens (Stål), rather than through JH action. PMID:26927076

  16. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae).

    PubMed

    Wang, Ying; Fan, Hai-Wei; Huang, Hai-Jian; Xue, Jian; Wu, Wen-Juan; Bao, Yan-Yuan; Xu, Hai-Jun; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2012-09-01

    Chitin synthase (CHS) is an enzyme that is required for chitin formation in insect cuticles and other tissues. In this study, CHS genes from two destructive rice insect pests, the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus, were cloned. Phylogenetic analysis showed that these genes belonged to class CHS1 of the CHS gene family. Most insects possess two CHS genes (CHS1 and CHS2); however, genome and transcriptome searches showed that N. lugens possibly possess only CHS1 in both databases. Two transcript variants (CHS1a and CHS1b) resulting from exclusively alternative splicing (exon 19a or 19b in N. lugens) were identified for each of the two rice planthopper CHS1s. Gene structure comparison using the genomes that are currently sequenced showed that the CHS1 genes in all insects except Acyrthosiphon pisum have two transcript variants. Transcription of NlCHS1a reached its highest level just after molting, whereas NlCHS1b reached its highest expression level 1-2 days before molting. Injection of the N. lugens nymphs with double-strand RNA (dsRNA) of CHS1, CHS1a and CHS1b reduced the corresponding variant transcript levels and exhibited subsequent phenotypes. Silencing of CHS1 and CHS1a resulted in elongated distal wing pads and the "wasp-waisted" or crimpled cuticle phenotypes and eventually died, whereas the phenotypes caused by injection of NlCHS1b dsRNA seem not so obvious although slightly increased mortality was observed. Our results suggest that N. lugens likely lacks CHS2 and CHS1 may be efficient target gene for RNAi-based N. lugens control. PMID:22634163

  17. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae).

    PubMed

    Wang, Ying; Fan, Hai-Wei; Huang, Hai-Jian; Xue, Jian; Wu, Wen-Juan; Bao, Yan-Yuan; Xu, Hai-Jun; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2012-09-01

    Chitin synthase (CHS) is an enzyme that is required for chitin formation in insect cuticles and other tissues. In this study, CHS genes from two destructive rice insect pests, the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus, were cloned. Phylogenetic analysis showed that these genes belonged to class CHS1 of the CHS gene family. Most insects possess two CHS genes (CHS1 and CHS2); however, genome and transcriptome searches showed that N. lugens possibly possess only CHS1 in both databases. Two transcript variants (CHS1a and CHS1b) resulting from exclusively alternative splicing (exon 19a or 19b in N. lugens) were identified for each of the two rice planthopper CHS1s. Gene structure comparison using the genomes that are currently sequenced showed that the CHS1 genes in all insects except Acyrthosiphon pisum have two transcript variants. Transcription of NlCHS1a reached its highest level just after molting, whereas NlCHS1b reached its highest expression level 1-2 days before molting. Injection of the N. lugens nymphs with double-strand RNA (dsRNA) of CHS1, CHS1a and CHS1b reduced the corresponding variant transcript levels and exhibited subsequent phenotypes. Silencing of CHS1 and CHS1a resulted in elongated distal wing pads and the "wasp-waisted" or crimpled cuticle phenotypes and eventually died, whereas the phenotypes caused by injection of NlCHS1b dsRNA seem not so obvious although slightly increased mortality was observed. Our results suggest that N. lugens likely lacks CHS2 and CHS1 may be efficient target gene for RNAi-based N. lugens control.

  18. The Influence of Typhoon Khanun on the Return Migration of Nilaparvata lugens (Stål) in Eastern China

    PubMed Central

    Hu, Gao; Lu, Fang; Lu, Ming-Hong; Liu, Wan-Cai; Xu, Wei-Gen; Jiang, Xue-Hui; Zhai, Bao-Ping

    2013-01-01

    Migratory insects adapt to and exploit the atmospheric environment to complete their migration and maintain their population. However, little is known about the mechanism of insect migration under the influence of extreme weather conditions such as typhoons. A case study was conducted to investigate the effect of typhoon Khanun, which made landfall in the eastern China in Sept. 2005, on the migration of brown planthopper, Nilaparvata lugens (Stål). The migration pathways of N. lugens were reconstructed for the period under the influence of the typhoon by calculating trajectories using the MM5, a mesoscale numerical weather prediction model, and migration events were examined in 7 counties of the Yangtze River Delta region with ancillary information. The light trap catches and field observations indicated that the migration peak of N. lugens coincided with the period when the typhoon made landfall in this region. The trajectory analyses revealed that most emigrations from this region during this period were hampered or ended in short distances. The sources of the light-trap catches were mainly located the nearby regions of each station (i.e. mostly less than 100 km away, with a few exceeding 200 km but all less than 300 km). This disrupted emigration was very different from the usual N. lugens migration which would bring them to Hunan, Jiangxi, and southern Anhui from this region at this time of year. This study revealed that the return migration of N. lugens was suppressed by the typhoon Khanun, leading to populations remaining high in the Yangtze River Delta and exacerbating later outbreaks. PMID:23468954

  19. The influence of Typhoon Khanun on the return migration of Nilaparvata lugens (Stål) in eastern China.

    PubMed

    Hu, Gao; Lu, Fang; Lu, Ming-Hong; Liu, Wan-Cai; Xu, Wei-Gen; Jiang, Xue-Hui; Zhai, Bao-Ping

    2013-01-01

    Migratory insects adapt to and exploit the atmospheric environment to complete their migration and maintain their population. However, little is known about the mechanism of insect migration under the influence of extreme weather conditions such as typhoons. A case study was conducted to investigate the effect of typhoon Khanun, which made landfall in the eastern China in Sept. 2005, on the migration of brown planthopper, Nilaparvata lugens (Stål). The migration pathways of N. lugens were reconstructed for the period under the influence of the typhoon by calculating trajectories using the MM5, a mesoscale numerical weather prediction model, and migration events were examined in 7 counties of the Yangtze River Delta region with ancillary information. The light trap catches and field observations indicated that the migration peak of N. lugens coincided with the period when the typhoon made landfall in this region. The trajectory analyses revealed that most emigrations from this region during this period were hampered or ended in short distances. The sources of the light-trap catches were mainly located the nearby regions of each station (i.e. mostly less than 100 km away, with a few exceeding 200 km but all less than 300 km). This disrupted emigration was very different from the usual N. lugens migration which would bring them to Hunan, Jiangxi, and southern Anhui from this region at this time of year. This study revealed that the return migration of N. lugens was suppressed by the typhoon Khanun, leading to populations remaining high in the Yangtze River Delta and exacerbating later outbreaks. PMID:23468954

  20. The influence of Typhoon Khanun on the return migration of Nilaparvata lugens (Stål) in eastern China.

    PubMed

    Hu, Gao; Lu, Fang; Lu, Ming-Hong; Liu, Wan-Cai; Xu, Wei-Gen; Jiang, Xue-Hui; Zhai, Bao-Ping

    2013-01-01

    Migratory insects adapt to and exploit the atmospheric environment to complete their migration and maintain their population. However, little is known about the mechanism of insect migration under the influence of extreme weather conditions such as typhoons. A case study was conducted to investigate the effect of typhoon Khanun, which made landfall in the eastern China in Sept. 2005, on the migration of brown planthopper, Nilaparvata lugens (Stål). The migration pathways of N. lugens were reconstructed for the period under the influence of the typhoon by calculating trajectories using the MM5, a mesoscale numerical weather prediction model, and migration events were examined in 7 counties of the Yangtze River Delta region with ancillary information. The light trap catches and field observations indicated that the migration peak of N. lugens coincided with the period when the typhoon made landfall in this region. The trajectory analyses revealed that most emigrations from this region during this period were hampered or ended in short distances. The sources of the light-trap catches were mainly located the nearby regions of each station (i.e. mostly less than 100 km away, with a few exceeding 200 km but all less than 300 km). This disrupted emigration was very different from the usual N. lugens migration which would bring them to Hunan, Jiangxi, and southern Anhui from this region at this time of year. This study revealed that the return migration of N. lugens was suppressed by the typhoon Khanun, leading to populations remaining high in the Yangtze River Delta and exacerbating later outbreaks.

  1. Characterization of actin and tubulin promoters from two sap-sucking pests, Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler).

    PubMed

    Qian, Nannan; Zheng, Pengli; Wang, Yu; Pan, Shenyuan; Li, Yi; Zhang, Chuanxi; Chen, Jianguo; Teng, Junlin

    2016-02-19

    The brown planthopper, Nilaparvata lugens (N. lugens, Hemiptera: Delphacidae), and the green rice leafhopper, Nephotettix cincticeps (N. cincticeps, Hemiptera: Cicadellidae), two sap-sucking feeders, have caused many destructive agricultural disasters in East Asia, as they can bring diseases like 'hopper burn' and transmit plant viruses. Recently, continuously-cultured cell lines from both insects have been reported. However, exogenous protein expression systems have not yet been established. Here, we identified thirteen tubulin genes and three actin genes from N. lugens, and one tubulin gene and two actin genes from N. cincticeps. Furthermore, putative promoter regions of these genes were analyzed by bioinformatic approaches and 5'-RACE assay, and the promoter strength was evaluated by driving the enhanced green fluorescent protein expression in three insect cell lines, S2, Sf9, and BmN. Finally, we identified three effective promoters (Nl_αTub1 promoter, Nl_act3 promoter, and Nc_act1 promoter) among all candidates we screened. The Nc_act1 promoter showed the strongest activity, while the Nl_αTub1 promoter only worked in S2 cells. In conclusion, we identified and functionally characterized three native promoters from N. lugens and N.cincticeps, which would facilitate the establishment of exogenous protein expression systems suitable for these two insect pests.

  2. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. PMID:27521914

  3. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    PubMed Central

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism. PMID:27721443

  4. A Comparative Study on the Population Fitness of Three Strains of Nilaparvata lugens (Hemiptera: Delphacidae) Differ in Eye Color-Related Genes.

    PubMed

    Liu, Shuhua; Yang, Baojun; Luo, Ju; Tang, Jian; Wu, Jincai

    2015-08-01

    The brown planthopper, Nilaparvata lugens (Stål), is a destructive insect pest on rice throughout Asia. As a visible genetic marker, red eye mutant colony of brown planthopper is a valuable material. Here, we established the near-isogenic lines, NIL-BB and NIL-rr, through mating red eye females to brown eye brothers for eight successive generations. Biological experiments showed that NIL-BB had big fitness cost; however, NIL-rr had comparable survival and fertility parameters with BB, a normal laboratory brown planthopper strain. Significantly lower number eggs per female and egg hatchability were the key factors resulting in big fitness cost of NIL-BB. The population trend indexes of BB, NIL-rr, and NIL-BB were 52.18, 43.80, and 4.19, respectively. Real-time PCR study suggested that the poorer fertility of NIL-BB was not mediated by the differential expression of genes relating to oogenesis. The stronger fitness of NIL-rr compared with NIL-BB may be caused by the eye mutant gene or its closely linked genes having stronger compensation ability for reproduction. The comparable fitness of NIL-rr with BB indicated that NIL-rr may be used in field research. The NIL-BB strain with significantly declined fecundity and survival ability can be used as study model for the signal pathways relating to fecundity.

  5. Transmission Electron Microscopy (TEM) Observations of Female Oocytes From Nilaparvata lugens (Hemiptera: Delphacidae): Antibiotic Jinggangmycin (JGM)-Induced Stimulation of Reproduction and Associated Changes in Hormone Levels

    PubMed Central

    You, Lin-Lin; Wu, You; Ding, Jun; Ge, Lin-Quan; Wu, Jin-Cai

    2016-01-01

    Previous studies have demonstrated that the agricultural antibiotic jinggangmycin (JGM) stimulates reproduction in the brown planthopper Nilaparvata lugens Stål and that the stimulation of brown planthopper reproduction induced by JGM is regulated by the fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) genes. However, a key issue in the stimulation of reproduction induced by pesticides involves the growth and development of oocytes. Therefore, the present study investigated oocyte changes via transmission electron microscopy (TEM) and changes in hormone levels (juvenile hormones (JH) and 20-hydroxyecdysone (20 E)) in JGM-treated females. TEM observations showed that the size of the lipid droplets in the oocytes of JGM-treated females, compared with those in the oocytes of the control females, significantly reduced by 32.6 and 29.8% at 1 and 2 d after emergence (1 and 2 DAE), respectively. In addition, the JH levels of JGM-treated females at 1 and 2 DAE were increased by 49.7 and 45.7%, respectively, whereas 20 E levels decreased by 36.0 and 30.0%, respectively. We conclude that JGM treatments lead to substantial changes in lipid metabolism, which are directly and indirectly related to stimulation of reproduction of brown planthopper together with our previous findings. PMID:27247297

  6. Identification and Function Analysis of enolase Gene NlEno1 from Nilaparvata lugens (Stål) (Hemiptera:Delphacidae)

    PubMed Central

    Wang, Wei-Xia; Li, Kai-Long; Chen, Yang; Lai, Feng-Xiang; Fu, Qiang

    2015-01-01

    The enolase [EC 4.2.1.11] is an essential enzyme in the glycolytic pathway catalyzing the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP). In this study, a full-length cDNA encoding α-enolase was cloned from rice brown planthopper (Nilaparvata lugens) and is provisionally designated as NlEno1. The cDNA sequence of NlEno1 was 1,851 bp with an open reading frame (ORF) of 1,305 bp and encoding 434 amino acids. The deduced protein shares high identity of 80–87% with ENO1-like protein from Hemiptera, Diptera, and Lepidoptera speices. The NlEno1 showed the highest mRNA expression level in hemolymph, followed by fat body, salivary gland, ovaries and egg, and showed trace mRNA levels in testis. The mRNA of NlEno1 showed up-regulated level in virulent N. lugens population Mudgo, IR56 and IR42 when compared with TN1 population. Injection of double-stranded RNA (dsRNA) of NlEno1 into the adults significantly down-regulated the NlEno1 mRNA level along with decreased eggs and offspring. Moreover, injection of NlEno1-dsRNA decreased mRNA level of Vitellogenin (Vg) gene. These results showed that the NlEno1, as a key glycolytic enzyme, may play roles in regulation of fecundity and adaptation of N. lugens to resistant rice varieties. PMID:26056319

  7. Structural characterization of the catalytic site of a Nilaparvata lugens delta-class glutathione transferase.

    PubMed

    Yamamoto, Kohji; Higashiura, Akifumi; Hossain, Md Tofazzal; Yamada, Naotaka; Shiotsuki, Takahiro; Nakagawa, Atsushi

    2015-01-15

    Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.

  8. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål

    PubMed Central

    Ge, Lin-Quan; Xia, Ting; Huang, Bo; Song, Qi-Sheng; Zhang, Hong-Wei; Stanley, David; Yang, Guo-Qing; Wu, Jin-Cai

    2016-01-01

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly increased fecundity (as numbers of eggs laid), relative to females mated with untreated males. Because SPATA5 acts in mammalian sperm development and is expressed in testes, we posed the hypothesis that NlSPATA5 occurs in BPH seminal fluid and it operates in fecundity via mating. We tested the hypothesis by investigating the influence of suppressing NlSPATA5 expression in BPH males on fecundity. Reduced expression of NlSPATA5 led to decreased male accessory gland protein content and reproductive system development compared to controls. These changes in males led to prolonged pre-oviposition periods and decreased fecundity in females. For both genders, we recorded no difference in the body weight, oviposition periods, and longevity compared to controls. NlSPATA5 suppression in males also led to decreased fat body and ovarian protein content, yeast-like symbionts abundance and ovarian development as well as vitellogenin gene expression in their mating partners. We infer that increased NlSPATA5 expression may be one molecular mechanism of tzp-driven reproduction and population increases in BPH. PMID:27305948

  9. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål.

    PubMed

    Ge, Lin-Quan; Xia, Ting; Huang, Bo; Song, Qi-Sheng; Zhang, Hong-Wei; Stanley, David; Yang, Guo-Qing; Wu, Jin-Cai

    2016-01-01

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly increased fecundity (as numbers of eggs laid), relative to females mated with untreated males. Because SPATA5 acts in mammalian sperm development and is expressed in testes, we posed the hypothesis that NlSPATA5 occurs in BPH seminal fluid and it operates in fecundity via mating. We tested the hypothesis by investigating the influence of suppressing NlSPATA5 expression in BPH males on fecundity. Reduced expression of NlSPATA5 led to decreased male accessory gland protein content and reproductive system development compared to controls. These changes in males led to prolonged pre-oviposition periods and decreased fecundity in females. For both genders, we recorded no difference in the body weight, oviposition periods, and longevity compared to controls. NlSPATA5 suppression in males also led to decreased fat body and ovarian protein content, yeast-like symbionts abundance and ovarian development as well as vitellogenin gene expression in their mating partners. We infer that increased NlSPATA5 expression may be one molecular mechanism of tzp-driven reproduction and population increases in BPH. PMID:27305948

  10. Influence of pymetrozine on feeding behaviors of three rice planthoppers and a rice leafhopper using electrical penetration graphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pymetrozine reportedly inhibited feeding of plant sap-sucking insects, such as aphids and brown planthopper (BPH), Nilaparvata lugens. By using electrical penetration graph (EPG), this study was conducted to investigate any differential effects of pymetrozine on the feeding behaviors of four major r...

  11. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    PubMed

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities. PMID:24563293

  12. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-01-01

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens. PMID:27043527

  13. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål)

    PubMed Central

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-01-01

    The “target of rapamycin” (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens. PMID:27043527

  14. Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes.

    PubMed

    Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin

    2005-04-01

    Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants.

  15. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  16. Molecular cloning and expression profile of an ATP-binding cassette (ABC) transporter gene from the hemipteran insect Nilaparvata lugens.

    PubMed

    Zha, W J; Li, S H; Zhou, L; Chen, Z J; Liu, K; Yang, G C; Hu, G; He, G C; You, A Q

    2015-03-30

    The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. In insects, ABC transporters have important functions in the transport of molecules, and are also involved in insecticide resistance, metabolism, and development. In this study, the Nilaparvata lugens Stal (Hemiptera: Delphacidae) ABCG (NlABCG) gene was identified and characterized. The complete mRNA sequence of NlABCG was 2608-bp long, with an open reading frame of 2064 bp encoding a protein comprised of 687 amino acids. The conserved regions include three N-glycosylation and 34 phosphorylation sites, as well as seven transmembrane domains. The amino acid identity with the closely related species Acyrthosiphon pisum was 42.8%. Developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the NlABCG transcript was expressed at all developmental stages of N. lugens. The lowest expression of NlABCG was in the 1st instar, and levels increased with larval growth. The transcript profiles of NlABCG were analyzed in various tissues from a 5th instar nymph, and the highest expression was observed in the midgut. These results suggest that the sequence, characteristics, and expression of NlABCG are highly conserved, and basic information is provided for its functional analysis.

  17. [Sublethal effect of chlorantraniliprole on the experimental population of non-target insect Nilaparvata lugens (Stål)].

    PubMed

    Yang, Hong; Wang, Zhao; Jing, Dao-Chao

    2013-02-01

    Chlorantraniliprole is a newly developed insecticide targeting at lepidopteron pests in rice fields, whereas Nilaparvata lugens (Stål) is one of the important non-target pests of the insecticide. In this paper, the rice stem dipping method was adopted to test the toxicity of chlorantraniliprole to the 3rd instar nymphs and adults of N. lugens. The LC50 of chlorantraniliprole to the 3rd instar nymphs and adults was 26.85 and 35.53 mg.L-1, respectively. When the 3rd instar nymph was exposed to the LC10 and LC25 of chlorantraniliprole, the life span of the survived female adults was not significantly affected. However, when treated with LC25 dosage, the fecundity of the survived female adults was significantly reduced by 45.6 eggs. After the 3rd instar nymph was treated with the sublethal doses LC10 and LC25 of chlorantraniliprole, the fecundity of the F1, females were decreased significantly by 43.5 and 72.9 eggs, and the life span of the F1 females was shortened by 1.35 and 2.87 d, respectively. The developmental periods of all the instars of F, generation were delayed after treated with the sublethal doses LC10 and LC25 of chlorantraniliprole. The intrinsic rate of increase (rm) was decreased by 12.8% and 23.5%, and the net reproductive rate (R0) was decreased by 37.4% and 68.7%, respectively. Meanwhile, the mean generation time (T) and population doubling time (t) were delayed. Overall, the sublethal doses of chlorantraniliprole could suppress the population growth of N. lugens.

  18. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  19. Effects of exogenous plant growth regulator abscisic acid-induced resistance in rice on the expression of vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) adult females.

    PubMed

    Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew

    2014-01-01

    Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects.

  20. Ran Involved in the Development and Reproduction Is a Potential Target for RNA-Interference-Based Pest Management in Nilaparvata lugens

    PubMed Central

    Wang, Wei-Xia; Lai, Feng-Xiang; Fu, Qiang

    2015-01-01

    Ran (RanGTPase) in insects participates in the 20-hydroxyecdysone signal transduction pathway in which downstream genes, FTZ-F1, Krüppel-homolog 1 (Kr-h1) and vitellogenin, are involved. A putative Ran gene (NlRan) was cloned from Nilaparvata lugens, a destructive phloem-feeding pest of rice. NlRan has the typical Ran primary structure features that are conserved in insects. NlRan showed higher mRNA abundance immediately after molting and peaked in newly emerged female adults. Among the examined tissues ovary had the highest transcript level, followed by fat body, midgut and integument, and legs. Three days after dsNlRan injection the NlRan mRNA abundance in the third-, fourth-, and fifth-instar nymphs was decreased by 94.3%, 98.4% and 97.0%, respectively. NlFTZ-F1 expression levels in treated third- and fourth-instar nymphs were reduced by 89.3% and 23.8%, respectively. In contrast, NlKr-h1 mRNA levels were up-regulated by 67.5 and 1.5 folds, respectively. NlRan knockdown significantly decreased the body weights, delayed development, and killed >85% of the nymphs at day seven. Two apparent phenotypic defects were observed: (1) Extended body form, and failed to molt; (2) The cuticle at the notum was split open but cannot completely shed off. The newly emerged female adults from dsNlRan injected fifth-instar nymphs showed lower levels of NlRan and vitellogenin, lower weight gain and honeydew excretion comparing with the blank control, and no offspring. Those results suggest that NlRan encodes a functional protein that was involved in development and reproduction. The study established proof of concept that NlRan could serve as a target for dsRNA-based pesticides for N. lugens control. PMID:26554926

  1. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant

    PubMed Central

    Huang, Hai-Jian; Bao, Yan-Yuan; Lao, Shu-Hua; Huang, Xiao-Hui; Ye, Yi-Zhou; Wu, Jian-Xiang; Xu, Hai-Jun; Zhou, Xue-Ping; Zhang, Chuan-Xi

    2015-01-01

    Most plant viruses that seriously damage agricultural crops are transmitted by insects. However, the mechanisms enabling virus transmission by insect vectors are poorly understood. The brown planthopper (Nilaparvata lugens) is one of the most serious rice pests, causing extensive damage to rice plants by sucking the phloem sap and transmitting viruses, including Rice ragged stunt virus (RRSV). In this study, we investigated the mechanisms of RRSV transmission from its insect vector to the rice plant in vivo using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and RNA interference technology. RRSV induced apoptosis in the salivary gland cells of its insect vector, N. lugens. The RRSV-induced apoptosis was regulated through a caspase-dependent manner, and inhibition of the expression of N. lugens caspase-1 genes significantly interfered with virus transmission. Our findings establish a link between virus-associated apoptosis and virus transmission from the insect vector to the host plant. PMID:26073458

  2. Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanism.

    PubMed

    Bullangpoti, Vasakorn; Visetson, Suraphon; Milne, John; Milne, Manthana; Sudthongkong, Chaiwud; Pronbanlualap, Somchai

    2007-01-01

    The brown planthopper, Nilaparvato lugens Stat. (BPH) is the most devastating insect pest in rice fields. Outbreaks of BPH, which are resistant to many synthetic insecticides, can cause total rice crop loss. This research was done to evaluate the efficiency of extracts of mangosteen pericarp (Garcina mangostana L.) as an alternative control of BPH Thailand strain. Topical spraying was applied to various stages of nymphal and adult BPH to determine toxicity. An ethanol extract of mangosteen pericarp extract gave the best control of BPH, with LC50 of 4.5% w/v (r2 = 0.95) with 3rd instar BPH nymphs when compared with the other solvents, hexane, acetone and dichloromethane. The active compound, alpha-mangostin showed an LC50 of 5.44%w/v (r2 = 0.88). The toxicity of this extract was less than that of Imidacloprid which showed an LC50 of 0.0042% w/v (r2 = 0.99). The toxicity to non-target organisms was determined. This extract showed toxicity to guppies ((LC50 = 2.53 and 4.27 ppm for females and males, respectively; r2 = 0.97 and 0.97, respectively), bees (LC50 = 4.38% w/v, r2 = 0.95) and mice (no oral acute toxicity and no dermal inflammation but showed eye irritation in 1 day which became normal within 3 days). In vitro detoxification enzyme activities of carboxylesterase, acetylcholinesterase and glutathione-s-transferase from BPH after 24 hours exposure were also observed. Carboxylesterase showed stronger activity than other enzymes. Toxicity in terms of LC50 values of both the extract and imidacloprid treatments increased in each generation. The LC50 values for each generation were 4.22-6.67 after sequential spraying. After the ethanol extract was kept at 4 degrees C, room temperature and 55 degrees C for 3 months, the quantity of alpha-mangostin and the BPH control efficiency was lower at 55 degrees C than those for other temperatures. The results from this research indicate that mangosteen pericarp extract can be an alternative insecticide for the control of BPH

  3. Diversity of planthoppers associated with the winter rice agroecosystems in southern Yunnan, China.

    PubMed

    Hu, Shao-ji; Fu, Da-ying; Liu, Xiao-jun; Zhao, Tao; Han, Zhong-liang; Lü, Jian-ping; Wan, Hai-long; Ye, Hui

    2012-01-01

    A field survey of the overwintering planthoppers (Hemiptera: Delphacidae) associated with the rice agroecosystems in southern Yunnan was carried out during January-February in 2010 and 2011. 22 species of planthoppers were collected and identified, with one species representing the subfamily Stenocraninae and the other 21 species in Delphacinae. Nycheuma cognatum (Muir), Peregrinus maidis (Ashmead), and Pseudosogata vatrenus (Fennah) were new provincial records for Yunnan. The pest species, Sogatella furcifera (Horváth), Nilaparvata lugens (Stål), and Laodelphax striatellus (Fallén) were able to overwinter in part of the survey range. 13 species were listed to be of economic importance. Abandoned rice paddies with dense Poaceae grasses (Poaceae) were the most favorable overwintering habitat. The survey range was divided into four regions and five areas based on natural geographical characteristics. The study demonstrated that winter temperature differentiation, terrains, and habitat differences were three factors affecting planthopper diversity. Planthopper species diversity showed a reductive trend from south to north and reflected a gradient of more severe winter temperatures. In addition, planthopper diversity was influenced by smaller-scale differences in terrain and habitat, as evidenced by greater diversity in the valleys and low-altitude areas as compared to mid-mountain and Karst plain areas. PMID:22958347

  4. Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera

    PubMed Central

    2014-01-01

    Background Wingless gene (Wg) plays a fundamental role in regulating the segment polarity and wing imaginal discs of insects. The rice planthoppers have an obvious wing dimorphism, and the long- and short-winged forms exist normally in natural populations. However, the molecular characteristics and functions of Wg in rice planthoppers are poorly understood, and the relationship between expression level of Wg and wing dimorphism has not been clarified. Results In this study, wingless gene (Wg) was cloned from three species of rice planthopper, Sogatella furcifera, Laodelphgax striatellus and Nilaparvata lugens, and its characteristics and role in determining the wing dimorphism of S. furcifera were explored. The results showed that only three different amino acid residuals encoded by Wg were found between S. furcifera and L. striatellus, but more than 10 residuals in N. lugens were different with L. striatellus and S. furcifera. The sequences of amino acids encoded by Wg showed a high degree of identity between these three species of rice planthopper that belong to the same family, Delphacidae. The macropterous and brachypterous lineages of S. furcifera were established by selection experiment. The Wg mRNA expression levels in nymphs were significantly higher in the macropterous lineage than in the brachypterous lineage of S. furcifera. In macropterous adults, the Wg was expressed mainly in wings and legs, and less in body segments. Ingestion of 100 ng/μL double-stranded RNA of Wg from second instar nymphs led to a significant decrease of expression level of Wg during nymphal stage and of body weight of subsequent adults. Moreover, RNAi of Wg resulted in significantly shorter and deformative wings, including shrunken and unfolded wings. Conclusion Wg has high degree of identity among three species of rice planthopper. Wg is involved in the development and growth of wings in S. furcifera. Expression level of Wg during the nymphal stage manipulates the size and

  5. Will Climate Change Affect Outbreak Patterns of Planthoppers in Bangladesh?

    PubMed Central

    Ali, M. P.; Huang, Dingcheng; Nachman, G.; Ahmed, Nur; Begum, Mahfuz Ara; Rabbi, M. F.

    2014-01-01

    Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper (Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and precipitation) and the abundance of brown planthopper (BPH) during 1998–2007. Data show that BPH has become significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH varied considerably between months within a year which is attributed to seasonal factors, including the availability of suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing strategies to manage planthoppers outbreaks. PMID:24618677

  6. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference.

    PubMed

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-01-01

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice. PMID:27328657

  7. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference

    PubMed Central

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-01-01

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice. PMID:27328657

  8. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia.

    PubMed

    Zhou, Guohui; Xu, Donglin; Xu, Dagao; Zhang, Maoxin

    2013-09-09

    Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice-virus-insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  9. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia.

    PubMed

    Zhou, Guohui; Xu, Donglin; Xu, Dagao; Zhang, Maoxin

    2013-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice-virus-insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China. PMID:24058362

  10. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper.

    PubMed

    Rao, K V; Rathore, K S; Hodges, T K; Fu, X; Stoger, E; Sudhakar, D; Williams, S; Christou, P; Bharathi, M; Bown, D P; Powell, K S; Spence, J; Gatehouse, A M; Gatehouse, J A

    1998-08-01

    Snowdrop lectin (Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper (Nilaparvata lugens; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes 'hopper burn', as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice (Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.

  11. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions.

    PubMed

    Kobayashi, Tetsuya

    2016-01-01

    Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level. PMID:26668110

  12. Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle.

    PubMed

    Fan, Hai-Wei; Noda, Hiroaki; Xie, Hong-Qing; Suetsugu, Yoshitaka; Zhu, Qian-Hua; Zhang, Chuan-Xi

    2015-09-02

    A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stål), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change.

  13. Genomic Analysis of an Ascomycete Fungus from the Rice Planthopper Reveals How It Adapts to an Endosymbiotic Lifestyle

    PubMed Central

    Fan, Hai-Wei; Noda, Hiroaki; Xie, Hong-Qing; Suetsugu, Yoshitaka; Zhu, Qian-Hua; Zhang, Chuan-Xi

    2015-01-01

    A number of sap-sucking insects harbor endosymbionts, which are thought to play an important role in the development of their hosts. One of the most important rice pests, the brown planthopper (BPH), Nilaparvata lugens (Stål), harbors an obligatory yeast-like symbiont (YLS) that cannot be cultured in vitro. Genomic information on this YLS would be useful to better understand its evolution. In this study, we performed genome sequencing of the YLS using both 454 and Illumina approaches, generating a draft genome that shows a slightly smaller genome size and relatively higher GC content than most ascomycete fungi. A phylogenomic analysis of the YLS supported its close relationship with insect pathogens. We analyzed YLS-specific genes and the categories of genes that are likely to have changed in the YLS during its evolution. The loss of mating type locus demonstrated in the YLS sheds light on the evolution of eukaryotic symbionts. This information about the YLS genome provides a helpful guide for further understanding endosymbiotic associations in hemiptera and the symbiotic replacement of ancient bacteria with a multifunctional YLS seems to have been a successful change. PMID:26338189

  14. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia

    PubMed Central

    Otuka, Akira

    2013-01-01

    This review examines recent studies of the migration of three rice planthoppers, Laodelphax striatellus, Sogatella furcifera, and Nilaparvata lugens, in East Asia. Laodelphax striatellus has recently broken out in Jiangsu province, eastern China. The population density in the province started to increase in the early 2000s and peaked in 2004. In 2005, Rice stripe virus (RSV) viruliferous rate of L. striatellus peaked at 31.3%. Since then, rice stripe disease spread severely across the whole province. Due to the migration of the RSV vectors, the rice stripe disease spread to neighboring countries Japan and Korea. An overseas migration of L. striatellus that occurred in 2008 was analyzed, when a slow-moving cold vortex, a type of low pressure system, reached western Japan from Jiangsu, carrying the insects into Japan. Subsequently the rice stripe diseases struck these areas in Japan severely. In Korea, similar situations occurred in 2009, 2011, and 2012. Their migration sources were also estimated to be in Jiangsu by backward trajectory analysis. Rice black-streaked dwarf virus, whose vector is L. striatellus, has recently re-emerged in eastern China, and the evidence for overseas migrations of the virus, just like the RSV’s migrations, has been given. A method of predicting the overseas migration of L. striatellus has been developed by Japanese, Chinese, and Korean institutes. An evaluation of the prediction showed that this method properly predicted migration events that occurred in East Asia from 2008 to 2011. Southern rice black-streaked dwarf virus (SRBSDV) was first found in Guangdong province. Its vector is S. furcifera. An outbreak of SRBSDV occurred in southern China in 2009 and spread to Vietnam the same year. This disease and virus were also found in Japan in 2010. The epidemic triggered many migration studies to investigate concrete spring-summer migration routes in China, and the addition of migration sources for early arrivals in Guangdong and Guangxi

  15. Application of Brown Planthopper Salivary Gland Extract to Rice Plants Induces Systemic Host mRNA Patterns Associated with Nutrient Remobilization

    PubMed Central

    Petrova, Adelina; Smith, Charles Michael

    2015-01-01

    Insect saliva plays an important role in modulation of plant-insect interactions. Although this area of research has generated much attention in recent years, mechanisms of how saliva affects plant responses remain poorly understood. To address this void, the present study investigated the impact of the brown planthopper (Nilaparvata lugens, Stål; hereafter BPH) salivary gland extract (SGE) on rice (Oryza sativa) systemic responses at the mRNA level. Differentially expressed rice mRNAs were generated through suppression subtractive hybridization (SSH) and classified into six functional groups. Those with the most representatives were from the primary metabolism (28%), signaling-defense (22%) and transcription-translation-regulation group (16%). To validate SSH library results, six genes were further analyzed by One-Step Real-Time Reverse Transcriptase-PCR. Five of these genes exhibited up-regulation levels of more than 150% of those in the control group in at least one post-application time point. Results of this study allow assignment of at least two putative roles of BPH saliva: First, application of SGE induces immediate systemic responses at the mRNA level, suggesting that altering of the rice transcriptome at sites distant to hoppers feeding locations may play an important role in BPH-rice interactions. Second, 58% of SGE-responsive up-regulated genes have a secondary function associated with senescence, a process characterized by remobilization of nutrients. This suggests that BPH salivary secretions may reprogram the rice transcriptome for nutritional enhancement. When these findings are translated onto ‘whole plant’ scale, they indicate that BPH saliva may play the ‘wise investment’ role of ‘minimum input today, maximum output tomorrow’. PMID:26641488

  16. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  17. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  18. Electrical penetration graphic evidence of pymetrozine toxicity to the rice brown planthopperis by inibition of phloem feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Pymetrozine is a valuable novel insecticide for control of sucking insects including the brown planthopper Nilaparvata lugens (Stål), one of the most serious pests on rice. This study was conducted to elucidate action mechanisms of pymetrozine on the feeding behavior of the planthopper. ...

  19. No cross-resistance between imidacloprid and pymetrozine in the brown planthopper: status and mechanisms.

    PubMed

    Yang, Yuanxue; Huang, Lixin; Wang, Yunchao; Zhang, Yixi; Fang, Siqi; Liu, Zewen

    2016-06-01

    Cross-resistance between insecticides, especially from different groups, can be extremely unpredictable, and it has been a serious concern in pest control. Pymetrozine has been widely used to control Nilaparvata lugens with the suspension of imidacloprid for the resistance, and N. lugens has showed obvious pymetrozine resistance in recent years. To investigate the possible cross-resistance between imidacloprid and pymetrozine is very important to avoid the adverse effects on resistance development and pest control. Bioassays of two field populations in five consecutive years showed that imidacloprid resistance decreased greatly, while pymetrozine resistance increased significantly. The synergist piperonyl butoxide (PBO) could synergize both imidacloprid and pymetrozine in all field populations, which indicated the importance of P450s in the resistance to two insecticides. Imidacloprid resistance was reported to be associated with two P450s, CYP6AY1 and CYP6ER1, which could metabolize imidacloprid efficiently. However, the recombinant proteins of these two P450s did not show any enzymatic activity to metabolize pymetrozine. The pymetrozine susceptibility did not change when CYP6AY1 and CYP6ER1 mRNA levels were reduced by RNA interference (RNAi), although which could obviously decrease imidacloprid resistance. In vivo and in vitro studies provided evidences to demonstrate that there was no cross-resistance between imidacloprid and pymetrozine in N. lugens, which was different from the findings in Bemisia tabaci. PMID:27155488

  20. Changes in Endosymbiotic Bacteria of Brown Planthoppers During the Process of Adaptation to Different Resistant Rice Varieties.

    PubMed

    Hong-Xing, Xu; Xu-Song, Zheng; Ya-Jun, Yang; Jun-Ce, Tian; Qiang, Fu; Gong-Yin, Ye; Zhong-Xian, Lu

    2015-06-01

    The specific primers of five species of endosymbiotic bacteria were designed to determine their numbers in three virulent populations of brown planthopper, Nilapavata lugens Stål, and to assess changes during adaptation to different resistant varieties using fluorescent quantitative PCR. The results showed that Chryseobacterium was the dominant bacteria in all three populations of brown planthopper, followed by Acinetobacter in TN1 population, Arsenophonus and Serratia in Mudgo population, and Arthrobacter and Acinetobacter in ASD7 population. When the TN1 population of brown planthopper was transferred to ASD7 (with resistant gene bph2) rice plants, Chryseobacterium was still the dominant bacteria, but the originally subdominant Acinetobacter declined to a level that was not significantly different from that of other endosymbiotic bacteria. After they were transferred to Mudgo (with resistant gene Bph1), Serratia and Arsenophonus increased significantly and became the dominant bacteria. However, they declined to a level that was not significantly different from that of the three other species after two generations. When ASD7 and Mudgo populations of brown planthopper were transferred to the susceptible variety TN1, the community of endosymbiotic bacteria in the ASD7 population of brown planthopper showed no significant changes. However, the numbers of Acinetobacter and Arthrobacter in the Mudgo population of brown planthopper exhibited a transient increase and returned to their original levels after two generations. After the Mudgo population of brown planthopper was transferred to ASD7 rice plants, the quantity of endosymbiotic bacteria fluctuated, but the bacterial structure did not change significantly. However, after the ASD7 population of brown planthopper was transferred to the Mudgo rice plants, the bacterial structure changed significantly. Serratia and Arsenophonus increased significantly and became dominant. Although Serratia and Arsenophonus decreased

  1. Changes in Endosymbiotic Bacteria of Brown Planthoppers During the Process of Adaptation to Different Resistant Rice Varieties.

    PubMed

    Hong-Xing, Xu; Xu-Song, Zheng; Ya-Jun, Yang; Jun-Ce, Tian; Qiang, Fu; Gong-Yin, Ye; Zhong-Xian, Lu

    2015-06-01

    The specific primers of five species of endosymbiotic bacteria were designed to determine their numbers in three virulent populations of brown planthopper, Nilapavata lugens Stål, and to assess changes during adaptation to different resistant varieties using fluorescent quantitative PCR. The results showed that Chryseobacterium was the dominant bacteria in all three populations of brown planthopper, followed by Acinetobacter in TN1 population, Arsenophonus and Serratia in Mudgo population, and Arthrobacter and Acinetobacter in ASD7 population. When the TN1 population of brown planthopper was transferred to ASD7 (with resistant gene bph2) rice plants, Chryseobacterium was still the dominant bacteria, but the originally subdominant Acinetobacter declined to a level that was not significantly different from that of other endosymbiotic bacteria. After they were transferred to Mudgo (with resistant gene Bph1), Serratia and Arsenophonus increased significantly and became the dominant bacteria. However, they declined to a level that was not significantly different from that of the three other species after two generations. When ASD7 and Mudgo populations of brown planthopper were transferred to the susceptible variety TN1, the community of endosymbiotic bacteria in the ASD7 population of brown planthopper showed no significant changes. However, the numbers of Acinetobacter and Arthrobacter in the Mudgo population of brown planthopper exhibited a transient increase and returned to their original levels after two generations. After the Mudgo population of brown planthopper was transferred to ASD7 rice plants, the quantity of endosymbiotic bacteria fluctuated, but the bacterial structure did not change significantly. However, after the ASD7 population of brown planthopper was transferred to the Mudgo rice plants, the bacterial structure changed significantly. Serratia and Arsenophonus increased significantly and became dominant. Although Serratia and Arsenophonus decreased

  2. Bt Rice Expressing Cry2Aa Does Not Harm Cyrtorhinus lividipennis, a Main Predator of the Nontarget Herbivore Nilapavarta lugens

    PubMed Central

    Han, Yu; Meng, Jiarong; Chen, Jie; Cai, Wanlun; Wang, Yu; Zhao, Jing; He, Yueping; Feng, Yanni; Hua, Hongxia

    2014-01-01

    T2A-1 is a newly developed transgenic rice that expresses a synthesized cry2Aa gene driven by the maize ubiquitin promoter. T2A-1 exhibits high resistance against lepidopteran pests of rice. The brown planthopper, Nilapavarta lugens (Stål), is a main nontarget sap-sucking insect pest of rice, and Cyrtorhinus lividipennis (Reuter) is the major predator of the eggs and young nymphs of planthoppers. As C. lividipennis may expose to the Cry2Aa protein via N. lugens, it is therefore essential to assess the potential effects of transgenic cry2Aa rice on this predator. In the present study, three experiments were conducted to evaluate the ecological risk of transgenic cry2Aa rice to C. lividipennis: (1) a direct feeding experiment in which C. lividipennis was fed an artificial diet containing Cry2Aa at the dose of 10-time higher than that it may encounter in the realistic field condition; (2) a tritrophic experiment in which the Cry2Aa protein was delivered to C. lividipennis indirectly through prey eggs or nymphs; (3) a realistic field experiment in which the population dynamics of C. lividipennis were investigated using vacuum-suction. Both direct exposure to elevated doses of the Cry2Aa protein and prey-mediated exposure to realistic doses of the protein did not result in significant detrimental effects on the development, survival, female ratio and body weight of C. lividipennis. No significant differences in population density and population dynamics were observed between C. lividipennis in transgenic cry2Aa and nontransgenic rice fields. It may be concluded that transgenic cry2Aa rice had no detrimental effects on C. lividipennis. This study represents the first report of an assessment continuum for the effects of transgenic cry2Aa rice on C. lividipennis. PMID:25375147

  3. The lowest diploid number (2n = 16) yet found in any primate: Callicebus lugens (Humboldt, 1811).

    PubMed

    Bonvicino, Cibele R; Penna-Firme, Valéria; do Nascimento, Fabrícia F; Lemos, Bernardo; Stanyon, Roscoe; Seuánez, Héctor N

    2003-01-01

    Morphologic, molecular and karyologic analyses of Callicebus lugens (Humboldt, 1811) of known geographic origin supported the proposition that this is a valid species. Morphologic and morphometric analyses showed evident differences between C. lugens and two other related taxa of the same group (Callicebus purinus and Callicebus torquatus). Cytochrome b DNA analyses (maximum parsimony, neighbour joining and maximum likelihood) were congruent in showing a strong association between C. lugens and Callicebus sp. of the torquatus group in one branch and a sister branch further divided into two clades: one with species of the personatus group and another, with species of the moloch group. Karyotypic analysis showed that C. lugens has the lowest diploid chromosome number of the primate order (2n = 16). Comparisons with other congeneric species clearly supported the proposition that C. lugens is karyotypically similar to others of the torquatus group.

  4. Tetrahydroindeno[1',2':4,5]pyrrolo[1,2-a]imidazol-5(1H)-ones as novel neonicotinoid insecticides: reaction selectivity and substituent effects on the activity level.

    PubMed

    Chen, Nanyang; Meng, Xiaoqing; Zhu, Fengjuan; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-02-11

    Tetraheterocyclic tetrahydroindeno[1',2':4,5]pyrrolo[1,2-a]imidazol-5(1H)-one derivatives as novel neonicotinoid candidates were designed and prepared by selective etherification, chlorination and esterification of ninhydrin-heterocyclic ketene aminals adducts. Some of the designed compounds showed excellent insecticidal activity against cowpea aphids (Aphis craccivora), brown planthopper (Nilaparvata lugens), and armyworm (Mythimna separata). In particular, the activity against armyworm (Mythimna separata) improved a lot in contrast with that of imidacloprid and cycloxaprid. The research here provides a novel neonicotinoid chemotype for further development. PMID:25611859

  5. RNAi knockdown of acetyl-CoA gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparfata lugens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reprod...

  6. [Effects of typhoon 'Haitang' airflow field on the northward migration route of rice brown planthopper].

    PubMed

    Wang, Cui-Hua; Zhai, Bao-Ping; Bao, Yun-Xuan

    2009-10-01

    Based on GIS, GrADS, and HYSPLIT-4.8 model, this paper analyzed the daily light-trap catches of rice brown planthopper at 42 pest monitoring stations of 10 provinces in China, the wind field on 850 hPa isobaric surface, and the migration tracks of rice brown planthopper at 20 pest monitoring stations during the occurrence of 0505 typhoon 'Haitang' from 19th to 21st July, 2005. After its landing on China, the typhoon 'Haitang' changed the southwest air flow, a flow which leads the northward migration of rice brown planthopper, and made the wind field converge in the southwest of the typhoon and swerve in larger areas. Accordingly, the northward migration of the rice brown planthopper was stopped, and the airborne populations were forced to descend in some areas. The shear line area nearby 850 hPa isobaric surface was the concentration and deposition area of the rice brown planthopper. There would be a mass migration area in the warm airflow shear area in the southeast of typhoon during the collapse of the typhoon. After the whole typhoon landed, the southwest airflow rebuilt, and a mass rice brown planthopper migrated to the north.

  7. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea)

    PubMed Central

    2012-01-01

    Background Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea. In this study, we present the initial findings of an ongoing PCR-based survey (sequencing 16S rDNA) of planthopper-associated bacteria to document endosymbionts with a long-term history of codiversification with their fulgoroid hosts. Results Results of PCR surveys and phylogenetic analyses of 16S rDNA recovered a monophyletic clade of Betaproteobacteria associated with planthoppers; this clade included Vidania fulgoroideae, a recently described bacterium identified in exemplars of the planthopper family Cixiidae. We surveyed 77 planthopper species representing 18 fulgoroid families, and detected Vidania in 40 species (representing 13 families). Further, we detected the Sulcia endosymbiont (identified as an obligate endosymbiont of Auchenorrhyncha in previous studies) in 30 of the 40 species harboring Vidania. Concordance of the Vidania phylogeny with the phylogeny of the planthopper hosts (reconstructed based on sequence data from five genes generated from the same insect specimens from which the bacterial sequences were obtained) was supported by statistical tests of codiversification

  8. Founder effects initiated rapid species radiation in Hawaiian cave planthoppers.

    PubMed

    Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D; Howarth, Francis G

    2013-06-01

    The Hawaiian Islands provide the venue of one of nature's grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai'i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles.

  9. Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission.

    PubMed

    Noda, H; Miyoshi, T; Zhang, Q; Watanabe, K; Deng, K; Hoshizaki, S

    2001-08-01

    Wolbachia, a group of parasitic bacteria of arthropods, are believed to be horizontally transmitted among arthropod taxa. We present a new probable example of interspecies horizontal transmission of Wolbachia by way of an endoparasite based on the conformity of Wolbachia gene sequences. Field samples of two rice planthoppers, Laodelphax striatellus and Sogatella furcifera possessed identical Wolbachia. Among three major endoparasites of planthoppers, a strepsipteran, Elenchus japonicus, harboured the identical Wolbachia strain, suggesting strepsipteran transmission of Wolbachia from one planthopper to the other. No Wolbachia was detected in a mermithid nematode Agamermis unka, and dryinid wasps possessed different types of Wolbachia. PMID:11555254

  10. Two new planthopper species (Hemiptera, Fulgoroidea, Caliscelidae) collected in pitfall traps in Zambia.

    PubMed

    Chmurova, Lucia; Webb, Michael D

    2016-01-01

    Two new species of planthoppers in the family Caliscelidae (Hemiptera: Fulgoroidea) are described from Zambia, i.e., Afronaso spinosa sp. n. and Calampocus zambiaensis sp. n. All specimens are flightless males and nearly all were collected from baited pitfall traps (except for one specimen collected from a yellow pan trap), suggesting that they live near to or on the ground. PMID:27615842

  11. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. PMID:22313362

  12. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.

  13. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers

    PubMed Central

    2011-01-01

    Background Planthoppers not only severely affect crops by causing mechanical damage when feeding but are also vectors of several plant virus species. The analysis of gene expression in persistently infected planthoppers might unveil the molecular basis of viral transmission. Quantitative real-time RT-PCR (RT-qPCR) is currently the most accurate and sensitive method used for quantitative gene expression analysis. In order to normalize the resulting quantitative data, reference genes with constant expression during the experimental procedures are needed. Results Partial sequences of the commonly used reference genes actin (ACT), α1-tubulin (TUB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), elongation factor 1 alpha (EF1A), ribosomal protein S18 (RPS18) and polyubiquitin C (UBI) from Delphacodes kuscheli, a planthopper capable of persistently transmitting the plant fijivirus Mal de Río Cuarto virus (MRCV), were isolated for the first time. Specific RT-qPCR primers were designed and the expression stability of these genes was assayed in MRCV-infective and naïve planthoppers using geNorm, Normfinder and BestKeeper tools. The overall analysis showed that UBI, followed by 18S and ACT, are the most suitable genes as internal controls for quantitative gene expression studies in MRCV-infective planthoppers, while TUB and EF1A are the most variable ones. Moreover, EF1A was upregulated by MRCV infection. Conclusions A RT-qPCR platform for gene expression analysis in the MRCV-infected planthopper vector Delphacodes kuscheli was developed. Our work is the first report on reference gene selection in virus-infected insects, and might serve as a precedent for future gene expression studies on MRCV and other virus-planthopper pathosystems. PMID:21679431

  14. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    PubMed

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-01-01

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo. PMID:26024507

  15. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    PubMed

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  16. Production and purification of active snowdrop lectin in Escherichia coli.

    PubMed

    Longstaff, M; Powell, K S; Gatehouse, J A; Raemaekers, R; Newell, C A; Hamilton, W D

    1998-02-15

    Recombinant snowdrop lectin was produced in Escherichia coli from a cDNA clone encoding mature Galanthus nivalis agglutinin. After induction with isopropylthio-beta-D-galactoside, inclusion bodies from E. coli were solubilised and the G. nivalis agglutinin purified by metal-affinity chromatography using a carboxy-terminal hexahistidine tag. The protein was refolded on the metal-affinity column prior to elution. After purification, the recombinant G. nivalis agglutinin agglutinated rabbit erythrocytes to a dilution similar to that determined for 'native' lectin purified from snowdrop, and showed similar specific binding to mannose. The toxicity of the recombinant G. nivalis agglutinin towards rice brown planthopper (Nilaparvata lugens) was shown to be similar to that of 'native' G. nivalis agglutinin when incorporated into an artificial diet. The recombinant G. nivalis agglutinin is thus functionally similar to 'native' snowdrop lectin.

  17. An annotated checklist of the planthoppers of Iran (Hemiptera, Auchenorrhyncha, Fulgoromorpha) with distribution data

    PubMed Central

    Mozaffarian, Fariba; Wilson, Michael R

    2011-01-01

    Abstract A list of Hemiptera Fulgoromorpha (planthoppers) of Iran is provided, based primarily on literature records from 1902 to the present. In total 15 families and 235 species are recorded, with taxonomic details. Distribution data in Iran are given. Iranissus ephedrinus Dlabola, 1980 is transferred from Issidae to Nogodinidae. To resolve nomenclatural difficulty the following new combinations in Issidae are given: Iranodus dumetorus (Dlabola, 1981), Iranodus khatunus (Dlabola, 1981) and Iranodus repandus (Dlabola, 1981). Due to published generic synonomy the following are new combinations: Duilius seticulosus (Lethierry, 1874), Duilius tamaricis (Puton & Lethierry, 1887), Duilius tamaricicola (Dubovsky, 1966) and Duilius v-atrum (Dlabola, 1985). PMID:22287883

  18. Synergism between southern rice black-streaked dwarf virus and rice ragged stunt virus enhances their insect vector acquisition.

    PubMed

    Li, Shu; Wang, Han; Zhou, Guohui

    2014-07-01

    Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV.

  19. Southern rice black-streaked dwarf virus alters insect vectors' host orientation preferences to enhance spread and increase rice ragged stunt virus co-infection.

    PubMed

    Wang, Han; Xu, Donglin; Pu, Lingling; Zhou, Guohui

    2014-02-01

    In recent years, Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus (family Reoviridae), has spread rapidly and caused serious rice losses in eastern and southeastern Asia. With this virus spread, Rice ragged stunt virus (RRSV, genus Oryzavirus, family Reoviridae) became more common in southern China, usually in co-infection with the former. SRBSDV and RRSV are transmitted by two different species of planthoppers, white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), respectively, in a persistent, circulative, propagative manner. In this study, using a Y-shape olfactometer-based device, we tested the host preference of three types of macropterous WBPH adults for healthy or SRBSDV-infected rice plants. The results showed that virus-free WBPHs significantly preferred infected rice plants to healthy plants, whereas both the viruliferous and nonviruliferous WBPHs preferred healthy plants to infected plants. In additional tests, we found that the BPHs significantly preferred healthy plants when they were virus free, whereas RRSV-carrying BPHs preferred SRBSDV-infected rice plants. From these findings, we propose that plant viruses may alter host selection preference of vectors to enhance their spread and that of insects vectoring another virus to result in co-infection with more than one virus.

  20. Synergism between southern rice black-streaked dwarf virus and rice ragged stunt virus enhances their insect vector acquisition.

    PubMed

    Li, Shu; Wang, Han; Zhou, Guohui

    2014-07-01

    Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV. PMID:24915431

  1. Southern rice black-streaked dwarf virus alters insect vectors' host orientation preferences to enhance spread and increase rice ragged stunt virus co-infection.

    PubMed

    Wang, Han; Xu, Donglin; Pu, Lingling; Zhou, Guohui

    2014-02-01

    In recent years, Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus (family Reoviridae), has spread rapidly and caused serious rice losses in eastern and southeastern Asia. With this virus spread, Rice ragged stunt virus (RRSV, genus Oryzavirus, family Reoviridae) became more common in southern China, usually in co-infection with the former. SRBSDV and RRSV are transmitted by two different species of planthoppers, white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), respectively, in a persistent, circulative, propagative manner. In this study, using a Y-shape olfactometer-based device, we tested the host preference of three types of macropterous WBPH adults for healthy or SRBSDV-infected rice plants. The results showed that virus-free WBPHs significantly preferred infected rice plants to healthy plants, whereas both the viruliferous and nonviruliferous WBPHs preferred healthy plants to infected plants. In additional tests, we found that the BPHs significantly preferred healthy plants when they were virus free, whereas RRSV-carrying BPHs preferred SRBSDV-infected rice plants. From these findings, we propose that plant viruses may alter host selection preference of vectors to enhance their spread and that of insects vectoring another virus to result in co-infection with more than one virus. PMID:24047253

  2. Six new species of the planthopper genus Usana Distant, 1906 (Hemiptera: Fulgoromorpha: Achilidae) from China.

    PubMed

    Long, Jian-Kun; Yang, Lin; Chen, Xiang-Sheng

    2015-01-01

    Six new species of the planthopper genus Usana, U. aspergilliformis sp. nov., U. concava sp. nov., U. congjiangensis sp. nov., U. fissura sp. nov., U. oblongincisa sp. nov. and U. unispina sp. nov. are described and illustrated from China. A checklist, a key to all species of the genus and illustrations of U. lineolalis Distant, 1906 are also given. PMID:25947750

  3. Viruliferous rate of small brown planthopper is a good indicator of rice stripe disease epidemics

    PubMed Central

    He, Dun-Chun; Zhan, Jiasui; Cheng, Zhao-Bang; Xie, Lian-Hui

    2016-01-01

    Rice stripe virus (RSV), its vector insect (small brown planthopper, SBPH) and climatic conditions in Jiangsu, China were monitored between 2002 and 2012 to determine key biotic and abiotic factors driving epidemics of the disease. Average disease severity, disease incidence and viruliferous rate of SBPH peaked in 2004 and then gradually decreased. Disease severity of RSV was positively correlated with viruliferous rate of the vector but not with the population density of the insect, suggesting that the proportion of vectors infected by the virus rather than the absolute number of vectors plays an important role in RSV epidemics and could be used for disease forecasting. The finding of a positive correlation of disease severity and viruliferous rate among years suggests that local infection is likely the main source of primary inoculum of RSV. Of the two main climatic factors, temperature plays a more important role than rainfall in RSV epidemics. PMID:26898155

  4. Description of the Immature Stages of the Planthopper Lacertinella australis (Hemiptera: Delphacidae)

    PubMed Central

    Batiz, M. F. Rossi; Lenicov, A. M. Marino de Remes

    2014-01-01

    The five immature stages of the planthopper Lacertinella australis (Remes Lenicov and Rossi Batiz) (Hemiptera: Delphacidae: Saccharosydnini) are described and illustrated. The main characters that allowed us to distinguish the various stages were body size, number of tarsomeres and metatibial spines, and number of teeth on the spur. New biological data based on laboratory rearing and field observations showed that L. australis can carry out its biological cycle successfully on the graminaceous pampas grass (Cortaderia spp. Stapf (Poales: Poaceae)). In addition, the efficient rearing in captivity, the high survivorship registered, and overwintering only on this host plant suggests that L. australis is a potential biocontrol agent of this invasive graminaceous weed. This study provides information about the immature stages, including a key for their identification, based on laboratory reared specimens and field observations. PMID:25199992

  5. Transcriptome Analysis of the Small Brown Planthopper, Laodelphax striatellus Carrying Rice stripe virus

    PubMed Central

    Lee, Joo Hyun; Choi, Jae Young; Tao, Xue Ying; Kim, Jae Su; Kim, Woojin; Je, Yeon Ho

    2013-01-01

    Rice stripe virus (RSV), the type member of the genus Tenuivirus, transmits by the feeding behavior of small brown planthopper (SBPH), Laodelphax striatellus. To investigate the interactions between the virus and vector insect, total RNA was extracted from RSV-viruliferous SBPH (RVLS) and non-viruliferous SBPH (NVLS) adults to construct expressed sequence tag databases for comparative transcriptome analysis. Over 30 million bases were sequenced by 454 pyrosequencing to construct 1,538 and 953 of isotigs from the mRNA of RVLS and NVLS, respectively. The gene ontology (GO) analysis demonstrated that both libraries have similar GO structures, however, the gene expression pattern analysis revealed that 17.8% and 16.8% of isotigs were up- and down-regulated significantly in the RVLS, respectively. These RSV-dependently regulated genes possibly have important roles in the physiology of SBPH, transmission of RSV, and RSV and SBPH interaction. PMID:25288960

  6. The putative Halloween gene phantom involved in ecdysteroidogenesis in the white-backed planthopper Sogatella furcifera.

    PubMed

    Wan, Pin-Jun; Jia, Shuang; Li, Na; Fan, Jin-Mei; Li, Guo-Qing

    2014-09-10

    Postembryonic development of insects is highly dependent on ecdysteroid hormones ecdysone (E) and 20-hydroxyecdysone (20E). A cytochrome P450 monooxygenase CYP306A1, the product of the Halloween gene phantom (phm), is involved in the ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. In the present paper, Sfphm was cloned from a hemipteran insect species, the white-backed planthopper Sogatella furcifera. SfPHM has five insect conserved P450 motifs, i.e., Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of Sfphm were evaluated by q-PCR. Sfphm showed three expression peaks in late second-, third- and fourth-instar stages. In contrast, the expression levels were lower and formed three troughs in the newly-molted second-, third- and fourth-instar nymphs. The relative 20E levels exhibited similar temporal patterns to Sfphm expression levels. On day 3 of the fourth-instar nymphs, Sfphm clearly had a high transcript level in the thorax where PGs were located. Dietary introduction of double-stranded RNA of Sfphm into the second instars successfully knocked down the target gene, and greatly reduced 20E level and ecdysone receptor (EcR) expression level. Moreover, knockdown of Sfphm caused lethality and slowed down ecdysis during nymphal stages. Furthermore, ingestion of 20-hydroxyecdysone did not alter Sfphm expression level, but almost completely rescued SfEcR expression level, and relieved the negative effects on nymphal survival and ecdysis in Sfphm-dsRNA-exposed planthoppers. Thus, our results suggest that Sfphm plays a critical role in ecdysteroidogenesis in S. furcifera. PMID:25017052

  7. The putative Halloween gene phantom involved in ecdysteroidogenesis in the white-backed planthopper Sogatella furcifera.

    PubMed

    Wan, Pin-Jun; Jia, Shuang; Li, Na; Fan, Jin-Mei; Li, Guo-Qing

    2014-09-10

    Postembryonic development of insects is highly dependent on ecdysteroid hormones ecdysone (E) and 20-hydroxyecdysone (20E). A cytochrome P450 monooxygenase CYP306A1, the product of the Halloween gene phantom (phm), is involved in the ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. In the present paper, Sfphm was cloned from a hemipteran insect species, the white-backed planthopper Sogatella furcifera. SfPHM has five insect conserved P450 motifs, i.e., Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of Sfphm were evaluated by q-PCR. Sfphm showed three expression peaks in late second-, third- and fourth-instar stages. In contrast, the expression levels were lower and formed three troughs in the newly-molted second-, third- and fourth-instar nymphs. The relative 20E levels exhibited similar temporal patterns to Sfphm expression levels. On day 3 of the fourth-instar nymphs, Sfphm clearly had a high transcript level in the thorax where PGs were located. Dietary introduction of double-stranded RNA of Sfphm into the second instars successfully knocked down the target gene, and greatly reduced 20E level and ecdysone receptor (EcR) expression level. Moreover, knockdown of Sfphm caused lethality and slowed down ecdysis during nymphal stages. Furthermore, ingestion of 20-hydroxyecdysone did not alter Sfphm expression level, but almost completely rescued SfEcR expression level, and relieved the negative effects on nymphal survival and ecdysis in Sfphm-dsRNA-exposed planthoppers. Thus, our results suggest that Sfphm plays a critical role in ecdysteroidogenesis in S. furcifera.

  8. Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis.

    PubMed

    Bilandžija, Helena; Cetković, Helena; Jeffery, William R

    2012-01-01

    Albinism, the reduction or loss of melanin pigment, is found in many diverse cave-dwelling animals. The mechanisms responsible for loss of melanin pigment are poorly understood. In this study we use a melanogenic substrate assay to determine the position where melanin synthesis is blocked in independently evolved cave planthoppers from Hawaii and Croatia. In this assay, substrates of enzymes responsible for melanin biosynthesis are added to fixed specimens in vitro and their ability to rescue black melanin pigmentation is determined. L-tyrosine, the first substrate in the pathway, did not produce melanin pigment, whereas L-DOPA, the second substrate, restored black pigment. Substrates in combination with enzyme inhibitors were used to test the possibility of additional downstream defects in the pathway. The results showed that downstream reactions leading from L-DOPA and dopamine to DOPA-melanin and dopamine-melanin, the two types of insect melanin, are functional. It is concluded that albinism is caused by a defect in the first step of the melanin synthesis pathway in cave-adapted planthoppers from widely separated parts of the world. However, Western blots indicated that tyrosine hydroxylase (TH), the only enzyme shown to operate at the first step in insects, is present in Hawaiian cave planthoppers. Thus, an unknown factor(s) operating at this step may be important in the evolution of planthopper albinism. In the cavefish Astyanax mexicanus, a genetic defect has also been described at the first step of melanin synthesis suggesting convergent evolution of albinism in both cave-adapted insects and teleosts.

  9. Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis.

    PubMed

    Bilandžija, Helena; Cetković, Helena; Jeffery, William R

    2012-01-01

    Albinism, the reduction or loss of melanin pigment, is found in many diverse cave-dwelling animals. The mechanisms responsible for loss of melanin pigment are poorly understood. In this study we use a melanogenic substrate assay to determine the position where melanin synthesis is blocked in independently evolved cave planthoppers from Hawaii and Croatia. In this assay, substrates of enzymes responsible for melanin biosynthesis are added to fixed specimens in vitro and their ability to rescue black melanin pigmentation is determined. L-tyrosine, the first substrate in the pathway, did not produce melanin pigment, whereas L-DOPA, the second substrate, restored black pigment. Substrates in combination with enzyme inhibitors were used to test the possibility of additional downstream defects in the pathway. The results showed that downstream reactions leading from L-DOPA and dopamine to DOPA-melanin and dopamine-melanin, the two types of insect melanin, are functional. It is concluded that albinism is caused by a defect in the first step of the melanin synthesis pathway in cave-adapted planthoppers from widely separated parts of the world. However, Western blots indicated that tyrosine hydroxylase (TH), the only enzyme shown to operate at the first step in insects, is present in Hawaiian cave planthoppers. Thus, an unknown factor(s) operating at this step may be important in the evolution of planthopper albinism. In the cavefish Astyanax mexicanus, a genetic defect has also been described at the first step of melanin synthesis suggesting convergent evolution of albinism in both cave-adapted insects and teleosts. PMID:23017027

  10. Omics-Based Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes during Early Infestation by Small Brown Planthopper

    PubMed Central

    Zhang, Weilin; Yang, Ling; Li, Mei; Ma, Bojun; Yan, Chengqi; Chen, Jianping

    2015-01-01

    The small brown planthopper (SBPH) is one of the destructive pests of rice. Although different biochemical pathways that are involved in rice responding to planthopper infestation have been documented, it is unclear which individual metabolic pathways are responsive to planthopper infestation. In this study, an omics-based comparative transcriptional profiling of two contrasting rice genotypes, an SBPH-resistant and an SBPH-susceptible rice line, was assessed for rice individual metabolic pathways responsive to SBPH infestation. When exposed to SBPH, 166 metabolic pathways were differentially regulated; of these, more than one-third of metabolic pathways displayed similar change patterns between these two contrasting rice genotypes; the difference of change pattern between these two contrasting rice genotypes mostly lies in biosynthetic pathways and the obvious difference of change pattern lies in energy metabolism pathways. Combining the Pathway Tools Omics Viewer with the web tool Venn, 21 and 6 metabolic pathways which potentially associated with SBPH resistance and susceptibility, respectively were identified. This study presents an omics-based comparative transcriptional profiling of SBPH-resistant and SBPH-susceptible rice plants during early infestation by SBPH, which will be very informative in studying rice-insect interaction. The results will provide insight into how rice plants respond to early infestation by SBPH from the biochemical pathways perspective. PMID:26633389

  11. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    PubMed

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. PMID:25641865

  12. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores.

    PubMed

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-06-17

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motives and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.

  13. Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Mao, Qianzhuo; Liu, Qifei; Wei, Taiyun

    2012-08-01

    Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, is transmitted by the white-backed planthopper in a persistent-propagative manner. In this study, we found that another planthopper species, the small brown planthopper (SBPH), could acquire SRBSDV but not transmit it. To identify the transmission barrier for SRBSDV in SBPHs, sequential infection by SRBSDV in the organs of SBPHs was studied with immunofluorescence for viral antigens. SRBSDV initially entered the epithelial cells of the midgut, then viroplasms, the sites for viral replication, formed in the midgut of viruliferous SBPHs. Furthermore, SRBSDV spread within the midgut, but failed to disseminate from the midgut into the hemocoel or into the salivary glands. All these results indicated that the inability of SBPH to transmit SRBSDV could be due to the restriction of viral dissemination from the midgut of SBPH, which led to the failure of viral spread to the salivary glands for virus transmission.

  14. Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Mao, Qianzhuo; Liu, Qifei; Wei, Taiyun

    2012-08-01

    Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, is transmitted by the white-backed planthopper in a persistent-propagative manner. In this study, we found that another planthopper species, the small brown planthopper (SBPH), could acquire SRBSDV but not transmit it. To identify the transmission barrier for SRBSDV in SBPHs, sequential infection by SRBSDV in the organs of SBPHs was studied with immunofluorescence for viral antigens. SRBSDV initially entered the epithelial cells of the midgut, then viroplasms, the sites for viral replication, formed in the midgut of viruliferous SBPHs. Furthermore, SRBSDV spread within the midgut, but failed to disseminate from the midgut into the hemocoel or into the salivary glands. All these results indicated that the inability of SBPH to transmit SRBSDV could be due to the restriction of viral dissemination from the midgut of SBPH, which led to the failure of viral spread to the salivary glands for virus transmission. PMID:22683297

  15. Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina.

    PubMed

    Toledo, Andrea V; Simurro, María E; Balatti, Pedro A

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  16. Morphological and Molecular Characterization of a Fungus, Hirsutella sp., Isolated from Planthoppers and Psocids in Argentina

    PubMed Central

    Toledo, Andrea V.; Simurro, María E.; Balatti, Pedro A.

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  17. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity.

    PubMed

    Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A

    2011-04-01

    The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate

  18. Transcriptomic and Expression Analysis of the Salivary Glands in White-Backed Planthoppers, Sogatella furcifera

    PubMed Central

    Li, Zhen; An, Xing-Kui; Liu, Yu-Di; Hou, Mao-Lin

    2016-01-01

    The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the serious rice pests because of its destructive feeding. The salivary glands of the WBPH play an important role in the feeding behaviour. Currently, however, very little is known about the salivary glands at the molecular level. We sequenced the salivary gland transcriptome (sialotranscripome) of adult WBPHs using the Illumina sequencing. A total of 65,595 transcripts and 51,842 unigenes were obtained from salivary glands. According to annotations against the Nr database, many of the unigenes identified were associated with the most studied enzymes in hemipteran saliva. In the present study, we identified 32 salivary protein genes from the WBPH sialotranscripome, which were categorized as those involved in sugar metabolism, detoxification, suppression of plant defense responses, immunity-related responses, general digestion, and other phytophagy processes. Tissue expression profiles analysis revealed that four of 32 salivary protein genes (multicopper oxidase 4, multicopper oxidase 6, carboxylesterase and uridine phosphorylase 1 isform X2) were primarily expressed in the salivary gland, suggesting that they played putative role in insect-rice interactions. 13 of 32 salivary protein genes were primarily expressed in gut, which might play putative role in digestive and detoxify mechanism. Development expression profiles analysis revealed that the expression level of 26 of 32 salivary protein genes had no significant difference, suggesting that they may play roles in every developmental stages of salivary gland of WBPH. The other six genes have a high expression level in the salivary gland of adult. 31 of 32 genes (except putative acetylcholinesterase 1) have no significant difference in male and female adult, suggesting that their expression level have no difference between sexes. This report analysis of the sialotranscripome for the WBPH, and the transcriptome provides a foundational

  19. High temperature determines the ups and downs of small brown planthopper Laodelphax striatellus population.

    PubMed

    Liu, Xiang-Dong; Zhang, Ai-Min

    2013-06-01

    Small brown planthopper, Laodelphax striatellus (Fallén) numbers usually drop sharply in the summer and revive quickly in the autumn. However, it is unclear whether and how the high temperature plays a role in this process. The effects of durations of heat exposure (33°C) on life-history traits were examined here. Exposure of adults for 1 day during the oviposition stage led to a very low survival of nymphs. The average longevity of L. striatellus exposed for 1-31 days from oviposition was significantly longer than that of the control (27°C). Short-term (1-5 days) heat exposure of the third instar nymphs did not significantly influence eclosion, but exposure of the fourth instar nymphs significantly increased eclosion. Lifespan from egg to adult was significantly lengthened when the third instar nymphs were exposed to heat for 2-15 days, or the fourth instar were exposed for 10 days. The preoviposition period was prolonged by heat exposure of the third or fourth instar nymphs. Short-term heat exposure of less than 3 days of the third or fourth instar nymphs did not restrict fecundity, but when the exposure duration exceeded 5 days the total eggs per female and hatchability decreased. Exposure to high temperature increased the brachypter rate of adults. In summary, low survival and slowing development under heat exposure resulted in population decline in the summer, and the relatively high fecundity and brachypter rate led to quick revival in autumn. Temperature in the summer determines the rise and fall in numbers of L. striatellus. PMID:23955890

  20. A new finely mapped Oryza australiensis-derived QTL in rice confers resistance to brown planthopper.

    PubMed

    Hu, Jie; Xiao, Cong; Cheng, Ming-Xing; Gao, Guan-Jun; Zhang, Qing-Lu; He, Yu-Qing

    2015-04-25

    Brown planthopper (BPH) is the most destructive pest of rice in Asia. The BPH resistance in the introgression line IR65482-17-511-5-7 (IR65482-17) is derived from the wild rice species Oryza australiensis. An F2:3 population from a cross between Zhenshan 97 (ZS97) and IR65482-17 was used to map three quantitative trait loci (QTLs) for seedling resistance and feeding rate to BPH. The loci were distributed on chromosomes 2, 4 and 12. The QTL qBph4.2 on chromosome 4 had the largest effect, and contributed 36-44% of the phenotypic variance with a LOD score of 19-29. To validate the effect of qBph4.2, two near-isogenic lines (NILs) containing the qBph4.2 locus in the backgrounds of ZS97 and 9311 were developed by marker-assisted backcrossing (MABC). BPH bioassays showed that lines homozygous for the IR65482-17 allele (NIL+) of qBph4.2 tented to have significantly higher seedling resistance to BPH than those homozygous for the ZS97 or 9311 alleles (NIL-). Resistance was associated with a lower feeding rate by the insect. qBph4.2 was delimited to a ~300 kb (0.04 cM) region flanked by markers RM261 and S1, and co-segregating with XC4-27. This study will facilitate map-based cloning and marker-assisted selection of the gene, and permits further studies of gene function and resistance mechanisms in rice: BPH interaction.

  1. Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae).

    PubMed

    Burrows, Malcolm; Bräunig, Peter

    2010-04-15

    To understand the catapult mechanism that propels jumping in a planthopper insect, the innervation and action of key muscles were analyzed. The large trochanteral depressor muscle, M133b,c, is innervated by two motor neurons and by two dorsal unpaired median (DUM) neurons, all with axons in N3C. A smaller depressor muscle, M133a, is innervated by two neurons, one with a large-diameter cell body, a large, blind-ending dendrite, and a giant ovoid, axon measuring 50 microm by 30 microm in nerve N5A. The trochanteral levator muscles (M132) and (M131) are innervated by N4 and N3B, respectively. The actions of these muscles in a restrained jump were divisible into a three-phase pattern. First, both hind legs were moved into a cocked position by high-frequency bursts of spikes in the levator muscles lasting about 0.5 seconds. Second, and once both legs were cocked, M133b,c received a long continuous sequence of motor spikes, but the two levators spiked only sporadically. The spikes in the two motor neurons to M133b,c on one side were closely coupled to each other and to the spikes on the other side. If one hind leg was cocked then the spikes only occurred in motor neurons to that side. The final phase was the jump movement itself, which occurred when the depressor spikes ceased and which lasted 1 ms. Muscles 133b,c activated synchronously on both sides, are responsible for generating the power, and M133a and its giant neuron may play a role in triggering the release of a jump. PMID:20151364

  2. ARGONAUTE SUBFAMILY GENES IN THE SMALL BROWN PLANTHOPPER, Laodelphax striatellus (HEMIPTERA: DELPHACIDAE).

    PubMed

    Zhou, Yan-Ru; Li, Lin-Ying; Li, Jun-Min; Sun, Zong-Tao; Xie, Li; Chen, Jian-Ping

    2016-01-01

    Argonaute (AGO) proteins are essential catalytic components of the RNA-induced silencing complex and play central roles in RNA interference. Using a combination of bioinformatics and rapid amplification of cDNA ends (RACE) methods, putative AGO subfamily members, ls-AGO1 and ls-AGO2, were cloned and characterized from the small brown planthopper, Laodelphax striatellus. The open reading frame (ORF) of ls-AGO1 is 2,820 bp long, encoding a putative protein of 939 amino acid residues, and ls-AGO2 contains an ORF of 2,490 bp, encoding 829 amino acid residues. The expected conserved PAZ and PIWI domains, and the conserved Asp-Asp-His (DDH) catalytic triad motif in the PIWI domain were observed in both ls-AGO1 and ls-AGO2. Reverse transcription-qPCR (RT-qPCR) results showed that both ls-AGO1 and ls-AGO2 were expressed in all developmental stages of L. striatellus with highest mRNA abundance in eggs. Expression of ls-AGO1 and ls-AGO2 was significantly decreased in adult insects in response to acquisition of rice black-streaked dwarf virus by second instar nymphs. mRNA expression of ls-AGO1 was significantly downregulated in response to low and high temperatures, but expression of ls-AGO2 was only affected by low temperature. ls-AGO1 and ls-AGO2 were initially downregulated when insects were transferred from rice to maize and to the wild grass Brachypodium distachyon, but expression showed partial or complete recovery 7 days after transfer. These results document that AGO subfamily members of L. striatellus are ubiquitously expressed at different developmental stages and respond to various stresses. Thus, AGO subfamily may act in regulating the stress-response of L. striatellus by controlling related gene expression. PMID:26446351

  3. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera.

    PubMed

    Chang, Zhao-Xia; Tang, Nan; Wang, Lin; Zhang, Li-Qing; Akinyemi, Ibukun A; Wu, Qing-Fa

    2016-06-01

    MicroRNAs (miRNAs) are a novel class of small, non-coding endogenous RNAs that play critical regulatory roles in many metabolic activities in eukaryotes. Reports of the identification of miRNAs in Sogatella furcifera (white-backed planthopper), the insect that acts as the only confirmed vector of the southern rice black-streaked dwarf virus (SRBSDV), are limited. In this study, a total of 382 miRNAs were identified in S. furcifera, including 106 conserved and 276 novel miRNAs, using high-throughput sequencing based on two small RNA libraries from viruliferous and non-viruliferous S. furcifera, and these miRNAs belonged to 52 conserved miRNA families and 58 S. furcifera-specific families, respectively. Comparison with miRNAs from 26 insect species and five other species in miRBase showed that more than half of the conserved miRNA families are highly conserved in Hexapoda, while other miRNAs are only conserved in non-dipterans. Furthermore, 4 117 target genes predicted for the 382 identified miRNAs could be categorized into 45 functional groups annotated by Gene Ontology. Compared with non-viruliferous cells, eight up-regulated miRNAs and four down-regulated miRNAs were identified in cells inoculated with SRBSDV, among which miR-14 and miR-n98a may be involved in the immune response to SRBSDV infection. Analyses of the identified miRNAs will provide insights into the roles of these miRNAs in the regulation and expression of genes involved in the metabolism, development and viral infection of S. furcifera. PMID:27060479

  4. ARGONAUTE SUBFAMILY GENES IN THE SMALL BROWN PLANTHOPPER, Laodelphax striatellus (HEMIPTERA: DELPHACIDAE).

    PubMed

    Zhou, Yan-Ru; Li, Lin-Ying; Li, Jun-Min; Sun, Zong-Tao; Xie, Li; Chen, Jian-Ping

    2016-01-01

    Argonaute (AGO) proteins are essential catalytic components of the RNA-induced silencing complex and play central roles in RNA interference. Using a combination of bioinformatics and rapid amplification of cDNA ends (RACE) methods, putative AGO subfamily members, ls-AGO1 and ls-AGO2, were cloned and characterized from the small brown planthopper, Laodelphax striatellus. The open reading frame (ORF) of ls-AGO1 is 2,820 bp long, encoding a putative protein of 939 amino acid residues, and ls-AGO2 contains an ORF of 2,490 bp, encoding 829 amino acid residues. The expected conserved PAZ and PIWI domains, and the conserved Asp-Asp-His (DDH) catalytic triad motif in the PIWI domain were observed in both ls-AGO1 and ls-AGO2. Reverse transcription-qPCR (RT-qPCR) results showed that both ls-AGO1 and ls-AGO2 were expressed in all developmental stages of L. striatellus with highest mRNA abundance in eggs. Expression of ls-AGO1 and ls-AGO2 was significantly decreased in adult insects in response to acquisition of rice black-streaked dwarf virus by second instar nymphs. mRNA expression of ls-AGO1 was significantly downregulated in response to low and high temperatures, but expression of ls-AGO2 was only affected by low temperature. ls-AGO1 and ls-AGO2 were initially downregulated when insects were transferred from rice to maize and to the wild grass Brachypodium distachyon, but expression showed partial or complete recovery 7 days after transfer. These results document that AGO subfamily members of L. striatellus are ubiquitously expressed at different developmental stages and respond to various stresses. Thus, AGO subfamily may act in regulating the stress-response of L. striatellus by controlling related gene expression.

  5. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    PubMed

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  6. The Insect Ecdysone Receptor is a Good Potential Target for RNAi-based Pest Control

    PubMed Central

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests. PMID:25516715

  7. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera).

    PubMed

    Nagadhara, D; Ramesh, S; Pasalu, I C; Rao, Y Kondala; Sarma, N P; Reddy, V D; Rao, K V

    2004-11-01

    Transgenic rice plants, expressing snowdrop lectin [Galanthus nivalis agglutinin (GNA)], obtained by Agrobacterium-mediated genetic transformation, were evaluated for resistance against the insect, the whitebacked planthopper (WBPH). The transgene gna was driven by the phloem-specific, rice-sucrose synthase promoter RSs1, and the bar was driven by the CaMV 35S promoter. In our previous study, the transgenic status of these lines was confirmed by Southern, Northern and Western blot analyses. Both the transgenes, gna and bar, were stably inherited and co-segregated into progenies in T1 to T5 generations. Insect bioassays on transgenic plants revealed the potent entomotoxic effects of GNA on the WBPH. Also, significant decreases were observed in the survival, development and fecundity of the insects fed on transgenic plants. Furthermore, intact GNA was detected in the total proteins of WBPHs fed on these plants. Western blot analysis revealed stable and consistent expression of GNA throughout the growth and development of transgenic plants. Transgenic lines expressing GNA exhibited high-level resistance against the WBPH. As reported earlier, these transgenics also showed substantial resistance against the brown planthopper and green leafhopper.

  8. Genetic diversity of Costa Rican populations of the rice planthopper Tagosodes orizicolus (Homoptera: Delphacidae).

    PubMed

    Hernández, Myriam; Quesada, Tania; Muñoz, Claudia; Espinoza, Ana M

    2004-09-01

    Tagosodes orizicolus (Homoptera: Delphacidae) is one of the main constraints of the rice production in the Neotropics. This planthopper produces severe damages as a phloem feeder, causes mechanical injury during oviposition and vectors the rice hoja blanca virus (RHBV). The main objective of this study was to determine the genetic diversity of T. orizicolus populations from three rice growing regions of Costa Rica, using RAPDs. Individuals from Guanacaste, Parrita, San Carlos and Cali-Colombia, as outgroup, were analyzed using the random primers. Phenetic relationships revealed that the Costa Rican populations were clearly separated from Cali-Colombia, sharing less than 25% similarity. Costa Rican populations were divided into two main branches separated at 30% similarity. The first branch included Guanacaste and San Carlos and the second displayed Parrita. In relation to similarity indexes within groups, the Guanacaste cluster showed the highest (over 50%) and Cali-Colombia was the most diverse (28%). The correspondence analysis confirmed the clusters of the phenogram and showed close interactions between the Parrita and San Carlos populations. The genetic separation observed could be the result of the geographic isolation among populations, but it could also be explained by the infection with the rickettsia Wolbachia pipientis. This bacterium causes cytoplasmic incompatibility in its host, which results in non-viable progeny when infected males mate with non-infected females, or when insects hosting different strains of Wolbachia mate. Then, a search for Wolbachia in previously described populations of T orizicolus was initiated. The presence of the bacteria was analyzed by PCR with 16S rDNA-specific primers for Wolbachia. The PCR analyses revealed infections of 86% in the population of San Carlos, 96% in Guanacaste, 37% in Parrita and 100% in Cali-Colombia. Crosses between individuals of T. orizicolus from Parrita and Guanacaste were performed for testing

  9. Field population abundance of leafhopper (Homoptera: Cicadelidae) and planthopper (Homoptera: Delphacidae) as affected by rice growth stages

    NASA Astrophysics Data System (ADS)

    Hafizal, M. M.; Idris, A. B.

    2013-11-01

    The leafhopper (Homoptera: Delphacidae) and planthopper (Homoptera: Cicadelidae) are considered as important rice pest in Asia including Malaysia. As phloem-feeders, they can cause loss to rice growth development and their population abundance is thought to be influenced by rice growth stages. This study was conducted to examine the population of Delphacidae and Cicadelidae between different rice growth stages, i.e. before and after rice planting periods. Monthly sampling was conducted in three sites in Kuala Selangor at before planting, vegetative, reproductive, maturing stages and post-harvest period using sweeping net and light traps. Population abundance of Delphacidae and Cicadelidae were found to be significantly different and positively correlated with different rice growth stages (p<0.05). Delphacidae was most abundance during maturing stages, while the abundance of Cicadelidae peaked during reproductive stage of rice growth. Differences in temporal abundance of the population of these two homopterans indicated adaptive feeding strategy to reduce food competition.

  10. Evidence for high dispersal ability and mito-nuclear discordance in the small brown planthopper, Laodelphax striatellus

    PubMed Central

    Sun, Jing-Tao; Wang, Man-Man; Zhang, Yan-Kai; Chapuis, Marie-Pierre; Jiang, Xin-Yu; Hu, Gao; Yang, Xian-Ming; Ge, Cheng; Xue, Xiao-Feng; Hong, Xiao-Yue

    2015-01-01

    Understanding dispersal ability in pest species is critical for both theoretical aspects of evolutionary and population biology and from a practical standpoint, such as implementing effective forecasting systems. The small brown planthopper (SBPH), Laodelphax striatellus (Fallén), is an economically important pest, but few data exist on its dispersal ability. Here, we used mitochondrial and nuclear markers to elucidate the population genetic structure of SBPH and of the parasitic bacterium Wolbachia throughout temperate and subtropical China. Our results showed that the SBPH populations in China lack significant differences in genetic structure, suggesting extensive gene flow. Multilocus sequence typing revealed that Wolbachia infection was systematic and due to the same strain (wStri) within and across populations. However, the mtDNA haplogroups had a nonrandom distribution across the sampling localities, which correlated to latitudinal and climatic gradients. We explain this mito-nuclear discordance as a result of historical population recolonization or mitochondria adaptation to climate. PMID:25622966

  11. Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies.

    PubMed

    Huberty, Andrea F; Denno, Robert F

    2006-09-01

    Phytophagous insects have a much higher nitrogen and phosphorus content than their host plants, an elemental mismatch that places inherent constraints on meeting nutritional requirements. Although nitrogen limitation is well documented in insect herbivores, phosphorus limitation is poorly studied. Using factorial experiments in the laboratory and field, in which levels of soil nitrogen and phosphorus were manipulated, we studied the relative consequences of macronutrient limitation for two herbivores, namely the phloem-feeding planthoppers Prokelisia dolus and P. marginata. These planthoppers inhabit the salt marshes of North America where large stands of their Spartina host plant are found. Notably, these congeners differ in their dispersal abilities; P. marginata is dispersive whereas P. dolus is sedentary. Both nitrogen and phosphorus subsidies enhanced the nitrogen and phosphorus content of Spartina. When P. dolus and P. marginata were raised on plants with an enriched nitrogen signature, they exhibited greater survival, grew to a larger size, developed more rapidly, and achieved higher densities than on nitrogen-deficient plants. However, P. marginata experienced greater fitness penalties than P. dolus on nitrogen-deficient plants. Phosphorus limitation and associated fitness penalties were not as severe as nitrogen limitation for P. marginata, and were not detected in P. dolus. The tempered response of P. dolus to N- and P-deficient Spartina is probably due to its greater investment in feeding musculature and hence ability to compensate for nutrient deficiencies with increased ingestion. To cope with deteriorating plant quality, P. dolus employs compensatory feeding, whereas P. marginata disperses to higher quality Spartina. When its option of dispersal is eliminated and P. marginata is confined on nutrient-deficient plants, its performance is drastically reduced compared with P. dolus. This research highlights the importance of interfacing herbivore life

  12. Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells.

    PubMed

    Fallon, A M; Baldridge, G D; Higgins, L A; Witthuhn, B A

    2013-01-01

    The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales: Anaplasmataceae), distorts reproduction of its arthropod hosts to facilitate invasion of naïve populations. This property makes Wolbachia an attractive "gene drive" agent with potential applications in the control of insect vector populations. Genetic manipulation of Wolbachia will require in vitro systems for its propagation, genetic modification, amplification, and introduction into target insects. Here we show that Wolbachia from the planthopper, Laodelphax striatellus, establishes a robust infection in clonal C7-10 Aedes albopictus mosquito cells. Infected cells, designated C/wStr, expressed radiolabeled proteins that were enriched in cells grown in the absence of antibiotics that inhibit Wolbachia, relative to cultures grown in medium containing tetracycline and rifampicin. Using mass spectrometry, we verified that tryptic peptides from an upregulated 24 kDa band predominantly represented proteins encoded by the Wolbachia genome, including the outer surface protein, Wsp. We further showed that resistance of Wolbachia to streptomycin is associated with a K42R mutation in Wolbachia ribosomal protein S12, and that the pattern of amino acid substitutions in ribosomal protein S12 shows distinct differences in the closely related genera, Wolbachia and Rickettsia.

  13. Differentially regulated genes in the salivary glands of brown planthopper after feeding in resistant versus susceptible rice varieties.

    PubMed

    Wang, Xiaolan; Zhang, Mei; Feng, Fei; He, Ruifeng

    2015-06-01

    Brown planthopper (BPH) is a damaging insect pest of rice. We used suppression subtractive hybridization (SSH) and mirror orientation selection to identify differentially regulated genes in salivary glands of BPH after feeding on resistant and susceptible varieties. The forward SSH library included 768 clones with insertions ranging from 250 to 1000 bp. After differential screening, a total of 112 transcripts were identified, which included 27 upregulated genes and seven downregulated genes. Several of these transcripts showed sequence homology to known proteins such as trehalase, mucin-like protein, vitellogenin, calcium ion binding protein, and eukaryotic initiation factor-like protein. About half of the transcripts, however, did not match to any sequences in the protein databases currently available. Functional annotation of the transcripts showed gene ontology association with metabolism, signal transduction, and regulatory responses. Notably, many known functional genes were predicted to be secreted proteins. Also, gene expression profiles of the salivary glands of BPH feeding on resistant rice (B5) and susceptible rice (TN1) varieties were compared. Our data provide a molecular resource for future functional studies on salivary glands and will be useful for elucidating the molecular mechanisms between BPH feeding and rice varieties with BPH resistance differences.

  14. Molecular phylogenetics of cixiid planthoppers (Hemiptera: Fulgoromorpha): new insights from combined analyses of mitochondrial and nuclear genes.

    PubMed

    Ceotto, Paula; Kergoat, Gaël J; Rasplus, Jean-Yves; Bourgoin, Thierry

    2008-08-01

    The planthopper family Cixiidae (Hemiptera: Fulgoromorpha) comprises approximately 160 genera and 2000 species divided in three subfamilies: Borystheninae, Bothriocerinae and Cixiinae, the later with 16 tribes. The current paper represents the first attempt to estimate phylogenetic relationships within Cixiidae based on molecular data. We use a total of 3652bp sequence alignment of four genes: the mitochondrial coding genes Cytochrome c Oxidase subunit 1 (Cox1) and Cytochrome b (Cytb), a portion of the nuclear 18S rDNA and two non-contiguous portions of the nuclear 28S rDNA. The phylogenetic relationships of 72 terminal specimens were reconstructed using both maximum parsimony and Bayesian inference methods. Through the analysis of this empirical dataset, we also provide comparisons among different a priori partitioning strategies and the use of mixture models in a Bayesian framework. Our comparisons suggest that mixture models overcome the benefits obtained by partitioning the data according to codon position and gene identity, as they provide better accuracy in phylogenetic reconstructions. The recovered maximum parsimony and Bayesian inference phylogenies suggest that the family Cixiidae is paraphyletic in respect with Delphacidae. The paraphyly of the subfamily Cixiinae is also recovered by both approaches. In contrast to a morphological phylogeny recently proposed for cixiids, subfamilies Borystheninae and Bothriocerinae form a monophyletic group. PMID:18539050

  15. Reference Gene Selection and Evaluation for Gene Expression Studies Using qRT-PCR in the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    An, Xing-kui; Hou, Mao-lin; Liu, Yu-di

    2016-04-01

    The white-backed planthopper, Sogatella furcifera (Hemiptera, Delphacidae), is one of the most devastating rice pests. For a better control strategy, various genetic studies have been conducted using reverse-transcription quantitative real-time polymerase chain reaction (qRT-PCR). The appropriate application of qRT-PCR requires reliable endogenous controls; however, studies on this aspect of the white-backed planthopper are lacking. In the present study, nine commonly used reference genes, elongation factor 1-α (EF1-α), polyubiquitin (UB), ribosomal protein S18 (RPS18), actin 1 (ACT), α-1 tubulin (TUB), glyceraldehyde-3-phosphate (GAPDH), ribosomal protein L9 (RPL9), ribosomal protein L10 (RPL10), and 18S ribosomal RNA (18S), were evaluated by qRT-PCR for their expression stability under four different experimental conditions (different developmental stages, acquisition of Southern rice black-streaked dwarf virus (SRBSDV), different tissues, and different temperature stress). These results were analyzed using four software programs (geNorm, NormFinder, BestKeeper, and the delta Ct method) and a Web-based comprehensive tool RefFinder to compare and rank candidate reference genes. According to the results of RefFinder analysis, which integrates the abovementioned four software programs, TUB was ranked as the most suitable reference gene at different developmental stages and under different temperature stress, and GAPDH and RPL9 showed the highest stability for acquisition of SRBSDV and different tissues, respectively. These results will provide a solid foundation for future gene expression study on the white-backed planthopper, and also will give aids in establishing a standardized qRT-PCR procedure for other related insects.

  16. Reference Gene Selection and Evaluation for Gene Expression Studies Using qRT-PCR in the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    An, Xing-kui; Hou, Mao-lin; Liu, Yu-di

    2016-04-01

    The white-backed planthopper, Sogatella furcifera (Hemiptera, Delphacidae), is one of the most devastating rice pests. For a better control strategy, various genetic studies have been conducted using reverse-transcription quantitative real-time polymerase chain reaction (qRT-PCR). The appropriate application of qRT-PCR requires reliable endogenous controls; however, studies on this aspect of the white-backed planthopper are lacking. In the present study, nine commonly used reference genes, elongation factor 1-α (EF1-α), polyubiquitin (UB), ribosomal protein S18 (RPS18), actin 1 (ACT), α-1 tubulin (TUB), glyceraldehyde-3-phosphate (GAPDH), ribosomal protein L9 (RPL9), ribosomal protein L10 (RPL10), and 18S ribosomal RNA (18S), were evaluated by qRT-PCR for their expression stability under four different experimental conditions (different developmental stages, acquisition of Southern rice black-streaked dwarf virus (SRBSDV), different tissues, and different temperature stress). These results were analyzed using four software programs (geNorm, NormFinder, BestKeeper, and the delta Ct method) and a Web-based comprehensive tool RefFinder to compare and rank candidate reference genes. According to the results of RefFinder analysis, which integrates the abovementioned four software programs, TUB was ranked as the most suitable reference gene at different developmental stages and under different temperature stress, and GAPDH and RPL9 showed the highest stability for acquisition of SRBSDV and different tissues, respectively. These results will provide a solid foundation for future gene expression study on the white-backed planthopper, and also will give aids in establishing a standardized qRT-PCR procedure for other related insects. PMID:26612891

  17. Molecular characterization of DSC1 orthologs in invertebrate species.

    PubMed

    Cui, Ying-Jun; Yu, Lin-Lin; Xu, Hai-Jun; Dong, Ke; Zhang, Chuan-Xi

    2012-05-01

    DSC1 and BSC1 are two founding members of a novel family of invertebrate voltage-gated cation channels with close structural and evolutionary relationships to voltage-gated sodium and calcium channels. In this study, we searched the published genome sequences for DSC1 orthologs. DSC1 orthologs were found in all 48 insect species, and in other invertebrate species belonging to phyla Mollusca, Cnidaria, Hemichordata and Echinodermata. However, DSC1 orthologs were not found in four arachnid species, Ixodes scapularis, Rhipicephalus microplus, Tetranychus urticae and Varroa destructor, two species in Annelida or any vertebrate species. We then cloned and sequenced NlSC1 and BmSC1 full-length cDNAs from the brown planthopper (Nilaparvata lugens) and the silkworm (Bombyx mori), respectively. NlSC1 and BmSC1 share about 50% identity with DSC1, and the expression of NlSC1 and BmSC1 transcripts was most abundant in the head and antenna in adults. All DSC1 orthologs contain a unique and conserved DEEA motif, instead of the EEEE or EEDD motif in classical calcium channels or the DEKA motif in sodium channels. Phylogenetic analyses revealed that DSC1 and its orthologs form a separate group distinct from the classical voltage-gated sodium and calcium channels and constitute a unique family of cation channels. The DSC1/BSC1-family channels could be potential targets of new and safe insecticides for pest control. PMID:22321571

  18. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    PubMed

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.

  19. Transgenic Cry1Ab Rice Does Not Impact Ecological Fitness and Predation of a Generalist Spider

    PubMed Central

    Tian, Jun-Ce; Chen, Yang; Li, Zhao-Liang; Li, Kai; Chen, Mao; Peng, Yu-Fa; Hu, Cui; Shelton, Anthony M.; Ye, Gong-Yin

    2012-01-01

    Background The commercial release of rice genetically engineered to express a Cry1Ab protein from Bacillus thuringiensis (Bt) for control of Lepidoptera in China is a subject of debate. One major point of the debate has focused on the ecological safety of Bt rice on nontarget organisms, especially predators and parasitoids that help control populations of insect pests. Methodology/Principal Findings A tritrophic bioassay was conducted to evaluate the potential impact of Cry1Ab-expressing rice on fitness parameters of a predaceous ground spider (Pardosa pseudoannulata (Bösenberg et Strand)) that had fed on Bt rice-fed brown planthopper (Nilaparvata lugens (Stål)) nymphs. Survival, development time and fecundity of this spider were not different when they were fed with Bt rice-fed or non-Bt rice-fed prey. Furthermore, ELISA and PCR gut assays, as well as a functional response trial, indicated that predation by P. pseudoannulata was not significantly different in Bt rice or non-Bt rice fields. Conclusions/Significance The transgenic Cry1Ab rice lines tested in this study had no adverse effects on the survival, developmental time and fecundity of P. pseudoannulata in the laboratory or on predation under field conditions. This suggests that this important predator would not be harmed if transgenic Cry1Ab rice were commercialized. PMID:22511982

  20. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-05-17

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection.

  1. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants

    PubMed Central

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-01-01

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection. PMID:27185548

  2. Molecular characterization of DSC1 orthologs in invertebrate species.

    PubMed

    Cui, Ying-Jun; Yu, Lin-Lin; Xu, Hai-Jun; Dong, Ke; Zhang, Chuan-Xi

    2012-05-01

    DSC1 and BSC1 are two founding members of a novel family of invertebrate voltage-gated cation channels with close structural and evolutionary relationships to voltage-gated sodium and calcium channels. In this study, we searched the published genome sequences for DSC1 orthologs. DSC1 orthologs were found in all 48 insect species, and in other invertebrate species belonging to phyla Mollusca, Cnidaria, Hemichordata and Echinodermata. However, DSC1 orthologs were not found in four arachnid species, Ixodes scapularis, Rhipicephalus microplus, Tetranychus urticae and Varroa destructor, two species in Annelida or any vertebrate species. We then cloned and sequenced NlSC1 and BmSC1 full-length cDNAs from the brown planthopper (Nilaparvata lugens) and the silkworm (Bombyx mori), respectively. NlSC1 and BmSC1 share about 50% identity with DSC1, and the expression of NlSC1 and BmSC1 transcripts was most abundant in the head and antenna in adults. All DSC1 orthologs contain a unique and conserved DEEA motif, instead of the EEEE or EEDD motif in classical calcium channels or the DEKA motif in sodium channels. Phylogenetic analyses revealed that DSC1 and its orthologs form a separate group distinct from the classical voltage-gated sodium and calcium channels and constitute a unique family of cation channels. The DSC1/BSC1-family channels could be potential targets of new and safe insecticides for pest control.

  3. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  4. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-01-01

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection. PMID:27185548

  5. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice.

    PubMed

    Lu, Jing; Li, Jiancai; Ju, Hongping; Liu, Xiaoli; Erb, Matthias; Wang, Xia; Lou, Yonggen

    2014-11-01

    Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice. PMID:25064847

  6. Phylogenetic position of the yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) based on 18S ribosomal DNA partial sequences.

    PubMed

    Xet-Mull, Ana M; Quesada, Tania; Espinoza, Ana M

    2004-09-01

    Tagosodes orizicolus Muir (Homoptera: Delphacidae), the endemic delphacid species of tropical America carries yeast-like symbiotes (YLS) in the abdominal fat bodies and the ovarial tissues, like other rice planthoppers of Asia. These YLS are obligate symbiotes, which are transmitted transovarially, and maintain a mutualistic relationship with the insect host. This characteristic has made in vitro culture and classification of YLS rather difficult using conventional methods. Nevertheless, microorganisms of similar characteristics have been successfully classified by using molecular taxonomy. In the present work, the YLS of Tagosodes orizicolus (YLSTo) were purified on Percoll gradients, and specific segments of 18S rDNA were amplified by PCR, cloned and sequenced. Sequences were aligned by means of the CLUSTAL V (DNASTAR) program; phylogenetic trees were constructed with the Phylogeny Inference Package (PHYLIP), showing that YLSTo belong to the fungi class Pyrenomycetes, phylum Ascomycota. Similarities between 98% and 100% were observed among YLS of the rice delphacids Tagosodes orizicolus, Nilaparvata lugens, Laodelphax striatellus and Sogatella fur cifera, and between 89.8% and 90.8% when comparing the above to YLS of the aphid Hamiltonaphis styraci. These comparisons revealed that delphacid YLS are a highly conserved monophyletic group within the Pyrenomycetes and are closely related to Hypomyces chrysospermus. PMID:17361570

  7. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    PubMed Central

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressalis. We investigated the performance of a piecing-sucking herbivore, the brown planthopper (BPH) Nilaparvata lugens, on transgenic plants that silence or overexpress OsWRKY53, and found that OsWRKY53 activates rice defenses against BPH by activating an H2O2 burst and suppressing ethylene biosynthesis. These findings suggest that OsWRKY53 functions not only as a regulator of plants' investment in specific defenses, but also as a switch to initiate new defenses against other stresses, highlighting the versatility and importance of OsWRKY53 in herbivore-induced plant defenses. PMID:27031005

  8. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides.

    PubMed

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Han, Zhaojun; Denholm, Ian; Millar, Neil S

    2006-11-01

    Neonicotinoid insecticides are potent selective agonists of insect nicotinic acetylcholine receptors (nAChRs). Since their introduction in 1991, resistance to neonicotinoids has been slow to develop, but it is now established in some insect field populations such as the planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. We have reported recently the identification of a target-site mutation (Y151S) within two nAChR subunits (Nlalpha1 and Nlalpha3) from a laboratory-selected field population of N. lugens. In the present study, we have examined the influence of this mutation upon the functional properties of recombinant nAChRs expressed in Xenopus oocytes (as hybrid nAChRs, co-expressed with a rat beta2 subunit). The agonist potency of several nicotinic agonists has been examined, including all of the neonicotinoid insecticides that are currently licensed for either crop protection or animal health applications (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam). The Y151S mutation was found to have no significant effect on the maximal current (I(max)) observed with the endogenous agonist, acetylcholine. In contrast, a significant reduction in I(max) was observed for all neonicotinoids (the I(max) for mutant nAChRs ranged from 13 to 81% of that observed on wild-type receptors). In addition, nAChRs containing the Y151S mutation caused a significant rightward shift in agonist dose-response curves for all neonicotinoids, but of varying magnitude (shifts in EC(50) values ranged from 1.3 to 3.6-fold). The relationship between neonicotinoid structure and their potency on nAChRs containing the Y151S target-site mutation is discussed.

  9. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.

    PubMed

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-12-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

  10. Molecular cloning and characterization of the putative Halloween gene Phantom from the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Li, Guo-Qing

    2015-12-01

    Ecdysteroid hormone 20-hydroxyecdysone plays fundamental roles in insect postembryonic development and reproduction. Several cytochrome P450 mono-oxygenases (CYPs), encoded by the Halloween genes, have been documented to be involved in ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. Here the putative Halloween gene Phantom (Phm, cyp306a1) from a hemipteran insect species, the small brown planthopper Laodelphax striatellus, was cloned. LsPHM shows five insect conserved P450 motifs, that is, Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of LsPhm were evaluated by quantitative polymerase chain reaction. Through the fourth-instar and the early fifth-instar stages, LsPhm showed two expression peaks in day 2 and days 4-5 fourth-instar nymphs, and three troughs in day 1 and 3 fourth instars and day 1 fifth instars. On day 5 of the fourth-instar nymphs, LsPhm clearly had a high transcript level in the thorax where the prothoracic glands were located. Dietary introduction of double-stranded RNA (dsRNA) of LsPhm at the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene and caused a higher nymphal mortality rate and delayed development. Ingestion of 20-hydroxyecdysone on LsPhm-dsRNA-exposed nymphs did not increase LsPhm expression level, but almost completely rescued the LsEcR mRNA level, and relieved the negative effects on survival and development. Thus, our data suggest that the putative LsPhm encodes a functional 25-hydroxylase that catalyzes the biosynthesis of ecdysteroids in L. striatellus. PMID:24954278

  11. Knockdown of a putative Halloween gene Shade reveals its role in ecdysteroidogenesis in the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Zhou, Li-Tao; Mu, Li-Li; Li, Guo-Qing

    2013-12-01

    Ecdysteroid hormone 20-hydroxyecdysone (20E) plays fundamental roles in insect development and reproduction, whereas the primary role of ecdysone (E) is the precursor for 20E. A cytochrome P450 monooxygenase (CYP), encoded by a Halloween gene Shade (Shd, cyp314a1), catalyzes the conversion of E into 20E in representative insect species in Diptera, Lepidoptera and Orthoptera. We describe here the cloning and characterization of LsShd in a hemipteran insect species, the small brown planthopper Laodelphax striatellus. LsSHD has five insect conserved P450 motifs, i.e., Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal expression pattern of LsShd was determined through the fourth-instar and the early fifth-instar stages by qPCR. LsShd showed two expression peaks in day 2 and day 5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Dietary introduction of double-stranded RNA (dsRNA) of LsShd into nymphs successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, and caused nymphal lethality and delayed development. Ingestion of 20E did not increase LsShd expression level, but almost completely rescued LsEcR mRNA level, and relieved the negative effects on the survival and development in LsShd-dsRNA-exposed nymphs. In contrast, dietary introduction of E had little rescue effects. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects, and LsSHD functions to regulate metamorphotic processes by converting E to 20E even in a hemipteran insect, L. striatellus. PMID:24055487

  12. RNA interference-mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Zhou, Li-Tao; Mu, Li-Li; Li, Guo-Qing

    2015-04-01

    Post-embryonic development of insects is highly dependent on ecdysteroid hormone 20-hydroxyecdysone. Halloween gene spookier (spok, cyp307a2) has been documented to be involved in ecdysteroidogenesis in Drosophila melanogaster and Bombyx mori. We describe here the cloning and characterization of Halloween gene spookier (Lsspok, Lscyp307a2) in the small brown planthopper Laodelphax striatellus, a hemipteran insect species. LsSPOK has three insect-conserved P450 motifs, that is, Helix-K, PERF motif and heme-binding domain. Temporal and spatial expression patterns of Lsspok were evaluated by quantitative polymerase chain reaction. Through the fouth-instar and the early fifth-instar stages, Lsspok showed two expression peaks in the second- and fifth-day fourth-instar nymphs, and two troughs in the first-day fourth and fifth instars. On day 5 of the fourth-instar nymphs, Lsspok clearly had a high transcript level in the thorax where prothoracic glands were located. Dietary introduction of double-stranded RNA of Lsspok in the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development. Ingestion of 20-hydroxyecdysone in Lsspok-dsRNA-exposed nymphs did not increase Lsspok expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects and LsSPOK is responsible for specific steps in ecdysteroidogenesis in L. striatellus. PMID:24282064

  13. Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper.

    PubMed

    Xu, Qiufang; Ni, Haiping; Zhang, Jinfeng; Lan, Ying; Ren, Chunmei; Zhou, Yijun

    2015-11-10

    Rice black-streaked dwarf virus (RBSDV) can infect a number of gramineous plants and cause severe crop yield losses in southeast Asian countries. The virus is transmitted by small brown planthopper (SBPH) in a persistent circulative manner. The interactions between RBSDV and its different hosts remain unknown. Besides, how the virus adjusts itself to infect different hosts is unclear. In the present study, the relative RNA levels of the thirteen RBSDV genes in rice, maize, wheat, and SBPH were measured by real-time quantitative PCR. P7-1 and P10 genes were predominantly expressed whereas P8 and P7-2 genes were expressed at low levels in plant hosts. Similar to the expression in rice, P7-1 was the most abundantly expressed gene and P8 was expressed at the lowest level in SBPH, indicating that RBSDV adopts the same strategy to infect distinct hosts. The high expression levels of the P7-1 gene in both plants and insect suggest that it can be used as the target gene for disease diagnostics. However, the expression levels of some genes varied from host to host. P5-1, P6 and P9-1, the components of the RBSDV viroplasm, are differentially expressed in different hosts. Moreover, western blot analysis showed that the quantity of the P9-1 protein was more abundant in SBPH than in plant hosts. These data indicate that the virus may adjust its own gene expression to replicate in different hosts. Analysis of time course of gene expression revealed that P7-1 stands out as the only gene highly expressed at the earliest time point and its expression precedes all others throughout infection from 8 to 24days post-inoculation. The high expression levels of the P7-1 gene suggest that it plays a significant role in RBSDV-host interactions.

  14. Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper.

    PubMed

    Xu, Qiufang; Ni, Haiping; Zhang, Jinfeng; Lan, Ying; Ren, Chunmei; Zhou, Yijun

    2015-11-10

    Rice black-streaked dwarf virus (RBSDV) can infect a number of gramineous plants and cause severe crop yield losses in southeast Asian countries. The virus is transmitted by small brown planthopper (SBPH) in a persistent circulative manner. The interactions between RBSDV and its different hosts remain unknown. Besides, how the virus adjusts itself to infect different hosts is unclear. In the present study, the relative RNA levels of the thirteen RBSDV genes in rice, maize, wheat, and SBPH were measured by real-time quantitative PCR. P7-1 and P10 genes were predominantly expressed whereas P8 and P7-2 genes were expressed at low levels in plant hosts. Similar to the expression in rice, P7-1 was the most abundantly expressed gene and P8 was expressed at the lowest level in SBPH, indicating that RBSDV adopts the same strategy to infect distinct hosts. The high expression levels of the P7-1 gene in both plants and insect suggest that it can be used as the target gene for disease diagnostics. However, the expression levels of some genes varied from host to host. P5-1, P6 and P9-1, the components of the RBSDV viroplasm, are differentially expressed in different hosts. Moreover, western blot analysis showed that the quantity of the P9-1 protein was more abundant in SBPH than in plant hosts. These data indicate that the virus may adjust its own gene expression to replicate in different hosts. Analysis of time course of gene expression revealed that P7-1 stands out as the only gene highly expressed at the earliest time point and its expression precedes all others throughout infection from 8 to 24days post-inoculation. The high expression levels of the P7-1 gene suggest that it plays a significant role in RBSDV-host interactions. PMID:26149652

  15. Knockdown of a putative Halloween gene Shade reveals its role in ecdysteroidogenesis in the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Zhou, Li-Tao; Mu, Li-Li; Li, Guo-Qing

    2013-12-01

    Ecdysteroid hormone 20-hydroxyecdysone (20E) plays fundamental roles in insect development and reproduction, whereas the primary role of ecdysone (E) is the precursor for 20E. A cytochrome P450 monooxygenase (CYP), encoded by a Halloween gene Shade (Shd, cyp314a1), catalyzes the conversion of E into 20E in representative insect species in Diptera, Lepidoptera and Orthoptera. We describe here the cloning and characterization of LsShd in a hemipteran insect species, the small brown planthopper Laodelphax striatellus. LsSHD has five insect conserved P450 motifs, i.e., Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal expression pattern of LsShd was determined through the fourth-instar and the early fifth-instar stages by qPCR. LsShd showed two expression peaks in day 2 and day 5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Dietary introduction of double-stranded RNA (dsRNA) of LsShd into nymphs successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, and caused nymphal lethality and delayed development. Ingestion of 20E did not increase LsShd expression level, but almost completely rescued LsEcR mRNA level, and relieved the negative effects on the survival and development in LsShd-dsRNA-exposed nymphs. In contrast, dietary introduction of E had little rescue effects. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects, and LsSHD functions to regulate metamorphotic processes by converting E to 20E even in a hemipteran insect, L. striatellus.

  16. RNA interference-mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Zhou, Li-Tao; Mu, Li-Li; Li, Guo-Qing

    2015-04-01

    Post-embryonic development of insects is highly dependent on ecdysteroid hormone 20-hydroxyecdysone. Halloween gene spookier (spok, cyp307a2) has been documented to be involved in ecdysteroidogenesis in Drosophila melanogaster and Bombyx mori. We describe here the cloning and characterization of Halloween gene spookier (Lsspok, Lscyp307a2) in the small brown planthopper Laodelphax striatellus, a hemipteran insect species. LsSPOK has three insect-conserved P450 motifs, that is, Helix-K, PERF motif and heme-binding domain. Temporal and spatial expression patterns of Lsspok were evaluated by quantitative polymerase chain reaction. Through the fouth-instar and the early fifth-instar stages, Lsspok showed two expression peaks in the second- and fifth-day fourth-instar nymphs, and two troughs in the first-day fourth and fifth instars. On day 5 of the fourth-instar nymphs, Lsspok clearly had a high transcript level in the thorax where prothoracic glands were located. Dietary introduction of double-stranded RNA of Lsspok in the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development. Ingestion of 20-hydroxyecdysone in Lsspok-dsRNA-exposed nymphs did not increase Lsspok expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects and LsSPOK is responsible for specific steps in ecdysteroidogenesis in L. striatellus.

  17. Molecular cloning and characterization of the putative Halloween gene Phantom from the small brown planthopper Laodelphax striatellus.

    PubMed

    Jia, Shuang; Wan, Pin-Jun; Li, Guo-Qing

    2015-12-01

    Ecdysteroid hormone 20-hydroxyecdysone plays fundamental roles in insect postembryonic development and reproduction. Several cytochrome P450 mono-oxygenases (CYPs), encoded by the Halloween genes, have been documented to be involved in ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. Here the putative Halloween gene Phantom (Phm, cyp306a1) from a hemipteran insect species, the small brown planthopper Laodelphax striatellus, was cloned. LsPHM shows five insect conserved P450 motifs, that is, Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of LsPhm were evaluated by quantitative polymerase chain reaction. Through the fourth-instar and the early fifth-instar stages, LsPhm showed two expression peaks in day 2 and days 4-5 fourth-instar nymphs, and three troughs in day 1 and 3 fourth instars and day 1 fifth instars. On day 5 of the fourth-instar nymphs, LsPhm clearly had a high transcript level in the thorax where the prothoracic glands were located. Dietary introduction of double-stranded RNA (dsRNA) of LsPhm at the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene and caused a higher nymphal mortality rate and delayed development. Ingestion of 20-hydroxyecdysone on LsPhm-dsRNA-exposed nymphs did not increase LsPhm expression level, but almost completely rescued the LsEcR mRNA level, and relieved the negative effects on survival and development. Thus, our data suggest that the putative LsPhm encodes a functional 25-hydroxylase that catalyzes the biosynthesis of ecdysteroids in L. striatellus.

  18. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52.

    PubMed

    Tamura, Yasumori; Hattori, Makoto; Yoshioka, Hirofumi; Yoshioka, Miki; Takahashi, Akira; Wu, Jianzhong; Sentoku, Naoki; Yasui, Hideshi

    2014-07-29

    The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (brown planthopper resistance 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent biotype of BPH. BPH2 was widely incorporated in elite rice cultivars and was well-cultivated in many Asian countries as a favorable gene resource in rice breeding against BPH. However, BPH2 was rendered ineffective by a virulent biotype of BPH in rice fields in Asia. In this study, we suggest that BPH2 can be reused by combining with other BPH resistance genes, such as BPH25, to ensure durable resistance to BPH.

  19. Comparing Gene Expression Profiles Between Bt and non-Bt Rice in Response to Brown Planthopper Infestation

    PubMed Central

    Wang, Fang; Ning, Duo; Chen, Yang; Dang, Cong; Han, Nai-Shun; Liu, Yu'e; Ye, Gong-Yin

    2015-01-01

    Bt proteins are the most widely used insecticidal proteins in transgenic crops for improving insect resistance. We previously observed longer nymphal developmental duration and lower fecundity in brown planthopper (BPH) fed on Bt rice line KMD2, although Bt insecticidal protein Cry1Ab could rarely concentrate in this non-target rice pest. In the present study, we performed microarray analysis in an effort to detect Bt-independent variation, which might render Bt rice more defensive and/or less nutritious to BPH. We detected 3834 and 3273 differentially expressed probe-sets in response to BPH infestation in non-Bt parent Xiushui 11 and Bt rice KMD2, respectively, only 439 of which showed significant differences in expression between rice lines. Our analysis revealed a shift from growth to defense responses in response to BPH infestation, which was also detected in many other studies of plants suffering biotic and abiotic stresses. Chlorophyll biosynthesis and basic metabolism pathways were inhibited in response to infestation. IAA and GA levels decreased as a result of the repression of biosynthesis-related genes or the induction of inactivation-related genes. In accordance with these observations, a number of IAA-, GA-, BR-signaling genes were downregulated in response to BPH. Thus, the growth of rice plants under BPH attack was reduced and defense related hormone signaling like JA, SA and ET were activated. In addition, growth-related hormone signaling pathways, such as GA, BR, and auxin signaling pathways, as well as ABA, were also found to be involved in BPH-induced defense. On the other side, 51 probe-sets (represented 50 genes) that most likely contribute to the impact of Bt rice on BPH were identified, including three early nodulin genes, four lipid metabolic genes, 14 stress response genes, three TF genes and genes with other functions. Two transcription factor genes, bHLH and MYB, together with lipid transfer protein genes LTPL65 and early nodulin gene ENOD

  20. "Candidatus Phlomobacter fragariae" Is the Prevalent Agent of Marginal Chlorosis of Strawberry in French Production Fields and Is Transmitted by the Planthopper Cixius wagneri (China).

    PubMed

    Danet, Jean-Luc; Foissac, Xavier; Zreik, Leyla; Salar, Pascal; Verdin, Eric; Nourrisseau, Jean-Georges; Garnier, Monique

    2003-06-01

    ABSTRACT Marginal chlorosis has affected strawberry production in France for about 15 years. A phloem-restricted uncultured bacterium, "Candidatus Phlomobacter fragariae," is associated with the disease. A large-scale survey for marginal chlorosis in French strawberry production fields and nurseries by polymerase chain reaction amplification of "Ca. P. fragariae" 16S rDNA revealed that symptoms of marginal chlorosis were not always induced by "Ca. P. fragariae" and that the stolbur phytoplasma could induce identical symptoms. "Ca. P. fragariae" was found to be predominant in strawberry production fields, whereas the stolbur phytoplasma was predominantly detected in nurseries. Two transmission periods of the disease, one in spring and the other from late summer to early fall, were evident. Cixius wagneri planthoppers captured on infected strawberry plants were demonstrated to be efficient vectors of "Ca. P. fragariae." The involvement in natural disease spread of the whitefly Trialeurodes vaporariorum, previously shown to acquire and multiply "Ca. P. fragariae" under greenhouse conditions, remains uncertain.

  1. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice

    PubMed Central

    Wang, Ying; Cao, Liming; Zhang, Yuexiong; Cao, Changxiang; Liu, Fang; Huang, Fengkuan; Qiu, Yongfu; Li, Rongbai; Lou, Xiaojin

    2015-01-01

    Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant–insect interactions and should facilitate the breeding of rice host-resistant varieties. PMID:26136269

  2. Molecular Characterization and Differential Expression of an Olfactory Receptor Gene Family in the White-Backed Planthopper Sogatella furcifera Based on Transcriptome Analysis

    PubMed Central

    He, Ming; Zhang, Ya-Nan; He, Peng

    2015-01-01

    The white-backed planthopper, Sogatella furcifera, a notorious rice pest in Asia, employs host plant volatiles as cues for host location. In insects, odor detection is mediated by two types of olfactory receptors: odorant receptors (ORs) and ionotropic receptors (IRs). In this study, we identified 63 SfurORs and 14 SfurIRs in S. furcifera based on sequences obtained from the head transcriptome and bioinformatics analysis. The motif-pattern of 130 hemiptera ORs indicated an apparent differentiation in this order. Phylogenetic trees of the ORs and IRs were constructed using neighbor-joining estimates. Most of the ORs had orthologous genes, but a specific OR clade was identified in S. furcifera, which suggests that these ORs may have specific olfactory functions in this species. Our results provide a basis for further investigations of how S. furcifera coordinates its olfactory receptor genes with its plant hosts, thereby providing a foundation for novel pest management approaches based on these genes. PMID:26540266

  3. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest

    PubMed Central

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K.

    2016-01-01

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars. PMID:27682162

  4. Using SPOT-5 images in rice farming for detecting BPH (Brown Plant Hopper)

    NASA Astrophysics Data System (ADS)

    Ghobadifar, F.; Wayayok, A.; Shattri, M.; Shafri, H.

    2014-06-01

    Infestation of rice plant-hopper such as Brown Plant Hopper (BPH) (Nilaparvata lugens) is one of the most notable risk in rice yield in tropical areas especially in Asia. In order to use visible and infrared images to detect stress in rice production caused by BPH infestation, several remote sensing techniques have been developed. Initial recognition of pest infestation by means of remote sensing will spreads, for precision farming practice. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Specific image indices such as Normalized decrease food production costs, limit environmental hazards, and enhance natural pest control before the problem Normalized Difference Vegetation Index (NDVI), Standard difference indices (SDI) and Ratio Vegetation Index (RVI) were used for analyses using ENVI 4.8 and SPSS software. Results showed that all the indices to recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) have a relatively high correlation. The selected indices declared better association for detecting healthy plants from diseased ones. Consequently, these sorts of indices especially NDVI could be valued as indicators for developing techniques for detecting the sheath blight of rice by using remote sensing. This infers that they are useful for crop disease detection but the spectral resolution is probably not sufficient to distinguish plants with light infections (low severity level). Using the index as an indicator can clarify the threshold for zoning the outbreaks. Quick assessment information is very useful in precision farming to practice site specific management such as pesticide application.

  5. Silencing COI1 in Rice Increases Susceptibility to Chewing Insects and Impairs Inducible Defense

    PubMed Central

    Ye, Mao; Luo, Shi Ming; Xie, Jie Fen; Li, Yan Fang; Xu, Tao; Liu, Yang; Song, Yuan Yuan; Zhu-Salzman, Keyan; Zeng, Ren Sen

    2012-01-01

    The jasmonic acid (JA) pathway plays a key role in plant defense responses against herbivorous insects. CORONATINE INSENSITIVE1 (COI1) is an F-box protein essential for all jasmonate responses. However, the precise defense function of COI1 in monocotyledonous plants, especially in rice (Oryza sativa L.) is largely unknown. We silenced OsCOI1 in rice plants via RNA interference (RNAi) to determine the role of OsCOI1 in rice defense against rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, and brown planthopper (BPH) Nilaparvata lugens, a phloem-feeding insect. In wild-type rice plants (WT), the transcripts of OsCOI1 were strongly and continuously up-regulated by LF infestation and methyl jasmonate (MeJA) treatment, but not by BPH infestation. The abundance of trypsin protease inhibitor (TrypPI), and the enzymatic activities of polyphenol oxidase (PPO) and peroxidase (POD) were enhanced in response to both LF and BPH infestation, but the activity of lipoxygenase (LOX) was only induced by LF. The RNAi lines with repressed expression of OsCOI1 showed reduced resistance against LF, but no change against BPH. Silencing OsCOI1 did not alter LF-induced LOX activity and JA content, but it led to a reduction in the TrypPI content, POD and PPO activity by 62.3%, 48.5% and 27.2%, respectively. In addition, MeJA-induced TrypPI and POD activity were reduced by 57.2% and 48.2% in OsCOI1 RNAi plants. These results suggest that OsCOI1 is an indispensable signaling component, controlling JA-regulated defense against chewing insect (LF) in rice plants, and COI1 is also required for induction of TrypPI, POD and PPO in rice defense response to LF infestation. PMID:22558386

  6. Specific Synergist for Neonicotinoid Insecticides: IPPA08, a cis-Neonicotinoid Compound with a Unique Oxabridged Substructure.

    PubMed

    Bao, Haibo; Shao, Xusheng; Zhang, Yixi; Deng, Yayun; Xu, Xiaoyong; Liu, Zewen; Li, Zhong

    2016-06-29

    Insecticide synergists are key components to increase the control efficacy and reduce active ingredient use. Here, we describe a novel insecticide synergist with activity specific for insecticidal neonicotinoids. The synergist IPPA08, a cis configuration neonicotinoid compound with a unique oxabridged substructure, could increase the toxicity of most neonicotinoid insecticides belonging to the Insecticide Resistance Action Committee (IRAC) 4A subgroup against a range of insect species, although IPPA08 itself was almost inactive to insects at synergistic concentrations. Unfortunately, similar effects were observed on the honey bee (Apis mellifera) and the brown planthopper (Nilaparvata lugens), resistant to imidacloprid. IPPA08 did not show any effects on toxicity of insecticides with different targets, which made us define it as a neonicotinoid-specific synergist. Unlike most insecticide synergists, by inhibition of activities of detoxification enzymes, IPPA08 showed no effects on enzyme activities. The results revealed that IPPA08 worked as a synergist through a distinct way. Although the modulating insect nicotinic acetylcholine receptors (nAChRs, targets of neonicotinoid insecticides) were supposed as a possible mode of action for IPPA08 as a neonicotinoid-specific synergist, direct evidence is needed in further studies. In insect pest control, IPPA08 acts as a target synergist to increase neonicotinoid toxicity and reduce the amount of neonicotinoid used. Combinations of IPPA08 and insecticidal neonicotinoids may be developed into new insecticide formulations. In summary, combining an active ingredient with a "custom" synergist appears to be a very promising approach for the development of effective new insecticide products. PMID:27281691

  7. Selection of Nectar Plants for Use in Ecological Engineering to Promote Biological Control of Rice Pests by the Predatory Bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae)

    PubMed Central

    Zhu, Pingyang; Lu, Zhongxian; Heong, Kongluen; Chen, Guihua; Zheng, Xusong; Xu, Hongxing; Yang, Yajun; Nicol, Helen I.; Gurr, Geoff M.

    2014-01-01

    Ecological engineering for pest management involves the identification of optimal forms of botanical diversity to incorporate into a farming system to suppress pests, by promoting their natural enemies. Whilst this approach has been extensively researched in many temperate crop systems, much less has been done for rice. This paper reports the influence of various plant species on the performance of a key natural enemy of rice planthopper pests, the predatory mirid bug, Cyrtorhinus lividipennis. Survival of adult males and females was increased by the presence of flowering Tagetes erecta, Trida procumbens, Emilia sonchifolia (Compositae), and Sesamum indicum (Pedaliaceae) compared with water or nil controls. All flower treatments resulted in increased consumption of brown plant hopper, Nilaparvata lugens, and for female C. lividipennis, S. indicum was the most favorable. A separate study with a wider range of plant species and varying densities of prey eggs showed that S. indicum most strongly promoted predation by C. lividipennis. Reflecting this, S. indicum gave a relatively high rate of prey search and low prey handling time. On this basis, S. indicum was selected for more detailed studies to check if its potential incorporation into the farming system would not inadvertently benefit Cnaphalocrocis medinalis and Marasmia patnalis, serious Lepidoptera pests of rice. Adult longevity and fecundity of both pests was comparable for S. indicum and water treatments and significantly lower than the honey solution treatment. Findings indicate that S. indicumis well suited for use as an ecological engineering plant in the margins of rice crops. Sesame indicum can be a valuable crop as well as providing benefits to C. lividipennis whilst denying benefit to key pests. PMID:25254377

  8. Significance of the tropical fire ant Solenopsis geminata (hymenoptera: formicidae) as part of the natural enemy complex responsible for successful biological control of many tropical irrigated rice pests.

    PubMed

    Way, M J; Heong, K L

    2009-10-01

    The tropical fire ant Solenopsis geminata (Fabricius) often nests very abundantly in the earthen banks (bunds) around irrigated rice fields in the tropics. Where some farmers habitually drain fields to the mud for about 3-4 days, the ants can quickly spread up to about 20 m into the fields where they collect food, including pest prey such as the eggs and young of the apple snail Pomacea caniculata (Lamarck) and insects such as lepidopterous larvae and hoppers, notably Nilaparvata lugens (Stäl) the brown planthopper (Bph) and green leafhoppers Nephotettix spp. Even in drained fields, the activity of S. geminata is restricted by rainfall in the wet season. The relatively few ant workers that forage characteristically into drained fields and on to the transplanted clumps of rice plants (hills) kill the normally few immigrant Bph adults but are initially slower acting than other species of the natural enemy complex. However, larger populations of Bph are fiercely attacked and effectively controlled by rapidly recruited ant workers; whereas, in the absence of the ant, the other natural enemies are inadequate. In normal circumstances, there is no ant recruitment in response to initially small populations of immigrant Bph and no evidence of incompatibility between ant foragers and other natural enemies such as spiders. However, when many ants are quickly and aggressively recruited to attack large populations of Bph, they temporarily displace some spiders from infested hills. It is concluded that, in suitable weather conditions and even when insecticides kill natural enemies within the rice field, periodic drainage that enables S. geminata to join the predator complex is valuable for ant-based control of pests such as snails and Lepidoptera, and especially against relatively large populations of Bph. Drainage practices to benefit ants are fully compatible with recent research, which shows that periodic drainage combats problems of 'yield decline' in intensively irrigated

  9. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper

    PubMed Central

    Wan, Gui-Jun; Wang, Wen-Jing; Xu, Jing-Jing; Yang, Quan-Feng; Dai, Ming-Jiang; Zhang, Feng-Jiao; Sword, Gregory A.; Pan, Wei-Dong; Chen, Fa-Jun

    2015-01-01

    Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE. PMID:26173003

  10. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    PubMed

    Wan, Gui-Jun; Wang, Wen-Jing; Xu, Jing-Jing; Yang, Quan-Feng; Dai, Ming-Jiang; Zhang, Feng-Jiao; Sword, Gregory A; Pan, Wei-Dong; Chen, Fa-Jun

    2015-01-01

    Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  11. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    PubMed

    Wan, Gui-Jun; Wang, Wen-Jing; Xu, Jing-Jing; Yang, Quan-Feng; Dai, Ming-Jiang; Zhang, Feng-Jiao; Sword, Gregory A; Pan, Wei-Dong; Chen, Fa-Jun

    2015-01-01

    Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE. PMID:26173003

  12. A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host.

    PubMed

    Ren, Chunmei; Cheng, Zhaobang; Yang, Liu; Miao, Qian; Fan, Yongjian; Zhou, Yijun

    2014-11-01

    Rice black-streaked dwarf virus (RBSDV) naturally infects Gramineae plants through small brown planthopper (SBPH) as a vector. However, RBSDV cannot be transmitted to the SBPH offspring through transovarian transmission. Wheat plant, an important intermediate host in winter, is essential for the completion of the annual cycle of RBSDV in farm ecosystem. We developed a novel, in vivo, indoor method to preserve RBSDV in SBPH using wheat seedling as a bridge host. The temperature range of 23-27°C was initially selected to rear the insects and plants. Before initiating the scheme cycle, viruliferous SBPH was obtained by feeding the virus-free 1st to 2nd instar nymphs with RBSDV-infected rice plants. Four to six RBSDV-infected SBPH were placed per plant to inoculate wheat seedlings at two-to-four leaf stages. After 48 h of inoculation, the viruliferous SBPH were removed. Five mated, newly emerged virus-free SBPH females were then transferred onto each inoculated plant and allowed to lay eggs for 48 h. The newly hatched SBPH were raised on wheat seedlings until the 2nd instar nymph stage, and then transferred onto healthy rice seedlings for further development until 5th instar nymphs or adults. These newly obtained viruliferous SBPH can be used for inoculating new wheat seedlings in the succeeding maintenance cycles, or for further experiments. We discovered that the incubation period of RBSDV in wheat seedlings synchronized with the gestation period of SBPH eggs at four to six inoculated viruliferous SBPH per plant and lasted for approximately seven days. In addition, this period was optimal for enhancing the SBPH infection ratio because SBPH nymphs can only acquire the virus after they hatch. The RBSDV infection ratio of the SBPHs acquired through this method consistently exceeded 50%.

  13. A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host.

    PubMed

    Ren, Chunmei; Cheng, Zhaobang; Yang, Liu; Miao, Qian; Fan, Yongjian; Zhou, Yijun

    2014-11-01

    Rice black-streaked dwarf virus (RBSDV) naturally infects Gramineae plants through small brown planthopper (SBPH) as a vector. However, RBSDV cannot be transmitted to the SBPH offspring through transovarian transmission. Wheat plant, an important intermediate host in winter, is essential for the completion of the annual cycle of RBSDV in farm ecosystem. We developed a novel, in vivo, indoor method to preserve RBSDV in SBPH using wheat seedling as a bridge host. The temperature range of 23-27°C was initially selected to rear the insects and plants. Before initiating the scheme cycle, viruliferous SBPH was obtained by feeding the virus-free 1st to 2nd instar nymphs with RBSDV-infected rice plants. Four to six RBSDV-infected SBPH were placed per plant to inoculate wheat seedlings at two-to-four leaf stages. After 48 h of inoculation, the viruliferous SBPH were removed. Five mated, newly emerged virus-free SBPH females were then transferred onto each inoculated plant and allowed to lay eggs for 48 h. The newly hatched SBPH were raised on wheat seedlings until the 2nd instar nymph stage, and then transferred onto healthy rice seedlings for further development until 5th instar nymphs or adults. These newly obtained viruliferous SBPH can be used for inoculating new wheat seedlings in the succeeding maintenance cycles, or for further experiments. We discovered that the incubation period of RBSDV in wheat seedlings synchronized with the gestation period of SBPH eggs at four to six inoculated viruliferous SBPH per plant and lasted for approximately seven days. In addition, this period was optimal for enhancing the SBPH infection ratio because SBPH nymphs can only acquire the virus after they hatch. The RBSDV infection ratio of the SBPHs acquired through this method consistently exceeded 50%. PMID:25075933

  14. Growth Inhibition of Beauveria bassiana by Bacteria Isolated from the Cuticular Surface of the Corn Leafhopper, Dalbulus maidis and the Planthopper, Delphacodes kuscheli, Two Important Vectors of Maize Pathogens

    PubMed Central

    Toledo, A.V.; Alippi, A.M.; de Remes Lenicov, A.M.M.

    2011-01-01

    The phytosanitary importance of the corn leafhopper, Dalbulus maidis (De Long and Wolcott) (Hemiptera: Cicadellidae) and the planthopper, Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) lies in their ability to transmit phloem-associated plant pathogens, mainly viruses and mollicutes, and to cause considerable mechanical damage to corn plants during feeding and oviposition. Fungi, particularly some members of the Ascomycota, are likely candidates for biocontrol agents against these insect pests, but several studies revealed their failure to invade the insect cuticle possibly because of the presence of inhibitory compounds such as phenols, quinones, and lipids and also by the antibiosis effect of the microbiota living on the cuticular surface of the host. The present work aims to understand interactions between the entomopathogenic fungus Beauveria bassiana (Balsamao-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) and bacterial antagonists isolated from the cuticular surface of D. maidis and D. kuscheli. A total of 155 bacterial isolates were recovered from the insect's cuticle and tested against B. bassiana. Ninety-one out of 155 strains inhibited the growth of B. bassiana. Bacterial strains isolated from D. maidis were significantly more antagonistic against B. bassiana than those isolates from D. kuscheli. Among the most effective antagonistic strains, six isolates of Bacillus thuringiensis Berliner (Bacillales: Bacillaeae (after B. subtilis)), one isolate of B. mycoides Flügge, eight isolates of B. megaterium de Bary, five isolates of B.pumilus Meyer and Gottheil, one isolate of B. licheniformis (Weigmann) Chester, and four isolates of B. subtilis (Ehrenberg) Cohn were identified. PMID:21529147

  15. Permanent genetic resources added to Molecular Ecology Resources Database 1 December 2011-31 January 2012.

    PubMed

    Arias, M C; Arnoux, E; Bell, James J; Bernadou, Abel; Bino, Giorgia; Blatrix, R; Bourguet, Denis; Carrea, Cecilia; Clamens, Anne-Laure; Cunha, Haydée A; d'Alençon, E; Ding, Yi; Djieto-Lordon, C; Dubois, M P; Dumas, P; Eraud, C; Faivre, B; Francisco, F O; Françoso, E; Garcia, M; Gardner, Jonathan P A; Garnier, S; Gimenez, S; Gold, John R; Harris, D J; He, Guangcun; Hellemans, B; Hollenbeck, Christopher M; Jing, Shengli; Kergoat, G J; Liu, Bingfang; McDowell, Jan R; McKey, D; Miller, Terrence L; Newton, Erica; Pagenkopp Lohan, Katrina M; Papetti, Chiara; Paterson, Ian; Peccoud, J; Peng, Xinxin; Piatscheck, F; Ponsard, Sergine; Reece, Kimberly S; Reisser, Céline M O; Renshaw, Mark A; Ruzzante, Daniel E; Sauve, M; Shields, Jeffrey D; Solé-Cava, Antonio; Souche, E L; Van Houdt, J K J; Vasconcellos, Anderson; Volckaert, F A M; Wang, Shuzhen; Xiao, Jie; Yu, Hangjin; Zane, Lorenzo; Zannato, Barbara; Zemlak, Tyler S; Zhang, Chunxiao; Zhao, Yan; Zhou, Xi; Zhu, Lili

    2012-05-01

    This article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.a. M. abdominalis Fab., M. grandii Goidanich or M. gifuensis Ashmead), Micropogonias furnieri, Nerita melanotragus, Nilaparvata lugens Stål, Sciaenops ocellatus, Scomber scombrus, Spodoptera frugiperda and Turdus lherminieri. These loci were cross-tested on the following species: Barteria dewevrei, Barteria nigritana, Barteria solida, Cynoscion acoupa, Cynoscion jamaicensis, Cynoscion leiarchus, Cynoscion nebulosus, Cynoscion striatus, Cynoscion virescens, Macrodon ancylodon, Menticirrhus americanus, Nilaparvata muiri and Umbrina canosai. This article also documents the addition of 116 sequencing primer pairs for Dicentrarchus labrax. PMID:22448966

  16. Novel hydrazone derivatives containing pyridine amide moiety: Design, synthesis, and insecticidal activity.

    PubMed

    Yang, Zai-Bo; Hu, De-Yu; Zeng, Song; Song, Bao-An

    2016-02-15

    A series of novel hydrazone derivatives containing pyridine amide moiety were designed, synthesized, and evaluated for their insecticidal activity. Bioassays indicated that some of the target compounds exhibited good insecticidal activities against Nilaparvata lugens (N. lugens), Plutella xylostella (P. xylostella), Mythimna separata (M. separata), Helicoverpa armigera (H. armigera), Pyrausta nubilalis (P. nubilalis), and Culex pipiens pallens (C. pipiens pallens). In particular, compound 5j revealed excellent insecticidal activity against C. pipiens pallens, with the 50% lethal concentration (LC50) and the 95% lethal concentration (LC95) values of 2.44 and 5.76 mg/L, respectively, which were similar to those of chlorpyrifos (3.26 and 6.98 mg/L, respectively), tebufenozide (1.22 and 2.49 mg/L, respectively), and RH-5849 (2.61 and 6.37 mg/L, respectively). These results indicated that hydrazone derivatives containing pyridine amide moiety could be developed as novel and promising insecticides.

  17. Planthopper pests of grapevine (in French)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the French vineyards occur two main insect pests belonging to Fulgoromorpha, Hyalesthes obsoletus Signoret (Cixiidae) and Metcalfa pruinosa (Say) (Flatidae). Hyalesthes obsoletus is inducing economic losses by transmitting a phytoplasma, called Stolbur, from wild plants (bindweed, nettle, etc.) t...

  18. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae).

    PubMed

    Burrows, Malcolm

    2014-02-01

    The jumping performance of four species of hemipterans belonging to the family Dictyopharidae, from Europe, South Africa and Australia, were analysed from high-speed images. The body shape in all was characterised by an elongated and tapering head that gave a streamlined appearance. The body size ranged from 6 to 9 mm in length and from 6 to 23 mg in mass. The hind legs were 80-90% of body length and 30-50% longer than the front legs, except in one species in which the front legs were particularly large so that all legs were of similar length. Jumping was propelled by rapid and simultaneous depression of the trochantera of both hind legs, powered by large muscles in the thorax, and was accompanied by extension of the tibiae. In the best jumps, defined as those with the fastest take-off velocity, Engela minuta accelerated in 1.2 ms to a take-off velocity of 5.8 m s(-1), which is the fastest achieved by any insect described to date. During such a jump, E. minuta experienced an acceleration of 4830 m s(-2) or 490 g, while other species in the same family experienced 225-375 g. The best jumps in all species required an energy expenditure of 76-225 μJ, a power output of 12-80 mW and exerted a force of 12-29 mN. The required power output per mass of jumping muscle ranged from 28,000 to 140,200 W kg(-1) muscle and thus greatly exceeded the maximum active contractile limit of normal muscle. To achieve such a jumping performance, these insects must be using a power amplification mechanism in a catapult-like action. It is suggested that their streamlined body shape improves jumping performance by reducing drag, which, for a small insect, can substantially affect forward momentum.

  19. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  20. The Complete Mitochondrial Genome Sequence of the Planthopper, Sivaloka damnosus

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Ma, Chuan

    2010-01-01

    The complete mitochondrial genome (mitogenome) sequence was determined from the plant hopper, Sivaloka damnosus Chow and Lu (Hemiptera: Issidae), a representative of the insect family Issidae. The genome is a circular molecule of 15,287 bp with a total A+T content of 76.5%. The gene content, order, and structure are identical to that in Drosophila melanogaster, which is considered ancestral for insects. All 13 protein-coding genes of the S. damnosus mitogenome have a putative inframe ATR methionine or ATT isoleucine codons as start signals. The usual termination codons (TAA and TAG) were found in 11 protein-coding genes. However, atp6, and nad4 have incomplete termination codons. All tRNAs show stable canonical clover-leaf structures similar to other insect mitochondrial tRNAs, except for tRNASer(AGN), which has a reduced DHU arm. The A+T-rich region or putative control region includes two extensive repeat regions. The first repeat region is composed of two sets of complicated repeat units, and these repetitive sequences are arranged alternately; the second contains ten 20 bp tandemly repetitive sequences. In the phylogenetic analyses based on protein-coding genes, Cicadomorpha is a sister to Fulgoromorpha+Sternorrhyncha, and Heteroptera is a sister to all other Hemiptera. PMID:20673194

  1. The insecticidal activity and action mode of an imidacloprid analogue, 1-(3-pyridylmethyl)-2-nitroimino-imidazolidine.

    PubMed

    Zhuang, An-Xiang; Zhang, Yi-Xi; Zhang, Hui; Liu, Ze-Wen

    2016-10-01

    Neonicotinoids, such as imidacloprid, are key insecticides extensively used for control of Nilaparvata lugens. However, imidacloprid resistance has been reported in many Asian countries in recent years. To understand the roles of the chlorine atom of pyridyl group on insecticidal activity and resistance, the atom was removed to generate an imidacloprid analogue DC-Imi (DesChlorine Imidacloprid). DC-Imi showed significantly higher toxicity than imidacloprid in the susceptible strain of N. lugens, but had medium level cross-resistance in an imidacloprid-resistant strain. In Xenopus oocyte expressed nicotinic acetylcholine receptors (nAChRs) Nlα1/rβ2, the inward currents evoked by DC-Imi were detected and could be blocked by typical nAChRs antagonist dihydro-β-erythroidine (DHβE), which demonstrated that DC-Imi acted as an agonist on insect nAChRs. The efficacy of DC-Imi on Nlα1/rβ2 was 1.8-fold higher than that of imidacloprid. In addition, the influence of an imidacloprid resistance associated mutation (Y151S) on agonist potencies was evaluated. Compared with the wild-type receptor, the mutation reduced maximal inward current of DC-Imi to 55.6% and increased half maximal effective concentration (EC50 ) to 3.53-fold. Compared with imidacloprid (increasing EC50 to 2.38-fold of wild-type receptor), Y151S mutation decreased DC-Imi potency more significantly. The results indicated that the selective and possibly high toxicities could be achieved through the modification of 6-chloro-3-pyridyl group in imidacloprid and other neonicotinoids.

  2. Estimation of the age and amount of brown rice plant hoppers based on bionic electronic nose use.

    PubMed

    Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin; Zhang, Yang; Li, Yanfang

    2014-09-29

    The brown rice plant hopper (BRPH), Nilaparvata lugens (Stal), is one of the most important insect pests affecting rice and causes serious damage to the yield and quality of rice plants in Asia. This study used bionic electronic nose technology to sample BRPH volatiles, which vary in age and amount. Principal component analysis (PCA), linear discrimination analysis (LDA), probabilistic neural network (PNN), BP neural network (BPNN) and loading analysis (Loadings) techniques were used to analyze the sampling data. The results indicate that the PCA and LDA classification ability is poor, but the LDA classification displays superior performance relative to PCA. When a PNN was used to evaluate the BRPH age and amount, the classification rates of the training set were 100% and 96.67%, respectively, and the classification rates of the test set were 90.67% and 64.67%, respectively. When BPNN was used for the evaluation of the BRPH age and amount, the classification accuracies of the training set were 100% and 48.93%, respectively, and the classification accuracies of the test set were 96.67% and 47.33%, respectively. Loadings for BRPH volatiles indicate that the main elements of BRPHs' volatiles are sulfur-containing organics, aromatics, sulfur-and chlorine-containing organics and nitrogen oxides, which provide a reference for sensors chosen when exploited in specialized BRPH identification devices. This research proves the feasibility and broad application prospects of bionic electronic noses for BRPH recognition.

  3. Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL

    PubMed Central

    Zhang, Yixi; Meng, Xiangkun; Yang, Yuanxue; Li, Hong; Wang, Xin; Yang, Baojun; Zhang, Jianhua; Li, Chunrui; Millar, Neil S.; Liu, Zewen

    2016-01-01

    Insecticide resistance can arise from a variety of mechanisms, including changes to the target site, but is often associated with substantial fitness costs to insects. Here we describe two resistance-associated target-site mutations that have synergistic and compensatory effects that combine to produce high and persistent levels of resistance to fipronil, an insecticide targeting on γ-aminobytyric acid (GABA) receptors. In Nilaparvata lugens, a major pest of rice crops in many parts of Asia, we have identified a single point mutation (A302S) in the GABA receptor RDL that has been identified previously in other species and which confers low levels of resistance to fipronil (23-fold) in N. lugans. In addition, we have identified a second resistance-associated RDL mutation (R300Q) that, in combination with A302S, is associated with much higher levels of resistance (237-fold). The R300Q mutation has not been detected in the absence of A302S in either laboratory-selected or field populations, presumably due to the high fitness cost associated with this mutation. Significantly, it appears that the A302S mutation is able to compensate for deleterious effects of R300Q mutation on fitness cost. These findings identify a novel resistance mechanism and may have important implications for the spread of insecticide resistance. PMID:27557781

  4. Permanent Genetic Resources added to Molecular Ecology Resources database 1 January 2009-30 April 2009.

    PubMed

    Abercrombie, L G; Anderson, C M; Baldwin, B G; Bang, I C; Beldade, R; Bernardi, G; Boubou, A; Branca, A; Bretagnolle, F; Bruford, M W; Buonamici, A; Burnett, R K; Canal, D; Cárdenas, H; Caullet, C; Chen, S Y; Chun, Y J; Cossu, C; Crane, C F; Cros-Arteil, S; Cudney-Bueno, R; Danti, R; Dávila, J A; Della Rocca, G; Dobata, S; Dunkle, L D; Dupas, S; Faure, N; Ferrero, M E; Fumanal, B; Gigot, G; González, I; Goodwin, S B; Groth, D; Hardesty, B D; Hasegawa, E; Hoffman, E A; Hou, M L; Jamsari, A F J; Ji, H J; Johnson, D H; Joseph, L; Justy, F; Kang, E J; Kaufmann, B; Kim, K S; Kim, W J; Koehler, A V; Laitung, B; Latch, P; Liu, Y D; Manjerovic, M B; Martel, E; Metcalfe, S S; Miller, J N; Midgley, J J; Migeon, A; Moore, A J; Moore, W L; Morris, V R F; Navajas, M; Navia, D; Neel, M C; De Nova, P J G; Olivieri, I; Omura, T; Othman, A S; Oudot-Canaff, J; Panthee, D R; Parkinson, C L; Patimah, I; Pérez-Galindo, C A; Pettengill, J B; Pfautsch, S; Piola, F; Potti, J; Poulin, R; Raimondi, P T; Rinehart, T A; Ruzainah, A; Sarver, S K; Scheffler, B E; Schneider, A R R; Silvain, J F; Siti Azizah, M N; Springer, Y P; Stewart, C N; Sun, W; Tiedemann, R; Tsuji, K; Trigiano, R N; Vendramin, G G; Wadl, P A; Wang, L; Wang, X; Watanabe, K; Waterman, J M; Weisser, W W; Westcott, D A; Wiesner, K R; Xu, X F; Yaegashi, S; Yuan, J S

    2009-09-01

    This article documents the addition of 283 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Agalinis acuta; Ambrosia artemisiifolia; Berula erecta; Casuarius casuarius; Cercospora zeae-maydis; Chorthippus parallelus; Conyza canadensis; Cotesia sesamiae; Epinephelus acanthistius; Ficedula hypoleuca; Grindelia hirsutula; Guadua angustifolia; Leucadendron rubrum; Maritrema novaezealandensis; Meretrix meretrix; Nilaparvata lugens; Oxyeleotris marmoratus; Phoxinus neogaeus; Pristomyrmex punctatus; Pseudobagrus brevicorpus; Seiridium cardinale; Stenopsyche marmorata; Tetranychus evansi and Xerus inauris. These loci were cross-tested on the following species: Agalinis decemloba; Agalinis tenella; Agalinis obtusifolia; Agalinis setacea; Agalinis skinneriana; Cercospora zeina; Cercospora kikuchii; Cercospora sorghi; Mycosphaerella graminicola; Setosphaeria turcica; Magnaporthe oryzae; Cotesia flavipes; Cotesia marginiventris; Grindelia Xpaludosa; Grindelia chiloensis; Grindelia fastigiata; Grindelia lanceolata; Grindelia squarrosa; Leucadendron coniferum; Leucadendron salicifolium; Leucadendron tinctum; Leucadendron meridianum; Laodelphax striatellus; Sogatella furcifera; Phoxinus eos; Phoxinus rigidus; Phoxinus brevispinosus; Phoxinus bicolor; Tetranychus urticae; Tetranychus turkestani; Tetranychus ludeni; Tetranychus neocaledonicus; Tetranychus amicus; Amphitetranychus viennensis; Eotetranychus rubiphilus; Eotetranychus tiliarium; Oligonychus perseae; Panonychus citri; Bryobia rubrioculus; Schizonobia bundi; Petrobia harti; Xerus princeps; Spermophilus tridecemlineatus and Sciurus carolinensis.

  5. Sequence and phylogenetic analysis of genome segments S1, S2, S3 and S6 of Mal de Río Cuarto virus, a newly accepted Fijivirus species.

    PubMed

    Distéfano, Ana J; Conci, Luis R; Muñoz Hidalgo, Marianne; Guzmán, Fabiana A; Hopp, Horacio E; del Vas, Mariana

    2003-03-01

    Mal de Río Cuarto virus (MRCV) is a newly described species of the genus Fijivirus, family Reoviridae. The nucleotide sequence of four MRCV genome segments was determined. MRCV S1, S2, S3 and S6 were predicted to encode proteins of 168.4, 134.4, 141.7 and 90 kDa, respectively. MRCV S1 encodes a basic protein that contains conserved RNA-dependent RNA polymerase motifs, and is homologous to Rice black streaked dwarf virus (RBSDV), Fiji disease virus (FDV) and Nilaparvata lugens reovirus (NLRV) polymerases as well as to corresponding proteins of members of other genera of the Reoviridae. MRCV S2 codes for a protein with intermediate homology to the ones coded by RBSDV S4 and FDV S3 'B' spike, which is presumably the B-spike protein. MRCV S3 most probably encodes the major core protein and is highly homologous to corresponding proteins of RBSDV S2 and FDV S3. MRCV S6-encoded protein has low homology to the proteins of unknown function coded by RBSDV S6 and FDV S6. The identity levels between all analyzed MRCV coded proteins and their RBSDV counterparts varied between 84.5 and 44.8%. The analysis of the reported sequences allowed a phylogenetic comparison of MRCV with other reovirus and supported its taxonomic status within the genus.

  6. Sequence analysis of genome segments S4 and S8 of Mal de Río Cuarto virus (MRCV): evidence that the virus should be a separate Fijivirus species.

    PubMed

    Distéfano, A J; Conci, L R; Muñoz Hidalgo, M; Guzmán, F A; Hopp, H E; del Vas, M

    2002-09-01

    This is the first sequence-based characterization of Mal de Río Cuarto virus (MRCV), currently classified as a variant of Maize rough dwarf virus (MRDV) and exclusively found in South America. We sequenced and analyzed genome segments S4 and S8. MRCV S4 coded for a putative 131.67 kDa protein while MRCV S8 coded for a putative 68.26 kDa protein containing an ATP/GTP-binding motif. The 5' and 3' ends of MRCV segments, were 5'AAGUUUUU3' and 5'CAGCUnnnGUC3', respectively. Prediction of secondary structure of both segments coding strands showed that terminal regions were able to form structures that are proposed to be replication and packaging signals. MRCV S4 showed identity to members of Fijivirus as well as to two other genera of the Reoviridae family. MRCV S8 revealed identity with Rice black streaked dwarf virus (RBSDV) S8, MRDV S7, Oat sterile dwarf virus (OSDV) S9 and Nilaparvata lugens reovirus (NLRV) S7. While MRDV and RBSDV segments are highly homologous between each other, MRCV identity levels with them was considerably lower. We discussed the evolutionary relationships of MRCV to other Reoviridae, and based on phylogenetic analysis we proposed that although MRCV is related to MRDV, it could be regarded as a new species of the Fijivirus genus.

  7. Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL.

    PubMed

    Zhang, Yixi; Meng, Xiangkun; Yang, Yuanxue; Li, Hong; Wang, Xin; Yang, Baojun; Zhang, Jianhua; Li, Chunrui; Millar, Neil S; Liu, Zewen

    2016-01-01

    Insecticide resistance can arise from a variety of mechanisms, including changes to the target site, but is often associated with substantial fitness costs to insects. Here we describe two resistance-associated target-site mutations that have synergistic and compensatory effects that combine to produce high and persistent levels of resistance to fipronil, an insecticide targeting on γ-aminobytyric acid (GABA) receptors. In Nilaparvata lugens, a major pest of rice crops in many parts of Asia, we have identified a single point mutation (A302S) in the GABA receptor RDL that has been identified previously in other species and which confers low levels of resistance to fipronil (23-fold) in N. lugans. In addition, we have identified a second resistance-associated RDL mutation (R300Q) that, in combination with A302S, is associated with much higher levels of resistance (237-fold). The R300Q mutation has not been detected in the absence of A302S in either laboratory-selected or field populations, presumably due to the high fitness cost associated with this mutation. Significantly, it appears that the A302S mutation is able to compensate for deleterious effects of R300Q mutation on fitness cost. These findings identify a novel resistance mechanism and may have important implications for the spread of insecticide resistance. PMID:27557781

  8. Unusual characteristics of dicistrovirus-derived small RNAs in the small brown planthopper, Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Zhou, Yanru; Shen, Jiangfeng; Sun, Zongtao; Wang, Xu; Sun, Liying; Chen, Jianping

    2014-03-01

    In this study, sequences of small RNA (sRNA) libraries derived from the insect vector Laodelphax striatellus were assembled into contigs and used as queries for database searches. A large number of contigs were highly homologous to the genome sequence of an insect dicistrovirus, himetobi P virus (HiPV). Interestingly, HiPV-derived sRNAs had a wide size distribution, and were relatively abundant throughout the 18-30 nt size range with only a slight peak at 22 nt. HiPV sRNAs had a strong bias towards the sense strand, whilst the antisense sRNAs were predominantly 21 and 22 nt. HiPV sRNAs do not have the typical features of PIWI-interacting RNAs, but their 3' ends were preferentially cleaved at UA-rich sequences. Our data suggest that HiPV sRNAs may be derived both from activities of the RNA interference pathway and from cleavage of the viral genome by other host RNases.

  9. A New Species of the Planthopper Genus Conosimus Associated with an Endemic Shrub in Southern Spain

    PubMed Central

    Gnezdilov, V. M.; Aguin-Pombo, D.

    2014-01-01

    The poorly-known genus Conosimus Mulsant et Rey, 1855 (Hemiptera: Fulgoroidea: Issidae) includes six species and is briefly reviewed. Adults and fifth instars of a new species, Conosimus baenai n. sp., are described and compared with other species in the genus. The new species is associated with an endemic shrub, Echinospartum boissieri, in Jaen, Spain, in the south of the Iberian Peninsula, one of the richest botanical areas of the Mediterranean Basin. PMID:25368048

  10. Complete Genomic Sequence of Maize Rough Dwarf Virus, a Fijivirus Transmitted by the Small Brown Planthopper.

    PubMed

    Lv, Mingfang; Xie, Li; Yang, Jian; Chen, Jianping; Zhang, Heng-Mu

    2016-02-04

    The nucleotide sequences of the 10 genomic segments of an Italian isolate of maize rough dwarf virus (MRDV) were determined. This first complete genomic sequence of MRDV will help understand the phylogenetic relationships among group 2 fijiviruses and especially the closely related rice black-streaked dwarf virus, which is also found to naturally infect maize.

  11. The planthopper genus Spartidelphax, a new segregate of Nearctic Delphacodes (Hemiptera, Delphacidae)

    PubMed Central

    Bartlett, Charles R.; Webb, Mick D.

    2014-01-01

    Abstract The new genus Spartidelphax is described to house three species removed from the polyphyletic genus Delphacodes. The members of Spartidelphax are coastal species native to eastern North America, and probably feed exclusively on cordgrass (Poaceae, Spartina Schreb.). The taxonomy and nomenclature of the included species (viz. Spartidelphax detectus, Spartidelphax luteivittus, and Spartidelphax penedetectus) are reviewed. Spartidelphax luteivittus is a nomen dubium, whose type material is inadequate to provide diagnostic features contrasting with Spartidelphax detectus and Spartidelphax penedetectus. Diagnoses and a key are provided for the remaining Spartidelphax. PMID:25493058

  12. Complete Genomic Sequence of Maize Rough Dwarf Virus, a Fijivirus Transmitted by the Small Brown Planthopper

    PubMed Central

    Lv, Mingfang; Xie, Li; Yang, Jian

    2016-01-01

    The nucleotide sequences of the 10 genomic segments of an Italian isolate of maize rough dwarf virus (MRDV) were determined. This first complete genomic sequence of MRDV will help understand the phylogenetic relationships among group 2 fijiviruses and especially the closely related rice black-streaked dwarf virus, which is also found to naturally infect maize. PMID:26847903

  13. Complete Genomic Sequence of Maize Rough Dwarf Virus, a Fijivirus Transmitted by the Small Brown Planthopper.

    PubMed

    Lv, Mingfang; Xie, Li; Yang, Jian; Chen, Jianping; Zhang, Heng-Mu

    2016-01-01

    The nucleotide sequences of the 10 genomic segments of an Italian isolate of maize rough dwarf virus (MRDV) were determined. This first complete genomic sequence of MRDV will help understand the phylogenetic relationships among group 2 fijiviruses and especially the closely related rice black-streaked dwarf virus, which is also found to naturally infect maize. PMID:26847903

  14. Draft Genome Sequence of a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus.

    PubMed

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri; Iasur-Kruh, Lilach

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium "Candidatus Phytoplasma." This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  15. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    PubMed Central

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  16. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae)

    PubMed Central

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle’ adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized. PMID:26914608

  17. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae).

    PubMed

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle' adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized.

  18. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae).

    PubMed

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle' adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized. PMID:26914608

  19. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper

    PubMed Central

    Hao, Yanan; Dietrich, Christopher H.; Dai, Wu

    2016-01-01

    Mouthparts are among the most important sensory and feeding structures in insects and comparative morphological study may help explain differences in feeding behavior and diet breadth among species. The spotted lanternfly Lycorma delicatula (White) (Hemiptera: Fulgoromorpha: Fulgoridae) is a polyphagous agricultural pest originating in China, recently established and becoming widespread in Korea, and more recently introduced into eastern North America. It causes severe economic damage by sucking phloem sap and the sugary excrement produced by nymphs and adults serves as a medium for sooty mold. To facilitate future study of feeding mechanisms in this insect, the fine-structural morphology of mouthparts focusing on the distribution of sensilla located on the labium in adult L. delicatula was observed using a scanning electron microscope. The mouthparts consist of a small cone-shaped labrum, a tubular labium and a stylet fascicle consisting of two inner interlocked maxillary stylets partially surrounded by two shorter mandibular stylets similar to those found in other hemipteran insects. The five-segmented labium is unusual (most other Fulgoromorpha have four segments) and is provided with several types of sensilla and cuticular processes situated on the apex of its distal labial segment. In general, nine types of sensilla were found on the mouthparts. Six types of sensilla and four types of cuticular processes are present on sensory fields of the labial apex. The proposed taxonomic and functional significance of the sensilla are discussed. Morphological similarities in the interlocking mechanism of the stylets suggest a relationship between Fulgoromorpha and Heteroptera. PMID:27253390

  20. First establishment of the planthopper Megamelus scutellaris Berg 1883 (Hemiptera: Delphacidae) released for biological control of water hyacinth in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water hyacinth (Eichhornia crassipes (Martius) Solms-Laubach) is a non-native, invasive floating aquatic weed in the Sacramento San Joaquin Delta and associated river watersheds of northern California. Prior efforts to control water hyacinth biologically in this region have not led to sustained cont...

  1. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper.

    PubMed

    Hao, Yanan; Dietrich, Christopher H; Dai, Wu

    2016-01-01

    Mouthparts are among the most important sensory and feeding structures in insects and comparative morphological study may help explain differences in feeding behavior and diet breadth among species. The spotted lanternfly Lycorma delicatula (White) (Hemiptera: Fulgoromorpha: Fulgoridae) is a polyphagous agricultural pest originating in China, recently established and becoming widespread in Korea, and more recently introduced into eastern North America. It causes severe economic damage by sucking phloem sap and the sugary excrement produced by nymphs and adults serves as a medium for sooty mold. To facilitate future study of feeding mechanisms in this insect, the fine-structural morphology of mouthparts focusing on the distribution of sensilla located on the labium in adult L. delicatula was observed using a scanning electron microscope. The mouthparts consist of a small cone-shaped labrum, a tubular labium and a stylet fascicle consisting of two inner interlocked maxillary stylets partially surrounded by two shorter mandibular stylets similar to those found in other hemipteran insects. The five-segmented labium is unusual (most other Fulgoromorpha have four segments) and is provided with several types of sensilla and cuticular processes situated on the apex of its distal labial segment. In general, nine types of sensilla were found on the mouthparts. Six types of sensilla and four types of cuticular processes are present on sensory fields of the labial apex. The proposed taxonomic and functional significance of the sensilla are discussed. Morphological similarities in the interlocking mechanism of the stylets suggest a relationship between Fulgoromorpha and Heteroptera. PMID:27253390

  2. Planthopper (Hemiptera: Flatidae) parasitized by larval erythraeid mite (Trombidiformes: Erythraeidae)-a description of two new species from western Madagascar.

    PubMed

    Mąkol, Joanna; Moniuszko, Hanna; Swierczewski, Dariusz; Stroiński, Adam

    2014-01-01

    Descriptions of Dambullaeus adonis Mąkol et Moniuszko SP NOV: (Trombidiformes: Erythraeidae, Callidosomatinae) and Latois nigrolineata Świerczewski et Stroiński SP NOV: (Hemiptera: Fulgoromorpha, Flatidae) from Madagascar are provided. The first host record for ectoparasitic larvae of Dambullaeus Haitlinger, 2001 and the first evidence on host-parasite association between flatid adult and erythraeid larvae are given. Genus Dambullaeus, known exclusively from larvae and now comprising two species of Gondwanan distribution, is critically reappraised.

  3. RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus.

    PubMed

    Wan, Pin-Jun; Jia, Shuang; Li, Na; Fan, Jin-Mei; Li, Guo-Qing

    2014-01-01

    Sogatella furcifera and Laodelphax striatellus are economically important rice pests in China by acting as vectors of several rice viruses, sucking the phloem sap and blocking the phloem vessels. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. A cytochrome P450 monooxygenase CYP302A1 (22-hydroxylase), encoded by the Halloween gene disembodied (dib), plays a critical role in ecdysteroidogenesis. The objective of this study is to test whether dib genes are potential targets for RNA interference-based management of S. furcifera and L. striatellus. We cloned and characterized Sfdib and Lsdib. The open reading frame regions of dib genes were generated and used for designing and constructing dsRNA fragments. Experiments were conducted using oral delivery of dsdib to investigate the effectiveness of RNAi in S. furcifera and L. striatellus nymphs. Real-time quantitative reverse transcriptase-PCR analysis demonstrated that continuous ingestion of dsdib at the concentration of 0.01, 0.05 and 0.50 mg/ml diminished Sfdib expression levels by 35.9%, 45.1% and 66.2%, and ecdysone receptor (SfEcR) gene mRNA levels by 34.0%, 36.2% and 58.5% respectively in S. furcifera, and decreased Lsdib expression level by 18.8%, 35.8% and 56.7%, and LsEcR mRNA levels by 25.2%, 46.8% and 68.8% respectively in L. striatellus. The reduction in dib and EcR transcript abundance resulted in observable phenotypes. The development of nymphs was impaired and the survival was negatively affected. Our data will enable the development of new insect control strategies and functional analysis of vital genes in S. furcifera and L. striatellus nymphs. PMID:24489765

  4. RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus.

    PubMed

    Wan, Pin-Jun; Jia, Shuang; Li, Na; Fan, Jin-Mei; Li, Guo-Qing

    2014-01-01

    Sogatella furcifera and Laodelphax striatellus are economically important rice pests in China by acting as vectors of several rice viruses, sucking the phloem sap and blocking the phloem vessels. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. A cytochrome P450 monooxygenase CYP302A1 (22-hydroxylase), encoded by the Halloween gene disembodied (dib), plays a critical role in ecdysteroidogenesis. The objective of this study is to test whether dib genes are potential targets for RNA interference-based management of S. furcifera and L. striatellus. We cloned and characterized Sfdib and Lsdib. The open reading frame regions of dib genes were generated and used for designing and constructing dsRNA fragments. Experiments were conducted using oral delivery of dsdib to investigate the effectiveness of RNAi in S. furcifera and L. striatellus nymphs. Real-time quantitative reverse transcriptase-PCR analysis demonstrated that continuous ingestion of dsdib at the concentration of 0.01, 0.05 and 0.50 mg/ml diminished Sfdib expression levels by 35.9%, 45.1% and 66.2%, and ecdysone receptor (SfEcR) gene mRNA levels by 34.0%, 36.2% and 58.5% respectively in S. furcifera, and decreased Lsdib expression level by 18.8%, 35.8% and 56.7%, and LsEcR mRNA levels by 25.2%, 46.8% and 68.8% respectively in L. striatellus. The reduction in dib and EcR transcript abundance resulted in observable phenotypes. The development of nymphs was impaired and the survival was negatively affected. Our data will enable the development of new insect control strategies and functional analysis of vital genes in S. furcifera and L. striatellus nymphs.

  5. Interactive Effects of Southern Rice Black-Streaked Dwarf Virus Infection of Host Plant and Vector on Performance of the Vector, Sogatella furcifera (Homoptera: Delphacidae).

    PubMed

    Lei, Wenbin; Liu, Danfeng; Li, Pei; Hou, Maolin

    2014-10-01

    Performance of insect vectors can be influenced by the viruses they transmit, either directly by infection of the vectors or indirectly via infection of the host plants. Southern rice black-streaked dwarf virus (SRBSDV) is a propagative virus transmitted by the white-backed planthopper, Sogatella furcifera (Hovath). To elucidate the influence of SRBSDV on the performance of white-backed planthopper, life parameters of viruliferous and nonviruliferous white-backed planthopper fed rice seedlings infected or noninfected with SRBSDV were measured using a factorial design. Regardless of the infection status of the rice plant host, viruliferous white-backed planthopper nymphs took longer to develop from nymph to adult than did nonviruliferous nymphs. Viruliferous white-backed planthopper females deposited fewer eggs than nonviruliferous females and both viruliferous and nonviruliferous white-backed planthopper females laid fewer eggs on infected than on noninfected plants. Longevity of white-backed planthopper females was also affected by the infection status of the rice plant and white-backed planthopper. Nonviruliferous white-backed planthopper females that fed on infected rice plants lived longer than the other three treatment groups. These results indicate that the performance of white-backed planthopper is affected by SRBSDV either directly (by infection of white-backed planthopper) or indirectly (by infection of rice plant). The extended development of viruliferous nymphs and the prolonged life span of nonviruliferous adults on infected plants may increase their likelihood of transmitting virus, which would increase virus spread. PMID:26309259

  6. Relation Between the Viral Load Accumulation of Southern Rice Black-Streaked Dwarf Virus and the Different Developmental Stages of Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    An, Xing-Kui; Hou, Mao-Lin; Liu, Yu-Di

    2015-06-01

    The white-backed planthopper, Sogatella furcifera (Horvath), is currently the only confirmed vector of Southern rice black-streaked dwarf virus (SRBSDV), which causes severe rice production losses in China. In this study, an absolute quantification qPCR method was used to detect viral gene mRNA expression levels at different developmental stages of white-backed planthoppers fed SRBSDV-infected rice plants. A comparison of viral copy numbers of the SRBSDV S10 gene at the same developmental stage indicated that the white-backed planthopper had higher viral copy numbers when the virus was acquired at the earlier developmental stages. The adult-stage white-backed planthoppers that had acquired the virus at the first-second nymphal stage displayed significantly higher viral titers than white-backed planthoppers that acquired the virus at the third-fourth nymphal stage, at the fifth nymphal stage, and at the adult stage. The fifth nymphal stage white-backed planthoppers that acquired the virus at the first-second nymphal stage displayed higher viral copy numbers than fifth nymphal stage white-backed planthoppers that acquired the virus at the third-fourth nymphal stage and at the fifth nymphal stage. The highest viral load value appeared in the middle adult stage. The annual immigration characteristics of white-backed planthoppers would be beneficial for the dispersal of SRBSDV because this virus could be transmitted far away following the migration of vigorous planthoppers. Therefore, investigating the change in the viral load at different life stages of SRBSDV-positive individuals is required to develop more effective control of the spread of SRBSDV in the field. PMID:26470211

  7. Insect vector interations and transmission of cereal infecting Cereal rhabdoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cereal infecting cytorhabdoviruses and nucelorhabdoviruses are transmitted to new plant hosts in a persistent, propagative manner by their leafhopper (Cicadellidae) and planthopper (Fulgoroidea) vectors. We discuss our current knowledge of virus acquisition by, replication and movement in, and ...

  8. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    PubMed

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  9. Egg morphology, laying behavior and record of the host plants of Ricania speculum (Walker, 1851), a new alien species for Europe (Hemiptera: Ricaniidae).

    PubMed

    Rossi, Elisabetta; Stroiński, Adam; Lucchi, Andrea

    2015-11-17

    The exotic planthopper, Ricania speculum (Ricaniidae) was recently detected in Liguria, in northern Italy, and recorded as a first alert for Europe. The first morphological description of eggs and laying behavior are given. Eggs are inserted into the woody tissue of a wide range of different host plants in such a unique manner among native and alien planthoppers of Italy that it can be used to describe the prevalence and diffusion of the species in new environments, though in the absence of juveniles and/or adults. In addition, the paper lists the host plants utilized for egg laying and describes the eggs.

  10. Landscape context outweighs local habitat quality in its effects on herbivore dispersal and distribution.

    PubMed

    Haynes, Kyle J; Dillemuth, Forrest P; Anderson, Bryan J; Hakes, Alyssa S; Jackson, Heather B; Elizabeth Jackson, S; Cronin, James T

    2007-03-01

    Past studies with spatially structured herbivore populations have emphasized the primacy of intrinsic factors (e.g., patch quality), patch geometry (e.g., patch size and isolation), and more recently landscape context (e.g., matrix composition) in affecting local population abundance and dispersal rate. However, few studies have examined the relative importance of each factor, or how they might interact to affect herbivore abundance or dispersal. Here, we performed a factorial field experiment to examine the independent and interactive effects of patch quality (plant biomass, leaf protein, leaf phenolics) and matrix composition [mudflat or non-host grass (Bromus inermis)] on planthopper (Prokelisia crocea) emigration from host-plant patches (prairie cordgrass, Spartina pectinata). In addition, a field survey was conducted to examine the relative importance of patch quality, geography, and matrix composition on planthopper occupancy and density. In the experiment, we found that rates of emigration from low and intermediate quality patches were, on average, 21% percent higher for patches embedded in brome than mudflat. In contrast, the emigration rate was unaffected by matrix composition in nutrient-rich patches. Within matrix types, plant quality had little effect on emigration. In the survey, planthopper density and the patch occupancy rate of planthoppers increased nonadditively with increasing patch size and the percentage of the surrounding matrix composed of mudflat. This study suggests that landscape-level factors, such as the matrix, may be more important than factors intrinsic to the patches.

  11. Specificity of Lepidelphax pistiae (Hemiptera: Delphacidae) to Pistia stratiotes (Araceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pistia stratiotes (Araceae) is a serious weed in many waterways of the world. Lepidelphax pistiae is a recently described planthopper found on P. stratiotes throughout central and northern Argentina. No-choice feeding tests were conducted on 29 species of Araceae and various species that share the...

  12. Ultra-low altitude and low spraying technology research with UAV in paddy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application has characteristics of low-volume, small droplet, and possibility of drift. To control rice planthopper, leaf roller and blast, the research aimed at screening agrichemicals and determining the feasibility of using high concentration of conventional dosage for aerial application....

  13. Characterization of twelve novel microsatellite markers of Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) identified from next generation sequence data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats, SSRs) have been widely used to determine the origins and genetic diversity of insect pests. ...

  14. 'Candidatus phytoplasma solani’, a novel taxon associated with stolbur and bois noir related diseases of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoplasmas classified in group 16SrXII infect a wide range of plants and are transmitted by polyphagous planthoppers of the family Cixiidae. Based on 16S rRNA gene sequence identity and biological properties, group 16SrXII encompasses several species, including ‘Candidatus Phytoplasma australiens...

  15. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    PubMed

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. PMID:26405060

  16. EXPRESSION OF THE MAIZE MOSAIC VIRUS GLYCOPROTEIN IN INSECT CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mosaic virus (genus Nucleorhabdovirus, family Rhabdoviridae) is transmitted in a persistent-propagative manner by Peregrinus maidis, the corn planthopper. Like other rhabdoviruses, the MMV genome encodes a surface glycoprotein that is likely involved in virus attachment and entry into host ce...

  17. Egg parasitoid of Saccharosydne subandina (Hemiptera: Delphacidae) in Neuquen, Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharosydne subandina Remes Lenicov & Rossi Batiz is a recently described planthopper from Argentina which is known to feed on garlic, rye, and pampas grass (de Remes-Lenicov & Rossi-Batiz 2010). During a trip to Neuquén Province in February 2007, we noticed a heavy infestation of pampas grass, Co...

  18. Two new bamboo-feeding species of the genus Neocarpia Tsaur & Hsu (Hemiptera: Fulgoromorpha: Cixiidae: Eucarpiini) from Guizhou Province, China.

    PubMed

    Zhang, Pei; Chen, Xiang-sheng

    2013-01-01

    Two new bamboo-feeding species of the cixiid planthopper genus Neocarpia Tsaur & Hsu, 2003 (Hemiptera: Fulgoromorpha: Cixiidae: Eucarpiini), N. bidentata sp. nov. (Guizhou: Xishui) and N. hamata sp. nov. (Guizhou, Yanhe), from southwest China, are described and illustrated. The generic characteristics are redefined. A key and a checklist to the known species of this genus in the world are provided.

  19. A review of Chinese tribe Achilini (Hemiptera: Fulgoromorpha: Achilidae), with descriptions of Paracatonidia webbeda gen. & sp. nov.

    PubMed

    Long, Jian-Kun; Yang, Lin; Chen, Xiang-Sheng

    2015-12-02

    Planthoppers of the tribe Achilini (Hemiptera: Fulgoromorpha: Achilidae) from China, are reviewed. A key to the three genera of Chinese Achilini is given. A new genus and species of the tribe from southwestern China: Paracatonidia webbeda gen. & sp. nov., is described. A new genus and species record for China, Cixidia kasparyani Anufriev, is also given.

  20. Genetic Variability of Stolbur Phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) and its Main Host Plants in Vineyard Agroecosystems.

    PubMed

    Landi, Lucia; Riolo, Paola; Murolo, Sergio; Romanazzi, Gianfranco; Nardi, Sandro; Isidoro, Nunzio

    2015-08-01

    Bois noir is an economically important grapevine yellows that is induced by 'Candidatus Phytoplasma solani' and principally vectored by the planthopper Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). This study explores the 'Ca. P. solani' genetic variability associated to the nettle-H. obsoletus and bindweed-H. obsoletus systems in vineyard agroecosystems of the central-eastern Italy. Molecular characterization of 'Ca. P. solani' isolates was carried out using polymerase chain reaction/restriction fragment length polymorphism to investigate the nonribosomal vmp1 gene. Seven phytoplasma vmp-types were detected among the host plants- and insect-associated field-collected samples. The vmp1 gene showed the highest polymorphism in the bindweed-H. obsoletus system, according to restriction fragment length polymorphism analysis, which is in agreement with nucleotide sequence analysis. Five vmp-types were associated with H. obsoletus from bindweed, of which one was solely restricted to planthoppers, with one genotype also in planthoppers from nettle. Type V12 was the most prevalent in both planthoppers and bindweed. H. obsoletus from nettle harbored three vmp-types, of which V3 was predominant. V3 was the only type detected for nettle. Our data demonstrate that planthoppers might have acquired some 'Ca. P. solani' profiles from other plant hosts before landing on nettle or bindweed. Overall, the different vmp1 gene rearrangements observed in these two plant hosts-H. obsoletus systems might represent different adaptations of the pathogen to the two host plants. Molecular information about the complex of vmp-types provides useful data for better understanding of Bois noir epidemiology in vineyard agroecosystem.

  1. Genetic Variability of Stolbur Phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) and its Main Host Plants in Vineyard Agroecosystems.

    PubMed

    Landi, Lucia; Riolo, Paola; Murolo, Sergio; Romanazzi, Gianfranco; Nardi, Sandro; Isidoro, Nunzio

    2015-08-01

    Bois noir is an economically important grapevine yellows that is induced by 'Candidatus Phytoplasma solani' and principally vectored by the planthopper Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). This study explores the 'Ca. P. solani' genetic variability associated to the nettle-H. obsoletus and bindweed-H. obsoletus systems in vineyard agroecosystems of the central-eastern Italy. Molecular characterization of 'Ca. P. solani' isolates was carried out using polymerase chain reaction/restriction fragment length polymorphism to investigate the nonribosomal vmp1 gene. Seven phytoplasma vmp-types were detected among the host plants- and insect-associated field-collected samples. The vmp1 gene showed the highest polymorphism in the bindweed-H. obsoletus system, according to restriction fragment length polymorphism analysis, which is in agreement with nucleotide sequence analysis. Five vmp-types were associated with H. obsoletus from bindweed, of which one was solely restricted to planthoppers, with one genotype also in planthoppers from nettle. Type V12 was the most prevalent in both planthoppers and bindweed. H. obsoletus from nettle harbored three vmp-types, of which V3 was predominant. V3 was the only type detected for nettle. Our data demonstrate that planthoppers might have acquired some 'Ca. P. solani' profiles from other plant hosts before landing on nettle or bindweed. Overall, the different vmp1 gene rearrangements observed in these two plant hosts-H. obsoletus systems might represent different adaptations of the pathogen to the two host plants. Molecular information about the complex of vmp-types provides useful data for better understanding of Bois noir epidemiology in vineyard agroecosystem. PMID:26470289

  2. Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis (Hemiptera: Delphacidae) and on the transmission of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus).

    PubMed

    Higashi, C H V; Brewbaker, J L; Bressan, A

    2013-08-01

    Crops that are resistant to pests and pathogens are cost-effective for the management of pests and diseases. A corn (Zea mays L.) breeding program conducted in Hawaii has identified a source of heritable resistance to maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus). This resistance is controlled by the gene Mv, which has been shown to have a codominant action. To date, no studies have examined whether the resistance associated with this gene affects only MMV or whether it also affects the insect vector, the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae). Here, we examined the life history of the corn planthopper and its ability to transmit MMV on near isogenic lines that were homozygous dominant (Mv/Mv), homozygous recessive (mv/mv), or heterozygous (Mv/mv) for the gene. A field trial was also conducted to study the colonization of the corn plants with different genotypes by the planthopper. Although field observations revealed slightly lower densities ofplanthoppers on corn with the genotype Mv/Mv than on the inbreds with the genotype mv/mv and their hybrids with the genotype Mv/mv, laboratory assays showed no effects of the gene on planthopper development, longevity, or fecundity. In the field, the corn lines Mv/Mv had a lower incidence of MMV-infected plants. However, in the greenhouse, the transmission of MMV to corn seedlings did not differ across the near isogenic lines, although the corn lines Mv/Mv showed a delayed onset of symptoms compared with the corn lines mv/mv and Mv/mv. The acquisition of MMV by corn planthoppers on the corn genotypes Mv/Mv and Mv/mv averaged 0.2, whereas the acquisition on the corn genotypes mv/mv averaged > 0.3. Our results show that the Mv gene does not influence the fitness of the planthopper vector, suggesting that it may confer resistance by other means, possibly by limiting virus replication or movement within the host plant.

  3. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  4. Revision of the Afrotropical genus Fernandea Melichar, 1912 (Hemiptera: Fulgoromorpha: Dictyopharidae), with description of a new species from Equatorial Guinea.

    PubMed

    Song, Zhi-Shun; Malenovský, Igor; Liang, Ai-Ping

    2016-01-01

    The Afrotropical planthopper genus Fernandea Melichar, 1912 (Hemiptera: Fulgoromorpha: Dictyopharidae: Dictyopharinae: Orthopagini) is revised to include two species: F. conradti Melichar, 1912 (the type species), with material studied from Cameroon, Equatorial Guinea (Bioko island) and Togo, and F. latifemorata sp. nov., described as new from mainland Equatorial Guinea. A lectotype is designated and a redescription is provided for F. conradti together with habitus photographs and detailed illustrations of the male and female terminalia which are published for the first time. PMID:27470788

  5. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  6. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests.

    PubMed

    Li, Haichao; Guan, Ruobing; Guo, Huimin; Miao, Xuexia

    2015-11-01

    Insect double-stranded (ds)RNA expression in transgenic crops can increase plant resistance to biotic stress; however, creating transgenic crops to defend against every insect pest is impractical. Arabidopsis Mob1A is required for organ growth and reproduction. When Arabidopsis roots were soaked in dsMob1A, the root lengths and numbers were significantly suppressed and plants could not bolt or flower. Twenty-four hours after rice roots were immersed in fluorescent-labelled dsEYFP (enhanced yellow fluorescent protein), fluorescence was observed in the rice sheath and stem and in planthoppers feeding on the rice. The expression levels of Ago and Dicer in rice and planthoppers were induced by dsEYFP. When rice roots were soaked in dsActin, their growth was also significantly suppressed. When planthoppers or Asian corn borers fed on rice or maize that had been irrigated with a solution containing the dsRNA of an insect target gene, the insect's mortality rate increased significantly. Our results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates. We also confirmed that dsRNA was stable under outdoor conditions. These results indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation. PMID:25828885

  7. Ecological Trade-offs between Migration and Reproduction Are Mediated by the Nutrition-Sensitive Insulin-Signaling Pathway

    PubMed Central

    Lin, Xinda; Yao, Yun; Wang, Bo; Emlen, Douglas J.; Lavine, Laura Corley

    2016-01-01

    Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects. PMID:27143957

  8. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    PubMed

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores.

  9. Quantification of southern rice black streaked dwarf virus and rice black streaked dwarf virus in the organs of their vector and nonvector insect over time.

    PubMed

    Hajano, Jamal-U-Ddin; Wang, Biao; Ren, Yingdang; Lu, Chuantao; Wang, Xifeng

    2015-10-01

    Southern rice black streaked dwarf virus (SRBSDV) and rice black streaked dwarf virus (RBSDV) are serious rice-infecting reoviruses, which are transmitted by different planthoppers in a persistent propagative manner. In this study, we quantitatively compared the spatial distribution of SRBSDV and RBSDV contents over time in their vector and nonvector insects using real time-PCR. Genome equivalent copies (GEC) were assessed every 2 days from 0 to 14 days after a 3-days acquisition access period (AAP) on infected plants. Results revealed 293.2±21.6 to 404.1±46.4 SRBSDV GEC/ng total RNA in whole body of white-backed planthopper (WBPH, Sogatella furcifera) at day 0 and 12 and 513.5±88.4 to 816.8±110.7 RBSDV GEC/ng total RNA in the whole body of small brown planthopper (SBPH, Laodelphax striatellus) at day 0 and 14, respectively, after 3-days AAP. Highest GEC of both viruses were found in the gut of their respective vectors. Although SRBSDV was detected in the gut of SBPH, it did not spread into the hemolymph or other organs. After an 8-day latent period, the transmission efficiency of SRBSDV and RBSDV by their respective vectors was significantly positively correlated with GEC in the salivary gland (r(2)=0.7808, P=0.0036 and r(2)=0.9351, P<0.0001, respectively, at α=0.05). Together, these results confirm that accumulation of >200 SRBSDV or RBSDV GEC/ng total RNA in the gut of vector, indicated threshold for further spread and the virus content in the salivary gland was significantly correlated with transmission efficiency by their respective vectors.

  10. Quantification of southern rice black streaked dwarf virus and rice black streaked dwarf virus in the organs of their vector and nonvector insect over time.

    PubMed

    Hajano, Jamal-U-Ddin; Wang, Biao; Ren, Yingdang; Lu, Chuantao; Wang, Xifeng

    2015-10-01

    Southern rice black streaked dwarf virus (SRBSDV) and rice black streaked dwarf virus (RBSDV) are serious rice-infecting reoviruses, which are transmitted by different planthoppers in a persistent propagative manner. In this study, we quantitatively compared the spatial distribution of SRBSDV and RBSDV contents over time in their vector and nonvector insects using real time-PCR. Genome equivalent copies (GEC) were assessed every 2 days from 0 to 14 days after a 3-days acquisition access period (AAP) on infected plants. Results revealed 293.2±21.6 to 404.1±46.4 SRBSDV GEC/ng total RNA in whole body of white-backed planthopper (WBPH, Sogatella furcifera) at day 0 and 12 and 513.5±88.4 to 816.8±110.7 RBSDV GEC/ng total RNA in the whole body of small brown planthopper (SBPH, Laodelphax striatellus) at day 0 and 14, respectively, after 3-days AAP. Highest GEC of both viruses were found in the gut of their respective vectors. Although SRBSDV was detected in the gut of SBPH, it did not spread into the hemolymph or other organs. After an 8-day latent period, the transmission efficiency of SRBSDV and RBSDV by their respective vectors was significantly positively correlated with GEC in the salivary gland (r(2)=0.7808, P=0.0036 and r(2)=0.9351, P<0.0001, respectively, at α=0.05). Together, these results confirm that accumulation of >200 SRBSDV or RBSDV GEC/ng total RNA in the gut of vector, indicated threshold for further spread and the virus content in the salivary gland was significantly correlated with transmission efficiency by their respective vectors. PMID:26116274

  11. First report of Cheiloneurus exitiosus (Perkins, 1906) and Helegonatopus dimorphus (Hoffer, 1954) (Hymenoptera: Encyrtidae) from Japan, with remarks on their abundance in rice paddies

    PubMed Central

    Handa, Hironobu; Higashiura, Yoshimitsu; Japoshvili, George

    2016-01-01

    Abstract Background Encyrtid secondary parasitoids of Delphacidae have not been recorded in Japan. However, they may play an important role in the rice ecosystem because they can reduce the number of Dryinidae, the natural enemies of rice planthoppers. New information We found two encyrtid species, Cheiloneurus exitiosus (Perkins, 1906) and Helegonatopus dimorphus (Hoffer, 1954), from rice paddies and the surrounding environment. Haplogonatopus oratorius (Westwood, 1833) and Anteon sp. were newly recognized as hosts of He. dimorphus. Parasitism of C. exitiosus was rare, but He. dimorphus was common in Kumamoto Prefecture. The sex ratio (male proportion) and clutch size of He. dimorphus was estimated as 0.19 and 4.95, respectively.

  12. Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation

    USGS Publications Warehouse

    Borkhataria, R.R.; Collazo, J.A.; Groom, M.J.

    2006-01-01

    A variety of studies have established the value of shaded coffee plantations as habitat for birds. While the value of birds as biological controls in coffee has received some attention, the interactions between birds and other predators of insects have not been tested. We used exclosures to examine the effects of vertebrate predators on the arthropods associated with coffee, in particular the coffee leafminer (Leucoptera coffeella) and the flatid planthopper Petrusa epilepsis, in a shaded coffee plantation in Puerto Rico. We used a 2 x 2 factorial design with four treatments: exclusion of birds, lizards, birds and lizards, and control (no exclusion). Abundance of insects >5 mm increased when birds or both birds and lizards were removed. Birds and lizards had an additive effect for insects <5 mm and for all insects combined. Coffee leafminers showed a weak response to removal of predators while planthopper abundance increased significantly in the absence of avian predators. Arthropod predators and parasitoids did not differ significantly between treatments. Our findings suggest that vertebrate insectivores have an additive effect on insects in coffee and may help control abundances of some coffee pests. Equally important, we present evidence suggesting that they do not interfere with other known natural enemies of coffee pests. ?? 2006 by the Ecological Society of America.

  13. Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.

    PubMed

    Bharathi, Y; Vijaya Kumar, S; Pasalu, I C; Balachandran, S M; Reddy, V D; Rao, K V

    2011-03-20

    We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂ progenies disclosed digenic (9:3:3:1) inheritance of the transgenes. Homozygous F₃ plants carrying asal and gna genes were identified employing genetic and molecular methods besides insect bioassays. Pyramided lines, infested with brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH), proved more effective in reducing insect survival, fecundity, feeding ability besides delayed development of insects as compared to the parental transgenics. Under infested conditions, pyramided lines were found superior to the parental transgenics in their seed yield potential. This study represents first report on pyramiding of two lectin genes into rice exhibiting enhanced resistance against major sucking pests. The pyramided lines appear promising and might serve as a novel genetic resource in rice breeding aimed at durable and broad based resistance against hoppers.

  14. Population genetics suggest that multiple invasion processes need to be addressed in the management plan of a plant disease vector

    PubMed Central

    Anderson, Kylie L; Congdon, Bradley C

    2013-01-01

    The use of a multidisciplinary approach is becoming increasingly important when developing management strategies that mitigate the economic and biological costs associated with invasive pests. A framework of simulated dispersal is combined with life-history information and analyses of population genetic structure to investigate the invasion dynamics of a plant disease vector, the island sugarcane planthopper (Eumetopina flavipes), through an archipelago of significant Australian quarantine concern. Analysis of eight microsatellite loci from 648 individuals suggests that frequent, wind-assisted immigration from multiple sources in Papua New Guinea contributes significantly to repeated colonization of far northern islands. However, intermittent wind-assisted immigration better explains patterns of genetic diversity and structure in the southern islands and on the tip of mainland Australia. Significant population structuring associated with the presence of clusters of highly related individuals results from breeding in-situ following colonization, with little postestablishment movement. Results also suggest that less important secondary movements occur between islands; these appear to be human mediated and restricted by quarantine zones. Control of the planthopper may be very difficult on islands close to Papua New Guinea given the apparent propensity for multiple invasion, but may be achievable further south where local populations appear highly independent and isolated. PMID:23789032

  15. Population genetics suggest that multiple invasion processes need to be addressed in the management plan of a plant disease vector.

    PubMed

    Anderson, Kylie L; Congdon, Bradley C

    2013-06-01

    The use of a multidisciplinary approach is becoming increasingly important when developing management strategies that mitigate the economic and biological costs associated with invasive pests. A framework of simulated dispersal is combined with life-history information and analyses of population genetic structure to investigate the invasion dynamics of a plant disease vector, the island sugarcane planthopper (Eumetopina flavipes), through an archipelago of significant Australian quarantine concern. Analysis of eight microsatellite loci from 648 individuals suggests that frequent, wind-assisted immigration from multiple sources in Papua New Guinea contributes significantly to repeated colonization of far northern islands. However, intermittent wind-assisted immigration better explains patterns of genetic diversity and structure in the southern islands and on the tip of mainland Australia. Significant population structuring associated with the presence of clusters of highly related individuals results from breeding in-situ following colonization, with little postestablishment movement. Results also suggest that less important secondary movements occur between islands; these appear to be human mediated and restricted by quarantine zones. Control of the planthopper may be very difficult on islands close to Papua New Guinea given the apparent propensity for multiple invasion, but may be achievable further south where local populations appear highly independent and isolated.

  16. Transovarial Transmission of a Plant Virus Is Mediated by Vitellogenin of Its Insect Vector

    PubMed Central

    Zhang, Fujie; Chen, Xiaoying; Li, Li; Liu, Qifei; Zhou, Yijun; Wei, Taiyun; Fang, Rongxiang; Wang, Xifeng

    2014-01-01

    Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV), a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus), is also spread to the offspring through the eggs. Here, we used the RSV–planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg) of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs) only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM) also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes. PMID:24603905

  17. Arbuscular mycorrhizal fungi in a mountain grassland II: Seasonal variation of colonization studied, along with its relation to grazing and metabolic host type.

    PubMed

    Lugo, Mónica A; González Maza, Mirta E; Cabello, Marta N

    2003-01-01

    The relationships among seasons, host metabolic type, grazing and arbuscular mycorrhizal colonization were analyzed in a high South American native grassland. This study investigated seasonal changes and grazing effects on the symbiotic endomycorrhizal interaction in 5 Poaceae [C(3) metabolic pathway: Briza subaristata Lam., Deyeuxia hieronymi (Hack.) Türpe and Poa stuckertii (Hack.) Parodi; with C(4) metabolic pathway: Eragrostis lugens Nees and Sorghastrum pellitum (Hack.) Parodi; and a Rosaceae (Alchemilla pinnata Ruíz & Pav.)]. All hosts were dominant species in the mountain grassland in central Argentina. It was found that the seasons markedly influenced endomycorrhizal colonization, whereas grazing did not affect this interaction. C(4) grasses presented the highest root colonization. Hosts Briza subaristata (C(3) metabolic pathway) and Sorghastrum pellitum (C(4) metabolic pathway) showed Arum- and Paris-type colonization and intermediate forms.

  18. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cordoba, Argentina) I. Seasonal variation of fungal spore diversity.

    PubMed

    Lugo, Mónica A; Cabello, Marta N

    2002-01-01

    Arbuscular mycorrhizal fungi (AMF) were studied in the rhizosphere of 3 Poaceae with metabolic pathway C(3) (Briza subaristata Lam., Deyeuxia hieronymi (Hack.) Türpe and Poa stuckertii (Hack.) Parodi), 2 Poaceae with C(4) metabolic type (Eragrostis lugens Nees and Sorghastrum pellitum (Hack.) Parodi.), and a Rosaceae (Alchemilla pinnata Ruíz & Pav.) from a natural mountain grassland in Central Argentina (South America). Host species, their metabolic type, seasonal changes, and grazing effects over AM fungal diversity were analyzed. Seventeen mycorrhizal fungi taxa were found, widespread in all families of Glomales. Density of endomycorrhizal fungi was found to be strongly influenced with seasons and host metabolic pathway, although biodiversity (H), richness (S) and evenness (E) did not change. In most cases grazing did not affect these variables.

  19. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence.

    PubMed

    Low, Petah A; McArthur, Clare; Hochuli, Dieter F

    2016-01-01

    Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: "-HC," where stacked head capsules were removed from all individuals, "+HC," where the caterpillars retained their stacked head capsules, and "mixed," where only half of the caterpillars in a group had their stacked head capsules removed. We found no difference in predation rate between the three treatments, but within the mixed treatment, caterpillars with head capsules were more than twice as likely to survive. During predator choice trials, conducted to observe how head capsule stacking acts as a defence, the predatory pentatomid bug attacked the -HC caterpillar in four out of six trials. The two attacks on +HC caterpillars took over 10 times longer because the bug would poke its rostrum through the head capsule stack, while the caterpillar used its head capsule stack to deflect the bug's rostrum. Our results support the hypothesis that the retention of moulted head capsules by U. lugens provides some protection against their natural enemies and suggest that this is because stacked head capsules can function as a false target for natural enemies as well as a weapon to fend off attackers. This represents the first demonstration of a defensive function.

  20. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence.

    PubMed

    Low, Petah A; McArthur, Clare; Hochuli, Dieter F

    2016-01-01

    Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: "-HC," where stacked head capsules were removed from all individuals, "+HC," where the caterpillars retained their stacked head capsules, and "mixed," where only half of the caterpillars in a group had their stacked head capsules removed. We found no difference in predation rate between the three treatments, but within the mixed treatment, caterpillars with head capsules were more than twice as likely to survive. During predator choice trials, conducted to observe how head capsule stacking acts as a defence, the predatory pentatomid bug attacked the -HC caterpillar in four out of six trials. The two attacks on +HC caterpillars took over 10 times longer because the bug would poke its rostrum through the head capsule stack, while the caterpillar used its head capsule stack to deflect the bug's rostrum. Our results support the hypothesis that the retention of moulted head capsules by U. lugens provides some protection against their natural enemies and suggest that this is because stacked head capsules can function as a false target for natural enemies as well as a weapon to fend off attackers. This represents the first demonstration of a defensive function. PMID:26966656

  1. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence

    PubMed Central

    McArthur, Clare; Hochuli, Dieter F.

    2016-01-01

    Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: “−HC,” where stacked head capsules were removed from all individuals, “+HC,” where the caterpillars retained their stacked head capsules, and “mixed,” where only half of the caterpillars in a group had their stacked head capsules removed. We found no difference in predation rate between the three treatments, but within the mixed treatment, caterpillars with head capsules were more than twice as likely to survive. During predator choice trials, conducted to observe how head capsule stacking acts as a defence, the predatory pentatomid bug attacked the −HC caterpillar in four out of six trials. The two attacks on +HC caterpillars took over 10 times longer because the bug would poke its rostrum through the head capsule stack, while the caterpillar used its head capsule stack to deflect the bug’s rostrum. Our results support the hypothesis that the retention of moulted head capsules by U. lugens provides some protection against their natural enemies and suggest that this is because stacked head capsules can function as a false target for natural enemies as well as a weapon to fend off attackers. This represents the first demonstration of a defensive function. PMID:26966656

  2. Disease incidence and severity of rice plants in conventional chemical fertilizer input compared with organic farming systems

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Luo, Fan

    2015-04-01

    To study the impacts of different fertilizer applications on rice growth and disease infection, a 3-year field experiment of rice cultivation was carried out in the suburb of Shanghai from 2012-2014. No any pesticides and herbicides were applied during the entire experiment to prevent their disturbance to rice disease. Compared with green (GM) and cake manures (CM), the application of chemical fertilizer (CF) stimulated the photosysthesis and vegetative growth of rice plants more effectively. Chlorophyll content, height and tiller number of the rice plants treated with the CF were generally higher than those treated with the GM and CM and the control; the contents of nitrate (NO3--N), ammonium (NH4+-N), Kjeldahl nitrogen (KN) and soluble protein treated with the CF were also higher than those with the others during the 3-year experiment. The 3-year experiment also indicated that the incidences of stem borers, shreath blight, leaf rollers and planthoppers of the rice treated with the CF were signficantly higher than those treated with the GM and CM and the control. Especially in 2012 and 2014, the incidences of rice pests and diseases treated with the CF were far more severe than those with the others. As a result, the grain yield treated with the CF was not only lower than that treated with the GM and CM, but also lower than that of the no-fertilizer control. This might be attributed to two reasons: Pests favor the rice seedlings with sufficient N-related nutrients caused by CF application; the excessive accumulation of nutrients in the seedlings might have toxic effects and weaken their immune systems, thus making them more vulnerable to pests and diseases. In comparison, the plants treated with a suitable amount of organic manure showed a better capability of disease resistance and grew more healthy. In addition, the incidences of rice pests and diseases might also be related to climatic conditions. Shanghai was hit by strong subtropical storms in the summer of

  3. Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review

    PubMed Central

    Kuznetsova, Valentina; Aguin-Pombo, Dora

    2015-01-01

    Abstract A comprehensive review of cytogenetic features is provided for the large hemipteran suborder Auchenorrhyncha, which currently contains approximately 42,000 valid species. This review is based on the analysis of 819 species, 483 genera, and 31 families representing all presently recognized Auchenorrhyncha superfamilies, e.i. Cicadoidea (cicadas), Cercopoidea (spittle bugs), Membracoidea (leafhoppers and treehoppers), Myerslopioidea (ground-dwelling leafhoppers), and Fulgoroidea (planthoppers). History and present status of chromosome studies are described, as well as the structure of chromosomes, chromosome counts, trends and mechanisms of evolution of karyotypes and sex determining systems, their variation at different taxonomic levels and most characteristic (modal) states, occurrence of parthenogenesis, polyploidy, B-chromosomes and chromosome rearrangements, and methods used for cytogenetic analysis of Auchenorrhyncha. PMID:26807037

  4. Madagascar Flatidae (Hemiptera, Fulgoromorpha): state-of-the-art and research challenges

    PubMed Central

    Świerczewski, Dariusz; Stroiński, Adam

    2013-01-01

    Abstract The paper provides a historical review of the research on Flatidae in Madagascar and indicates future prospects. While the first two species of Madagascar Flatidae were described by Guérin-Méneville (1844), it was Signoret (1860) who made the first real attempt to enhance our knowledge of the Hemiptera fauna of Madagascar by describing several additional species. Over the following century and a half, several investigators have turned their attention to this group of insects, with the final number of species recorded for the island reaching 79. Despite this long history of research, it is evident that much still remains to be done. Detailed taxonomic research will allow the natural history of Madagascar and changes in the biological diversity of its endemic ecosystems to be better understood. This paper should be considered as an introduction to a complex study on the systematics and phylogeny of worldwide Flatidae planthoppers. PMID:24039526

  5. First report of Cheiloneurus exitiosus (Perkins, 1906) and Helegonatopus dimorphus (Hoffer, 1954) (Hymenoptera: Encyrtidae) from Japan, with remarks on their abundance in rice paddies

    PubMed Central

    Handa, Hironobu; Higashiura, Yoshimitsu; Japoshvili, George

    2016-01-01

    Abstract Background Encyrtid secondary parasitoids of Delphacidae have not been recorded in Japan. However, they may play an important role in the rice ecosystem because they can reduce the number of Dryinidae, the natural enemies of rice planthoppers. New information We found two encyrtid species, Cheiloneurus exitiosus (Perkins, 1906) and Helegonatopus dimorphus (Hoffer, 1954), from rice paddies and the surrounding environment. Haplogonatopus oratorius (Westwood, 1833) and Anteon sp. were newly recognized as hosts of He. dimorphus. Parasitism of C. exitiosus was rare, but He. dimorphus was common in Kumamoto Prefecture. The sex ratio (male proportion) and clutch size of He. dimorphus was estimated as 0.19 and 4.95, respectively. PMID:27660532

  6. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

    PubMed

    Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming

    2016-02-01

    Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor.

  7. A simplified method for simultaneous detection of Rice stripe virus and Rice black-streaked dwarf virus in insect vector.

    PubMed

    Li, Shuo; Wang, Xi; Xu, Jianxiang; Ji, Yinghua; Zhou, Yijun

    2015-01-01

    Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV) are transmitted by their common vector small brown planthopper (SBPH) that cause serious crop losses in China. A simple reverse transcription-PCR method was developed for the simultaneous detection of RSV and RBSDV in single SBPH. Three primers targeted to RSV-RNA4 and RBSDV-S2 segments were designed to amplify respectively 1114-bp and 414-bp fragments in a reaction. The method is reliable, rapid and inexpensive for detecting the two viruses in vector, which could facilitate better forecasting and control of the virus diseases. Using this method, it was found that SBPH could carry RSV and RBSDV simultaneously. PMID:25455902

  8. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  9. Suppression of NS3 and MP Is Important for the Stable Inheritance of RNAi-Mediated Rice Stripe Virus (RSV) Resistance Obtained by Targeting the Fully Complementary RSV-CP Gene

    PubMed Central

    Park, Hyang-Mi; Choi, Man-Soo; Kwak, Do-Yeon; Lee, Bong-Choon; Lee, Jong-Hee; Kim, Myeong-Ki; Kim, Yeon-Gyu; Shin, Dong-Bum; Park, Soon-Ki; Kim, Yul-Ho

    2012-01-01

    Rice stripe virus (RSV) is a viral disease that seriously impacts rice production in East Asia, most notably in Korea, China, and Japan. Highly RSV-resistant transgenic japonica rice plants were generated using a dsRNAi construct designed to silence the entire sequence region of the RSV-CP gene. Transgenic rice plants were inoculated with a population of viruliferous insects, small brown planthoppers (SBPH), and their resistance was evaluated using ELISA and an infection rate assay. A correlation between the expression of the RSV-CP homologous small RNAs and the RSV resistance of the transgenic rice lines was discovered. These plants were also analyzed by comparing the expression pattern of invading viral genes, small RNA production and the stable transmission of the RSV resistance trait to the T3 generation. Furthermore, the agronomic trait was stably transmitted to the T4 generation of transgenic plants. PMID:22134721

  10. A simplified method for simultaneous detection of Rice stripe virus and Rice black-streaked dwarf virus in insect vector.

    PubMed

    Li, Shuo; Wang, Xi; Xu, Jianxiang; Ji, Yinghua; Zhou, Yijun

    2015-01-01

    Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV) are transmitted by their common vector small brown planthopper (SBPH) that cause serious crop losses in China. A simple reverse transcription-PCR method was developed for the simultaneous detection of RSV and RBSDV in single SBPH. Three primers targeted to RSV-RNA4 and RBSDV-S2 segments were designed to amplify respectively 1114-bp and 414-bp fragments in a reaction. The method is reliable, rapid and inexpensive for detecting the two viruses in vector, which could facilitate better forecasting and control of the virus diseases. Using this method, it was found that SBPH could carry RSV and RBSDV simultaneously.

  11. Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1

    PubMed Central

    Li, Shuo; Ge, Shangshu; Wang, Xi; Sun, Lijuan; Liu, Zewen; Zhou, Yijun

    2015-01-01

    The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus) VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH. PMID:25807055

  12. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts.

    PubMed

    Mann, Krin S; Dietzgen, Ralf G

    2014-08-01

    Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts.

  13. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts.

    PubMed

    Mann, Krin S; Dietzgen, Ralf G

    2014-08-01

    Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts. PMID:24610553

  14. Tip of the clade on the top of the World—the first fossil Lophopidae (Hemiptera: Fulgoromorpha) from the Palaeocene of Tibet

    NASA Astrophysics Data System (ADS)

    Szwedo, Jacek; Stroiński, Adam; Lin, Qibin

    2015-06-01

    Lophopidae is a family of planthoppers (Hemiptera: Fulgoromorpha) present today in tropical and subtropical zones of the Old World. The most recent taxonomic studies and phylogeny of these insects do not include the extinct representatives. Therefore, each new discovery of a fossil lophopid is of high interest, giving new insights to their evolutionary history and enabling to test the proposed relationships. The recent findings of extinct Lophopidae in Europe, in various Palaeogene deposits, put in doubts their proposed evolutionary and biogeographic scenario. The new fossil from the Palaeocene of Northern Tibet is related to one of the Lophopidae clades, Apia+ group, believed to be the most advanced one, and recently distributed in the recent Sundaland-New Guinea-Queensland area. A new genus and species Gesaris gnapo gen. et sp. n. provide information on early lophopids diversity and relationships and demonstrates the necessity for a revision of the existing hypotheses for the initial diversification and distributional pattern of the Lophopidae.

  15. Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera.

    PubMed

    Gonella, Elena; Negri, Ilaria; Marzorati, Massimo; Mandrioli, Mauro; Sacchi, Luciano; Pajoro, Massimo; Crotti, Elena; Rizzi, Aurora; Clementi, Emanuela; Tedeschi, Rosemarie; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele

    2011-02-01

    One emerging disease of grapevine in Europe is Bois noir (BN), a phytoplasmosis caused by "Candidatus Phytoplasma solani" and spread in vineyards by the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Here we present the first full characterization of the bacterial community of this important disease vector collected from BN-contaminated areas in Piedmont, Italy. Length heterogeneity PCR and denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene revealed the presence of a number of bacteria stably associated with the insect vector. In particular, symbiotic bacteria detected by PCR with high infection rates in adult individuals fell within the "Candidatus Sulcia muelleri" cluster in the Bacteroidetes and in the "Candidatus Purcelliella pentastirinorum" group in the Gammaproteobacteria, both previously identified in different leafhoppers and planthoppers. A high infection rate (81%) was also shown for another symbiont belonging to the Betaproteobacteria, designated the HO1-V symbiont. Because of the low level of 16S rRNA gene identity (80%) with the closest relative, an uncharacterized symbiont of the tick Haemaphysalis longicornis, we propose the new name "Candidatus Vidania fulgoroideae." Other bacterial endosymbionts identified in H. obsoletus were related to the intracellular bacteria Wolbachia pipientis, Rickettsia sp., and "Candidatus Cardinium hertigii." Fluorescent in situ hybridization coupled with confocal laser scanning microscopy and transmission electron microscopy showed that these bacteria are localized in the gut, testicles, and oocytes. As "Ca. Sulcia" is usually reported in association with other symbiotic bacteria, we propose that in H. obsoletus, it may occur in a bipartite or even tripartite relationship between "Ca. Sulcia" and "Ca. Purcelliella," "Ca. Vidania," or both. PMID:21183640

  16. Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata.

    PubMed

    Meng, Xiangkun; Zhang, Yixi; Guo, Beina; Sun, Huahua; Liu, Chuanjun; Liu, Zewen

    2015-01-01

    Chemical insecticides are still primary methods to control rice planthoppers in China, which not only cause environmental pollution, insecticide residue and insecticide resistance, but also have negative effects on natural enemies, such as Pardosa pseudoannulata (the pond wolf spider), an important predatory enemy of rice planthoppers. Neonicotinoids insecticides, such as imidacloprid and thiacloprid, are insect-selective nAChRs agonists that are used extensively in the areas of crop protection and animal health, but have hypotoxicity to P. pseudoannulata. In the present study, two nAChR α subunits, Ppα1 or Ppα8, were found to be successfully expressed with rβ2 in Xenopus oocytes, but with much different sensitivity to imidacloprid and thiacloprid on two recombinant receptors Ppα1/rβ2 and Ppα8/rβ2. Key amino acid differences were found in and between the important loops for ligand binding. In order to well understand the relationship between the amino acid differences and neonicotinoid sensitivities, different segments in Ppα8 or Ppα1 with key amino acid differences were introduced into the corresponding regions of Ppα1 or Ppα8 to construct chimeras and then co-expressed with rβ2 subunit in Xenopus oocytes. The results from chimeras of both Ppα8 and Ppα1 showed that segments Δ5, Δ6, and Δ7 contributed to neonicotinoid sensitivities directly between two receptors. Although the segment Δ4 including all loop B region had no direct influences on neonicotinoid sensitivities, it could more remarkably influence neonicotinoid sensitivities when co-introductions with Δ5, Δ6 or Δ7. So, key amino acid differences in these four segments were important to neonicotinoid sensitivities, but the difference in Δ4 was likely ignored because of its indirect effects.

  17. Geographic Variation of Diapause and Sensitive Stages of Photoperiodic Response in Laodelphax striatellus Fallén (Hemiptera: Delphacidae)

    PubMed Central

    Hou, Yang-Yang; Xu, Lan-Zhen; Wu, Yan; Wang, Peng; Shi, Jin-Jian; Zhai, Bao-Ping

    2016-01-01

    Large numbers of the small brown planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) occur in temperate regions, causing severe losses in rice, wheat, and other economically important crops. The planthoppers enter diapause in the third- or fourth-instar nymph stage, induced by short photoperiods and low temperatures. To investigate the geographic variation in L. striatellus diapause, we compared the incidence of nymphal diapause under various constant temperature (20 and 27°C) and a photoperiod of 4:20, 8:16, 10:14, 12:12, 14:10, and 16:8 (L:D) h regimes among three populations collected from Hanoi (21.02° N, 105.85° E, northern Vietnam), Jiangyan (32.51° N, 120.15° E, eastern China), and Changchun (43.89° N, 125.32° E, north-eastern China). Our results indicated that there were significant geographic variations in the diapause of L. striatellus. When the original latitude of the populations increased, higher diapause incidence and longer critical photoperiod (CP) were exhibited. The CPs of the Jiangyan and Changchun populations were ∼12 hr 30 min and 13 hr at 20°C, and 11 hr and 11 hr 20 min at 27°C, respectively. The second- and third-instar nymphs were at the stage most sensitive to the photoperiod. However, when the fourth- and fifth-instar nymphs were transferred to a long photoperiod, the diapause-inducing effect of the short photoperiod on young instars was almost reversed. The considerable geographic variations in the nymphal diapause of L. striatellus reflect their adaptation in response to a variable environment and provide insights to develop effective pest management strategies. PMID:26839318

  18. Bacterial Endosymbiont Localization in Hyalesthes obsoletus, the Insect Vector of Bois Noir in Vitis vinifera▿

    PubMed Central

    Gonella, Elena; Negri, Ilaria; Marzorati, Massimo; Mandrioli, Mauro; Sacchi, Luciano; Pajoro, Massimo; Crotti, Elena; Rizzi, Aurora; Clementi, Emanuela; Tedeschi, Rosemarie; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele

    2011-01-01

    One emerging disease of grapevine in Europe is Bois noir (BN), a phytoplasmosis caused by “Candidatus Phytoplasma solani” and spread in vineyards by the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Here we present the first full characterization of the bacterial community of this important disease vector collected from BN-contaminated areas in Piedmont, Italy. Length heterogeneity PCR and denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene revealed the presence of a number of bacteria stably associated with the insect vector. In particular, symbiotic bacteria detected by PCR with high infection rates in adult individuals fell within the “Candidatus Sulcia muelleri” cluster in the Bacteroidetes and in the “Candidatus Purcelliella pentastirinorum” group in the Gammaproteobacteria, both previously identified in different leafhoppers and planthoppers. A high infection rate (81%) was also shown for another symbiont belonging to the Betaproteobacteria, designated the HO1-V symbiont. Because of the low level of 16S rRNA gene identity (80%) with the closest relative, an uncharacterized symbiont of the tick Haemaphysalis longicornis, we propose the new name “Candidatus Vidania fulgoroideae.” Other bacterial endosymbionts identified in H. obsoletus were related to the intracellular bacteria Wolbachia pipientis, Rickettsia sp., and “Candidatus Cardinium hertigii.” Fluorescent in situ hybridization coupled with confocal laser scanning microscopy and transmission electron microscopy showed that these bacteria are localized in the gut, testicles, and oocytes. As “Ca. Sulcia” is usually reported in association with other symbiotic bacteria, we propose that in H. obsoletus, it may occur in a bipartite or even tripartite relationship between “Ca. Sulcia” and “Ca. Purcelliella,” “Ca. Vidania,” or both. PMID:21183640

  19. Dictyophara europaea (Hemiptera: Fulgoromorpha: Dictyopharidae): description of immatures, biology and host plant associations.

    PubMed

    Krstić, O; Cvrković, T; Mitrović, M; Toševski, I; Jović, J

    2016-06-01

    The European lantern fly Dictyophara europaea (Linnaeus, 1767), is a polyphagous dictyopharid planthopper of Auchenorrhyncha commonly found throughout the Palaearctic. Despite abundant data on its distribution range and reports on its role in the epidemiology of plant-pathogenic phytoplasmas (Flavescence dorée, FD-C), literature regarding the biology and host plants of this species is scarce. Therefore, the aims of our study were to investigate the seasonal occurrence, host plant associations, oviposition behaviour and immature stages of this widespread planthopper of economic importance. We performed a 3-year field study to observe the spatio-temporal distribution and feeding sources of D. europaea. The insects's reproductive strategy, nymphal molting and behaviour were observed under semi-field cage conditions. Measurement of the nymphal vertex length was used to determine the number of instars, and the combination of these data with body length, number of pronotal rows of sensory pits and body colour pattern enabled the discrimination of each instar. We provide data showing that D. europaea has five instars with one generation per year and that it overwinters in the egg stage. Furthermore, our study confirmed highly polyphagous feeding nature of D. europaea, for all instars and adults, as well as adult horizontal movement during the vegetation growing season to the temporarily preferred feeding plants where they aggregate during dry season. We found D. europaea adult aggregation in late summer on Clematis vitalba L. (Ranunculaceae), a reservoir plant of FD-C phytoplasma strain; however, this appears to be a consequence of forced migration due to drying of herbaceous vegetation rather than to a high preference of C. vitalba as a feeding plant. Detailed oviposition behaviour and a summary of the key discriminatory characteristics of the five instars are provided. Emphasis is placed on the economic importance of D. europaea because of its involvement in

  20. Revision of the European species of Omphale Haliday (Hymenoptera, Chalcidoidea, Eulophidae)

    PubMed Central

    Hansson, Christer; Shevtsova, Ekaterina

    2012-01-01

    Abstract The European species of Omphale Haliday (Eulophidae: Entedoninae) are revised. The revision includes 37 species, of which eleven are newly described and the remaining 26 species are redescribed. The species are classified into six species groups, with six unplaced species. All species are fully diagnosed and thoroughly illustrated. Identification keys are provided for females and males. Two new morphological features to aid classification and identification are introduced: male genitalia and wing interference patterns (WIPs). The former has been used successfully in the classification of New World Omphale and the latter is used for the first time in a taxonomic revision. Male genitalia in Omphale have considerable interspecific variation, an unusual trait among chalcidoid Hymenoptera, and are demonstrated to be useful for classification of species and species-groups, and they also possess the only autapomorphy for Omphale. WIPs are useful to help separate some species, but cannot be used to define either the genus or species groups. Distributional data are compiled for each species and suggest a pan-european distribution for most species. Gall-midges are the known hosts for 14 species, and the absence of host overlap between species suggests that host specialization is a driving force for speciation. Several Omphale species are known only from females, or have a strong female biased sex ratio, suggesting thelytokous development. Apart from the 37 species included in this revision, the status for nine additional species (names) in species group aetius remain unsolved. For nomenclatorial stability, a neotype is designated for Eulophus lugens Nees (= Omphale lugens (Nees)). Elachestus obscurus Förster and Derostenus sulciscuta Thomson are transferred from Holcopelte to Omphale comb. n. Derostenus radialis Thomson and Achrysocharella americana Girault are synonymized with Omphale theana (Walker), and Omphale teresis Askew is synonymized with Omphale phruron

  1. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus

    PubMed Central

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian

    2015-01-01

    ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the

  2. The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae)

    PubMed Central

    Yin, Haichen; Shi, Qihao; Shakeel, Muhammad; Kuang, Jing; Li, Jianhong

    2016-01-01

    Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura) is the main pest of water bamboo (Zizania latifolia). This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53 and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis. PMID:27672370

  3. Levels of genetic polymorphism: marker loci versus quantitative traits.

    PubMed

    Butlin, R K; Tregenza, T

    1998-02-28

    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.

  4. Characterization of 12 Novel Microsatellite Markers of Sogatella furcifera (Hemiptera: Delphacidae) Identified From Next-Generation Sequence Data

    PubMed Central

    Nam, Hwa Yeun; Coates, Brad; Kim, Kyung Seok; Park, Marana; Lee, Joon-Ho

    2015-01-01

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats) have been widely used to determine the origins and genetic diversity of insect pests. We identified novel microsatellite loci for S. furcifera samples collected from Laos, Vietnam, and three localities in Bangladesh from next-generation Roche 454 pyrosequencing data. Size polymorphism at 12 microsatellite loci was verified for 40 adult individuals collected from Shinan, South Korea. The average number of alleles per locus was 7.92. The mean values of observed (Ho) and expected heterozygosities (HE) were 0.615 and 0.757, respectively. These new microsatellite markers will be a resource for future ecological genetic studies of S. furcifera samples across more broad geographic regions in Asia and may assist in estimations of genetic differentiation and gene flow among populations for implementation of more effective management strategies to control this serious rice pest. PMID:26163593

  5. Population Seasonality: Will They Stay or Will They Go? A Case Study of the Sogatella furcifera (Hemiptera: Delphacidae)

    PubMed Central

    Ma, Mingyong; Wu, Shengwei; Peng, Zhaopu

    2015-01-01

    The whitebacked planthopper Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) is one of the most destructive pests of rice in East and Southeast Asia. It is also a long-distance migratory insect and population size fluctuates frequently in these rice regions along the middle and lower Yangtze River. We analyzed the population seasonality of S. furcifera based on field surveys, light trap catching, and meteorological factors. We found that many S. furcifera were retained in local late rice in 2012, due to continuous rain and slightly windy weather conditions during the migration period. These results suggest that a new pattern of population fluctuation may occur where resident S. furcifera are dispersed into a single medium rice during harvest period, then rebound and thrive in late rice when there are suitable temperatures in September. Although the residency of S. furcifera in late rice fields in 2012 seems to be a special case, our findings suggest that S. furcifera exhibit a type of facultative migration. Our research also illuminates studies of the migration events of S. furcifera and benefits our understanding of the dynamics of S. furcifera in Hunan Province. PMID:26009632

  6. Overexpression of rice black-streaked dwarf virus p7-1 in Arabidopsis results in male sterility due to non-dehiscent anthers.

    PubMed

    Sun, Feng; Yuan, Xia; Xu, Qiufang; Zhou, Tong; Fan, Yongjian; Zhou, Yijun

    2013-01-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways.

  7. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  8. Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice.

    PubMed

    Zhou, Tong; Du, Linlin; Wang, Lijiao; Wang, Ying; Gao, Cunyi; Lan, Ying; Sun, Feng; Fan, Yongjian; Wang, Guoliang; Zhou, Yijun

    2015-07-22

    Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is transmitted by small brown planthoppers (Laodelphax striatellus Fallén, SBPH) and causes severe yield loss in epidemic years in China and other East Asian countries. Breeding for resistance to RBSDV is a promising strategy to control the disease. We identified Tetep that showed resistance to RBSDV using a field test and artificial inoculation test. An evaluation of the resistance mechanism revealed that Tetep was resistant to RBSDV but not to SBPH. Genetic analysis showed that the resistance of Tetep to RBSDV was controlled by quantitative trait loci (QTLs). Three new QTLs for RBSDV resistance were identified in this study, i.e., qRBSDV-3, qRBSDV-10 and qRBSDV-11. The LOD scores of qRBSDV-3, qRBSDV-10 and qRBSDV-11 were 4.07, 2.24 and 2.21, accounting for 17.5%, 0.3% and 12.4% of the total phenotypic variation, respectively. All the resistance loci identified in this study were associated with virus resistance genes. The alleles for enhancing resistance on chromosomes 3 and 11 originated from Tetep, whereas the other allele on chromosome 10 originated from a susceptible parent. The identified new resistance QTLs in this study are useful resources for efficiently breeding resistant rice cultivars to RBSDV.

  9. Functional and biochemical properties of Mal de Río Cuarto virus (Fijivirus, Reoviridae) P9-1 viroplasm protein show further similarities to animal reovirus counterparts.

    PubMed

    Maroniche, Guillermo A; Mongelli, Vanesa C; Peralta, Andrea V; Distéfano, Ana J; Llauger, Gabriela; Taboga, Oscar A; Hopp, Esteban H; del Vas, Mariana

    2010-09-01

    Mal de Río Cuarto virus (MRCV) is a plant virus of the genus Fijivirus within the family Reoviridae that infects several monocotyledonous species and is transmitted by planthoppers in a persistent and propagative manner. Other members of the family replicate in viral inclusion bodies (VIBs) termed viroplasms that are formed in the cytoplasm of infected plant and insect cells. In this study, the protein coded by the first ORF of MRCV segment S9 (P9-1) was shown to establish cytoplasmic inclusion bodies resembling viroplasms after transfection of Spodoptera frugiperda insect cells. In accordance, MRCV P9-1 self-associates giving rise to high molecular weight complexes when expressed in bacteria. Strong self-interaction was also evidenced by yeast two-hybrid assays. Furthermore, biochemical characterization showed that MRCV P9-1 bound single stranded RNA and had ATPase activity. Finally, the MRCV P9-1 region required for the formation of VIB-like structures was mapped to the protein carboxy-terminal half. This extensive functional and biochemical characterization of MRCV P9-1 revealed further similarities between plant and animal reovirus viroplasm proteins.

  10. Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights

    PubMed Central

    Watson, Gregory S.; Cribb, Bronwen W.; Watson, Jolanta A.

    2011-01-01

    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/‘technologies’ on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C18 beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper. PMID:21935401

  11. Contrasting micro/nano architecture on termite wings: two divergent strategies for optimising success of colonisation flights.

    PubMed

    Watson, Gregory S; Cribb, Bronwen W; Watson, Jolanta A

    2011-01-01

    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/'technologies' on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C(18) beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper.

  12. Genetic diversity of Sogatella furcifera (Hemiptera: Delphacidae) in China detected by inter-simple sequence repeats.

    PubMed

    Xie, Jia-Nan; Guo, Jian-Jun; Jin, Dao-Chao; Wang, Xue-Jian

    2014-01-01

    The white-backed planthopper (WBPH), Sogatella furcifera (Horváth) is a serious pest causing grievous damage to rice plants. In the present study, inter-simple sequence repeats were employed to investigate the genetic diversity of 108 samples from 27 WBPH geographic populations in China. Ten primers were screened out with 147 amplified bands, average percentage of polymorphic bands, polymorphic information content, and marker index were 78.9, 0.456, and 6.753% respectively. The results indicated that genetic diversity was different among populations, but genetic variation was as low as 0.2% among the populations and as high as 99.8% within the same geographic population. Among the examined WBPH populations, genetic distances were weakly correlated to geographic distance, and there was no correlation between genetic identity and elevation. Cluster analysis showed that the 27 WBPH populations studied could be lumped into four clusters, with which the results of principal coordinate analysis (were almost consistent. In conclusion, the molecular genetic data demonstrated that the region consisting of Yunnan, Guizhou, Guangdong, and Guangxi was the first landing area of WBPH in its migrating process from overwintering sites to China.

  13. Bioaccumulation of Cry1Ab Protein from an Herbivore Reduces Anti-Oxidant Enzyme Activities in Two Spider Species

    PubMed Central

    Wang, Zhi; Tian, Yun; Tian, Yixing; Song, Qisheng

    2014-01-01

    Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators. PMID:24454741

  14. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus

    PubMed Central

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  15. A comparison of four geographic sources of the biocontrol agent Prokelisia marginata (Homoptera: Delphacidae) following introduction into a common environment.

    PubMed

    Grevstad, F S; O'Casey, C; Katz, M L

    2012-06-01

    As part of a biological control program against Spartina alterniflora Loisel. (smooth cordgrass), we simultaneously released populations of the planthopper Prokelisia marginata (van Duzee) from four geographic areas in each of five replicate field sites in the Willapa Bay estuary in Washington State. The four sources (California, Georgia, Virginia, and Rhode Island) have varying climate and seasonal regimes. We expected local adaptations would affect performance in the new environment. Using vacuum sampling, we measured population densities in spring and fall for 2 yr after release. In addition, we measured the timing of spring emergence through bi-weekly surveys of the number of nymphs residing in overwintering sites (curled leaves of senesced Spartina culms) versus on live green shoots. The observed sequence of emergence GA>CA>VA>RI was consistent with the hypothesis that this insect responds to a photoperiod cue for emergence timing. The four populations also differed in their reproductive capacity as measured by the increase in population densities over the summer months. Overall, the California and Rhode Island populations had higher population growth than those from Virginia and Georgia. Our results suggest that the climate and seasonal adaptations of biocontrol agents should be carefully considered as they can affect the performance and phenology in the new range. At the same time, it is noteworthy that all four populations were capable of establishing and growing, indicating a degree of resiliency for populations experiencing a rapid change in climate. PMID:22732601

  16. Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice.

    PubMed

    Zhou, Tong; Du, Linlin; Wang, Lijiao; Wang, Ying; Gao, Cunyi; Lan, Ying; Sun, Feng; Fan, Yongjian; Wang, Guoliang; Zhou, Yijun

    2015-01-01

    Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is transmitted by small brown planthoppers (Laodelphax striatellus Fallén, SBPH) and causes severe yield loss in epidemic years in China and other East Asian countries. Breeding for resistance to RBSDV is a promising strategy to control the disease. We identified Tetep that showed resistance to RBSDV using a field test and artificial inoculation test. An evaluation of the resistance mechanism revealed that Tetep was resistant to RBSDV but not to SBPH. Genetic analysis showed that the resistance of Tetep to RBSDV was controlled by quantitative trait loci (QTLs). Three new QTLs for RBSDV resistance were identified in this study, i.e., qRBSDV-3, qRBSDV-10 and qRBSDV-11. The LOD scores of qRBSDV-3, qRBSDV-10 and qRBSDV-11 were 4.07, 2.24 and 2.21, accounting for 17.5%, 0.3% and 12.4% of the total phenotypic variation, respectively. All the resistance loci identified in this study were associated with virus resistance genes. The alleles for enhancing resistance on chromosomes 3 and 11 originated from Tetep, whereas the other allele on chromosome 10 originated from a susceptible parent. The identified new resistance QTLs in this study are useful resources for efficiently breeding resistant rice cultivars to RBSDV. PMID:26198760

  17. Overexpression of rice black-streaked dwarf virus p7-1 in Arabidopsis results in male sterility due to non-dehiscent anthers.

    PubMed

    Sun, Feng; Yuan, Xia; Xu, Qiufang; Zhou, Tong; Fan, Yongjian; Zhou, Yijun

    2013-01-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways. PMID:24260239

  18. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response. PMID:23776591

  19. The global status of insect resistance to neonicotinoid insecticides.

    PubMed

    Bass, Chris; Denholm, Ian; Williamson, Martin S; Nauen, Ralf

    2015-06-01

    The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.

  20. Analysis of Sogatella furcifera proteome that interact with P10 protein of Southern rice black-streaked dwarf virus

    PubMed Central

    Than, Win; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV) is transmitted efficiently only by white-backed planthopper (WBPH, Sogatella furcifera) in a persistent propagative manner. Here we used a yeast two-hybrid system to investigate the interactions between the SRBSDV- P10 and the cDNA library of WBPH. Of 130 proteins identified as putative interactors, 28 were further tested in a retransformation analysis and β-galactosidase assay to confirm the interaction. The full-length gene sequences of 5 candidate proteins: vesicle-associated membrane protein 7 (VAMP7), vesicle transport V-SNARE protein (Vti1A), growth hormone-inducible transmembrane protein (Ghitm), nascent polypeptide-associated complex subunit alpha, and ATP synthase lipid-binding protein) were amplified by 5′ rapid amplification of cDNA ends (RACE) and used in a GST fusion protein pull-down assay. Three of these proteins interacted with SRBSDV-P10 in vitro experiment GST pull-down assay. In a gene expression analysis of 3 different growth stages and 6 different tissue organs of S. furcifera, the mRNA level of VAMP7 was high in adult males and gut. Vti1A was abundant in adult female, and malpighian tubule, gut and ovary. Ghitm was predominantly found in adult male and the malpighian tubule. These research findings are greatly helpful to understand the interaction between SRBSDV and insect vector. PMID:27653366

  1. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids.

    PubMed

    Bonning, Bryony C; Pal, Narinder; Liu, Sijun; Wang, Zhaohui; Sivakumar, S; Dixon, Philip M; King, Glenn F; Miller, W Allen

    2014-01-01

    The sap-sucking insects (order Hemiptera), including aphids, planthoppers, whiteflies and stink bugs, present one of the greatest challenges for pest management in global agriculture. Insect neurotoxins offer an alternative to chemical insecticides for controlling these pests, but require delivery into the insect hemocoel. Here we use the coat protein of a luteovirus, an aphid-vectored plant virus, to deliver a spider-derived, insect-specific toxin that acts within the hemocoel. The luteovirid coat protein is sufficient for delivery of fused proteins into the hemocoel of pea aphids, Acyrthosiphon pisum, without virion assembly. We show that when four aphid pest species-A. pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae-feed on a recombinant coat protein-toxin fusion, either in an experimental membrane sachet or in transgenic Arabidopsis plants, they experience significant mortality. Aphids fed on these fusion proteins showed signs of neurotoxin-induced paralysis. Luteovirid coat protein-insect neurotoxin fusions represent a promising strategy for transgenic control of aphids and potentially other hemipteran pests.

  2. Asymmetric Spread of SRBSDV between Rice and Corn Plants by the Vector Sogatella furcifera (Hemiptera: Delphacidae)

    PubMed Central

    Li, Pei; Li, Fei; Han, Yongqiang; Yang, Lang; Liao, Xiaolan; Hou, Maolin

    2016-01-01

    Plant viruses are mostly transmitted by sucking insects via their piercing behaviors, which may differ due to host plant species and their developmental stages. We characterized the transmission of a fijivirus, southern rice black-streaked dwarf virus (SRBSDV), by the planthopper vector Sogatella furcifera Horváth (Hemiptera: Delphacidae), between rice and corn plants of varying developmental stages. SRBSDV was transmitted from infected rice to uninfected corn plants as efficiently as its transmission between rice plants, while was acquired by S. furcifera nymphs at a much lower rate from infected corn plants than from infected rice plants. We also recorded a high mortality of S. furcifera nymphs on corn plants. It is evident that young stages of both the virus donor and recipient plants added to the transmission efficiency of SRBSDV from rice to corn plants. Feeding behaviors of the vector recorded by electrical penetration graph showed that phloem sap ingestion, the behavioral event that is linked with plant virus acquisition, was impaired on corn plants, which accounts for the high mortality of and low virus acquisition by S. furcifera nymphs on corn plants. Our results reveal an asymmetric spread of SRBSDV between its two host plants and the underlying behavioral mechanism, which is of significance for assessing SRBSDV transmission risks and field epidemiology, and for developing integrated management approaches for SRBSDV disease. PMID:27760223

  3. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus

    PubMed Central

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector’s death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  4. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species

    PubMed Central

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment. PMID:27045847

  5. Cry1Ab-expressing rice did not influence expression of fecundity-related genes in the wolf spider Pardosa pseudoannulata.

    PubMed

    Wang, Juan; Peng, Yuan-De; He, Chao; Wei, Bao-Yang; Liang, Yun-Shan; Yang, Hui-Lin; Wang, Zhi; Stanley, David; Song, Qi-Sheng

    2016-10-30

    The impact of Bacillus thuringiensis (Bt) toxin proteins on non-target predatory arthropods is not well understood at the cellular and molecular levels. Here, we investigated the potential effects of Cry1Ab expressing rice on fecundity of the wolf spider, Pardosa pseudoannulata, and some of the underlying molecular mechanisms. The results indicated that brown planthoppers (BPHs) reared on Cry1Ab-expressing rice accumulated the Cry toxin and that reproductive parameters (pre-oviposition period, post-oviposition stage, number of eggs, and egg hatching rate) of the spiders that consumed BPHs reared on Bt rice were not different from those that consumed BPHs reared on the non-Bt control rice. The accumulated Cry1Ab did not influence several vitellin (Vt) parameters, including stored energy and amino acid composition, during one generation. We considered the possibility that the Cry toxins exert their influence on beneficial predators via more subtle effects detectable at the molecular level in terms of gene expression. This led us to transcriptome analysis to detect differentially expressed genes in the ovaries of spiders exposed to dietary Cry1Ab and their counterpart control spiders. Eight genes, associated with vitellogenesis, vitellogenin receptor activity, and vitellin membrane formation were not differentially expressed between ovaries from the treated and control spiders, confirmed by qPCR analysis. We infer that dietary Cry1Ab expressing rice does not influence fecundity, nor expression levels of Vt-associated genes in P. pseudoannulata.

  6. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.

    PubMed

    Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A

    2009-01-01

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.

  7. Cry1Ab-expressing rice did not influence expression of fecundity-related genes in the wolf spider Pardosa pseudoannulata.

    PubMed

    Wang, Juan; Peng, Yuan-De; He, Chao; Wei, Bao-Yang; Liang, Yun-Shan; Yang, Hui-Lin; Wang, Zhi; Stanley, David; Song, Qi-Sheng

    2016-10-30

    The impact of Bacillus thuringiensis (Bt) toxin proteins on non-target predatory arthropods is not well understood at the cellular and molecular levels. Here, we investigated the potential effects of Cry1Ab expressing rice on fecundity of the wolf spider, Pardosa pseudoannulata, and some of the underlying molecular mechanisms. The results indicated that brown planthoppers (BPHs) reared on Cry1Ab-expressing rice accumulated the Cry toxin and that reproductive parameters (pre-oviposition period, post-oviposition stage, number of eggs, and egg hatching rate) of the spiders that consumed BPHs reared on Bt rice were not different from those that consumed BPHs reared on the non-Bt control rice. The accumulated Cry1Ab did not influence several vitellin (Vt) parameters, including stored energy and amino acid composition, during one generation. We considered the possibility that the Cry toxins exert their influence on beneficial predators via more subtle effects detectable at the molecular level in terms of gene expression. This led us to transcriptome analysis to detect differentially expressed genes in the ovaries of spiders exposed to dietary Cry1Ab and their counterpart control spiders. Eight genes, associated with vitellogenesis, vitellogenin receptor activity, and vitellin membrane formation were not differentially expressed between ovaries from the treated and control spiders, confirmed by qPCR analysis. We infer that dietary Cry1Ab expressing rice does not influence fecundity, nor expression levels of Vt-associated genes in P. pseudoannulata. PMID:27452121

  8. Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos

    PubMed Central

    Li, Shuo; Wang, Shijuan; Wang, Xi; Li, Xiaoli; Zi, Jinyan; Ge, Shangshu; Cheng, Zhaobang; Zhou, Tong; Ji, Yinghua; Deng, Jinhua; Wong, Sek-Man; Zhou, Yijun

    2015-01-01

    Plant viruses may affect the viability and development process of their herbivore vectors. Small brown planthopper (SBPH) is main vector of Rice stripe virus (RSV), which causes serious rice stripe disease. Here, we reported the effects of RSV on SBPH offspring by crossing experiments between viruliferous and non-viruliferous strains. The life parameters of offspring from different cross combinations were compared. The hatchability of F1 progeny from viruliferous parents decreased significantly, and viruliferous rate was completely controlled by viruliferous maternal parent. To better elucidate the underlying biological mechanisms, the morphology of eggs, viral propagation and distribution in the eggs and expression profile of embryonic development genes were investigated. The results indicated that RSV replicated and accumulated in SBPH eggs resulting in developmental stunt or delay of partial eggs; in addition, RSV was only able to infect ovum but not sperm. According to the expression profile, expression of 13 developmental genes was regulated in the eggs from viruliferous parents, in which two important regulatory genes (Ls-Dorsal and Ls-CPO) were most significantly down-regulated. In general, RSV exerts an adverse effect on SBPH, which is unfavourable for the expansion of viruliferous populations. The viewpoint is also supported by systematic monitoring of SBPH viruliferous rate. PMID:25601039

  9. Source Areas for the Early Immigration of Sogatella furcifera (Homoptera: Delphacidae) at Xiushan in the Middle Reach of Yangtze River of China.

    PubMed

    Jiang, C X; Chen, X L; Bi, J C; Li, J J; Xiao, X H; Li, Q; Wang, H J; Yang, Q F

    2015-12-01

    The spatiotemporal distribution of source areas for the early immigration of the white-backed planthopper, Sogatella furcifera (Horvάth), at Xiushan in the middle reach of Yangtze River of China, was analyzed with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and ArcGIS 10.0. The analysis was based on light trap data collected during April-July in 2000-2012. The synoptic meteorology backgrounds during the immigration periods were analyzed by GrADS (Grid Analysis and Display System). The light trap catches of S. furcifera varied monthly and annually. S. furcifera started immigration in Xiushan in early April to early May, whereas the main immigration period was in July. The distribution of the source areas varied monthly, and the core was moved from the south to the north gradually. The main source areas of S. furcifera in May were in southwestern Guangxi and northern Vietnam. The source areas of S. furcifera in June were located in southwestern Guangxi and western Hunan. Additionally, some of the pests were from southeastern Yunnan. The source areas in July were in northwestern Guangxi, southwestern Guizhou, eastern Yunnan, and the transitional parts of Guangxi, Guizhou, and Yunnan. The sum frequencies of southwest and south winds on the 850 hPa isobaric surface of Xiushan of May-July in heavy occurrence years were more than the light occurrence years. The key meteorological factors were suggested to be vertical perturbation, precipitation, and wind shear during S. furcifera immigration periods. PMID:26470376

  10. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors.

    PubMed

    Syller, Jerzy

    2014-05-01

    Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host-to-host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined.

  11. The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae)

    PubMed Central

    Yin, Haichen; Shi, Qihao; Shakeel, Muhammad; Kuang, Jing; Li, Jianhong

    2016-01-01

    Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura) is the main pest of water bamboo (Zizania latifolia). This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53 and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis.

  12. Symbiosis and Insect Diversification: an Ancient Symbiont of Sap-Feeding Insects from the Bacterial Phylum Bacteroidetes

    PubMed Central

    Moran, Nancy A.; Tran, Phat; Gerardo, Nicole M.

    2005-01-01

    Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 μm in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. “Candidatus Sulcia muelleri” is proposed as the name of the new symbiont. PMID:16332876

  13. Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice

    PubMed Central

    Zhou, Tong; Du, Linlin; Wang, Lijiao; Wang, Ying; Gao, Cunyi; Lan, Ying; Sun, Feng; Fan, Yongjian; Wang, Guoliang; Zhou, Yijun

    2015-01-01

    Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is transmitted by small brown planthoppers (Laodelphax striatellus Fallén, SBPH) and causes severe yield loss in epidemic years in China and other East Asian countries. Breeding for resistance to RBSDV is a promising strategy to control the disease. We identified Tetep that showed resistance to RBSDV using a field test and artificial inoculation test. An evaluation of the resistance mechanism revealed that Tetep was resistant to RBSDV but not to SBPH. Genetic analysis showed that the resistance of Tetep to RBSDV was controlled by quantitative trait loci (QTLs). Three new QTLs for RBSDV resistance were identified in this study, i.e., qRBSDV-3, qRBSDV-10 and qRBSDV-11. The LOD scores of qRBSDV-3, qRBSDV-10 and qRBSDV-11 were 4.07, 2.24 and 2.21, accounting for 17.5%, 0.3% and 12.4% of the total phenotypic variation, respectively. All the resistance loci identified in this study were associated with virus resistance genes. The alleles for enhancing resistance on chromosomes 3 and 11 originated from Tetep, whereas the other allele on chromosome 10 originated from a susceptible parent. The identified new resistance QTLs in this study are useful resources for efficiently breeding resistant rice cultivars to RBSDV. PMID:26198760

  14. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus.

    PubMed

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector's death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  15. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success

    PubMed Central

    Lei, Wenbin; Li, Pei; Han, Yongqiang; Gong, Shaolong; Yang, Lang; Hou, Maolin

    2016-01-01

    Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors’ feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector’s feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition. PMID:27492995

  16. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success.

    PubMed

    Lei, Wenbin; Li, Pei; Han, Yongqiang; Gong, Shaolong; Yang, Lang; Hou, Maolin

    2016-01-01

    Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors' feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector's feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition. PMID:27492995

  17. Anatomy of the antennal dorsal organ in female of Neodryinus typhlocybae (Hymenoptera: Dryinidae): A peculiar sensory structure possibly involved in perception of host vibration.

    PubMed

    Riolo, Paola; Isidoro, Nunzio; Ruschioni, Sara; Minuz, Roxana L; Bin, Ferdinando; Romani, Roberto

    2016-01-01

    Neodryinus typhlocybae (Hymenoptera: Dryinidae) is a natural enemy of the planthopper Metcalfa pruinosa, which was introduced from North America into Europe and has become established in various regions as a pest species. Vibrational signals play a crucial role in the communication of M. pruinosa, which appears to be exploited by N. typhlocybae. Scanning and transmission electron microscopy have shown that the antennae of N. typhlocybae females have peculiar and complex sensory structures: deep longitudinal grooves that house long sensilla trichodea, termed here "Antennal Dorsal Organs." Such structures were not present on male antennae. These sensilla extend for the length of the grooves, without contact with the groove cuticle. Their hair shaft is empty and aporous, and inserted into a specialized socket, underneath which there is a cuticular ampulla-like chamber. Each sensillum is associated with two sensory neurons: one terminates at the proximal end of the dendritic sheath; the other continues into the sensillum sinus and is enclosed in the dendritic sheath. This second sensory neuron then enters the ampulla-like chamber through the circular opening, and then terminates with a conspicuous tubular body at the shaft base. The possible involvement of this peculiar structure in the context of host recognition mechanism is discussed.

  18. The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae).

    PubMed

    Yin, Haichen; Shi, Qihao; Shakeel, Muhammad; Kuang, Jing; Li, Jianhong

    2016-01-01

    Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura) is the main pest of water bamboo (Zizania latifolia). This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53 and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis. PMID:27672370

  19. The Toxicity and Detoxifying Mechanism of Cycloxaprid and Buprofezin in Controlling Sogatella furcifera (Homoptera: Delphacidae)

    PubMed Central

    Chang, Xiaoli; Yuan, Yongda; Zhang, Tianshu; Wang, Dongsheng; Du, Xingbin; Wu, Xiangwen; Chen, Haixia; Chen, Yaozhong; Jiao, Yuetong; Teng, Haiyuan

    2015-01-01

    The effects of cycloxaprid (a modified neonicotinoid insecticide) and buprofezin (a thiadiazine insecticide) on mortality of the white-backed planthopper (WBPH), Sogatella furcifera, were determined in laboratory assays. Cycloxaprid killed WBPH nymphs and adults but buprofezin killed only nymphs, and cycloxaprid acted faster than buprofezin. One day after infestation, mortality of third-instar nymphs was >65% with cycloxaprid at 125 mg liter−1 but was <38% with buprofezin at 148 mg liter−1. By the 4th day after infestation, however, control of nymphs by the two insecticides was similar, and cycloxaprid at 125 mg liter−1 caused ≥80% mortality of adults but buprofezin at 148 mg liter−1 (the highest rate tested) caused almost no adult mortality. LC50 values for cycloxaprid were lowest with nymphs, intermediate with adult males, and highest with adult females. Although buprofezin was slower acting than cycloxaprid, its LC50 for nymphs 5 d after infestation was 3.79-fold lower than that of cycloxaprid. Mean carboxylesterase (CarE) specific activity of nymphal WBPH treated with cycloxaprid and buprofezin was higher than that of control, but there was no significant difference between cycloxaprid and control (no insecticide), and it was significantly higher for buprofezin than those of cycloxaprid and control. For glutathione S-transferase and mixed function oxygenase, the specific activity of nymphal WBPH treated with buprofezin was significantly higher than those of cycloxaprid and control, too. PMID:26175461

  20. Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus.

    PubMed

    Romero, Luz E; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C; Martinez, César P; Calvert, Lee; Lorieux, Mathias

    2014-01-01

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781

  1. Major QTLs Control Resistance to Rice Hoja Blanca Virus and Its Vector Tagosodes orizicolus

    PubMed Central

    Romero, Luz E.; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J.; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C.; Martinez, César P.; Calvert, Lee; Lorieux, Mathias

    2013-01-01

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781

  2. Characterization of Rice Black-Streaked Dwarf Virus- and Rice Stripe Virus-Derived siRNAs in Singly and Doubly Infected Insect Vector Laodelphax striatellus

    PubMed Central

    Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response. PMID:23776591

  3. Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membrane glycoproteins.

    PubMed

    Estabrook, E M; Suyenaga, K; Tsai, J H; Falk, B W

    1996-01-01

    The complete sequence of the maize stripe tenuivirus (MStV) RNA2 was determined (3337 nucleotides). RNA2 contains two large open reading frames (ORFs) arranged in an ambisense orientation and specific RNAs of ca. 700 and 2600 nucleotides corresponding to the ORFs were detected in MStV-infected plants and planthoppers. The deduced amino acid sequence of the 23,500 MW protein (pv2) encoded by viral RNA2 (vRNA2) was similar to proteins encoded by the rice stripe (RStV) and rice hoja blanca tenuiviruses vRNA2. Sequence analysis suggested that pv2 is membrane associated. The 93,900 MW protein (pvc2) encoded by viral complementary MStV RNA2 (vcRNA2) was similar to the 94,000 MW protein of RStV RNA2 and to the virion membrane glycoproteins for Phlebovirus members of the Bunyaviridae. The phlebovirus glycoprotein cleavage site was similar to a region in the MStV and RStV proteins suggesting that the tenuivirus pvc2 may be processed analogous to the phlebovirus glycoproteins. PMID:8883361

  4. Insulin-Related Peptide 5 is Involved in Regulating Embryo Development and Biochemical Composition in Pea Aphid with Wing Polyphenism

    PubMed Central

    Guo, Shan-Shan; Zhang, Meng; Liu, Tong-Xian

    2016-01-01

    In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS) pathway regulate alternation of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5) affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax in the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryos, and higher carbohydrate and protein contents compared to the control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid. PMID:26903881

  5. Source Areas for the Early Immigration of Sogatella furcifera (Homoptera: Delphacidae) at Xiushan in the Middle Reach of Yangtze River of China.

    PubMed

    Jiang, C X; Chen, X L; Bi, J C; Li, J J; Xiao, X H; Li, Q; Wang, H J; Yang, Q F

    2015-12-01

    The spatiotemporal distribution of source areas for the early immigration of the white-backed planthopper, Sogatella furcifera (Horvάth), at Xiushan in the middle reach of Yangtze River of China, was analyzed with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and ArcGIS 10.0. The analysis was based on light trap data collected during April-July in 2000-2012. The synoptic meteorology backgrounds during the immigration periods were analyzed by GrADS (Grid Analysis and Display System). The light trap catches of S. furcifera varied monthly and annually. S. furcifera started immigration in Xiushan in early April to early May, whereas the main immigration period was in July. The distribution of the source areas varied monthly, and the core was moved from the south to the north gradually. The main source areas of S. furcifera in May were in southwestern Guangxi and northern Vietnam. The source areas of S. furcifera in June were located in southwestern Guangxi and western Hunan. Additionally, some of the pests were from southeastern Yunnan. The source areas in July were in northwestern Guangxi, southwestern Guizhou, eastern Yunnan, and the transitional parts of Guangxi, Guizhou, and Yunnan. The sum frequencies of southwest and south winds on the 850 hPa isobaric surface of Xiushan of May-July in heavy occurrence years were more than the light occurrence years. The key meteorological factors were suggested to be vertical perturbation, precipitation, and wind shear during S. furcifera immigration periods.

  6. Forty-sixth supplement to the American ornithologists' union check-list of North American Birds

    USGS Publications Warehouse

    Banks, R.C.; Cicero, C.; Dunn, J.L.; Kratter, A.W.; Rasmussen, P.C.; Remsen, J.V.; Rising, J.D.; Stotz, D.F.

    2005-01-01

    This is the fifth Supplement since publication of the 7th edition of the Check-list of North American Birds (American Ornithologists? Union [AOU] 1998). It summarizes decisions made by the AOU?s Committee on Classification and Nomenclature between 1 January and 31 December 2004. Changes in this Supplement fall into the following categories: (1) two species replace others presently on the list because of splitting of extralimital forms (Leptotila plumbeiceps replaces L. rufaxilla and Hylocharis humboldtii replaces H. grayi); (2) one species is removed from the Appendix and added to the main list because of new distributional information (Circus aeruginosus); (3) one species is removed from the list because of its merger with another species on the list (Motacilla lugens); (4) one species is removed from the main list and placed in the Appendix (Acridotheres cristatellus); (4) two species are removed from the families in which they were previously treated and placed in incertae sedis categories (Donacobius atricapilla and Coereba flaveola), and one family is removed from the list (Coerebidae); (6) one genus is removed from the list (Mimodes) because of its merger with another on the list (Mimus), with the consequent change of the scientific name of one species; and (7) the distribution of one species is restricted because of the removal of an extralimital population now treated as distinct (Melanerpes chrysauchen). Further, one species is added to the list of birds known to occur in the United States (Tachycineta albilinea). A few recent references are added to statements of distribution. Minor corrections are made in several citations or notes. There is one more deletion from the main list than additions to it, so the number of species in the main list becomes 2,037.

  7. Methoprene-tolerant (Met) and Krüpple-homologue 1 (Kr-h1) are required for ovariole development and egg maturation in the brown plant hopper.

    PubMed

    Lin, Xinda; Yao, Yun; Wang, Bo

    2015-12-14

    The brown plant hopper is one of the most destructive known pests of rice. We studied the roles of the JH receptor Met and the downstream transcription factor Kr-h1 in ovariole development and egg maturation. The predicted Met protein in N. lugens (NlMet) contained 517 amino acids. qRT-PCR showed that NlMet was expressed in all tissues and that the highest expression occurred in the embryonic stage. In NlMet- or NlKr-h1-silenced female adults, ovarian development varied significantly, whereas the numbers of ovarioles were less variable in those injected with dsRNA targeting NlMet, NlKrh-1 or both NlMet and NlKr-h1. In females injected with dsNlKr-h1 or with dsNlMet in combination with dsNlKr-h1 dsRNA, the preoviposition period was prolonged, whereas the females injected with NlMet dsRNA showed no significant changes. Moreover, we found no differences in the length of the preoviposition period between macropterous and brachypterous females. The disruption of Nlmet or NlKr-h1 or the dual knockdown of NlMet and NlKr-h1 significantly reduced the number of eggs laid. Moreover, significant differences were also found between the macropterous and the brachypterous brown plant hoppers. These results indicated that Met and Kr-h1 are required for ovariole development and egg maturation in the brown plant hopper.

  8. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    PubMed

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. PMID:26091699

  9. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata

    PubMed Central

    Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides. PMID:25923714

  10. A Novel Member of the Trehalose Transporter Family Functions as an H+-Dependent Trehalose Transporter in the Reabsorption of Trehalose in Malpighian Tubules

    PubMed Central

    Kikuta, Shingo; Hagiwara-Komoda, Yuka; Noda, Hiroaki; Kikawada, Takahiro

    2012-01-01

    In insects, Malpighian tubules are functionally analogous to mammalian kidneys in that they not only are essential to excrete waste molecules into the lumen but also are responsible for the reabsorption of indispensable molecules, such as sugars, from the lumen to the principal cells. Among sugars, the disaccharide trehalose is highly important to insects because it is the main hemolymph sugar to serve as a source of energy and carbon. The trehalose transporter TRET1 participates in the transfer of newly synthesized trehalose from the fat body across the cellular membrane into the hemolymph. Although transport proteins must play a pivotal role in the reabsorption of trehalose in Malpighian tubules, the molecular context underlying this process remains obscure. Previously, we identified a Tret1 homolog (Nlst8) that is expressed principally in the Malpighian tubules of the brown planthopper (BPH). Here, we used the Xenopus oocyte expression system to show that NlST8 exerts trehalose transport activity that is elevated under low pH conditions. These functional assays indicate that Nlst8 encodes a proton-dependent trehalose transporter (H-TRET1). To examine the involvement of Nlst8 in trehalose reabsorption, we analyzed the sugar composition of honeydew by using BPH with RNAi gene silencing. Trehalose was detected in the honeydew as waste excreted from Nlst8-dsRNA-injected BPH under hyperglycemic conditions. However, trehalose was not expelled from GFP-dsRNA-injected BPH even under hyperglycemic conditions. We conclude that NlST8 could participate in trehalose reabsorption driven by a H+ gradient from the lumen to the principal cells of the Malpighian tubules. PMID:22934042

  11. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein*

    PubMed Central

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-01-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus–insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. PMID:26091699

  12. Recilia banda Kramer (Hemiptera: Cicadellidae), a vector of Napier stunt phytoplasma in Kenya.

    PubMed

    Obura, Evans; Midega, Charles A O; Masiga, Daniel; Pickett, John A; Hassan, Mohamed; Koji, Shinsaku; Khan, Zeyaur R

    2009-10-01

    Napier grass (Pennisetum purpureum) is the most important fodder crop in smallholder dairy production systems in East Africa, characterized by small zero-grazing units. It is also an important trap crop used in the management of cereal stemborers in maize in the region. However, production of Napier grass in the region is severely constrained by Napier stunt disease. The etiology of the disease is known to be a phytoplasma, 16SrXI strain. However, the putative insect vector was yet unknown. We sampled and identified five leafhopper and three planthopper species associated with Napier grass and used them as candidates in pathogen transmission experiments. Polymerase chain reaction (PCR), based on the highly conserved 16S gene, primed by P1/P6-R16F2n/R16R2 nested primer sets was used to diagnose phytoplasma on test plants and insects, before and after transmission experiments. Healthy plants were exposed for 60 days to insects that had fed on diseased plants and acquired phytoplasma. The plants were then incubated for another 30 days. Nested PCR analyses showed that 58.3% of plants exposed to Recilia banda Kramer (Hemiptera: Cicadellidae) were positive for phytoplasma and developed characteristic stunt disease symptoms while 60% of R. banda insect samples were similarly phytoplasma positive. We compared the nucleotide sequences of the phytoplasma isolated from R. banda, Napier grass on which these insects were fed, and Napier grass infected by R. banda, and found them to be virtually identical. The results confirm that R. banda transmits Napier stunt phytoplasma in western Kenya, and may be the key vector of Napier stunt disease in this region.

  13. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    PubMed

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  14. [Stress effects of imidacloprid on RSV in rice plants].

    PubMed

    Wang, Shuang; Fu, Hong-wei; Yang, Yi-zhong

    2014-12-01

    The rice stripe disease is a viral disease transmitted by small brown planthopper, Laodelphax striatellus, which outbroke a few years ago in the Yangtze River basin, especially Jiangsu region, China. To study the effects of imidacloprid stress on rice stripe virus (RSV) in rice plants, the rice seedlings were treated with imidacloprid 1, 2, 3 and 4 times (B1, B2, B3 and B4), respectively, after artificial inoculation by L. striatellus for 48 h, and the expression levels of relative genes including RSV NS3, CP, SP and NSvc4, as well as the protein concentrations of CP and SP were detected at different stages by real-time PCR and Western blotting. The results showed that the effects of imidacloprid treatment on the expression levels of four genes were gene-specific and correlated with application frequencies of imidacloprid. The expression levels of NS3 gene were upregulated in three treatments, and the highest expression level (10.86) was observed 16 days after inoculation in B4 treatment, but a significant down-regulation of NS3 gene was found in all other treatments. The expression levels of CP, SP and NSvc4 genes were down-regulated significantly (0-0.74) in almost all B2 and B3 treatments, while a significant up-regulation was found in half of B1 and B4 treatments, and the highest expression levels of SP gene were observed 16 days after inoculation in B1 (258.89) and B4 (730.54) treatment, respectively. On the other hand, the effects of imidacloprid stress on the expression patterns of CP and SP genes were different from those of CP and SP proteins. For example, the expression level of CP gene was almost no expression (0) 19 days after inoculation in B1 treatment, while significantly up-regulated (23.08) was observdd for CP protein. PMID:25876413

  15. Recilia banda Kramer (Hemiptera: Cicadellidae), a vector of Napier stunt phytoplasma in Kenya

    NASA Astrophysics Data System (ADS)

    Obura, Evans; Midega, Charles A. O.; Masiga, Daniel; Pickett, John A.; Hassan, Mohamed; Koji, Shinsaku; Khan, Zeyaur R.

    2009-10-01

    Napier grass ( Pennisetum purpureum) is the most important fodder crop in smallholder dairy production systems in East Africa, characterized by small zero-grazing units. It is also an important trap crop used in the management of cereal stemborers in maize in the region. However, production of Napier grass in the region is severely constrained by Napier stunt disease. The etiology of the disease is known to be a phytoplasma, 16SrXI strain. However, the putative insect vector was yet unknown. We sampled and identified five leafhopper and three planthopper species associated with Napier grass and used them as candidates in pathogen transmission experiments. Polymerase chain reaction (PCR), based on the highly conserved 16S gene, primed by P1/P6-R16F2n/R16R2 nested primer sets was used to diagnose phytoplasma on test plants and insects, before and after transmission experiments. Healthy plants were exposed for 60 days to insects that had fed on diseased plants and acquired phytoplasma. The plants were then incubated for another 30 days. Nested PCR analyses showed that 58.3% of plants exposed to Recilia banda Kramer (Hemiptera: Cicadellidae) were positive for phytoplasma and developed characteristic stunt disease symptoms while 60% of R. banda insect samples were similarly phytoplasma positive. We compared the nucleotide sequences of the phytoplasma isolated from R. banda, Napier grass on which these insects were fed, and Napier grass infected by R. banda, and found them to be virtually identical. The results confirm that R. banda transmits Napier stunt phytoplasma in western Kenya, and may be the key vector of Napier stunt disease in this region.

  16. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells.

    PubMed

    Mao, Qianzhuo; Zheng, Shenglan; Han, Qingmei; Chen, Hongyan; Ma, Yuanyuan; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2013-06-01

    Plant reoviruses are thought to replicate and assemble within cytoplasmic, nonmembranous structures called viroplasms. Here, we established continuous cell cultures of the white-backed planthopper (Sogatella furcifera Horváth) to investigate the mechanisms for the genesis and maturation of the viroplasm induced by Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus in the family Reoviridae, during infection of its insect vector. Electron and confocal microscopy revealed that the viroplasm consisted of a granular region, where viral RNAs and nonstructural proteins P6 and P9-1 accumulated, and a filamentous region, where viral RNAs, progeny cores, viral particles, as well as nonstructural proteins P5 and P6 accumulated. Our results suggested that the filamentous viroplasm matrix was the site for the assembly of progeny virions. Because viral RNAs were produced by assembled core particles within the filamentous viroplasm matrix, we propose that these viral RNAs might be transported to the granular viroplasm matrix. P5 formed filamentous inclusions and P9-1 formed granular inclusions in the absence of viral infection, suggesting that the filamentous and granular viroplasm matrices were formed primarily by P5 and P9-1, respectively. P6 was apparently recruited in the whole viroplasm matrix by direct interaction with P9-1 and P5. Thus, the present results suggested that P5, P6, and P9-1 are collectively required for the genesis and maturation of the filamentous and granular viroplasm matrix induced by SRBSDV infection. Based on these results, we propose a new model to explain the genesis and maturation of the viroplasms induced by fijiviruses in insect vector cells. PMID:23576499

  17. Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia.

    PubMed

    Jović, J; Cvrković, T; Mitrović, M; Krnjajić, S; Petrović, A; Redinbaugh, M G; Pratt, R C; Hogenhout, S A; Tosevski, I

    2009-09-01

    Maize redness (MR), induced by stolbur phytoplasma ('Candidatus Phytoplasma solani', subgroup 16SrXII-A), is characterized by midrib, leaf, and stalk reddening and abnormal ear development. MR has been reported from Serbia, Romania, and Bulgaria for 50 years, and recent epiphytotics reduced yields by 40 to 90% in South Banat District, Serbia. Potential vectors including leafhoppers and planthoppers in the order Hemiptera, suborder Auchenorrhyncha, were surveyed in MR-affected and low-MR-incidence fields, and 33 different species were identified. Only Reptalus panzeri populations displayed characteristics of a major MR vector. More R. panzeri individuals were present in MR-affected versus low-MR fields, higher populations were observed in maize plots than in field border areas, and peak population levels preceded the appearance of MR in late July. Stolbur phytoplasma was detected in 17% of R. panzeri adults using nested polymerase chain reaction but not in any other insects tested. Higher populations of R. panzeri nymphs were found on maize, Johnsongrass (Sorghum halepense), and wheat (Triticum aestivum) roots. Stolbur phytoplasma was detected in roots of these three plant species, as well as in R. panzeri L(3) and L(5) nymphs. When stolbur phytoplasma-infected R. panzeri L(3) nymphs were introduced into insect-free mesh cages containing healthy maize and wheat plants, 89 and 7%, respectively, became infected. These results suggest that the MR disease cycle in South Banat involves mid-July transmission of stolbur phytoplasma to maize by infected adult R. panzeri. The adult R. panzeri lay eggs on infected maize roots, and nymphs living on these roots acquire the phytoplasma from infected maize. The nymphs overwinter on the roots of wheat planted into maize fields in the autumn, allowing emergence of phytoplasma-infected vectors the following July.

  18. An abundant 'Candidatus Phytoplasma solani' tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus.

    PubMed

    Aryan, A; Brader, G; Mörtel, J; Pastar, M; Riedle-Bauer, M

    2014-10-01

    Bois noir (BN) associated with 'Candidatus Phytoplasma solani' (Stolbur) is regularly found in Austrian vine growing regions. Investigations between 2003 and 2008 indicated sporadic presence of the confirmed disease vector Hyalesthes obsoletus and frequent infections of bindweed and grapevine. Infections of nettles were rare. In contrast present investigations revealed a mass occurrence of H. obsoletus almost exclusively on stinging nettle. The high population densities of H. obsoletus on Urtica dioica were accompanied by frequent occurrence of 'Ca. P. solani' in nettles and planthoppers. Sequence analysis of the molecular markers secY, stamp, tuf and vmp1 of stolbur revealed a single genotype named CPsM4_At1 in stinging nettles and more than 64 and 90 % abundance in grapevine and H. obsoletus, respectively. Interestingly, this genotype showed tuf b type restriction pattern previously attributed to bindweed associated 'Ca. P. solani' strains, but a different sequence assigned as tuf b2 compared to reference tuf b strains. All other marker genes of CPsM4_At1 clustered with tuf a and nettle derived genotypes verifying distinct nettle phytoplasma genotypes. Transmission experiments with H. obsoletus and Anaceratagallia ribauti resulted in successful transmission of five different strains including the major genotype to Catharanthus roseus and in transmission of the major genotype to U. dioica. Altogether, five nettle and nine bindweed associated genotypes were described. Bindweed types were verified in 34 % of grapevine samples, in few positive Reptalus panzeri, rarely in bindweeds and occasionally in Catharanthus roseus infected by H. obsoletus or A. ribauti. 'Candidatus Phytoplasma convolvuli' (bindweed yellows) was ascertained in nettle and bindweed samples. PMID:25309042

  19. Transgenic strategies to confer resistance against viruses in rice plants

    PubMed Central

    Sasaya, Takahide; Nakazono-Nagaoka, Eiko; Saika, Hiroaki; Aoki, Hideyuki; Hiraguri, Akihiro; Netsu, Osamu; Uehara-Ichiki, Tamaki; Onuki, Masatoshi; Toki, Seichi; Saito, Koji; Yatou, Osamu

    2014-01-01

    Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral “Achilles’ heel” gene to target for RNAi attack when engineering plants. PMID:24454308

  20. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells.

    PubMed

    Mao, Qianzhuo; Zheng, Shenglan; Han, Qingmei; Chen, Hongyan; Ma, Yuanyuan; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2013-06-01

    Plant reoviruses are thought to replicate and assemble within cytoplasmic, nonmembranous structures called viroplasms. Here, we established continuous cell cultures of the white-backed planthopper (Sogatella furcifera Horváth) to investigate the mechanisms for the genesis and maturation of the viroplasm induced by Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus in the family Reoviridae, during infection of its insect vector. Electron and confocal microscopy revealed that the viroplasm consisted of a granular region, where viral RNAs and nonstructural proteins P6 and P9-1 accumulated, and a filamentous region, where viral RNAs, progeny cores, viral particles, as well as nonstructural proteins P5 and P6 accumulated. Our results suggested that the filamentous viroplasm matrix was the site for the assembly of progeny virions. Because viral RNAs were produced by assembled core particles within the filamentous viroplasm matrix, we propose that these viral RNAs might be transported to the granular viroplasm matrix. P5 formed filamentous inclusions and P9-1 formed granular inclusions in the absence of viral infection, suggesting that the filamentous and granular viroplasm matrices were formed primarily by P5 and P9-1, respectively. P6 was apparently recruited in the whole viroplasm matrix by direct interaction with P9-1 and P5. Thus, the present results suggested that P5, P6, and P9-1 are collectively required for the genesis and maturation of the filamentous and granular viroplasm matrix induced by SRBSDV infection. Based on these results, we propose a new model to explain the genesis and maturation of the viroplasms induced by fijiviruses in insect vector cells.

  1. Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae).

    PubMed

    Galetto, L; Marzachì, C; Demichelis, S; Bosco, D

    2011-04-01

    Phytoplasmas are phloem-restricted plant pathogens transmitted by leafhoppers, planthoppers, and psyllids (Hemiptera). Most known phytoplasma vectors belong to the Cicadellidae, but many are still unknown. Within this family, Empoasca spp. (Typhlocybinae) have tested positive for the presence of some phytoplasmas, and phytoplasma transmission has been proven for one species. The aim of this work was to investigate the ability of Empoasca decipiens Paoli in transmitting chrysanthemum yellows phytoplasma (CYP, "Candidatus Phytoplasma asteris", 16SrI-B) and Flavescence dorée phytoplasma (FDP, 16SrV-C) to Chrysanthemum carinatum Schousboe (tricolor daisy) and Viciafaba (L.) (broad bean). Euscelidius variegatus Kirschbaum, a known vector of CYP and FDP, was caged together with Em. decipiens on the same source plants as a positive control of acquisition. Em. decipiens acquired CYP from daisies, but not from broad beans, and inoculated the pathogen to daisies with alow efficiency, but not to broad beans. Em. decipiens did not acquire FDP from the broad bean source. Consistent with the low transmission rate, CYP was found in the salivary glands of very few phytoplasma-infected Em. decipiens, indicating these organs represent a barrier to phytoplasma colonization. In the same experiments, the vector Eu. variegatus efficiently acquired both phytoplasmas, and consistently CYP was detected in the salivary glands of most samples of this species. The identity of the CYP strain in leafhoppers and plants was confirmed by polymerase chain reaction (PCR)-restriction fragment length polymorphism. The CYP titer in Em. decipiens was monitored over time by real-time PCR. The damage caused by Em. decipiens feeding punctures was depicted. Differences in feeding behavior on different plant species may explain the different phytoplasma transmission capability. Em. decipiens proved to be an experimental vector of CYP. PMID:21510180

  2. The Wolbachia WO bacteriophage proteome in the Aedes albopictus C/wStr1 cell line: evidence for lytic activity?

    PubMed

    Baldridge, Gerald D; Markowski, Todd W; Witthuhn, Bruce A; Higgins, LeeAnn; Baldridge, Abigail S; Fallon, Ann M

    2016-01-01

    Wolbachia pipientis (Rickettsiales), an obligate intracellular alphaproteobacterium in insects, manipulates host reproduction to maximize invasion of uninfected insect populations. Modification of host population structure has potential applications for control of pest species, particularly if Wolbachia can be maintained, manipulated, and genetically engineered in vitro. Although Wolbachia maintains an obligate mutualism with genome stability in nematodes, arthropods can be co-infected with distinct Wolbachia strains, and horizontal gene transfer between strains is potentially mediated by WO phages encoded within Wolbachia genomes. Proteomic analysis of a robust, persistent infection of a mosquito cell line with wStr from the planthopper, Laodelphax striatellus, revealed expression of a full array of WO phage genes, as well as nine of ten non-phage genes that occur between two distinct clusters of WOMelB genes in the genome of wMel, which infects Drosophila melanogaster. These non-phage genes encode potential host-adaptive proteins and are expressed in wStr at higher levels than phage structural proteins. A subset of seven of the non-phage genes is flanked by highly conserved non-coding sequences, including a putative promoter element, that are not present in a syntenically arranged array of homologs in plasmids from three tick-associated Rickettsia spp. These studies expand our understanding of wStr in a host cell line derived from the mosquito, Aedes albopictus, and provide a basis for investigating conditions that favor the lytic phase of the WO phage life cycle and recovery of infectious phage particles.

  3. The Mecyclothorax beetles (Coleoptera, Carabidae, Moriomorphini) of Tahiti, Society Islands

    PubMed Central

    Liebherr, James K.

    2013-01-01

    punctipennis (MacLeay). Much of the species-level diversity on this small Pacific island is partitioned allopatrically over very small distributional ranges. No species is shared between Tahiti Nui and Tahiti Iti, and nearly all species in Tahiti Nui are geographically restricted to one ridgelike massif of that volcano. Cladistically similar species are often distributed on different massifs suggesting that vicariance associated with erosional valley formation has facilitated speciation, however several instances in which sister species occupy sympatric distributions on the same ridge system demonstrate that speciation may also occur across extremely localized landscapes. Such localized differentiation is facilitated by the low vagility of these small-bodied, flightless predators whose fragmented populations can persist and diverge within spatially limited habitat patches. The intense philopatry of Tahitian Mecyclothorax spp. coupled with the highly dissected landscape has produced the geographically densest adaptive radiation on Earth. This radiation has occurred very rapidly, with species durations averaging 300,000 yr; a speciation rate similar to that observed in Hawaiian Oliarus planthoppers and Laupala crickets, and East African Rift lake cichlid fishes. PMID:24003312

  4. Arthropod food web restoration following removal of an invasive wetland plant.

    PubMed

    Gratton, Claudio; Denno, Robert F

    2006-04-01

    Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on

  5. Effects of raising frogs and putting pest-killing lamps in paddy fields on the prevention of rice pests and diseases

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Luo, Fan; Cao, Ming-Yang

    2014-05-01

    Frogs in paddy fields become less and less due to applying large amounts of pesticides and human hunting for a long time, which causes the aggravation of rice pests and diseases. A field experiment was carried out in the suburb of Shanghai to study the effects of artificially raising frogs and putting frequency oscillation pest-killing lamps in paddy fields on the prevention of rice pests and diseases. The field experiment includes three treatments. Treatment I: 150 frogs, each 20 g in weight, per 100 m2 were put in the fields; Treatment II: a frequency oscillation pest-killing lamp was put in the fields; Treatment III: no frogs and pest-killing lamps were put in the fields. All the experimental fields were operated based on the organic faming system. The amount of organic manure, 7500 kg/hm2, was applied to the fields as base fertilizer before sowing in early June, 2013. No any chemical fertilizers and pesticides were used during the entire period of rice growth. Each treatment is in triplicate and each plot is 67 m2 in area. The results are as follows: (1) During the entire growth period, the incidences of rice pests and diseases with Treatment I and II are significantly lower than those with CK (Treatment III). The incidence of chilo suppressalis with Treatment I, II and III is 0, 0.46% and 1.69%, respectively; that of cnaphalocrocis medinalis is 7.67%, 6.62% and 10.10%, respectively; that of rice sheath blight is 0, 11.11% and 5.43%, respectively; that of rice planthopper is 4.25 per hill, 5.75 per hill and 11 per hill, respectively. (2) The grain yield of the three treatments is significantly different. That of Treatment I, II and III is 5157.73 kg/hm2, 4761.60 kg/hm2 and 3645.14kg/hm2 on average, respectively. (3) Affected by frog activities, the contents of NH4-N, available P and available K in the soil with Treatment I are significantly raised. All the above suggest that artificially raising frogs in paddy fields could effectively prevent rice pests and

  6. The Mecyclothorax beetles (Coleoptera, Carabidae, Moriomorphini) of Tahiti, Society Islands.

    PubMed

    Liebherr, James K

    2013-01-01

    Leay). Much of the species-level diversity on this small Pacific island is partitioned allopatrically over very small distributional ranges. No species is shared between Tahiti Nui and Tahiti Iti, and nearly all species in Tahiti Nui are geographically restricted to one ridgelike massif of that volcano. Cladistically similar species are often distributed on different massifs suggesting that vicariance associated with erosional valley formation has facilitated speciation, however several instances in which sister species occupy sympatric distributions on the same ridge system demonstrate that speciation may also occur across extremely localized landscapes. Such localized differentiation is facilitated by the low vagility of these small-bodied, flightless predators whose fragmented populations can persist and diverge within spatially limited habitat patches. The intense philopatry of Tahitian Mecyclothorax spp. coupled with the highly dissected landscape has produced the geographically densest adaptive radiation on Earth. This radiation has occurred very rapidly, with species durations averaging 300,000 yr; a speciation rate similar to that observed in Hawaiian Oliarus planthoppers and Laupala crickets, and East African Rift lake cichlid fishes.

  7. The Genome of the Nucleopolyhedrosis-Causing Virus from Tipula oleracea Sheds New Light on the Nudiviridae Family

    PubMed Central

    Thézé, Julien; Gavory, Frederick; Gaillard, Julien; Poulain, Julie; Drezen, Jean-Michel; Herniou, Elisabeth A.

    2014-01-01

    ABSTRACT A large double-stranded DNA (dsDNA) virus that produces occlusion bodies, typical of baculoviruses, has been described to infect crane fly larvae of the genus Tipula (Diptera, Tipulidae). Because of a lack of genomic data, this virus has remained unclassified. Electron microscopy of an archival virus isolated from Tipula oleracea, T. oleracea nudivirus (ToNV), showed irregularly shaped occlusion bodies measuring from 2 to 5 μm in length and 2 μm in middiameter, filled with rod-shape virions containing single nucleocapsids within a bilayer envelope. Whole-genome amplification and Roche 454 sequencing revealed a complete circular genome sequence of 145.7 kb, containing five direct repeat regions. We predicted 131 open reading frames, including a homolog of the polyhedrin gene encoding the major occlusion body protein of T. paludosa nucleopolyhedrovirus (NPV). BLAST searches demonstrated that ToNV had 21 of the 37 baculovirus core genes but shared 52 genes with nudiviruses (NVs). Phylogenomic analyses indicated that ToNV clearly belongs to the Nudiviridae family but should probably be assigned to a new genus. Among nudiviruses, ToNV was most closely related to the Penaeus monodon NV and Heliothis zea NV clade but distantly related to Drosophila innubia NV, the other nudivirus infecting a Diptera. Lastly, ToNV was found to be most closely related to the nuvidirus ancestor of bracoviruses. This was also reflected in terms of gene content, as ToNV was the only known exogenous virus harboring homologs of the Cc50C22.6 and 27b (Cc50C22.7) genes found in the nudiviral genomic cluster involved in bracovirus particle production. IMPORTANCE The Nudiviridae is a family of arthropod dsDNA viruses from which striking cases of endogenization have been reported (i.e., symbiotic bracoviruses deriving from a nudivirus and the endogenous nudivirus of the brown planthopper). Although related to baculoviruses, relatively little is known about the genomic diversity of

  8. Reconstruction of Holocene palaeoclimate and environment in the Khatanga region, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Syrykh, Ludmila; Nazarova, Larisa

    2016-04-01

    environmental conditions in Quarternary Period and especially in Holocene (Smol et al., 2005; Nazarova et al., 2013). Main aim of our the research is to perform a high-resolution Holocene temperature reconstructions for Taymyr (the northern most region of Russian Arctic) using lake sediments from Chatanga region, and statistical chironomid-based inference models for estimation of mean July air temperature and water depth from lakes in north-eastern Russia. We performed a multy-proxy reconstruction of palaeoclimate and environment in the Holocene using a 132 cm sediment core covering 6 ka of sedimentation. Based of the chironomids analysis we performed a quantitative reconstruction of mean July air temperature in the Chatanga region (Taymyr Peninsula). Our investigation has shown that modern fauna is well represented along the whole sediment core. Dominating taxa along the core are cold stenotherms such as Chironomus anthracinus-type, Hydrobaenus lugubris-type and Tanytarsus lugens-type. Faunistic composition of lower part of the core (before 5 ka BP) is characteristic for a warmer conditions, which is in accordance with the earlier studies showing that mean summer temperatures may have been 2.5° to 5.0°C warmer than today in Taymyr peninsula between 9 and 4 ka BP. During the last 3500 years, our record suggests cooler conditions as elsewhere in the Russian arctic. This project was financed by DAAD "Mikhail Lomonosov Program"

  9. Establishment of a rice-duck integrated farming system and its effects on soil fertility and rice disease control

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan

    2015-04-01

    Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1

  10. Influence of fertilization on the capability of rice resistance to diseases

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Chang, Yue-Ya; Jiang, Ying; Yan, Xiao-Juan; Luo, Fan

    2013-04-01

    Organic cultivation of rice requires no use of any agricultural chemicals during the entire period of growth, and so the rice's self-prevention of diseases and pests is vitally important. A field experiment was carried out to study the possible influence of different fertilization on the capability of rice resistance to diseases and pests. A rice variety used for this experiment is Jia-He 218. Four treatments (A, B, C and D) were designed: A is a control, without using any fertilizers; B, after manuring of green azolla, 0.67 kg/m2; C, after manuring of rapeseed cake, 0.30 kg/m2; D, after fertilizing of ammonium bicarbonate, 0.025 kg/m2, and urea, 0.025 kg/m2. The experiment plot is 66.7 m2, with three replicates. The results indicated that the fertilization patterns significantly influence the growth of rice seedlings: The heights by A, B, C and D are 37 cm, 40 cm , 42 cm and 45 cm on average, respectively; the spike numbers, 45, 65, 73 and 75, respectively; chlorophyll contents in leaves, 1.84 mg/g, 2.42 mg/g, 3.02 mg/g and 3.97 mg/g, respectively. The rice with the different fertilization also varies in nutrient concentration in leaves: NH4-N concentration in leaves by A, B, C and D is 47.5 mg/kg, 61.1 mg/kg, 74.7 mg/kg and 135.8 mg/kg on average, respectively; NO3-N in leaves, 138.9 mg/kg, 185.2 mg/kg, 154.3 mg/kg and 293.2 mg/kg, respectively. The fertilization patterns, moreover, show a significant influence on the incidence of diseases and pests to rice seedlings: The incidence of rice cnaphalocrocis medinalis by A, B, C and D is 1.33 %, 1.50 %, 1.75 % and 89.0 % on average, respectively; that of bacterial leaf blight, 0, 1.25 %, 1.75 % and 85.0 %, respectively; number of rice planthopper in each plant, 20, 21, 21 and 30, respectively. As a result, the yield of rice grain by A, B, C and D is 4540 kg/ha, 4606 kg/ha, 4503 kg/ha and 4092 kg/ha on average, respectively. In conclusion, the rice seedlings treated with chemical fertilizers grow large and tender

  11. An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for Kiwikiu (Pseudonestor xanthophrys) and Maui `Alauahio (Parareomyza montana).

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Cappadonna, Justin; Steele, Claire; Leonard, David L.; Mounce, Hanna L.; Becker, Dusti; Swinnerton, Kirsty

    2015-01-01

    ), which comprised 90% of all prey items for 50 adult birds and 98% of all prey for two nestlings. Caterpillars were also the most important prey for Maui ‘alauahio (43% for 104 adult birds) although spiders (Araneae, 16%), beetles (12%) and true bugs, planthoppers and psyllids (Hemiptera; 12%) were also important. Caterpillars were generally the most abundant type of arthropod in the foliage of koa and ‘ōhi‘a, although spiders, beetles and hemipterans were also common. Total arthropod biomass and caterpillar biomass at Nakula was as great, or greater, than that observed at Hanawi and Waikamoi per unit of foliage of both koa and ‘ōhi‘a. Spiders generally dominated the bark fauna on both koa and ‘ōhi‘a at all sites although isopods (Isopoda), millipedes (Myriapoda: Millipeda) and lacewings (Neuroptera) were also abundant at Waikamoi and Hanawi. Total arthropod biomass on bark, as well as the biomass of several individual taxa, was significantly lower at Nakula than the other sites. Our measurement of the density of beetle exit holes in dead koa branches found no difference between Nakula and Waikamoi. Finally, no difference existed in the abundance of arthropods (primarily caterpillars and moth pupae) within ‘ākala stems among sites. With the exception of bark surfaces, our results suggest that the arthropod prey base for birds on primary foraging substrates at Nakula is similar to that found at two sites within the current range of kiwikiu and Maui ‘alauahio. However, our results should be viewed with caution because they are limited to the scale of individual branch, tree, or ‘ākala stem. To complete the assessment, our results should be scaled up to the landscape level by determining the density of each substrate within each site. Key arthropod prey of kiwikiu and Maui ‘alauahio are available at Nakula and, as habitat restoration continues, food abundance should increase to the point at which populations of these birds can be supported.